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ABSTRACT

This thesis covers topics at the intersection of deep learning (DL), security and com-

pression. These topics include the issues of security and compression of DL models them-

selves, as well as their applications in the fields of cyber security and data compression.

The first part of the thesis focuses on the security problems of DL. Recent studies have

revealed the vulnerability of DL under several malicious attacks such as adversarial attacks,

where the output of a DL model is manipulated through an invisibly small perturbation of

the model’s input. We propose to defend against these threats by incorporating stochastic-

ity into DL models. Multiple randomization schemes are introduced including Defensive

Dropout (DD), Hierarchical Random Switching (HRS) and Adversarially Trained Model

Switching (AdvMS).

The next part of the thesis discusses the usage of DL in security domain. In particular,

we consider anomaly detection problems in an unsupervised learning setting using auto-
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encoders and apply this method to both side-channel signals and proxy logs.

In the third part we discuss the interaction between DL and Compressed Sensing (CS).

In CS systems, the processing time is largely limited by the computational cost of sparse

reconstruction. We show that full reconstruction can be bypassed by training deep networks

that extract information directly from the compressed signals. From another perspective,

CS also help reducing the complexity of DL models by providing a more compact data

representation.

The last topic is DL based codecs for image compression. As an extension to the current

framework, we propose Substitutional Neural Image Compression (SNIC) that finds the

optimal input substitute for a specific compression target. SNIC leads to both improved

rate-distortion trade-off and easier bit-rate control.
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Chapter 1

Introduction

1.1 Background

Deep learning has revolutionized the field of machine learning and led to impressive im-

provements on a number of benchmarks in computer vision [Russakovsky et al., 2015,

Krizhevsky et al., 2017, Zhao et al., 2019, Chahal and Dey, 2018], speech recognition

[Amodei et al., 2016, Hannun et al., 2014, Noda et al., 2015, Graves et al., 2013], nat-

ural language processing [Young et al., 2018, Collobert and Weston, 2008, Goyal et al.,

2018, Brownlee, 2017], and automatic game playing [Justesen et al., 2019, Guo et al.,

2014,Mnih et al., 2013,Silver et al., 2016]. Besides outperforming classical machine learn-

ing methods in the aforementioned fields, deep learning also provides remarkable solutions

in many advanced areas such as analysing effects of mutations in DNA [Xiong et al., 2015]

and reconstruction of brain circuits [Helmstaedter et al., 2013]. Especially, with the evolu-

tion of deep learning platforms [Abadi et al., 2016,Collobert et al., 2002,Chen et al., 2015]

and availability of high performance hardware [Jouppi et al., 2018,Zhang et al., 2015a], real

world applications and services based on deep neural networks are growing rapidly. Typ-

ical examples includes cloud computing based AI services from commercial players like

Google and Alibaba and popular voice controllable systems like Apple Siri and Amazon

Alexa.

Extensive use of deep learning also exists in safety and security-critical environments,

such as self-driving cars [Sallab et al., 2017, Grigorescu et al., 2020], malware detec-

tion [Yuan et al., 2014,Kolosnjaji et al., 2018] and robotics [Pierson and Gashler, 2017,Nath
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and Levinson, 2014], where malfunction of a deep learning model will lead to serious con-

sequences. Therefore, the security and integrity of deep learning have posed great concern

to researchers in the past few years. Security threats to deep learning have various forms

and goals. Typical attacks to deep learning models includes model extraction [Tramèr

et al., 2016,Oh et al., 2019] that attempts to duplicate a model through provided interfaces,

model inversion [Long et al., 2018, Liu et al., 2018b] that attempts to infer training data

from trained models, poisoning attack [Liu et al., , Gu et al., 2019] that seeks to down-

grade prediction accuracy by polluting training data, and adversarial attack [Szegedy et al.,

2013, Carlini and Wagner, 2017b] that aims at fooling a trained model to make erroneous

predictions.

Among these attacks, adversarial attack is particularly harmful to deep learning models

in the security domain. First discovered by Szegedy et al. [Szegedy et al., 2013], it is shown

that a well-performing deep neural network can be misled into making an arbitrary wrong

prediction by adding a small perturbation of the model’s input. This adversarial perturba-

tion can be crafted effectively while being small enough so that the perturbed input example

has no perceptual difference to humans compared with the original input example. Besides

the aforementioned threats, adversarial reprogramming [Elsayed et al., 2018] is another

recently proposed security threats where adversaries target to steal computation of a target

model by building their applications on top of it, even though the target model is trained for

a different task. That is, a model trained for a particular task can be reprogrammed to per-

form another task, by training input and output transformation networks that bridge these

two tasks. By doing so, the attacker can transfer part of computation burdens to models

that are publicly available in an unnoticeable way.

Another challenge of deep learning relates its enormous parameter size. For example,

Megatron-LM [Shoeybi et al., 2019], a recently developed transformer model, has 8.3 bil-

lion parameters. Even a toy neural network usually contains millions of parameters, which
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can be problematic when it faces limited computation resources, transmission bandwidth or

power budget. This issue is especially significant for deep learning models used for video

processing. Conventionally, in order to capture the inter-frame spatio-temporal information

of a video clip, a model’s architecture needs to be sophisticated enough to handle spatial

and temporal patterns at the same time. For instance, 3D convolutional networks [Hou

et al., 2019, Lin et al., 2019] and recurrent convolutional networks (RCNNs) [Xu et al.,

2016,Zhang et al., 2017] are commonly used for video recognition, which are dramatically

more computationally intensive that standard 2D convolutional networks.

In this thesis, we explore approaches that tackle the above mentioned challenges of deep

learning associated with its security and compactness. Interestingly, we found randomness

plays an important role in tackling both problems. Randomness can be added to a model’s

architecture or parameters, which results in a stochastic model, in order to improve its

adversarial robustness. Randomness is also the key component for compressed sensing,

which reduces model complexity by providing a more compact data representation.

The motivation of using stochastic models to defend against adversarial threats stems

from the fact that these threats are model-dependent. For example, the process of generat-

ing adversarial examples makes use of input gradients, i.e. gradients of a loss function with

respect to input. Note that in the above process, a model is implicitly exploited through

computation of the input gradients, so that a model-specific worse-case perturbation of

the input example can be crafted. The benefits of replacing a deterministic model with a

stochastic model can be interpreted in two aspects. First, the stochasticity makes the weak

spots of the model randomized over time. From the attackers’ perspective, in order to en-

sure successful attacks, the crafted adversarial examples must work generally well for all

variants of a stochastic model, which makes it more difficult than attacking a fixed model.

Secondly, the variation of a stochastic model also causes stochastic input gradients that

may point to a less beneficial direction for performing gradient update. Although this ef-
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fect can be alleviated by sampling stochastic gradient for many times and computing the

expected value, it still leads to increased query times of the target model as well as higher

computational burdens.

We tackle the second challenge of model compactness with the help of compressed

sensing (CS). In compressed sensing theory, a sparse signal can be faithfully recovered

from a compressed representation if the sensing matrix satisfies the Restricted Isometry

Property (RIP). In particular, random sensing matrices such as Gaussian and Bernoulli ma-

trices, are shown to satisfy RIP condition with exponentially high probability [Baraniuk

et al., 2008]. Given the fact that real-world signals such as videos and images are highly

redundant and thus have sparse representation under certain bases, compressed sensing

works well for these signals. As original signals can be reconstructed from compressed

signals, it is natural to wonder if information can be extracted directly from compressed

signals. We verify this hypothesis in the context of spatio-temporal compressed sensing, in

which a multi-frame video clip is compressed as a single-frame coded image. We train 2D

Convolutional Neural Networks (CNNs) on CS coded images and show that they achieve

competitive accuracy of recognizing the motion speed and direction compared with models

trained with full-frame video in some motion recognition tasks. We interpret this result

by introducing a concept of spatial-motion feature, as a consequence of spatio-temporal

compressed sensing that can be viewed as a temporal-to-spatial (T-to-S) feature conversion

process. These findings shed light on a new way of processing video data using image

models which significantly reduce the models’ complexity and processing time. This ap-

proach fits particularly well to systems where resources are limited and a quick response is

required.

The benefits of combining deep learning and compressed sensing are not restricted to

data analysis but also to data acquisition. On the one hand, because compressed sensing

can be implemented by hardware before the AD conversion, it has economical advantages
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in signal processing and data transmission. On the other hand, inferring directly from

the compressed data also helps bypass the need for sparse reconstruction of original sig-

nals, which is the most computational intensive step in conventional compressed sensing

systems. Because sparse reconstruction cannot be implemented efficiently, adaptive sen-

sor adjustments that requires real-time feedback based on sensed information is infeasible.

However, if we can infer directly from the compressed data using deep learning models,

the reconstruction of original signals can be avoided, and real-time feedback for adaptive

compressed sensing becomes possible.

Besides topics regarding to the security and compression aspects of deep learning, this

thesis also discusses how deep learning can be applied to conventional tasks in the secu-

rity and compression domains. Actually, in the above example we have already seen that

deep learning benefits compressed sensing systems by enabling fast temporal information

retrieval.

There is a rich body of deep learning applications in fields of cyber security, such as

malware detection [Alzaylaee et al., 2020, Pascanu et al., 2015, Kolosnjaji et al., 2016],

botnet detection [Torres et al., 2016, McDermott et al., 2018, Kolias et al., 2017], spam

identification [Tzortzis and Likas, 2007,Mi et al., 2015], and anomaly detection in a variety

of different scenarios [Cheng et al., 2016, Maimó et al., 2018, Du et al., 2017a, Garg et al.,

2019]. In this thesis, we apply deep learning in analyzing two types of data, side-channel

signals and proxy logs. Deep learning applications in the security domain can either be

formulated as a classification problem or an anomaly detection problem (here anomaly

detection refers to a specific problem setting rather than a particular application domain).

The difference between classification and anomaly detection is that both negative (benign)

and positive (malicious) training examples are available for classification, but only negative

training examples are available for anomaly detection.

Why anomaly detection is a widely used problem setting in security domain? There are
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mainly two reasons. One reason has to do with the variety of positive (malicious) examples.

For example, there may be many different types of malware, each of which has different

behavior. In addition, it is hard to obtain a complete list of them as new types of malware

are invented, nor it is necessary to do so as we do not care too much about distinguishing

different types of malware. Another reason is that the costs of collecting positive and neg-

ative examples are different. Usually, negative (benign) examples are relatively cheap to

obtain as they refer to the normal status of a machine. They can either be easily collected

from a controlled environment in which anomalies are excluded, or from an uncontrolled

environment if we can assume anomalies are rare. To the contrary, labeled positive exam-

ples are expensive to obtain as they usually require domain expertise and human effort for

labelling. These properties make unsupervised anomaly detection task particularly suitable

for cyber security applications.

There are also attempts to apply deep learning models for data compression. In particu-

lar, learning based codecs are growing rapidly in the field of image and video compression.

Compression tasks can be classified in two different types, lossless compression and lossy

compression, and deep learning has been used in both of them. Some typical examples

of deep learning based lossless compression methods include [Kingma et al., 2019], [Tat-

wawadi, 2018], and [Schiopu and Munteanu, 2019]. Deep learning methods for lossy

compression are more pervasive, which can be further classified into two different types.

The first type of methods embrace traditional coding schemes but use trained neural net-

works as tools for specific tasks in a coding scheme, such as intra-picture prediction [Li

et al., 2018a], inter-picture prediction [Lin et al., 2018, Zhao et al., 2018], cross-channel

prediction [Li et al., 2018b] and down/up sampling [Liu et al., 2018a, Li et al., 2018c].

The second type of methods are primarily built upon deep neural networks [Toderici et al.,

2015,Ballé et al., 2016,Ballé et al., 2018,Theis et al., 2017]. These schemes usually have an

encoder-decoder structure, where both encoder and decoder contains trainable parameters
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that are optimized during the training phase.

During the past years, Neural Image Compression (NIC), i.e. image coding based

on deep neural networks, progressed rapidly and outperforms many classical engineered

codecs such as JPEG [Skodras et al., 2001] and BPG [Bellard, 2015]. However, one major

hurdle to pervasive use of NIC regards its inefficiency in bit-rate control where multiple

model instances that have different bit-rates are needed. In this thesis, we propose Sub-

stitutional Neural Image Compression (SNIC) which finds the optimal substitutional input

(denoted as substitutional image) of a specific NIC model for a particular compression

target. With SNIC, bit-rate control can be simply conducted by generating substitutional

images with different characteristics, without the need for multiple compression model in-

stances.

Last but not least, it is important to note that the security and compression domains

of deep learning are not isolated. Rather, there are many interesting connections which

we want to identify in the thesis. This is one major reason that we bring both security-

related and compression-related topics in the thesis. For example, auto-encoders used in

unsupervised anomaly detection are essentially compression models which have the same

encode-decoder structure as NIC models. The insight of using compression models for

anomaly detection is that as they are trained with negative (benign) data points, the recon-

struction error is relatively small for (unseen) negative example but is relatively large when

feeding an positive example to the model, by which we can distinguish anomalous exam-

ples from normal ones. More discussions regarding to the connections between security

and compression will be presented in the rest of the thesis.

1.2 Organization

In Chapter 2, we focus on the security issues of deep learning models. We first introduce

two typical security threats, adversarial attack and adversarial reprogramming, to deep neu-
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ral networks, where the former targets at fooling a model to make erroneous predictions and

the latter targets at re-purposing a model to a perform a task that the model is trained for.

For adversarial attacks, multiple different attacking schemes are mentioned such as Fast

Gradient Sign Method (FGSM), Carlini-Wagner attack (CW) and Projected Gradient De-

scent attack (PGD). Different defense methods against adversarial attack are also discussed.

In this thesis, we focus on a specific type of defense methods called stochastic defenses.

For stochastic defenses, conventional deterministic deep learning models are transformed

to stochastic models where some or all of model parameters are random variables. Besides

discussing the motivation and insights of stochastic defense in general, we also propose

three specific randomization schemes. We first introduce defensive dropout, which is a

simple extension of the dropout scheme used for regularization. Motivated by pursuing a

better security-accuracy trade-off, we next propose Hierarchical Random Switching (HRS).

Finally we show how stochastic defense can be used jointly with other defendse methods

to form a multi-source multi-cost defense. Toward this direction, Adversarially Trained

Model Switching (AdvMS) is proposed.

