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No pain, no gain.

How many roads must a man walk down, before you can call him a man.
Bob Dylan (from Blowin’ in the wind)

Life was like a box of chocolates. You never know what you’re gonna get.
from Forrest Gump
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OPTIMIZATION OF CULTURE MEDIA REPLENISHMENT

REGIMENS FOR CARTILAGE TISSUE ENGINEERING

YANLI LYU

ABSTRACT

Cartilage tissue engineering (TE) is a promising osteoarthritis therapy whereby cell-

seeded constructs are generated in vitro for use in restoring degenerated cartilage in pa-

tients. While cartilage TE technology has exhibited growing clinical success, it continues

to be encumbered by the utilization of high cost and laborious protocols, such as the need

for frequent replenishment of culture media (every other day) during the duration of stan-

dard in vitro cultivation phases (2-8 weeks). This constitutes a significant time/cost burden

for researchers and clinical technicians. Interestingly, the adoption of this convention is

based on traditional cell culture protocols, rather than on a fundamental understanding of

the stability of culture media constituents in current cartilage TE culture systems, leading

one to consider that current TE replenishment protocols may be far from optimized. In

the current study, we hypothesize that larger media volumes can be used to: 1) mitigate

the depletion of constituents and accumulation of waste products in tissue constructs over

time and accordingly, 2) reduce the media replenishment frequency required to generate

engineered cartilage with functional mechanical properties and composition.

Bovine chondrocyte-seeded agarose constructs (Ø4mm×2mm) were cultivated for 7

weeks in chondrogenic media of increasing cumulative media volumes (3mL, 6mL, 9mL,

18mL, and 54mL) and replenishment frequencies, including the conventionally utilized

thrice-weekly and lowered frequencies of weekly, biweekly, and replenishment-free. The

stability of influential media constituents (glucose, ascorbic acid, insulin), waste product

accumulation (assessed via pH), and the properties of constructs were monitored over time.
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Results demonstrated that concentrations of growth-promoting media constituents and pH

decreased over culture duration but this decrease can be mitigated by the use of larger re-

plenished media volumes. For all replenishment frequencies, tissue construct mechanical

properties and sulfate glycosaminoglycan (sGAG) content generally increased with replen-

ished media volumes. For weekly, biweekly, and replenishment-free frequencies, the gen-

eration of constructs with native properties required the higher replenished media volumes

per replenishment but did not require the use of higher cumulative media volumes. These

results suggest that functional engineered cartilage can be generated with lower media re-

plenishment frequencies or replenishment-free conditions. These protocols may be adopted

in clinical and research-grade TE platforms to reduce labor costs and contamination risk.
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Chapter 1

Introduction

Osteoarthritis (OA) is a degenerative joint disorder associated with the degeneration of

articular cartilage, leading to pain and debilitation. OA predominantly afflicts the weight-

bearing joints (e.g., knees, hips, and spine). OA affects over 32.5 million adult patients in

the US and incidence rates are increasing. Thus, therapies to treat OA are urgently needed.

1.1 Articular Cartilage and OA Therapy - Cartilage Tissue Engineer-
ing (TE)

Articular cartilage is a type of hyaline cartilage that can bear high mechanical loads. Artic-

ular cartilage predominantly consists of chondrocytes and extracellular matrix (ECM). The

ECM is majorly constituted by water, proteoglycans (PGs), and collagens [1, 2, 3]. The

predominant PG type in articular cartilage is aggrecan[1], which consists of a core protein

which is covalently tethered to a large number of negatively charged sulfate glycosamino-

glycans (sGAGs) side chains. Charge-to-charge repulsion and the domestic swelling pres-

sure induced by GAG provide cartilage with its high capacity to support compressive loads

[1]. In addition, collagens, a superfamily of fibrous proteins, abundantly exist in the car-

tilage ECM [4, 5]. Collagen fibrils enable cartilage to bear tensile loads and maintain the

tissue structure [1, 4].