In Chapter 3, we present applications of deep learning in the field of cyber security.

Depending on the training data, a task can either be formulated as a supervised learning

task such as classification or an unsupervised learning task such as anomaly detection. For

the anomaly detection problem. we train auto-encoders with (negative) data examples, and

flag an example in the testing phase as anomaly if it triggers a large reconstruction error.

We apply this approach to two different domains including side-channel signals and proxy

logs.

In Chapter 4, we discuss the interaction between deep learning and compressed sensing.

We first introduce spatio-temporal compressed sensing in Sec. 4.1, which down-samples a

video scene into a single-frame coded image. Traditionally, full video needs to be recon-

structed from the coded image before conducting any analysis. This step is computationally



9

expensive, as it usually requires iteratively solving an optimization problem. We propose to

use Convolutional Neural Networks (CNNs) to extract temporal information directly form

the coded images as detailed in Sec. 4.2. Further analysis of spatial-motion features as an

explanation of the proposed approach is presented in Sec. 4.3. Experimental results on both

synthesis and real-world datasets are presented in Sec. 4.4.

Chapter 5 focuses on deep learning methods for lossy image compression. We first give

a generic introduction of neural image compression (NIC) in Sec. 5.1. Two major limita-

tions of current NIC are (a) there is lack of adaptation to the input image as model parame-

ters are fixed after training and (b) bit-rate control cannot be performed easily as it requires

to train and store multiple model instances. Motivated by addressing the aforementioned

limitations, we propose Subsitutional Neural Image Compression (SNIC) in Sec. 5.2. Ex-

perimental results that shows its effectiveness in improving compression performance as

well as performing bit-rate control with a single model instance are presented.

Finally, discussions and conclusions are summarized in Chapter 6. Sec. 6.1.1 and

Sec. 6.1.2 identify two interesting connections between security and compression topics

mentioned in this thesis. The first connection relates to the usage of input gradients (i.e.

gradients of the loss function with respect to the input), which is used in both adversarial

example generation in Chapter 2 and substitutional image generation in Chapter 5. The

second connection is the usage of compression models in anomaly detection. Recall that

auto-encoders are essentially compression models, but the reconstruction error of auto-

encoders provides a good indicator for detecting anomalies. Lastly, Sec. 6.2 summarizes

this thesis.



Chapter 2

Deep Learning Security: Adversarial Attack and

Stochastic Defense

2.1 Adversarial Threats

2.1.1 Adversarial Attack

In this section, we introduce adversarial attack in the context of image classification. Al-

though the purpose of using image classification is to provide a concrete example for de-

scribing adversarial attacks, it is also important to note that adversarial attacks are not

restricted to image classification.

The input images can be denoted as 3-dimensional tensors x ∈R
h×w×c, where h, w and

c denote the height, width and number of channels. For a gray-scale image (e.g. an image

in the MNIST dataset), c= 1; and for a colored RGB image (e.g. an image in the CIFAR-10

dataset), c = 3. We assume all pixel values in the images are scaled to [0,1], and therefore

a valid input image should be inside a unit cube in a high dimensional space.

A deep neural network working as an m-class classifier can be denoted as a function

F(x) = y that maps an input image x to y = {y1, ...,ym}. Usually, the softmax function is

used on top of the the last layer of a neural network classifier, and thus the components

of output vector y satisfy 0 ≤ yi ≤ 1 and y1 + y2 + · · ·+ ym = 1, and can be treated as the

confidence level of assigning a particular label to the input x. The predicted class C(x) is

the output component that has the highest confidence level, that is, C(x) = argmax
i

yi. Some

attack methods also requires the output of a model before the softmax operation, which is

10
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usually referred to as the logits of that model. We use Z(x) to denote logits of a model and

we have F(x) = softmax(Z(x)) = y.

Adversarial attacks can be both targeted or untargeted. Given a legitimate input x with

its correct label t∗ and a target label t 6= t∗, a targeted adversarial attack is to find an input x′

such that C(x′) = t, whereas an untargeted adversarial attack is to find an input x′ such that

C(x′) 6= t∗. Targeted attacks are stronger and are of much concerns in security as they force

the targeted model predict a particular label chosen beforehand by the attacker. Therefore,

we primarily use the targeted attack setting in our experiments to evaluate defense methods.

The adversarial example x′ should be very close to the original input x based on some

measurements of distortion. Common distortion metrics include L0, L2, and L∞ norms.

The usage of a particular distortion metric depends on practical requirements of generated

adversarial examples. For instance, if it is requires to have a minimal number of perturbed

pixels, then L0 norm should be used.

We then summarize some of the most used attacking algorithms as follows.

FGSM. Fast Gradient Sign Method (FGSM) [Goodfellow et al., 2015] is an one-shot at-

tacking algorithm that generates an adversarial example x′ by taking one step of gradient

update. Formally, it can be formulated as

x′ = x− ε · sign(∇(lossF,t(x))). (2.1)

As it utilizes the sign of gradients, the maximal change to any pixel is bounded by ε.

FGSM is designed to be fast instead of accurate as it only performs one step of gradient

descent.

CW Attack Carlini & Wagner (CW) attack [Carlini and Wagner, 2017b] formulates the

search of an adversarial example by solving the following optimization problem:

minimizeδ D(δ)+ c · f (x+δ)
subject to x+δ ∈ [0,1]n

(2.2)
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where δ denotes the perturbation to x, D(δ) refers to the distortion metric, and f is a de-

signed attack objective function for misclassification, and the optimal term c> 0 is obtained

by binary search.

In the targeted attack setting, f takes the following form:

f (x+δ) = max( max{Z(x+δ)i : i 6= t}−Z(x+δ)t ,−κ) (2.3)

where κ controls the confidence level of the attacked model predicting the target class.

In practice, the optimization problem is solved by stochastic gradient decent. CW attack

is known to be a strong attack that achieves 100% attack success rate on unprotected deep

learning models.

PGD. Projected Gradient Decent (PGD) [Kurakin et al., 2016, Madry et al., 2017] is an

iterative attack that applies FGSM with a small step size α repeatedly. It controls the

distortion of adversarial examples through clipping on the perturbation of x. For the t-th

iteration, the updating process is:

x′t+1 = ∏
x+S

(x′t +α · sign(∇(loss(x)))) (2.4)

where ∏x+S refers to projection to S that is the allowed perturbation in an ℓ∞ ball centered

at x.

CW-PGD. CW-PGD [Athalye et al., 2018] uses the attacking objective function f from

the CW attack and applies it to the PGD attack. Differently from the CW attack, CW-PGD

directly controls the distortion of perturbed images by projecting updated images to an ℓ∞

ball of radius ε.
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2.1.2 Adversarial Reprogramming

Adversarial reprogramming [Elsayed et al., 2018] is a recently introduced adversarial threat

that aims at reprogramming a deep learning model trained for task Ta to perform another

task Tb. Reprogramming is accomplished by learning an input transformation h f and an

output transformation hg that bridge the two tasks Ta and Tb. Assuming the model that

performs Ta is accessible, the computational cost after applying adversarial reprogramming

for performing task Tb only depends on h f and hg, so that the attacker transfers part of

the computational cost for performing task Tb to the model for Ta. Additionally, it can

also result in easier training for the model for Tb, as functionality of the model for Ta is

exploited.

A reprogramming example is given in [Elsayed et al., 2018], where a classifier trained

with the Image-net dataset is reprogrammed to perform MNIST digits classification. The

input transform in this example is given by

Xadv = X̃i + tanh(W ⊙M). (2.5)

Here Xadv is the adversarial input of the target model; X̃i is a MNIST image enlarged to the

Image-net image size via zero padding; W contains trainable weights and M is a mask wip-

ing out the position of W that corresponds to the MNIST image in Xadv. The output trans-

form maps the first 10 categories of Image-net labels to MNIST labels. The reprogrammed

classifier achieves 97.52% testing accuracy in MNIST classification after training.

2.2 Defense Methods Against Adversarial Attacks

2.2.1 Stochastic Defense

Stochastic defense, i.e. using stochastic deep learning models to defend against adversar-

ial attacks is the main focus of this chapter. Several different randomization schemes for
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deep neural networks, including Defensive Dropout, Hierarchical Random Switching and

Adversarially Trained Model Switching, are proposed in the following sections. In this

section, we seek to give a generic introduction to stochastic defense, the motivation and

intuition behind it, and related works in this field.

Stochastic models are deep learning models where some or all model parameters are

random variables. Consequently, the outputs, as well as input gradients, also become ran-

dom variables. Since stochastic models are ever-changing, they prevent the attacker from

exploiting the weak spots due to a fixed model structure. We are particularly interested in

stochastic defense because of the following reasons: (a) they exhibit promising robustness

performance; (b) they are easily compatible with typical neural network training proce-

dures; and (c) they do not depend on specific adversarial attacks for training robust models,

such as adversarial training [Goodfellow et al., 2015, Madry et al., 2017].

Motivation of Using Randomized Models for Defense

Why randomness can be useful in defending against adversarial attacks? Here we conduct

two sets of experiments, and report some insightful observations.

First, we find that if we move toward a random direction from the original input exam-

ple, the chance of finding an adversarial example is actually very low. The changes to the

output when moving toward a random direction from the original example are very small.

In contrast, when comparing to the changes of an adversarial direction made by interpo-

lating between a pair of original example and adversarial example found by performing

targeted CW-PGD attack, the logit of the target class has a notable increase. This indicates

that deep neural networks are robust in general, but the lack of worst-case robustness makes

them vulnerable to adversarial attacks.

Second, we find that when training models with the same network architecture but

with different weight initialization, each model has its own vulnerable spots. Figure 2·1

shows the adversarial examples found by the same attack for different model instances.
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Figure 2·1: Distribution of adversarial examples for a group of model in-
dividuals of the same architecture. Each grid shows the relative positions
of adversarial examples to the clean image (the origin) on two randomly
selected input dimensions (each sub-figure refers to a different choice of 2
randomly selected dimensions). Here, the distances of adversarial examples
on the given x-y plane are normalized. Adversarial examples are generated
by CW-PGD attack.

These models all have the same architecture, training process and performance in terms

of test accuracy and defense capability. However, it is observed that adversarial examples

for different model instances exist in different directions from the original example. This

indicates that each model has its own characteristics in terms of robustness even though all

models trained from the same procedure are identical at the macro level.

Combining these two findings, one can reach an intuitive motivation on why stochastic

network defenses can be effective. As adversarial attacks are associated with worst-case

model performance and the model vulnerability varies with initial weight randomization, a

successful attack on a stochastic model basically requires finding a common weakness that

applies to all stochastic model variants. This indicates that finding an effective adversarial

example for a randomized network is strictly more difficult than that for a deterministic
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model.

Related Works of Stochastic Defense

In this section we briefly describe two stochastic defense approaches that are used as base-

line methods in the following sections.

Stochastic Activation Pruning (SAP). Stochastic activation pruning (SAP), proposed by

Dhillon et al. [Dhillon et al., 2018], randomizes the neural network by stochastically drop-

ping neuron outputs with a weighted probability. Specifically, the probability pi
j of pruning

the j-th neuron output at the i-th layer (denoted as hi
j) in SAP is given by

pi
j =

|hi
j|

∑ai

k=1 |h
i
k|
. (2.6)

After pruning, the remaining neuron outputs are properly scaled up depending on the num-

ber of pruned neurons.

Gaussian Noise. Liu et at. [Liu et al., 2017] introduce randomness to the network by adding

Gaussian noise before each convolutional layer. Gaussian noise is added to the network in

both training and testing phases. The authors suggest to use different noise deviations for

the input convolutional layer and other convolutioanl layers, which they refer to as "init-

noise" and "inner-noise" respectively.

2.2.2 Other Defense Methods

Adversarial Training

Adversarial training [Madry et al., 2017] uses adversarial examples to train a model. Al-

though it is a general consensus that adversarial training improves the robustness of the

network against these adversarial examples, the drawbacks of this method are also appar-

ent. It requires seeking for the worst-case adversarial examples for each training data point

at each step of training. Therefore, adversarial training is often referred as a brute-force



17

strategy.

Input Rectifying

The key idea of input rectifying is to add a filter in front of the model to remove poten-

tial adversarial perturbations of the input images. A typical work of this kind is done by

Das et al. [Das et al., 2017] who used JPEG compression to remove the high frequency

components from input images, which are shown to be more likely to contain adversarial

components . Bhagoji et al. [Bhagoji et al., 2018] proposes to compress the input data using

Principal Component Analysis (PCA) for adversarial robustness. However, Xu et al. [Xu

et al., 2017] noted that the compression often harms the testing accuracy, as it corrupts the

structure of the input.

Detection

Researchers also try to recognize adversarial examples by exploiting the artifacts intro-

duced when adding adversarial perturbations, and then reject them from further process-

ing of the network. Different detection strategies have been developed by making use

of statistics of the input images [Meng and Chen, 2017], statistics of intermediate acti-

vations [Lu et al., 2017], or by training classifier with one additional class for adversarial

examples [Grosse et al., 2017]. Although they claim high detection accuracy on adversarial

examples, they are vulnerable to counter-counter measures since the attacker can generate

corresponding adversarial examples designed to bypass the detection [Carlini and Wagner,

2017a].
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Figure 2·2: (a) A standard neural network with 2 hidden layers. (b) A sub-
network produced by applying dropout. Units in grey color are dropped
from the whole network.

2.3 Defensive Dropout

2.3.1 Method

Dropout Preliminaries

Motivated by the mixability theory in evolutionary biology [Livnat et al., 2010], dropout

was proposed as a regularization method in machine learning to prevent the overfitting issue

with limited training data [Srivastava et al., 2014]. The term “dropout” refers to dropping

out units (hidden and visible) in a neural network. By dropping out a unit, the unit along

with all its incoming and outgoing connections are temporarily removed from the network.

Fig. 2·2 shows the appication of dropout to a neural network amounts to sampling a sub-

network from it.

The feedforward operation of a standard neural network can be described as:

z
(l+1)
i = w

(l+1)
i y(l)+b

(l+1)
i (2.7)

y
(l+1)
i = f (z

(l+1)
i ) (2.8)

where y(l) denotes the vector of outputs from layer l, z(l) denotes the vector of inputs to

layer l, W(l) and b(l) are weight matrix and bias vector of layer l, and f is any activation
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Figure 2·3: (a) At training time, a unit presents with probability p. (b) At
test time, the unit is always present and the outgoing weights are multiplied
by p.

function. With dropout, the feedforward operation becomes:

r
(l)
j ∼ Bernoulli(p) (2.9)

ỹ(l) = r(l)⊙y(l) (2.10)

z
(l+1)
i = w

(l+1)
i ỹ(l)+b

(l+1)
i (2.11)

y
(l+1)
i = f (z

(l+1)
i ) (2.12)

where r(l) is a vector of independent Bernoulli random variables, each with probability p

of being 1, and ⊙ denotes an element-wise product.

The purpose of applying dropout is to prevent units from co-adapting too much by

combining the predictions of many sub-networks with shared weights. However, at test

time, it is not feasible to explicitly average the predictions from exponentially many sub-

networks. A very simple approximate averaging method is to use a single neural network

at test time without dropout, the weights of which are scaled-down versions of the trained

weights. If a unit presents with probability p during training with dropout, the outgoing

weights of that unit are multiplied by p at test time, as shown in Fig. 2·3. In this way, the

output at test time conforms to the expected output at training time.
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Defensive Dropout Implementations in Training and Testing Phases

Dropout was originally used as a regularization method. As introducing randomness in

the test time helps harden deep neural networks against adversarial attacks, we propose to

apply dropout also at the test time as a defense method. If dropout was applied to units in

a specific layer during training with dropout rate r, we are going to apply dropout to the

same layer at test time with dropout rate r′. For each test case, units are dropped with rate

r′ and a sub-network is sampled for it. To have roughly the same expected output as the

whole neural network at test time, we also need to scale-up the activation functions of the

retained units in the dropout layer of the sub-network by 1
1−r′

. Please note r is the dropout

rate used in training, and r′ is dropout rate used in testing, which does not need to be as

same as r.

Our work aims at defending against the strongest attacks, i.e., the white-box attacks,

that is, the attacker has perfect information about the neural network architecture and

parameters. Therefore, when we defend against adversarial attacks, we assume the at-

tacker knows not only the complete neural network model but also the stochastics in the

model (i.e., which layer applied dropout and the dropout rates r and r′). Specifically, when

the attacker generats adversarial examples by solving an optimization problem based on

stochastic gradient descent, the gradients are calculated in a similar manner as training

with dropout i.e., using sampled sub-networks and the activation functions scaled-up by

1
1−r′

. By doing this, we give the attacker full access to the neural network model and we

are able to evaluate our defense method against the strongest white-box attacks.

Insights of Defensive Dropout

We investigate the mechanism behind the appealing defense effects achieved by the pro-

posed defensive dropout. Fig. 2·4 is plotted for the probability density of uniformly sam-

pled gradients when generating adversarial example using CW attack on CIFAR-10 dataset.
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Figure 2·4: Probability density of sampled gradients when generating ad-
versarial example using CW attack on CIFAR-10. The same neural network
architecture, the same original input image, and the same training dropout
rate of 0.7 for the best test accuracy is used throughout (a)∼(f). Histogram
and the corresponding fitted probability density curve in each color denote
one out of 32×32×3 dimensions in the sampled gradients and include 50
data points. (a)∼(e) are from our proposed defensive dropout for different
test dropout rate, and (f) is from stochastic activation pruning (SAP).
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Table 2.1: Test accuracy, attack success rate, and L2 norm using SAP
against C&W attack on CIFAR-10.

train 0 train 0.1 train 0.3 train 0.5 train 0.7 train 0.9

Test acc. 72.07% 75.69% 76.39% 78.12% 78.15% 68.35%
CW ASR 54.44% 64.44% 77.78% 78.89% 85.56% 70%
L2 norm 0.504 0.522 0.618 0.498 0.679 0.784

From Fig. 2·4 (a)∼(e), with increasing test dropout rate, the probability densities be-

come shorter and fatter, demonstrating increasing variances of the gradients, which is the

key for the improved defense effects (decreasing attack success rate) with increasing test

dropout rate. The larger variances of the gradients, the more difficult for the attacker to

generate effective adversarial examples by using stochastic gradient descent when solving

the optimization problem. Fig. 2·4 (f) is the probability densities of the gradients from

stochastic activation pruning (SAP) [Dhillon et al., 2018], which shows very small vari-

ances of the gradients comparing with our defense method. That explains why defensive

dropout outperforms SAP.

2.3.2 Experiments

For DNN models in our experiment, we use standard convolutional neural networks with

4 convolutional layers and 2 fully-connected layers. This architecture has been used as

standard model in many previous work [Carlini and Wagner, 2017b, Papernot et al., 2016].

We compare defensive dropout with SAP on the defense effects against CW attack

using CIFAR-10 dataset. The results of SAP are summarized in Table 2.1. The results of

our defensive dropout are summarized through Fig. 2·5. In Table 2.1, we perform SAP on

neural network models using different training dropout rates (in columns). The second to

forth rows report test accuracy, attack success rate (ASR), and L2 norm. If we allow test

accuracy decrease within 4%, the SAP can reduce the attack success rate from 100% to

77.78% with a test accuracy of 76.39%. From Fig. 2·5, we can observe that at training

dropout rate of 0.7 and test dropout rate of 0.7, our defensive dropout can reduce the attack
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success rate to 43.33% with a test accuracy of 77%, demonstrating superior defense effects

to SAP.
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Figure 2·5: (a) Test accuracy and (b) Attack success rate under CW attack
on CIFAR-10 dataset using different training dropout rates and test dropout
rates.

2.3.3 Discussion

Defensive Dropout is a simple but effective randomization method against adversarial at-

tack. In Fig. 2·5, it is shown that the attack success rate can be reduced to around 10%, close



24

to the accuracy of random guessing. However, one important observation is that stronger

defense is always associated with worse test accuracy, indicating a trade-off between ad-

versarial robustness and test accuracy. How to design a stochastic defense method with a

better robustness-accuracy trade-off? How to design an evaluation metric that comprehen-

sively evaluate different defense methods in terms of robustness-accuracy trade-off? We

will answer these two questions in the next section.

2.4 Toward Better Robustness-Accuracy Trade-off: Hierarchical Ran-

dom Switching

2.4.1 Method

Hierarchical Random Switching

Hierarchical Random Switching (HRS) divides a base neural network into several blocks

and replaces each block with a switching block which contains a bunch of parallel channels

with different weights but the same structure as shown in Figure 2·6. HRS features a

switcher that randomly assigns the input of the block to one of the parallel channels in

the run time. We call the selected channel by the switcher an active channel, and at any

given time all active channels from each block constitute an active path which has the same

structure as the base model.
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Figure 2·6: An illustration of a HRS-protected model.
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Intuitively, a HRS-protected model can assure comparable performance to the base

model if each possible path is fully functional while its random switching nature prevents

the attacker from exploiting the weakness of a fixed model structure. We will introduce a

training procedure to ensure full function of each path shortly.

HRS has two main advantages over current stochastic defenses. First, many defenses

introduce randomness by dropping neurons or adding noise, leading to undesirable and

even disruptive noisy information for model inference, deteriorating accuracy on legitimate

data. In contrast, HRS introduces randomness in block switching, where each active path

in HRS is trained to have a comparable performance to the base model, which greatly

alleviates the issue of significant drop in test accuracy.

Second, HRS is a decentralized randomization scheme. Each variant of HRS has no

privilege over others due to random switching. Therefore, it is fundamentally different

from Dropout or Gaussian noise where all variations are derived from the base deterministic

model, making the base model a centralized surrogate model and potentially leveraged by

attackers to bypass these defenses.

Training for HRS

To facilitate HRS model training and ensure the performance of every path, we propose a

bottom-up training approach. The training process start with training for the first switching

block by constructing N1 randomly initialized paths. These paths are trained independently

to convergence, and after this round of training the weights in the first switching block

will be fixed. We then train for the second switching block by constructing N2 paths with

random initialization except for the first switching block. During training for the second

block, the switching scheme of the first block is activated, which forces the following upper

blocks to adapt the variation of the first block. The training process continues until all

switching blocks are trained. We find that by doing so, the training performance is stable,

and each channel in a switching block is decentralized. Details of the bottom-up training



26

approach are summarized in Algorithm 1.

Algorithm 1 Training HRS-protected Model

Require:

HRS model architecture with M switching blocks. Ni denotes the number channels in
block i and c

j
i denotes the j’s channel in block i.

1: for block i ∈ [1,M] do

2: for channel j ∈ [1,Ni] do

3: Construct a HRS Model with M blocks:
4: for block k ∈ [1,M] do

5: if k < i then

6: Construct Ni channels with trained channels {cl
k | l ∈ [1,Nk]};

7: Freeze channels in block k;
8: else

9: Construct 1 channel for block k with randomly initialized weights;
10: Set all channels in block k to be trainable;
11: end if

12: Train all trainable channels to convergence;
13: Save trained channel c

j
i ;

14: end for

15: end for

16: end for

17: return A HRS Model with trained channels {c
j
i | i ∈ [1,M], j ∈ [1,Ni]}

Stochastic Gradients

One unique property of stochastic models is the consequence of stochastic input gradients

when performing backpropagation from the model output to the input. By inspecting the

mean standard deviation of input gradient under different attack strengths (ℓ∞ constraint)

over each input dimension, we find that it is strongly correlated with the defense perfor-

mance, as shown in Table 2.2. By simply mounting a white-box attack (PGD), we find

that SAP becomes as vulnerable as the base (deterministic) model, and defensive dropout

and Gaussian noise have little defense effects. However, defenses that have larger standard

deviations of the input gradient, such as the proposed HRS method, are still quite resilient

to this white-box attack. For visual comparison, an example of different stochastic models’
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Model Deviation Defense rate (%)
Base 0 29.18
SAP 0.0343 29.40

Dropout 0.1 0.1143 29.60
Dropout 0.3 0.2295 29.63
Dropout 0.7 0.5186 32.62

Gaussian 0.6413 39.92
HRS 10×10 0.7376 61.03
HRS 20×20 0.7888 66.67
HRS 30×30 0.7983 69.70

Table 2.2: Input gradient standard deviation and mean defense rate (1 -
attack success rate) under PGD attack of multiple strengths.

input gradient distributions under the same attack is illustrated in Figure 2·7.

2.4.2 Quantifying Robustness-Accuracy Trade-off

For most current defense methods, there are factors controlling the defense strength. We

note that although defense effectiveness can be improved by using a stronger defense con-

trolling factor, it is usually traded with a sacrifice of test accuracy on clean examples.

Therefore, it is worth noting that even under the same norm-ball bounded adversarial

attack threat model, comparing different defense methods is not an easy task as they vary

in both defense rate and test accuracy. In order to tackle this difficulty, we propose Defense

Efficiency Score (DES) as

DESD,A(θ) = ∆d/∆t (2.13)

where ∆d is the gain in defense rate (percentage of adversarial examples generated by attack

A that fails to fool the protected model using defense scheme D with strength factor θ) and

∆t is the associated test accuracy drop relative to the unprotected base model1. Intuitively,

DES indicates the defense improvement per test accuracy drop.

1In practice, we use ∆d/(∆t +η) where η is a small value (we set η = 0.002) to offset the effect of noise
(e.g. random training initialization) leading to negative ∆t when it is close to the origin.
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Figure 2·7: An example of input gradient distribution of stochastic defense
models on a randomly selected dimension. We sample the input gradient of
each defense for 200 times at the first step of CW-PGD attack. While SAP,
dropout and Gaussian noise all yield a unimodal distribution, this trend is
less obvious for HRS.

2.4.3 Experiments

Setup

For a fair comparison all defenses have to be applied on the same unprotected model (base

model). We use two convolutional neural network (CNN) architectures as our base models

for MNIST and CIFAR-10 datasets, respectively, as they were standard settings considered

in previous works such as [Carlini and Wagner, 2017b, Papernot et al., 2016, Chen et al.,

2017].

We summarize the implementation details of stochastic defense methods in comparison

as follows.

• SAP [Dhillon et al., 2018] : Stochastic activation pruning (SAP) scheme is imple-

mented on the base model between the first and second fully-connected layers.
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• Defensive Dropout [Wang et al., 2018a]: dropout is used between the first and sec-

ond fully-connected layers with three different dropout rates, 0.1, 0.3 and 0.7 (0.7 is

omitted on MNIST as it severely degrades test accuracy).

• Gaussian Noise: Following the setting in [Liu et al., 2017], we add Gaussian noise

to the input of each convolutional layer in both training and testing phases.

• HRS (proposed): We divide the base model structure into two switching blocks be-

tween the first and second fully-connected layers. We implement this 2-block HRS-

protected model with 10×10, 20×20 and 30×30 channels. Note that at any given

time, the active path of HRS has the same structure as the base model.

We consider the standard white-box attack setting and two adaptive white-box attacks

settings (expectation over transformation (EOT) [Athalye et al., 2017,Athalye et al., 2018]

and fixed randomness) for stochastic defenses. The purpose of using EOT and fixed ran-

domness attacks is to show the defense effectiveness is not a consequence of obfuscated

gradients. The implementation details of these three attack settings are summarized as

follows.

• White-box Attack: The adversary uses the stochastic model directly to generate

adversarial examples.

• Expectation Over Transformation (EOT): When computing the input gradient, the

adversary samples the input gradient for n times, and uses the mean of gradients to

update the perturbed example. We set n = 10 in our experiments as we observe no

significant gain when using n > 10.

• Fixed Randomness: Generating adversarial examples using a fixed model by dis-

abling any randomness scheme. For SAP, defensive dropout and Gaussian noise, it

is done by removing their randomness generation modules (e.g. dropout layers). For

HRS, it is done by fixing an active path.
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Figure 2·8: Attack success rate on CIFAR-10 using (a) PGD, (b) PGD +
EOT, (c) PGD + fixed randomness (d) CW-PGD, (e) CW-PGD + EOT, and
(f) CW-PGD + fixed randomness.

White-box and Adaptive Attack Analysis

We compare the attack success rate (ASR) of different defenses on CIFAR-10 dataset

against PGD and CW-PGD attacks with different strengths (the ℓ∞ constraint) and under

three attack settings in Figure 2·8.