Cartilage tissue engineering (TE) is an emerging OA treatment technology whereby

cells are encapsulated in polymer scaffolds to generate new cartilage replacement tissues.

The cartilage TE process involves four integral steps: cell isolation, tissue construct fab-
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rication, in vitro tissue cultivation, and surgical implantation (Fig. 1·1)[6]. Autologous

chondrocytes can be isolated from the residual healthy regions of a patient’s articular

cartilage[7]. Further, mesenchymal stem cells (MSCs) can be isolated and primed for

chondrogenic differentiation[8, 9]. Isolated cells are then mixed with a polymeric scaffold,

forming the engineered cartilage tissue construct. Cartilage tissue constructs are cultivated

in vitro in an anabolic media formulation for a two to eight weeks maturation stage. The

goal of this stage is to initiate the generation of a functional ECM that can support phys-

iologic mechanical loads. Lastly, the mature cartilage tissue constructs will be surgically

implanted into the patient to replace the damaged cartilage tissue, which will ultimately

repair the OA. The work of this thesis focuses on the development of protocols for in vitro

maturation of engineered cartilage tissues.

Figure 1·1: Four steps of cartilage tissue engineering. Cells are isolated
from a source tissue and embedded into the scaffold. After in vitro culture
in a suitable environment, the mature constructs will be implanted into le-
sion sites for tissue repairment. Reprinted by permission from: [Springer]
[Bio-Design and Manufacturing] [Ansari, M., Eshghanmalek, M. Bioma-
terials for repair and regeneration of the cartilage tissue. Bio-des. Manuf.
2, 41–49 (2019). https://doi.org/10.1007/s42242-018-0031-0 (Biomaterials
for repair and regeneration of the cartilage tissue, Mojtaba Ansari, Mahdi
Eshghanmalek), [COPYRIGHT] (2018)
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1.2 In vitro Cultivation in Cartilage Tissue Engineering

1.2.1 Chondrogenic Media (CM) in Cartilage Tissue Engineering

Tissue culture is a process by which cellularized tissues are cultivated in vitro under condi-

tions that attempt to recapitulate the native environment. The composition of culture media

is one of the critical factors that influence this process. Since Sydney Ringer[10] first devel-

oped a media to successfully perform in vitro culture in 1882, significant efforts have been

undertaken to improve media formulations (a detailed outline of this timeline can be found

in Appendix 1). Today, there are numerous standardized media formulations, including

Dulbecco’s Modified Eagle Media (DMEM)[11], Ham media[12], Roswell Park Memorial

Institute (RPMI) media [13], and others [10]. Each standardized media consists of supplies

of metabolic sources (e.g., glucose, pyruvate), vitamins (e.g., ascorbic acid (vitamin-C),

vitamin-B), amino acids, and hormones (e.g., insulin) to support cellular processes [14].

The culture media in cartilage TE has been developed accordingly. Traditionally, media

for cartilage TE was supplemented with fetal bovine serum (FBS)[15] in order to provide

an extensive array of biomolecules needed to promote tissue growth. However, serum-

based formulations have encountered limited success in cartilage TE, as marked by the

generation of tissues with sub-native mechanical properties and biochemical composition.

A major advance in the past decade has been the development of chondrogenic media (CM)

formulations that improve chondrogenesis and cartilaginous ECM biosynthesis. In 2005,

Kisiday et al.[16] reported that a supplement consisting of insulin-transferrin-selenite (ITS)

could serve as a suitable substitute for serum, promoting the progress of the development

of the serum-free media in cartilage TE. Since then, the supplementation of ITS, combined

with other growth mediating constituents (ascorbic acid, dexamethasone, and TGF-β)[17]

has served as the foundation for a serum-free, chemically-defined CM formulation to be

applied in cartilage TE protocols. Importantly, in 2008, Byers et al.[18] demonstrated that

with short-term, transient exposure to TGF-β3 in a serum-free, chemically-defined CM,
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constructs can achieve mechanical and biochemical properties that match native cartilage

tissues in only 2 months of culture.