As observed in Fig. 2·8, HRS achieves superior defense performance under all attack

settings. The advantage of HRS over other defenses becomes more apparent under stronger

attacks such as PGD and CW-PGD, where SAP, defensive dropout and Gaussian noise

provide little defense given the same level of test accuracy drop. For example, even with

a reasonably large ℓ∞ perturbation constraint 8/255, on CIFAR-10 PGD and CW-PGD

attacks only attain 51.1% and 54.5% ASRs on HRS with only at most 0.48% drop in test

accuracy, respectively, while all other stochastic defenses are completely broken (100%

ASR), and adversarial training with the same defense rate has 7% additional test accuracy
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Table 2.3: Mean DES of different defense methods

Dataset Defense FGSM PGD CW-PGD

MNIST
Dropout 11.99 17.94 19.55
Gaussian 14.90 71.78 82.76

HRS 36.41 76.64 74.90
CIFAR-
10

Dropout 1.09 0.81 0.76
Gaussian 2.73 6.17 5.47

Adv. Train 5.05 7.37 6.57
HRS 32.23 35.43 35.55

Figure 2·9: Scatter plots of different defenses. Attacks on CIFAR-10 and
MNIST are performed with 8/255 and 64/255 ε bounds respectively.

drop.

Defense Efficiency

To characterize the robustness-accuracy trade-offs of different defenses, we compare the

DES of different stochastic defense methods in Table 2.3. Our HRS attains the highest

DES on CIFAR-10 for all attacks and on MNIST for most attacks. Fig. 2·9 visualizes the

trade-off of each defense methods in a scatter plot.
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Figure 2·10: Adversarial reprogramming test accuracy during training a
locally connected layer with different kernels as input transform.

First Defense against Adversarial Reprogramming

In addition to defending adversarial misclassification attacks, we demonstrate the effective-

ness of HRS against adversarial reprogramming [Elsayed et al., 2018]. We use the same

base network on CIFAR-10 as the target model to be reprogrammed to classify MNIST im-

ages. We use a locally connected layer to perform the input transformation with different

kernel sizes and use an identical mapping as the output transformation. The unprotected

classifier can easily be reprogrammed to achieve up to 90.53% and 95.07% test accuracy

using kernel sizes 2×2 and 3×3, respectively, on classifying MNIST images after several

epochs of training for the input transformation.

We compare the defenses against adversarial reprogramming of different stochastic de-

fense methods using the reprogramming test accuracy during 50 epochs of training in Fig-

ure 2·10. We observe that HRS-protected models can significantly reduce the adversarial

reprogramming test accuracy whereas all other defenses are less effective.
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2.4.4 Discussion

HRS is designed to provide strong defense against adversarial threat without sacrificing too

much test accuracy. However, it is also observed that the marginal gain in defense tend to

decrease as we increase the number of channels (see Fig. 2·8). How to prevent defense

performance from plateauing? One approach is to combine different types of defensive

methods to construct a complex defense method. This topic will be further discussed in the

next section.

2.5 AdvMS: a Multi-source Multi-cost Defense Scheme

2.5.1 Method

Motivation and Principles of Multi-source Multi-cost Defense

We first explain the terms source and cost of a defense scheme using adversarial train-

ing [Madry et al., 2017] as an example, as it is considered one of the most advanced de-

fense method in the literature. Adversarial training improves the worst-case robustness of

a neural network by incorporating adversarial examples in the training process. As a result,

the adversarially trained weights learn to adapt inputs with adversarial perturbations. We

thus term the weights of adversarially trained models the source of the defense, as they are

the surface of performing defense efforts. The cost of adversarial training is the test accu-

racy of the model on natural examples: the defense can be made stronger by using larger

adversarial perturbations for training, at the cost of worse test accuracy on clean examples.

We call defense schemes in this fashion single-source single-cost defenses, and most

existing defenses fall into this category. As they are implemented alone, the drawbacks are

obvious. Since there is only one scheme boosting robustness, the benefit in robustness tends

to plateau with increased defense strength. Another issue is that the cost on a particular

factor can easily exceed the acceptable range, making the defense strategy infeasible.

A natural solution to the above limitations is to design multi-source multi-cost defense
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schemes. Although many proposed defenses claim to be compatible with others, designing

a complex defense is not trivial. We anticipate the following principles of combining mul-

tiple defense components as a complex defense. First, components need to have different

defense sources. This ensures that the defenses do not interfere with each other, which may

cause degraded performance. Second, components need to have different defense costs.

This avoids trading robustness with a single cost factor which leads to decreased marginal

defense improvement, and at the same time it allows a more flexible combination of costs

over multiple factors.

A Multi-Source Multi-Cost Defense: AdvMS

Following the above guidelines, we propose a complex defense AdvMS by merging ad-

versarial training and switching-based stochastic defense. The scheme of model switch-

ing [Zhou et al., 2018b] protects the model by using a group of parallel sub-models trained

from different random initializations, where the active one that processes model inputs is

ever-switching in the run time. It will not degrade test accuracy but increases the memory

consumption at testing time. It thus has different source (stochasticity) and cost (memory

consumption) compared to adversarial training.

Implementing AdvMS with M sub-models contains 3 steps: step 1, randomly initialize

the weights of M sub-models of the same architecture and train them individually with the

same training settings (εtrain), and training data; step 2, save all M adversarially trained

models and construct a pool of parallel sub-models; step 3, add the stochastic scheme that

randomly activate one model from the pool in each round of inference.

2.5.2 Experiments

Defense Against White-box and Adaptive Attacks

In this experiment, our proposed AdvMS is compared with its building blocks: adversarial

training [Madry et al., 2017] and random model switching [Sengupta et al., 2018, Zhou



35

et al., 2018b]. The purpose of this experiment is to show that the proposed complex defense

outperforms each of its defending component performed alone.

We perform three attacks: FGSM, PGD, and CW-PGD which are among the strongest

baselines in the literature. All attacks are conducted in multiple strengths (controlled by the

L∞ norm ε of the perturbation) and in both white-box setting, where we assume attackers

know all information of the target model, and EOT (Expectation Over Transformation)

[Athalye et al., 2018, Wang et al., 2019] which is a counter-measure of attacks against

randomized defense schemes by using the expectation of stochastic gradients. Fig.2·11

and Fig.2·12 summarize the defending performance on CIFAR-10 and MNIST datasets

respectively.

FGSM PGD CW-PGDWhite-Box

���

Figure 2·11: Attack success rate on CIFAR-10 dataset using above:(White-
Box) FGSM, PGD, and CW-PGD attacks, below: FGSM + EOT, PGD +
EOT, and CW-PGD + EOT attacks

As we can observe, the proposed AdvMS achieves superior defense performance under

all attack settings and performs even better under stronger attacks such as PGD and CW-

PGD, where model switching and adversarial training are less effective given the same level
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FGSM PGD CW-PGDWhite-Box
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Figure 2·12: Attack success rate on MNIST dataset using above: (White-
Box) FGSM, PGD, and CW-PGD attacks, below: FGSM + EOT, PGD +
EOT, and CW-PGD + EOT attacks.

of attack strength.

Quantitative Analysis on Effects of Adversarial Training and Model Switching in Ad-

vMS

In this experiment, we perform a quantitative analysis by controlling each of the two

strength factors of AdvMS: ε, which is the ℓ∞ distortion of adversarial examples used in

training, and M which is the number of models for switching. This experiment illustrates

how enforcing one defending component contributes to boost the performance on the top

of the other.

In Fig.2·13, we fix the number of models in AdvMS and compare the robustness per-

formance obtained by changing the εtrain for adversarially trained models. In all cases we

can observe the trend that AdvMS trained with larger εtrain value shows stronger resiliency

to adversarial attacks in both attack settings. However, it is also observed that although the

gap between no adversarial training and adversarial training with εtrain = 2/255 is large,



37

Switch M = 2 Switch M = 3 Switch M = 4White-Box
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Figure 2·13: Attack success rate on CIFAR-10 dataset using different
(white-box or EOT) PGD attack settings with fixed number of models M

in AdvMS

the benefits gained by increasing εtrain tend to saturate with large εtrain.

We further perform quantitative analysis on changing the number of sub-models in

AdvMS. Fig.2·14 exhibits our findings that AdvMS with more adversarially trained models

shows more resistance against adversarial attacks. While the gain in the defense rate when

changing the deterministic model (M = 1) to a stochastic model with M = 2 is sufficiently

large, the marginal gain in defense rate also tends to decease when M is further increased.

These experiments illustrate the performance plateau issue as discussed earlier, and

verify the importance of using multi-source defenses to break this limitation of single-

source defenses.
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Adv. Train eps = 2/255 Adv. Train eps = 4/255 Adv. Train eps = 6/255White-Box

���

Figure 2·14: CIFAR-10 with fixed εtrain PGD Attack. Attack success rate
on CIFAR-10 dataset using different (white-box or EOT) PGD attack set-
tings with fixed adversarial training strength εtrain in AdvMS

Quantitative Analysis on Robustness-Accuracy and Robustness-Memory Trade-offs

of AdvMS

In Fig.2·15 (a) and Fig.2·15 (b), we plot defense effectiveness (quantified by ASRs) against

test accuracy of defense models given by different combinations of adversarial training

strength ε and number of switching models M in white-box and EOT attack settings re-

spectively. Here, points on the same curve are given by AdvMS models with the same M

and have the same amount of memory consumption. Points using the same marker type are

given by AdvMS models with the same adversarial training distortion ε and have similar

values of test accuracy.

A defense scheme with ideal robustness-accuracy trade-off will result in a curve ap-

proaching the bottom-right corner. As shown in Fig.2·15, when M increases, the curve

moves toward the bottom-right corner which indicates a better robustness-accuracy trade-

off. On the other hand, using a large ε dramatically reduces the ASR, providing a better
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robustness-memory trade-off of the defense at the cost of a degraded test accuracy. It is

also clear that the slope of curves become smaller on the left, which corresponds to the

defense effectiveness plateau issue as discussed previously.

2.5.3 Discussion

We proposed AdvMS motivated by the need of designing multi-source multi-cost defensive

methods against adversarial attack. Comparing to conventional single-source single-cost

defenses, AdvMS is advantaged in preventing performance plateau issue and providing a

more flexible trade-off among robustness, test accuracy and memory consumption.
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(a) PGD

(b) PGD + EOT

Figure 2·15: Robustness-Accuracy-Memory trade-off on CIFAR-10
dataset. (a) Set εattack = 8/255 for PGD attack. (b) Set εattack = 8/255
for PGD attack + EOT (EOT: n=10).



Chapter 3

Deep Learning Applications in Cyber Security

3.1 Classification in Side-channel Analysis

3.1.1 Side-channel Analysis

Recent works on side-channel analysis (SCA) has shown that any physical implementation

of computations inevitably leads to information leakage through physical channels, sug-

gesting that cyber security cannot rely on cryptographic assurances alone. Information can

leak through channels such as power consumption [Kocher et al., 1999], electromagnetic

emanation [Quisquater and Samyde, 2001], processing time [Kocher, 1996] or even tem-

perature. These side-channel signals, although often highly noisy, can be used to glean

sensitive information, endangering the overall security of the system.

Figure 3·1: Side-Channel Analysis gleans information from external sig-
nals.

SCA was first introduced by Kocher in 1996 [Kocher, 1996], and was aimed at reveal-

41



42

ing cryptography keys by exploiting the information leakage obtained from side-channels.

With the fast growing popularity of machine learning, more recent publications show that

it is possible to apply machine learning methods to SCA. Often these methods outperform

more classical attacks. Backes et al. [Backes et al., 2010] used machine learning techniques

for acoustic side-channel attacks on printers. Hospodar et al. [Hospodar et al., 2011] ap-

plied a Least Squares Support Vector Machine for classifying intermediate bit values in

Template Attacks. Lerman et al. [Lerman et al., 2011] performed SCA using three different

algorithms: Random Forests (RF), Support Vector Machines (SVM) and Self-Organizing

Maps (SOM). Later, Heuser and Zohner [Heuser and Zohner, 2012] used multi-class SVM

for an attack on multi-bit values (Hamming weight model). This work was further im-

proved by Bartkewitz and Lemke-Rust [Bartkewitz and Lemke-Rust, 2012], who proposed

a new multi-class classification strategy, based on the ordering of the classes. The first

neural network-based method was proposed by Martinasek and Zeman [Martinasek and

Zeman, 2013], where they classified AES keys.

However, all of those works require hand-crafted features and domain-specific knowl-

edge. As such, the performance of these works critically depends on how well the features

are selected. The recent success of deep learning suggests the possibility of avoiding this

problem by letting DL models learn the appropriate feature transformations themselves.

SCA has traditionally been used to exploit information and thus break a cryptosystem,

but it can also be used for defending purposes. Malware and cyber attacks are danger-

ous threats to the security of any real system and often utilize sophisticated techniques

of avoiding detection by traditional anti-malware software. However, all malware must

at some point affect the functioning of the machine. SCA can then be used to monitor

and detect these changes at a fundamental level that malware cannot compromise directly.

Depending on the assumption of available training data, malware detection can be either

formulated as a classification problem or an anomaly detection problem. We present meth-



43

ods and experiments regarding to classification formulation in this section, and methods

and experiments regarding to anomaly detection formulation in the next section.

3.1.2 Method

We explored two classification methods, MLP and LSTM. Each classifier was trained by

a variant of gradient descent to minimize the standard cross-entropy loss. For testing,

performance of the model was evaluated with top-1 testing accuracy.

In our application we trained a 9-layer MLP network with the raw current or voltage

signal as input. The Adam [Kingma and Ba, 2014] optimizer was used. We used ReLU

[Maas et al., 2013] activation for the hidden layers and softmax for the output layer with

a categorical cross entropy loss function. Dropout [Srivastava et al., 2014] was used as

regularization.

Recurrent neural networks are networks that contain self-loops, and are useful for pro-

cessing sequences of data. The output ht at point t is used as an additional input when

computing ht+1. A very popular kind of recurrent neural networks is the Long Short-Term

Memory unit (LSTM) [Hochreiter and Schmidhuber, 1997], which adds an additional state

ct in order to help with the vanishing gradient problem [Le and Zuidema, 2016].

We implemented a bidirectional LSTM (B-LSTM) [Graves and Schmidhuber, 2005] to

improve our sequence-based classification results. A B-LSTM contains two LSTM net-

works; one processes the input sequence from front to back, and the other works in reverse.

The outputs of these two LSTM are then concatenated and used as the output of the B-

LSTM. This also helps with the vanishing gradient problem and captures information both

from the past and future of the current time frame.

Our network consists of a two-layer B-LSTM with 256 neurons in each layer, followed

by a fully connected layer also with 256 neurons, and then an output softmax layer. The

network was trained using the Adam optimizer and cross-entropy loss.
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3.1.3 Experiments

We ran three sets of experiments to evaluate the effectiveness of deep learning classifiers

across different tasks and devices.

Experiment 1: Classifying Multiplication with Different Operands. To illustrate the

ability of our models to differentiate even a slight variance in computer states, we construct

a binary classification task where the same Multiplication operation is performed with two

different sets of operands. The experiment was run on an Arduino board, and the power-

supply voltage was recorded (see Fig. 3·2). Each of the 400 traces contains 4096 data

points sampled at a rate of 125 MHz. The traces are synchronized so that the recording

period aligns consistently with the multiplication operation. Both the MLP and LSTM

models receive the full trace as input. In this simple experiment, both models achieved

100% testing accuracy.

Figure 3·2: Data collection for side-channel analysis.

Experiment 2: Detecting Machine States Under Attack. The next experiment tests

binary classification in a more realistic setting. Traces were recorded from a Raspberry

Pi; one class of traces is recorded while the board operated normally, the other class is

recorded while it was under a botnet attack. Each recording lasted roughly 45 minutes and

was sampled at a rate of 30518Hz. The full recording was chopped into non-overlapping

10-second sections to be used as independent data points.
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Since the traces are not synchronized to any particular operation, we hope to make

our models invariant to shifts through time. Perhaps the simplest method to achieve this

invariance is through transforming our data into the frequency domain. The MLP took as

input the frequency spectrum of the time signal computed through Fast Fourier Transform

(FFT), while the LSTM received a Short-term Fourier Transform (STFT) of each window

of the training trace. Performance of MLP and LSTM are given in table 3.1.

Table 3.1: Classification results on side-channel signals collected from dif-
ferent devices.

Devices Classes Samples Trace Length Sync model Accuracies %

Arduino 2 800 4096 Yes MLP 100.00
LSTM 100.00

Raspberry Pi 2 600 305180 No MLP 98.84
LSTM 100.00

Siemen’s PLC 5 975 305180 No MLP 91.28
LSTM 89.00

Experiment 3: Multi-Class Normal and Malicious States. In addition to distinguish-

ing between normal and malicious states, we hope to also differentiate between several

states of operation. The final classification task uses recordings from a Sieman’s PLC in 4

normal machine states and one malicious state under botnet attack (see Fig.3·3 for a visual-

ization of waveforms of all classes). Similarly to before, 30 minute recordings were made

at a 30518Hz sampling rate and split into 10-second sections. The same transformations

into the frequency domain were performed.

3.2 Anomaly Detection in Side-channel Analysis

3.2.1 Method

In supervised classification, we assume the training data contains examples of all classes.

In contrast, an anomaly detection model only needs training data of the benign class and

hopes to identify data points that from a different, arbitrary distribution. In other words, we



46

Figure 3·3: Five-state signals sampled from a Sieman’s PLC

hope to learn the distribution of benign data and identify test examples that deviate from

this distribution.

Unsupervised anomaly detection problem is a suitable problem formulation in the field

of side-channel analysis. Because of the increasing amount of different attacking methods

and advances of anti-detection methods, it is very hard to include data of all malicious

attacks and train a classifier in a supervised learning manner.

We thus turn to auto-encoders, a specific type of neural networks used for learning

compact representations of data. These models have been used for anomaly detection in

many related fields of security including [Sakurada and Yairi, 2014], [Dau et al., 2014],

and [Sabokrou et al., 2016], and provide a effect way to detect suspicious data points with
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different patterns.

An auto-encoder in its simplest form is similar to an MLP with its output dimension

equal to its input dimension. During training auto-encoders try to recover the output as the

input, i.e. learn a identity mapping. In the middle of the network, there is a bottleneck of

the size of nodes which is significantly smaller than the input and output size. This forces

the model to learn a low-dimensional representation of high dimensional data.

We train auto-encoders using benign data, so that it learns to reconstruct a benign data

point from a compressed representation. In the testing phase, test data points, including

both benign and anomalous data are fed to auto-encoders, and we examine the loss of

auto-encoders with input data of both classes. Since the network is only trained on non-

anomalous data, the reconstruction error with anomalous data is higher, which provides an

effective indicator for anomaly detection. A system diagram describing auto-encoder based

anomaly detection systems is given in Fig. 3·4.

Figure 3·4: Anomaly detection system based on auto-encoders.

There is one key difference between the conventional usage of auto-encoders and their

use for anomaly detection. Since our goal is to distinguish between normal and anomalous

data points, we are only interested in the relative difference between the reconstruction

errors between these two classes, rather than the reconstruction error itself. Therefore,
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sometime we might prefer simple models if they amplify the difference between recon-

struction errors of the two classes even though they have higher reconstruction compared

with more complicated models.

3.2.2 Experiments

We use the Sieman’s PLC dataset in the previous section which has four normal machine

states and one anomalous machine state for the anomaly detection task. At training time,

only data points from the four normal machine states are used for training the auto-encoder.

At testing time, the ℓ2 reconstruction error is computed for signals from both normal and

anomalous machine states. A threshold of reconstruction error is set, and any example with

reconstruction error above the threshold is categorized as an anomalous examples.

We use various values of the threshold and show the Receiver Operating Characteristic

(ROC) curve in Fig. 3·5. The Area Under Curve (AUC) of the ROC curve is 0.9166,

indicating the proposed method is an effective anomaly detection approach.

Figure 3·5: ROC curve in detecting the anomalous machine state of a Sie-
man’s PLC using an auto-encoder.
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3.3 Anomaly Detection in Proxy Logs

3.3.1 Feature Representation of Proxy Logs

Proxy logs are generated by proxy servers which contain requests made by users and ap-

plications on the network. Proxy logs provide an important source for debugging and

supervision. However, monitoring proxy logs manually would be an expensive solution,

which motivates attempts for automated anomaly detection using deep learning.

Unfortunately, unlike side-channel signals that can be naturally represented as time

series as presented in Sec. 3.2, log data are series of log entries, each of which is essentially

a character string. Hence, a key challenge in proxy log analysis is to convert proxy logs

into some mathematical formats before they can be processed.

One conventional way of extracting information from proxy logs is to design statistical

features [Machlica et al., 2017,Gržinic et al., 2013]. Typical examples of statistical features

of proxy logs include occurrence of special characters, maximum occurrence-ratio of a

character etc. However, these features only describe proxy logs on a very rough level. E.g.

information associated with components that have semantic meaning can not be represented

in these features. Motivated by modern natural language processing techniques, another

way of features representation is treating some tokens in proxy logs as words. However,

unlike natural languages that have a finite set of vocabulary, tokens in proxy logs have

infinite variations. We handle this by using a fixed size of vocabulary for each token by

selecting the most common words from the training data and grouping all other words into

a special "other" category.

In this work, we use a combination of the above two methods for feature representation.

On the one hand, we use exact values in proxy logs such as HTTP method, file extension,

etc. On the other hand, we also use statistical values in a proxy log entry, such as number of

upper case letters, number of levels, etc. These selected features are either represented as

categorical features containing discrete values or numerical features containing continuous
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Table 3.2: Selected features and their descriptions for proxy logs.

Feature Exact/Statistical Categorical/Numerical Description
method exact categorical HTTP method
sub_domain_word exact categorical Sub-domain words in URL
domain_word exact categorical Domain words in URL
g_TLD exact categorical Generic top-level domain
c_TLD exact categorical Country code top-level domain
file_extension exact categorical File extension in URL
status exact categorical Status code of HTTP request
nb_level statistical numerical Number of "/" in URL
nb_lower statistical numerical Number of lower case letters in URL
nb_upper statisitcal numerical Number of upper case letters in URL
nb_numerical statistical numerical Number of digits in URL
nb_special statistical numerical Number of special characters in URL
nb_parameters statistical numerical Number of parameters in URL
nb_bytes exact numerical Number of types in response

values, depending on the nature of each feature. We summarize the details of the selected

features in the Tab. 3.2.

3.3.2 Method

Domain Words and Sub-domain Words Embedding

Words embedding is a commonly technique to represent words in an efficient way where

words with similar meaning have similar vector representation. In proxy logs, domain

words and sub-domain words contains natural language words whose semantic meaning

may provide important information in anomaly detection. Also, the vocabulary sizes of

domain and sub-domain words are very large, where using naive one-hot representation is

inefficient.

Therefore, we embed domain words and sub-domain words into a more compact space

using a embedding network before they are fed into the auto-encoder. The embedding net-

work contains trainable weights and are optimized together with the auto-encoder during

training. Considering domain words and sub-domain words have different vocabularies,

there are two separated embedding network for domain words and sub-domain words re-

spectively. Every embedding network is also paired with a de-embedding network. Sim-

ilarly, de-embedding network also contains trainable weights and are also optimized to-

gether with other networks during training.
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Figure 3·6: An illustration of a 1D convolutional auto-encoder used for
Proxy log anomaly detection.

Pre-processing of Categorical and Numerical Features

Except domain words and sub-domain words, all other categorical features are represented

as one-hot vectors. Numerical features are standardized according to they distributions in

the training data.

1D Convolutional Auto-encoder

Every log entry is eventually represented as a vector by concatenating all processed features

of the log entry. However, certain types of anomalies may requires multiple log entries to

identify them. For instance, some malwares will periodically access a certain URL. In

order to capture temporal correlation among log entries, we use a 1D convolutional auto-

encoder for anomaly detection. The 1D convolutional auto-encoder together with feature

processing is illustrated in Fig. 3·6.

Training Loss

Cross-entropy loss is used for categorical features and mean squared error (MSE) is used

for numerical features. The overall loss is a weighted sum of all loss terms where the
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Figure 3·7: ROC curve of anomaly detection in proxy logs.

weight factor associated with loss of each feature is a hyper-parameter that is tuned against

the validation set.

3.3.3 Experiments

Our proposed approach is evaluated using a collection of real-world proxy logs. The ROC

curve is plotted in Fig. 3·7 with an AUC of 0.86.



Chapter 4

Deep Learning in Spatio-Temporal Compressed

Sensing Systems

4.1 Spatio-temporal Compressed Sensing by Pixel-wise Coded Expo-

sure

Pixel-wise Coded Exposure (PCE) [Zhang et al., 2016] is a spatio-temporal CS technique

used to downsample a video scene into a single image. To illustrate its principles, let

X ∈ R
H×W×T represent the pixels value of a video, where H, W and T indicate the height,

width and the number of frames respectively. And let S ∈ R
H×W×T represent the on/off

state of each pixels’ exposures at a given location and time:

S(h,w, t) =

{
1 t ∈ [th,w

1 , th,w
2 ]

0 otherwise
(4.1)

Here a 1 indicates that the exposure is turned on and, a 0 indicates that the exposure is

turned off. t
h,w
2 − t

h,w
1 denotes the exposure duration of the pixel at (h,w). In conventional

CMOS image sensors without in-pixel charge storage, a pixel’s value must be sampled at

the end of its exposure. Thus, within T frames, a pixel’s exposure can only be turned on

once.

Sampling: The PCE sampling operation can be written as a pixel-wise multiplication of

the scene X(h,w, t) with the coded exposure pattern S(h,w, t), followed by integration over

all frames:

Y(h,w) =
T

∑
t=1

S(h,w, t) ·X(h,w, t) ∀w,h. (4.2)

53
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Here, Y ∈ R
H×W is the coded image with pixel dimension H and W .

There are various advantages with PCE sampling, including reduction of analog-to-

digital conversion speed and power, compression and prolonged pixel exposure that leads

to improved image signal-to-noise ratio (SNR).

Reconstruction: From the coded image Y, we can recover the original scene X̂∈R
H×W×T

using sparse reconstruction by solving the following optimization problem:

min
a

1
2
||Y−SDa||22 +λ||a||1, (4.3)

where D ∈ R
H×W×T×L is an over-complete dictionary learned from training samples over

which the video X ∈ R
H×W×T has a sparse representation a ∈ R

L. λ is a coefficient con-

trolling the trade-off between sparsity and residual error in the recovered signals.

For the reconstruction in equation (4.3) to be guaranteed, the sensing cube S must

satisfy the Restricted Isometry Principle (RIP) for sparse vectors. RIP characterizes nearly

orthonormal matrix when operating on sparse signals.

Typically, for low power CS sensor applications, the reconstruction is executed not at

the sensor node but at a receiving base station, as implementation of Eq. 4.3 requires more

power and computational complexity. Fig. 4·1 shows an example of the coded image with

reconstructed frames acquired using our CMOS PCE camera.

4.2 Approach

4.2.1 Extracting Temporal Information from Coded Image

Although many compressed sensing inspired sensors have shown superior sensing perfor-

mance while offering the advantage of reduced power consumption [Hitomi et al., 2011,

Zhang et al., 2015b,Zhang et al., 2016,Pareschi et al., 2016], one practical disadvantage of

them is that they do not function well in real time closed-loop systems because the sparse

reconstruction step is computationally and time intensive. A system would need to recon-
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Figure 4·1: Four coded images output from a PCE camera sampled at 7.1
FPS [Zhang et al., 2016]; 14 images are reconstructed from each coded
image resulting in 100 FPS reconstruted videos.

struct the signal from compressed measurement first before an algorithm can be used to

extract relevant information and provide feedback to the sensors.

The computationally expensive reconstruction step may also negatively impacts the

ability for adaptive sensing. We found that in most CS based systems, the scene recon-

struction quality heavily depends on the scene statistics [Wu et al., 2012] [Zelnik-Manor

et al., 2011] [Zhang et al., 2015b]. It can be affected by motion, scene complexity (or

sparsity) and noise level as well as compression rate. Therefore, to guarantee performance,

we seek to build a smarter adaptive system which can alter the sensing matrix and com-

pression rate to enhance the overall reconstruction quality. But to do so, we would need to

find an efficient method to measure these factors that is fast enough to drive the close-loop

feedback to adjust the sensing mechanism.