Since then, the serum-free, chemically-defined CM has been applied extensively to

cartilage TE investigations. A complete list of constituents in CM can be found in Appendix

B and Appendix C.

(A) (B)

Figure 1·2: (A) Young’s modulus (EY ) and (B) sulfate GAG (sGAG) con-
tent of engineered tissue constructs after 42 days of culture in response to
varying concentrations of insulin (INS), ascorbic acid (AAP), and glucose
(GLU). Concentrations are relative to conventional doses (1×) present in
standard CM formulation.

The successful generation of engineered cartilage with functional properties is depen-

dent on the presence of sufficient levels of an array of key constituents in the CM. Cigan et

al.[19] established the influential role of several key CM constituents towards tissue growth.

His works established that the presence of insulin and ascorbic acid was essential, but their

concentrations could be administered at levels as low as 30% of conventional doses without

detriment to construct development. Moreover, the presence of glucose was similarly es-
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sential and reduction of glucose to 30% of the conventional dose was detrimental to tissue

growth (Fig. 1·2 A B). The work of Cigan et al.[19] established that while several CM

constituents are critical for engineered cartilage development, they can potentially undergo

partial depletion during culture without detriment to tissue formation.

Another consideration for engineered cartilage growth outcomes is the presence of cell

generated metabolism waste products in culture media. Cell secreted waste products can

impact cell viability and biological processes. Waste products include CO2 and lactate.

Lactate, is a product of glucose metabolism; specifically, it is the end product of anaerobic

glycolysis [20]. Increased lactate accumulation will lead to a lower pH, which can be

harmful to engineered cartilage growth. While CO2 exhibits a degree of diffusion out of

conditioned media, lactic acid will accumulate in the media and needs to be periodically

removed. Therefore, the waste accumulation-induced problems in the culture media in in

vitro cultivation is another crucial and fundamental issue that needs to be considered.

1.2.2 Media Replenishment Method in Cartilage Tissue Engineering

While a significant amount of work had been conducted on the development of growth-

promoting media formulations, far fewer efforts have been undertaken towards the opti-

mization of media replenishment protocols. The need for the periodic replenishment of cul-

ture media is fundamental to cell/tissue culture applications, serving to restore cell-depleted

nutrients (e.g., glucose, vitamins, amino acids), restore degraded signaling molecules (e.g.,

TGF-β, insulin), and clear cell-secreted waste products (e.g., lactic acid). In cartilage TE,

the conventional paradigm to meet this need is to subject tissue constructs to relatively low

volumes of media but replenish the media frequently—often daily or every other day. This

convention has been adopted by both research-based and clinical TE platforms. Huang

et al. [21] describes the culture media replenishment methodology for clinical tissue-

engineered cartilage products (Table 1.1). Frequent media replenishment protocols con-

stitute a significant time/cost burden for researchers and clinical technicians and may be
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associated with an increased tissue contamination risk.

Table 1.1: Culture media replenishment methodology of clinical cartilage
tissue engineering products. Culture duration is the total days spend on in
vitro cultivation.

Product name In vitro culture duration Media replenishment protocol

CaReS® 10-13 days Every three days[22]

Hyalograft® 2 weeks Twice a week[21]

NeoCart® 3 -5 weeks Culture apparatus (Robotics)[23]

RevaFlex™ More than 40 days Every 3 – 4 days [24]

Interestingly, the adoption of this convention is based on traditional cell culture pro-

tocols, rather than on a fundamental understanding of the intrinsic stability and cell con-

sumption rates of culture media constituents in TE tissue engineering systems. As such,

it is worth considering that the current TE replenishment protocols may be far from opti-

mized and that it may be possible to generate functional engineered cartilage with larger

media volumes and less frequent media replenishment or even with replenishment-free cul-

ture systems. In particular, the use of serum-free and chemically-defined CM formulations

serves as a unique opportunity to optimize media replenishment protocols based on the

dosage needs of the tissue constructs and stability of specific molecular constituents in the

media formulation.
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Chapter 2