Here we explore the possibility of using deep learning methods to extract signal infor-

mation directly from the compressed samples such as PCE coded coded images instead

from the reconstructed scenes. Specifically, we choose to use convolutional neural net-

works (CNNs) as classifiers of the coded images. The choice of CNN is inspired by the
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Figure 4·2: Conventional information extraction (left) vs. our approach
(right).

recent emergence of computer vision algorithms based on the deep neural networks. How-

ever, it is not so clear if CNN can also be applied to compressed measurements yet. The-

oretically it is a more challenging task since the CNN is forced to learn useful patterns in

the coded samples at high compression ratios. A high-level comparison of our proposed

approach that combines DL and CS and information extraction in conventional CS system

is shown in Fig. 4·2.

The intuition of this approach is derived from the Restricted Isometry Principle (RIP).

Random sensing matrix are shown to have small RIP constants, which indicates that they

are orthonormal for sparse vectors [Candes and Tao, 2005]. Then it follows that the features

of these sparse vectors are also persevered within the compressed samples. In the case of

PCE imaging where a video clip is compressed into a single image, the temporal motion

are transformed into spatial features of the coded images, which we refer to as temporal

to spatial feature conversion (T-to-S). With a deep CNN containing convolutional layers

tuned to extract pixel patch characteristics, we expect to extract video labels and motion

information by exploiting only spatial patterns of coded images.

We further demonstrate that the benefits of combining deep learning and compressed

sensing are two-fold:

From the sensing perspective, this method replaces computationally intensive recon-
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struction and scene analysis steps with a single CNN. Unlike sparse reconstruction which

needs to solve an optimization problem with iterative computation, inference with CNNs

only needs a one-shot forward propagation which can be implemented efficiently in real

time.

From the analysis perspective, PCE provides an efficient mechanism to compress highly

redundant video frames into a more compact representation, which supports a more ef-

fective approach in preserving temporal information than naive down-sampling methods.

Conventionally, deep learning models for video recognition are either based on recurrent

neural networks (RNNs) [Donahue et al., 2015, Ebrahimi Kahou et al., 2015, Yue-Hei Ng

et al., 2015, Du et al., 2017b] or 3-D CNNs [Ji et al., 2013, Yang et al., 2019, Huang et al.,

2015, Li et al., 2020]. Due to an additional dimension handling temporal features, these

video models are substantial more difficult to train and expensive to implement than stan-

dard image models (i.e. 2D convolutional models). PCE shows a novel way of solving

video recognition problems with 2D image models.

4.2.2 Temporal to Spatial Feature Conversion

Sparse reconstruction is able to faithfully reconstruct the video because motion features are

encoded in the compressed images. These features are visible within the coded images:

For example, Fig. 4·3 illustrates an example of PCE coded images taken at different object

movement speed. For a motionless scene, pixels experience no changes in intensity. Thus

the coded image is no different than a single frame from the video. With motion, pixels

experience changes in intensity, which are then integrated by pixel exposures activating at

different times. These introduce new mosaic-like features along the edges in the coded im-

age. These patterns are essentially the consequences of motion undergoing a transformation

into spatial features (T-to-S feature conversion). We call these spatial-motion features.

A quick visual inspection of Fig. 4·3 shows that T-to-S conversion occurs mostly at

the edges of the moving object, and is parameterized by the motion speed and direction.
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Faster motion yields more and prolonged spatial-motion features; the trace of these features

also exist along the direction of motion. We shall quantify these characteristics in the next

section.

Figure 4·3: PCE images with different motion speeds.

4.2.3 CNN Receptive Fields

It is well-known that CNN classifies input images as a hierarchical spatial feature extraction

process [Zhou et al., 2014,Olah et al., 2017,Mordvintsev et al., 2015]. The learned feature

extractors (filters) are sensitive to specific patterns and are activated when the patterns are

discovered in the inputs. The activation map of lower-level filters are passed to the next

layer as the input for higher-level feature extraction. In this way, a CNN predicts the label

of a given input image by hierarchically exploiting the spatial structure of the image.

Since PCE coded image’s spatial-motion features are introduced by the T-to-S fea-

ture conversion, it is reasonable to expect that temporal information can also be extracted

from PCE coded images where spatial-motion features are interpreted hierarchically as the

above-mentioned process.

Moreover, in coded images the motion-less spatial structure is maintained, making it

possible to extract spatial and temporal information at the same time by training only one
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single classifier. This illuminates a new approach of efficiently extracting scene informa-

tion from a sequence of frames which utilizes the advantages of both compressed sensing

and machine learning. On the one hand, it helps bypass the need for burdensome sparse

reconstruction step in compressed sensing. On the other hand, it makes it feasible to extract

information from video frames using standard 2D CNNs instead of 3D CNNs or recurrent

CNNs (RCNNs) which are substantially more expensive to train and implement.

4.3 Spatial-motion Feature

4.3.1 Comparing PCE and Naive Down-sampling

In this section, we demonstrate that CNNs can learn spatial-motion features and can ro-

bustly use them as representations to classify motion information througn a controlled

experiment. We first created synthetic videos using the MNIST dataset. Each synthetic

video consists of 10 frames. We generate them by shifting an image (28×28 pixels) to-

wards a fixed direction (left, right, top or down) by 1 pixel position for 10 frames. Thus

each frame’s size would be 28×37 for left or right movement, and 37×28 for top and down

movement. The videos are then compressed to single-frame coded images using pixel-wise

psuodo-random exposure patterns described in Sec. 4.1. This corresponds to compression

ratio (CR) of 10.

We consider a binary classification task of distinguishing two opposite motion direc-

tions (left v.s. right and up v.s. down). We compare classification on PCE coded images

with other naive downsampling techniques such as averaging or random sampling frames,

both of which transform a video clip to a single image frame and has the same CR as

PCE. We show that the resulting spatial-motion features that contains key motion direction

information is a unique consequence of PCE.

We use a standard 6-layer CNN (4 convolutional layers and 2 fully-connected layers) to

learn the direction of moving digits. For the 2 classification cases (left vs. right and up vs.
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down) the input size of the model are different due to the different spatial size of the videos

and coded images (28 and 37× 28). The model architecture is illustrated in Fig. 4·4, and

stochastic gradient descent is used for training; the mini-batch size is 128.

Figure 4·4: CNN model architecture on MNIST coded images.

With the synthetic dataset, we can achieve classification accuracy of 100% using coded

images, while classification using average and random images achieve no better than ran-

dom guessing. This result is expected as there is a lack of motion related features to dis-

tinguish digits’ movement directions when they are down sampled through averaging or

taking a random frame. This indicates that the spatial patterns introduced by PCE indeed

contains important temporal information, which can be extracted by 2D convolutional im-

age models.

4.3.2 Characteristics of Spatial-motion Feature

We explore the characters of spatial-motion features in this section. As they are introduced

through randomized exposure and compression, it is hard to identify one single feature and

quantify its contribution to the classification result. But by designing proper experiments,

we show that collectively they have two main properties: (a) they are richer along the

movement direction; (b) they are local features.

It is intuitive to expect that spatial-motion features are introduced along the motion

direction due to randomized exposure. If that is true, temporal information is better pre-
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served when the moving edge is perpendicular to the moving direction because of less

feature overlaps. To explain this further, we use the sensitivity maps of the input coded

images to the CNN classifier. Sensitivity maps are the absolute value of gradients of classi-

fication loss w.r.t to input image pixels which often indicates the saliency of input regions

to the classification results [Simonyan et al., 2013]. We show an example in Fig. 4·5. The

highlighted regions of the sensitivity map suggests these pixels are more important for cor-

rect motion classification. We see that for left and right motion, the spatial motion features

along the vertical edges of the image are more salient compared to the horizontal edges.

This suggests that spatial motion features on the vertical edges can be better exploited than

the spatial motion features on the horizontal edges for left and right motion classification.

This compares to up and down motion classification, where the spatial motion features

along the horizontal edges are more salient.

We next show that the dependency of motion classification result is based on local

features, and that motion classification accuracy is maintained where even the coded image

is only partially observed. To examine this, we first trained the network using the full

coded images. But in the testing step, we provide the network with only local information

by masking pixel rows or columns of the coded images. We then check if the network can

still recognize the motion direction labels given only local information.

In Fig. 4·6, we plotted the motion classification accuracy against the number of rows

or column that are observed to the network at testing time. For videos with left or right

digit motion, we see that as we remove pixel columns in the coded image, the motion clas-

sification accuracy drops significantly. But as we remove the pixel rows, CNN maintains

solid accuracy of near 100% when only 4 rows of pixels remain of the coded image. It still

maintains 85% accuracy when only 1 pixel rows remains. This result is opposite for up

and down movement, where CNN maintains solid accuracy with columns removed. This

result further verifies our projection that (a) CNN learns to classify motion based on local
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Figure 4·5: Coded images (left) and corresponding sensitivity maps (right)
in horizontal motion classification (left v.s. right).

spatial-motion features and (b) PCE spatial-motion features are presented along the motion

direction.

4.3.3 Transferability of Spatial-motion Feature

After demonstrating that CNNs can successfully learn to use local spatial-motion features

for motion classification, we next explore their learning transferability. That is, if we train

a network using a set of images for motion classification, can the network learn the local

spatial motion features and use them to classify motion of a different set of images? We

expect the learned features to be transferable because any scene can be decomposed into a

combination of basic elements such as surfaces, curves or edges, which are common across

all images.
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(a) Classification: Left v.s. Right

(b) Classification: Up v.s. Down

Figure 4·6: Classification accuracy using local information.

We examine this by first training a CNN to recognize motion direction in the case of

left v.s. right on MNIST moving digits, but then testing motion classification accuracy on

coded images generated from another dataset. We use the Quick, Draw! dataset launched

by Google. It contains 28× 28 gray-scale images of common objects. Also like MNIST,

these are sketch drawings which may share common pen strokes compared to hand draw

digits of MNIST.

To generate a testing set from Quick, Draw!, we pick 1000 drawings for each object

from apple, banana and carrot, and thereby form a 3000-sample subset. We then generate

synthetic video clip of 10 frames by moving the object toward left or right, as what we did
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Training Data Testing Data

Figure 4·7: Examples of training coded images from MNIST dataset and
testing coded images from Quick, Draw! dataset. The CNN models achieve
93.1% and 94.0% accuracy of recognizing moving direction horizontally
and vertically on Quick, Draw! although they were trained on MNIST mov-
ing digits.

for the MNIST moving digits in the previous subsection. We then compressed them to CS

coded images using the same sensing matrix. Examples of Quick, Draw! coded images are

shown in showed in Fig. 4·7.

Even though these sketch drawings do not appear in the training data, we still get 93.1%

and 94.0% test accuracy in detecting the motion direction horizontally and vertically. This

result illustrates that the spatial-motion features learned by the CNN model are general

across different domains to some extent. For applications where a large amount of original

training data is too expensive to obtain, the transferability property suggests that the training

process can be done with data obtained from other domains or synthetic data.

4.4 Experiments

4.4.1 Motion Classification of MNIST Moving Digits

In this simulation experiment we intend to demonstrate and verify the following: Given

a coded image that encodes a moving scene, can we extract useful information regarding

the scene such as: (a) the direction of the motion; (b) velocity of the movement; (c) object

detection and classification.
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Data Generation

We choose to use the MNIST dataset in this preliminary experiment. For each image in

the training dataset, we generate a video of 10 frames by keeping the digit still or moving

the digit to one of the four directions (up, down, left and right) with two speeds (one pixel

or two pixel offset from the previous frame). We then apply a random exposure pattern

(shown in Fig. 2) to encode this video into a single coded image. This corresponds to a

compression rate of 10. Note that the random exposure pattern is fixed and used for all the

training and testing datasets. An example of the data is shown in Fig. 4·8.

One observation on the training dataset is that when a digit moves to a direction, its

coded image would be biases towards that particular direction, shown in the 2nd box in

Fig. 4·8. This makes the classification task trivial because the algorithm can simply classify

direction based on counting the number of non-zero pixels at a particular quadrants. To

avoid this bias, we re-center the coded image and use this coded image in both training

and testing sets. This would ensure the CNN learns correct features of a motion instead of

doing simple non-zero pixel counting.

Classification

We trained three different CNN networks for three classification tasks respectively. During

training, the network is presented with coded images and label pairs.

The classification results are shown in Tab. 4.1. We see that the CNN does an excellent

job with speed classification from coded images compared to raw videos. It however does

a slightly less decent job with direction classification and object classification.

Even with some performance drop, using coded image for classification directly could

be the method of choice due to its computational efficiency. It is two times faster than same

classification done on a raw video. More importantly, using the coded image for these

classification tasks also bypasses the need for sparse reconstruction which involves solving
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Figure 4·8: An example of generated training videos and coded images of
the videos.
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Table 4.1: Comparison of classification performance on coded images and
on videos.

Classification
CNN + video

Acc. Train time (s) Test time (s/1000 samples)

Digit 98.60% 5566.72 1.01
Direction 100% 4861.49 1.25
Velocity 100% 2199.52 1.21

Classification
CNN + coded image

Acc. Train time (s) Test time (s/1000 samples)

Digit 96.22% 3079.57 0.65
Direction 90.04% 3812.42 0.56
Velocity 100% 1483.64 0.53

computationally intensive convex optimization.

4.4.2 Motion Classification of Gesture Videos

Data

The 20BN-Jester dataset contains labeled video clips of human performing pre-defined

hand gestures, such as rolling hand and sliding fingers. It has 27 different gesture cate-

gories. When the same gesture is performed in different directions (e.g. sliding fingers

from left to right and right to left), they are labeled as different gesture categories. The

dataset has 118562 samples for training and 14787 samples for testing.

Because video clips in the dataset are of slightly different resolution and duration, we

first rescale all the videos to the same spatial resolution of 100×170. We then ensure each

clip contains 30 frames by padding the last frame (for clips with fewer frames) or removing

frames from beginning and end equally (for clips with more frames).

The training and testing datasets are then generated by compressing the video into

coded images using a coded exposure pattern as shown in equation 4.2. The exposure

duration for each pixel is 5 frames while the pixel exposure starting time is randomly cho-

sen. By doing so, a 30-frame video clip is transformed to a single-frame coded image

equivalent to CR of 30.
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For comparison, we also generated two sets of naively downsampled frames of the

same CR by taking a random frame or temporally averaging all frames. This process is the

same as what we did previously on the MNIST dataset. Compared to coded images, the

random frame contains no temporally transformed features since it is just a snapshot of the

video. Note that there still exists some spatial information that may contribute to gesture

classification, e.g. the pose of the hand provides sufficient information to differentiate

between sliding and zooming. Thus the base-line accuracy of random sampling will be

better than random guessing. The average image is equivalent to an coded image with

all exposure turned on, corresponding to a sensing matrix with rank of 1. This operation

eliminates most of the high frequency spatial details but converts some temporal features

into spatial as motion blur. Fig. 4·9 illustrates some examples of these videos after being

compressed as single-frame images.

Coded Avg. Rand.

（A） （B）

Figure 4·9: (A): A comparison of CS coded images, average images and
random images compressed from the same video clip. (B): A comparison
of classification accuracy using coded images, average images and random
images.
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CNN Model Architecture

We use a VGG-16 architecture [Simonyan and Zisserman, 2014] as the classifier on the

images. We change the width of the last fully-connected layer and the output layer in order

to fit our task. The VGG-16 model contains 16 layers including 13 convolutional layers

and 3 fully-connected layers. We use the pre-trained weights of VGG-16 on ImageNet

[Krizhevsky et al., 2012] to initialize the filters in convolutional layers but re-train the

entire network on the (coded/ average/ random) images of 20BN-Jester. The architecture

of our model is visualized in Fig. 4·10, and the training is performed by stochastic gradient

descent with a mini-batch size of 128. Three separate networks are trained to classify coded

images, average images, and random images respectively.

Figure 4·10: CNN model architecture on 20BN-Jester coded images. This
architecture follows VGG-16 net with varied width of the last fully con-
nected layer and output layer.

Classification Tasks and Results

The goal of the classification task is to demonstrate the difference in classification accu-

racy of coded images and naively down-sampled frames. We first train image models to

recognize hand gestures (27 categories) using coded, averaged, or random sampled images

respectively and show that using different type of images indeed result in different classi-

fication accuracy (see Fig. 4·9 B left). We see that using coded images achieve the highest

accuracy (67.69%) while random images have the lowest accuracy (43.61%). The gain

of accuracy in gesture recognition indicate more temporal information is preserved. Note
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that in all cases the input of classifier is only one single frame, the temporal information

that increases classification accuracy refers only to the temporal information that is coded

into spatial features, verifying the superiority of PCE coded images in converting temporal

features to spatial features.

However, as discussed above, even a random frame of a video clip contains spatial

information that is useful for gesture recognition. As our goal is to identify the accuracy

gain caused by temporal-to-spatial feature conversion in the PCE coding process, we also

compare the classification accuracy of using different types of images in a more restricted

setting, i.e. recognizing the motion direction of the same gesture type. Here we choose to

classify the direction of finger swipe out of four directions (top, down, left and right). This

task would decreases the amount of pure spatial features’ contribution to the classification

results. The result of this classification task is shown on the right side of Fig. 4·9 B. In this

more restricted classification setting, we see that the difference in accuracy using different

types of images is even more significant where the accuracy enhancement by using coded

images is nearly 30% from random frames and 17% from averaged frames respectively.

This further verifies our hypothesis that CS coded images preserve temporal information

that would be lost when using naive frame down-sampling.

To show that the trained network using coded images indeed tends to be sensitive in

exploiting the mosaic-like spatial motion features, we visualize the activation map of some

convolutional filters in the first layer as shown in Fig. 4·11. The highlighted region of

the activation map is where a particular feature is densely present. We can see that the

highlighted region in the activation maps is exactly where the motion occurs. This further

demonstrate that spatial-motion features, as a special type of spatial feature, can also be

learned by convolutional filters as we discussed in Sec. 4.2.3.
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input coded image

filter output

Figure 4·11: Visualization of activation maps of convolutional filters that
are sensitive to the motion region. This indicates that some filters learned to
identify temporally transformed spatial features after training.



Chapter 5

Deep Learning for Lossy Image Compression

5.1 Neural Image Compression

Neural image compression (NIC) has recently emerged as a promising direction for ad-

vancing the state-of-the-art of lossy image compression [Toderici et al., 2015, Ballé et al.,

2016, Shen et al., 2018, Liu et al., 2019, Ballé et al., 2018, Toderici et al., 2017, Rippel and

Bourdev, 2017, Mentzer et al., 2018]. Besides outperforming modern engineered codecs

such as JPEG [Skodras et al., 2001], JPEG 2000 [Rabbani, 2002] and BPG [Bellard, 2015]

in rigorous distortion-based evaluation (e.g. PSNR), NIC also enabled many unique appli-

cations which largely broadens the scope of conventional image codecs, e.g. reconstructing

realistic images from extremely low bit-rates by adding artificially synthesized image de-

tails [Agustsson et al., 2019, Santurkar et al., 2018].

NIC models feature an encoder-decoder style structure. An input image x is first en-

coded into a compact latent representation y by the encoder network, followed by a quanti-

zation step (we denote the quantized y as ŷ). The discrete ŷ can be further compressed into

a bit-stream with length R(x) for efficient storage and transmission, using lossless entropy

coding methods such as arithmetic coding. We can then reconstruct a restored image x̂ from

ŷ through a decoder network. The reconstruction quality is usually measured by distortion

metrics such as PSNR and MS-SSIM [Wang et al., 2003] (we denote it as D(x̂,x)).

Both encoder and decoder networks contain trainable parameters. However, applying

end-to-end training directly is difficult due to the non-differentiable operations in quantiza-

tion and entropy coding. To facilitate back-propagation during training, non-differentiable
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operations need to be replaced by differentiable ones. For instance, it is common to replace

quantization with noise injection, and entropy coding with a parameterized entropy estima-

tor. For clarity, we use x̃, ỹ, Re(x) to denote the fully differentiable versions of x̂, ŷ, R(x) in

training.

Note that in lossy image compression, one needs to deal with two competing desires:

better reconstruction quality measured by D(x̂,x) versus less bits consumption measured

by Re(x). Therefore, a trade-off factor λ is usually used in the optimization loss:

λD(x̃,x)+Re(x). (5.1)

Training with a large λ results in compression models with smaller distortion but more

bits consumption, and vice versa. This is a key trade-off in lossy compression known as

the rate-distortion (R-D) trade-off which characterizes the performance of a compression

method. One important requirement for lossy compression methods is bit-rate control,

i.e the capability of providing compressed images with varying quality based on practi-

cal needs. A desired compression algorithm should be able to perform bit-rate control

smoothly, accurately and efficiently.

Bit-rate control, unfortunately, has been a challenging task for NIC methods. Conven-

tionally, it requires training multiple model instances using different λ values and storing

all of them for both senders and receivers. Even so, only limited control at a very coarse

level can be achieved. It is not only because of the cost for training and storing a large

number of model instances needed to achieve a better control precision, but also because it

usually takes several rounds of trial-and-error before finding the right model instance that

has the desired R-D trade-off, as the relation between λ and real bit-rate measured by Bit

Per Pixel (BPP) is unknown and varying per image.

Another limitation of NIC methods comparing with modern engineered codecs is the

lack of adaptivity in the compression process. For instance, BPG has a mechanism for
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dividing a block into sub-blocks based on comparing the compression results of the root

block and the sum of its children. Contrarily, NIC models pass the input image only once

and their parameters are fixed once trained. It would be possible to achieve a better com-

pression performance by making NIC adaptive to individual images.

Motivated by addressing the above mentioned limitations, we propose Substitutionary

Neural Image Compression (SNIC). This approach is built on top of an arbitrary pre-trained

NIC model, enforced by the key idea of searching for a suitable substitutional image for

the original image to be compressed, where using the substitute as the model input leads

to a desired compression performance such as controlling bits consumption and/or improv-

ing reconstruction quality (measured against the original image). We will further describe

SNIC in details in the next section.

5.2 Substitutional Neural Image Compression

5.2.1 Method

The Optimal Substitutional Image

Neural image compression can be viewed as a two-step mapping process (see Fig. 5·1 left).

The original image x0 in a high dimensional space is mapped to a bit-stream with length

R(x0) (the encoding mapping), which is then mapped back to the original space as x̂0 (the

decoding mapping). We denote the 2-step mapping as a function T (·), i.e. x̂0 = T (x0). The

reconstruction quality is evaluated by a distortion metric D(x̂0,x0) .

The question is: When compressing an image, does applying the compression algo-

rithm to the original image necessarily yield the best compression result? For example, if

there exists a substitute image x′0, such that after applying the same two-step mapping, it is

mapped to x̂′0 with D(x̂′0,x0)< D(x̂0,x0), and at the same time R(x′0) is smaller than R(x), it

means we can improve compression performance by simply substituting x0 with x′0 as the

input of the compression model without any other change.
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Figure 5·1: Left: compression and reconstruction by a specific compres-
sion model can be viewed as a 2-step mapping. If there exists an x′0 such
that it is mapped to x̂′0 that is closer to x0 with R(x′0) < R(x0), then better

compression can be achieved by simply substituting x0 with x̂′0. Right: con-
sider λD(·,x0)+R(·) as a function of the input image. The best compression
performance is achieved at the global minimum of this function.

From another perspective, if we view our minimization target λD(x̂,x0) + R(x) as a

function of the input image x (see Fig. 5·1 right), the original input x0 does not necessarily

lie on the global or even a local minimum. In the high dimensional space of x, a better

substitute could potentially be found by effective searching.

Substitutional Neural Image Compression (SNIC) aims at finding the optimal substitute

x∗0 when compressing x0 using a particular NIC model, which can be formally expressed as

x∗0 := argmin
x

λD(x̂,x0)+R(x) s.t. x̂ = T (x). (5.2)

It is worth noting that the reconstruction quality is still measured against the original

image, i.e. we seek to minimize D(x̂,x0) over x rather than minimizing D(x̂,x).

Unfortunately, the above problem is intrinsically difficult to solve, as searching in such

high dimensional input space without any heuristic is hopeless. However, for NIC, we do

have a solvable alternative of the above optimization problem as follows.
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x∗0 := argmin
x

λsDs(x̃,x0)+Re(x) s.t. x̃ = Te(x) (5.3)

Specifically, as what we did in the training phase, we replace any non-differentiable

operations with differentiable alternatives, and we use x̃ = Te(x) and Re(x) to indicate this

change. As such, an approximation of the optimal solution of optimization 5.3 can be

efficiently found by starting from x0, and updating it iteratively toward minimizing the loss

through a gradient descent process.

Once x∗0 is found, it does not require any change to neither the encoding network on the

sender’s end, nor to the decoding network on the receiver’s end. This approach is compati-

ble with any pre-trained compression model, as long as it has a differentiable version. This

precondition should be met by most neural compression models as it is also required for

training.

Bit-rate and Distortion Metric Control

One appealing property of SNIC is that the loss for generating substitutional images could

be different from the loss used for training the underlying NIC model. In equation 5.3, we

use λs to differentiate the trade-off factor in substitute generation from λ for training. Bit-

rate control is achieved by changing λs and using different substitutes that have different

characteristics. Since λs is a continuous variable, bit-rate can be smoothly adjusted, at least

in theory. This is a significant advantage over conventional methods that switch among

different model instances. Nonetheless, it remains to investigate the limits of the reachable

BPP range and what an R-D trade-off curve it produces. It would be appealing if the curve

is above the original R-D curve over a non-trivial BPP range. If so, in this range our

proposed bit-rate control completely dominates over conventional methods as it does not

only make bit-rate control easier but also improves compression performance. We show

that this is indeed the case with empirical results in the experiments section.
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Similarly, the target distortion metric in Eq. 5.3 can also be specified as desired, re-

gardless of the target distortion metric used for training the underlying NIC model. When

changing the target metric, we are interested in seeing how it influences the distortion

against the original metric. This part will also be further discussed in the experimental

results.

Direct Bit-rate or Distortion Control

Controlling the R-D trade-off by specifying λs can still be inconvenient, as the correspon-

dence between λs and the resulting bit-rate is nonlinear and unknown to system designers.

Many application scenarios require a fixed bit-rate with a certain precision level given by

bandwidth of transmission conditions. Therefore, it is desired to control the bit-rate directly

instead of searching for a suitable λs, which may take several rounds of trial-and-error. This

can be achieved by applying SNIC using a slightly modified formula:

minimize
x

Ds(Te(x),x0)+κmax{Re(x)−Rt ,τ}. (5.4)

In the above formula, κ is a large number putting a heavy penalty when Re(x) exceeds

the target bit-rate Rt . Since gradient updates with a particular step-size could lead to Re(x)

being slightly smaller than Rt , we use a small value of τ to calibrate this offset.

Similarly, compression distortion can also be directly controlled if we switch D and R

in the above formula, i.e.

minimize
x

Re(x)+κmax{Ds(Te(x),x0)−Dt ,τ}. (5.5)

5.2.2 Experiments

In this section, we demonstrate the effectiveness of SNIC in enhancing compression perfor-

mance and bit-rate control. It is important to note that the bit-rates in the experiments are
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real bit-rates using arithmetic coding instead of estimations. We also conduct experiments

on the computational overhead of the proposed method.

The testing dataset is Kodak, the mostly used benchmark dataset for image compres-

sion. We use two base NIC models from [Ballé et al., 2016] (indicated below as ICLR2017)

and [Ballé et al., 2018] (indicated below as ICLR2018), where we obtain four model in-

stances for each of them though training with different λ values (0.001,0.01,0.1,1 for

ICLR2017 and 0.001,0.01,0.1,0.5 for ICLR2018), in order to characterize their R-D trade-

off curves as baselines. The training data is a subset of ImageNet [Deng et al., 2009]

that contains images larger than 256X256pixels, and the training distortion metric is mean

squared error (MSE).

Enhancing Compression Performance

Figure 5·2: R-D curves with and without SNIC (averaged over the Kodak
dataset).