Study

2.1 Introduction

Over the past several decades, significant advances in cartilage tissue engineering(TE) have

been made, including the progress of the serum-free and chemically-defined chondrogenic

media (CM), mentioned in the previous chapter. Before the development of the serum-free

and chemically-defined CM, because the supplemented serum contains many unknown

constituents, it is difficult to entirely research on the exact development of every specific

constituent in the culture media during the cultivation. Therefore, the requirement for the

periodic media replenishment of the traditional serum-contained culture media is funda-

mental to cultivation, serving to restore cell-depleted nutrients (e.g., glucose, vitamins,

amino acids), restore degraded signaling molecules (e.g., TGF-β, insulin), and clear cell-

secreted waste products (e.g., lactic acid). This frequent and periodic media replenishment

protocol continues to be encumbered by the utilization of high cost and laborious proto-

cols. This constitutes a significant time/cost burden for researchers and clinical technicians.

However, in current cartilage TE, the progression of the serum-free and chemically-defined

CM provides the unique opportunities to investigate and monitor every constituent in the

CM during the cultivation and over time. Thus, generally, the objective of the current study

is to optimize media replenishment regimens for cartilage tissue engineering to generate the

engineered cartilage with native level of functional properties with the serum-free, chemi-

cally defined chondrogenic media. We hypothesize that larger replenished media volumes

can be used to: 1) mitigate the depletion of constituents and accumulation of waste prod-
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ucts in tissue constructs over time, and accordingly. 2) reduce the media replenishment

frequency required to generate engineered cartilage with functional mechanical properties

and composition. Specifically, this thesis assessed the influence of different cumulative

media volumes (3mL, 6mL, 9mL, 18mL, and 54mL) and various media replenishment

frequencies (thrice-weekly (TW), weekly (W), biweekly (BW), replenishment-free (RF))

in total six weeks cultivation, and eventually find out an optimized media replenishment

regimen.

2.2 Materials and Methods

Constructs were cultivated in CM with varying replenishment regimens for six weeks and

assessed for mechanical properties, biochemical contents (sulfate GAG (sGAG), DNA con-

tents), and cell viability. Constituents in the culture media, including glucose, insulin,

ascorbic acid, and pH, were measured over time for different groups with and without tis-

sue.

Cell Isolation and Tissue Constructs Fabrication

Chondrocytes were isolated from immature bovine cartilage (3-6 months). In brief,

cartilage was harvested from bovine carpometacarpal joints and digested via 1000 U/ml

collagenase (Type IV) at 37°C overnight. The chondrocyte suspension was filtered, cen-

trifuged at 1000 g for 15 minutes, and resuspended in CM. Chondrocytes were seeded in

2mm thick slabs in 2% agarose at a density of 30× 106 cells/mL. Cylindrical tissue con-

structs were generated via a biopsy punch at Ø4mm× 2mm.

Tissue Cultivation

The tissue constructs were cultivated at 37°C in CM, consisting of high glucose DMEM

supplemented with 50 µg/mL L-proline, 1% PS/AM antibiotic-antimycotic, 100nM dex-

amethasone, 100 µg/mL sodium pyruvate, 50 µg/ml ascorbic acid 2-phosphate and 1%

ITS premix (6.25 µg/mL insulin, 6.25 µg/ml transferrin, 6.25 ng/mL selenite acid, 1.25
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mg/mL bovine serum albumin, 5.35 mg/ mL linoleic acid). The tissue constructs were

exposed to 10 ng/mL active TGF-β3 for the first week of culture and maintained in TGF-

β3 free media for the following six weeks. This transient TGF-β administration induces

high ECM biosynthesis rates, as shown previously [17]. During the post-TGF-β admin-

istration 6-week culture phase, constructs were cultivated in culture media that was re-

plenished thrice-weekly (conventional frequency), weekly, biweekly, or un-replenished

(replenishment-free). For each replenishment frequency, constructs were exposed to ei-

ther 3mL, 6mL, 9mL, 18mL, or 54mL of cumulative media volume administered over the

entire 6-week culture duration. The volume of media administered for each group at each

replenishment point is indicated in Table 2.1. The relationship between the cumulative

media volume and replenished media volume is shown in Equation 2.1.