For both ICLR2017 and ICLR2018, we generate substitutional images for all trained

model instances, so that a rigorous comparison between SNIC and baseline models can

be measured by their R-D curves over a wide range of bit-rate. There are two sets of ex-

periments that target improving PSNR and MS-SSIM respectively. When targeting PSNR,

formula 5.3 is used to generate substitutes, where λs is set to be the same as λ of the un-

derlying base model (i.e same loss used for both training and substitute generation). When

targeting MS-SSIM, in order to align the resulting bit-rates with original bit-rates, for a
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better comparison, we use formula 5.4 with target BPPs being the same as using original

images and model instances.

All substitute images are generated from original images through a 100-step gradient

descent process, and following each update step there is a clipping step assuring that pixel

values are in the allowed perceptual range (i.e. [0,1]).

Fig. 5·2 shows compression performance measured by R-D trade-offs using original

images and substitutional images respectively. Key observations are as follows. When tar-

geting PSNR, SNIC improves the PSNR-BPP trade-off on both baseline models. While it

also leads to slightly improved MS-SSIM records. When targeting MS-SSIM, the improve-

ment is more significant (e.g. ICLR2017 with SNIC almost achieves the same R-D curve

as ICLR2018 does). This indicates SNIC is effective in enhancing compression even if the

distortion metric is different from its base model. However, there is a small drop of PSNR

on high bit-rates though. This drop may be avoided by using a smaller step size at the cost

of less significant improvements on MS-SSIM.

Bit-rate Control

Bit-rate control can be performed by either controlling the trade-off factor λs in Eq. 5.3 or

by controlling the target BPP Rt directly in Eq. 5.4. We found that results of using these

two formula are similar, but using Eq. 5.4 is easier to have a equal spacing on BPP range

for a better demonstration. Thus we show experimental results using Eq. 5.4 in Fig. 5·3.

Increases and decreases in bit-rate using SNIC have different effects. When increasing

bit-rate, both reconstruction quality and BPP increase, with a R-D curve above the baseline

curve, before it reaches to the upper limit, where a larger Rt or λ will not further increase

neither BPP or reconstruction quality. The upper limit is usually very close to the original

BPP. A larger controllable range is achieved for bit-rates below the original rate. However,

as bit-rate decreases, the R-D trade-off tends to be worse, which eventually makes the R-D

curve below the baseline curve. In Fig. 5·3, we show the entire achievable ranges of bit-
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Target PSNR on ICLR2018 Target MS-SSIM on ICLR2018

Target PSNR on ICLR2017 Target MS-SSIM on ICLR2017

i

Figure 5·3: Achievable range of bit-rate control with different baseline
models and target metrics. Points in the same color are generated with the
same model instance using Eq. 5.4. The original R-D curve (blue line) is
given by varying λ at training phase. The R-D curves are averaged over the
Kodak dataset.

rate control by SNIC with a single model instance. There is a non-trivial range of around

0.3 where SNIC curve is above the baseline. It indicates that facilitated by SNIC we are

able to use a few model instances to cover the entire interested BPP range, while achieving

superior compression performance compared with conventional switch-based control with

infinite many model instances.

An example of substitutional images and corresponding recovered images with different

target bit-rates is shown in Fig. 5·4. There is a visible difference between these images

where the substitutes targeting for high bit-rates are more sharper than substitutes targeting

for low bit-rates.
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Figure 5·4: Substitutional image clips that target different bit-rates and their
reconstructions. Substitutional images are generated from the same original
image and the same compression model instance.

Speed of SNIC

As substitutional images are generated in an iterative manner, the speed of SNIC mainly

depend on the number of gradient update steps and the base compression model being

used. Theoretically, using more steps should be no worse than using less in terms of com-

pression performance, so there exist a trade-off between performance and speed. In this

experiment, we study the speed of substitutional image generation by comparing various

numbers of steps and their effects on compression performance (see Tab. 5.1). This ex-

periment is conducted using TensorFlow (V 1.15) and a single Nvidia GeForce RTX

2080Ti graphics card.

It is observed that even a 5-step process provides a noticeable improvement, which

takes less than 0.1 second generation time. There is no much improvement after 100 steps.

In practice, the number of generation steps could be adjusted in real time easily based on

practical needs as it requires no other change of the system.
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Table 5.1: Average time consumption per image for generating substitutes
and corresponding performance using different number of steps. Program
time refers to the total time consumption including overheads such as vari-
able initialization while generation time refers to only time for gradient up-
dates. ICLR2017 is used as the base model.

Steps 0 5 10 50 100 500 1000
Program Time(s) - 0.159 0.223 0.778 1.488 7.129 14.141
Generation Time(s) - 0.068 0.132 0.685 1.396 7.037 14.050
Performance(PSNR) on base models with different training λ
λ=0.001 25.84 25.90 25.96 26.23 26.32 26.42 26.44
λ=0.01 31.51 31.65 31.77 32.15 32.22 32.28 32.29
λ=0.1 34.94 35.14 35.24 35.39 35.40 35.40 35.40
λ=1 35.59 35.93 36.02 36.14 36.15 36.16 36.16



Chapter 6

Discussions and Concluding Remarks

6.1 Connections between Security and Compression

6.1.1 The Usage of Input Gradient

When training deep neural networks, we take gradients of the loss function with respect

to weights parameters by using the so-called backpropogation algorithm which makes the

foundation of modern deep learning. In this thesis, we also described two contexts in which

gradients (of a loss function) is taken with respect to the model’s input instead. The first

use case of input gradients regards adversarial attacks, where they are used to iteratively

construct an adversarial perturbation on the input image, which misleads the target model

to make erroneous classification. The second use case of input gradient is in Substitutional

Neural Image Compression, where the input image of a compression model is optimized

so that it leads to a desired rate-distortion trade-off. Computing input gradient is a key step

in the above context as the optimization of the input image is conducted iteratively via a

gradient descent process.

The usage of input gradient in these context stems from the most important property

of deep learning models: they are designed to be differentiable. The differentiablity of

deep learning models make sure that gradient can be backpropogated efficiently so that

parameters of a DL model can be updated toward minimizing a loss function. And as

the output of a DL model is a function of both model parameters and the input example,

gradients of any loss respect to the input example is also available by backpropogation.

83
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We show that the differentiable nature of deep learning unfortunately leaves holes for

its security. In adversarial attack, input gradient of the adversarial loss actually contains

sensitive information about the weak spots of a specific model. More specifically, the input

gradient in the context illuminates the direction where the decision boundary is close to

the original example, i.e. the direction where the model has the worst robustness. Usu-

ally we want to hide the weak spots of our deep learning models and prevent them from

being exploited. That is why many defensive methods against adversarial attack focus on

"obfuscating" the input gradient of a model by e.g. adding non-differentiable operations to

the network. In a sense, stochastic defense also lies in this category where input gradient

is randomized for obfuscating the adversary. However, many methods can be bypassed

with counter-measures of attackers, interested readers can refer to [Athalye et al., 2018] for

more details.

Nonetheless, the differentiable nature of deep learning also provides unique advan-

tages in many tasks, and Subsitutional Neural Image Compression is a typical example of

them. The differentiability of neural image compression models enables us to find a model-

specific and target-specific optimized input image easily using input gradients, which is

difficult for conventional engineered codecs. As demonstrated in this section, the same

technique of computing input gradients can be used for either benign and malicious pur-

poses. Finally, it is also worth mentioning that the technique of input gradients appears in

many other fields of deep learning, such as feature visualization [Olah et al., 2017, Mordv-

intsev et al., 2015].

6.1.2 The Usage of Compression Models in Anomaly Detection

Auto-encoders are essentially compression models: they learn a compressed representation

of the input examples from which the original uncompressed input examples can be recon-

structed. In the context of anomaly detection tasks, auto-encoders are trained with only

benign data examples. The philosophy is that since there are only benign examples used
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for training, the reconstruction error using the trained auto-encoder is relatively small for

benign examples, but relatively large for anomalous examples. Therefore, we can use the

trained auto-encoder to detection anomalies in the inference phase by setting a threshold of

the reconstruction error.

Neural image compression models, and neural compression models in general, have

no essential difference from auto-encoders, except that the latent variable of neural image

compression models are further compressed into a bit-stream by quantization and arith-

metic coding. Since quantization and arithmetic coding used in all NIC models are the

same, the compression performance is mostly depend on the quality of latent representa-

tion of NIC models which are directly related to the learned encoder and decoder networks.

Besides training data, the architecture of the encoder and decoder has a crucial impact on

the compression quality. Not surprisingly, compression models with greater complexity

(e.g. parameter size) usually result in better compression, indicating a trade-of between

model complexity and compression performance. Also, there are activation functions that

are commonly used for NIC, but rarely used in other fields of deep learning, e.g. general-

ized divisive normalization (GDN) used in [Ballé et al., 2016].

However, the objective of training anomaly detection models and neural compression

models are different. For NIC models, we seek to minimize the reconstruction error. But

for anomaly detection models, we seek to maximize the difference of reconstruction error

between normal data points and anomalous data points. As a consequence, a good anomaly

detection model does not need to have high complexity and minimized the reconstruction

error to a certain level, as long as the error distributions of normal and anomalous data

are separative enough. This is why anomaly detection models are usually much lighter

compressed with neural compression models. As we need the difference of reconstruction

error between normal and anomalous data as an evaluation metric, sometimes we need a

validation set of anomalous examples for efficient architecture search of auto-encoders.
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It is important to note that not all types of anomalies are detectable by auto-encoders.

Auto-encoders detect examples as anomalies that do not compress well. There might

be examples whose values deviate from the normal distribution but still fit well into the

trained auto-encoder with small reconstruction errors. This type of anomalies is called

point anomalies. In order to capture this type of anomalies, models solely trained with re-

construction error is not enough. Therefore, sometimes it requires auto-encoders with reg-

ularized latent distributions, such as Variational Auto-Encoders (VAEs) [Xu et al., 2018,An

and Cho, 2015].

6.1.3 The Usage of Randomness in Improving Robustness and Compactness of Deep

Learning

Randomness plays an important role in tackling both security and compression challenges

of deep learning. However, for different problems, randomness is Incorporated in different

parts of deep learning models.

In Sec. 2, we showed that the key idea of stochastic defense is to randomize conven-

tional a deterministic deep learning model so that its parameters and/or structure vary in

the inference time. The benefits that randomness brings to a network can be interpreted

in different perspectives. One intuitive way to understand it is the variants of a stochastic

models tend to have different weak spots (see Fig. 2·1), and these weak spots neutralize

with each other so that the robustness of the stochastic model improves as a whole. An-

other appealing property of stochastic defense is that it is also shown to be effective against

other security threats such as adversarial reprogramming, as we discussed in Sec. 2.4.

In Sec. 4, we showed that by training deep learning models directly on CS coded sig-

nals, we could reduce model complexity as a consequence of a more compact input rep-

resentation. Although randomness is not directly applied in this approach, it is exploited

implicitly through the sensing matrices which are usually generated randomly from a Gaus-

sian or Bernoulli distribution. A randomly generated sensing matrix ensures the RIP con-
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dition so that information is not lost in the compression process, which is a fundamental

precondition of our proposed method of extracting information from CS coded signals us-

ing CNNs.

6.2 Summary and Future Directions

In this thesis, we discussed topics in the middle field of deep learning, security and com-

pression. These topics include both security-related and compression-related issues of deep

learning models themselves, as well as their applications for conventional tasks in the se-

curity and compression domains.

In the field of security, we showed that deep learning models are vulnerable to adver-

sarial attack and adversarial reprogramming. To defense against these malicious attacks,

we proposed multiple stochastic defense methods, including Defensive Dropout, Hierar-

chical Random Switching, and Adversarially Trained Model Switching. We also applied

deep learning models for conventional security tasks such as cyber-attack detection. We

show these tasks can be either formulated as classification problems or anomaly detection

problems, depending on the assumption of available training data.

In the field of compression, we showed that deep learning model such as CNNs can

be used for information retrieval from coded signals in compressed sensing systems. This

method benefits mutually to both compressed sensing systems and deep learning analyzing

models. On the one hand, it bypasses sparse reconstruction, which is computational inten-

sive, and thus enables fast feedback to sensors for adaptive adjustments. On the other hand,

a more compact representation of signals using compressed sensing also helps reduce the

complexity and parameter size of analyzing models. Besides, deep learning based lossy

image codecs are also discussed in the thesis. Our contribution in this field is Substitu-

tioanl Neural Image Compression, which finds the optimal substitutional image input for a

particular compression target (e.g. bit-rate) given a pre-trained neural compression model.
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There are many potential future extensions of the works of this thesis. In the field of

stochastic defense, we are curious about if there are randomization schemes that surpass

Hierarchical Random Switching (HRS) in terms of security-accuracy trade-off. In fact,

for defense methods that result in increased parameter size such as HRS, a comprehensive

evaluation metric should also take the memory consumption into account, leading to a more

generalized three-factor trade-off among adversarial robustness, accuracy and memory con-

sumption. How to fairly evaluate and compare different defense method in the presence of

this three-factor trade-off is another interesting problem. In the field of anomaly detec-

tion using auto-encoders, an issue that we encountered in our previous works is the lack

of theoretical guidance of model architecture design. As we discussed, the anomaly de-

tection performance may not be improved by adding up complexity of the detection model

as a good detection models needs to amplify the difference between normal and anoma-

lous data instead of reducing reconstruction error for all data points. In our experiment,

the model architectures are usually decided empirically by trying and comparing multiple

architectures. But they are still lack of either theoretical performance guarantee or effective

hyper-parameter search methods.

Our proposed approach of classifying coded signals illuminates a promising direction of

information retrieval without sparse reconstruction in compressed sensing systems. How-

ever, it remains to demonstrate how feedback information is used to build a close-loop

control system. One example of sensor parameter in compressed sensing systems is the

compression ratio. Previous works in this field indicate that the reconstruction quality

depends on both CR and velocity of the moving object. Therefore, using our propose ap-

proach, the CR of sensing which is decided by the exposure pattern, can be dynamically

adjusted for a better sensing quality. Moreover, information extraction in practice could

be far more complicated than a simple classification task. This is something worthy of ex-

ploring in the future work. In addition, the key approach used in SNIC can also be applied
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to other compression tasks easily, such as compression of audio and video. Moreover, for

certain applications, the strict distortion-based reconstruction quality metric can be relaxed.

For instance, if the compressed images are known to be used for a certain task, we could

replace the distortion loss with task-specific loss for task-aware compression.
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