Cumulative media volume=Replenished media volume×Numbers of media replenishment

(2.1)
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Media Constituents Measurements

The stability of insulin, glucose, and ascorbic acid in CM over time in culture was as-

sessed. Assessments were performed in conditioned media for all culture groups and for

media in the absence of constructs. Aliquots from conditioned media were collected once

a week. Insulin was measured by a human insulin enzyme-linked immunosorbent assay

(ELISA) (R&D Systems). Glucose was measured by the Amplex Red Glucose/Glucose

Oxidase Assay Kit (Invitrogen). Ascorbic acid was dephosphorylated by phosphatase

(Sigma) and then measured via a fluorometric assay, as described by Vislisel et al.[25].

Lastly, pH was monitored over time (Mettler Toledo) as an assessment of lactic acid waste

product generation.

Mechanical Testing

The constructs’ Young’s modulus (EY ) was measured via a customized mechanical test-

ing system. In brief, constructs were maintained in phosphate-buffered saline (PBS) and

subjected to unconfined compression with a nonporous platen, consisting of a 10% platen-

to-platen strain at a rate of 1 µm/s. After 15 minutes of stress relaxation, Young’s Modulus

was calculated using the equilibrium reaction load and the cross-sectional disk area.

Biochemical Analysis

After the mechanical testing, constructs were weighed and digested with 0.5 mg/ml

proteinase-K at 56°C overnight for biochemical analysis. Sulfate GAG (sGAG), and DNA

content were assessed by 1,9-dimethylmethylene blue (DMMB) dye-binding assay and

PicoGreen dsDNA quantitation, respectively.

Confocal Cell Live/Dead Quantification

Tissue constructs were diametrically sectioned (around 100 µm thick) and stained by

cell viability (LIVE/DEAD Viability/Cytotoxicity Kit, Invitrogen) and imaged with con-

focal microscopy (Olympus FV3000) to reflect the distribution of viable chondrocytes.

CellProfiler (Broad Institute of MIT and Harvard) was used to quantify the cell viability
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in the periphery. The quantification area is 1 mm × 1 mm at the corner of the construct.

Quantification was performed for the thrice weekly and replenishment-free groups.

2.3 Results

Media Constituents Measurements

In the absence of cartilage tissues, glucose and ascorbic acid (Fig. 2·1 A C) were rel-

atively stable in the chondrogenic media (CM) over 42 days. In contrast, the insulin con-

centration decayed to 60% of initial levels after 28 days (Fig. 2·1 B), indicating a limited

intrinsic stability of the insulin protein. For low media volumes in the presence of con-

structs (3mL per construct), glucose levels exhibited a pronounced reduction, decreasing to

38% of initial levels after 28 days — this decay can be attributed to cellular consumption

of glucose. pH levels also decayed from 7.6 to 6.9 over this 28-day period, attributed to the

cell - mediated secretion of lactic acid (Fig. 2·1 D). Insulin decrease was more pronounced

with constructs for low media volumes, decaying to 20% of initial levels after 28 days (Fig.

2·1 B), indicating insulin loss in media can be partially attributed to cell activity in addi-

tion to its intrinsic instability. Higher media volumes mitigated glucose, insulin, and pH

decreases — glucose decreased to only 80% of initial levels, insulin decreased to only 58%

of initial levels, and pH only decreased to 7.4 after 28 days for 18mL per construct media

volumes (Fig. 2·1 A B C D). Ascorbic acid exhibited a pronounced decrease at these higher

media volumes, however, we did not analyze samples at lower volumes for comparison.
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(A) (B)

(C) (D)

Figure 2·1: Media constituent stability. Concentration of (A) glucose, (B)
insulin, (C) ascorbic acid, and (D) pH in conditioned media over time in
the presence of constructs with varying media supplementation levels and
without constructs. For all groups, constituents’ stability is monitored under
replenishment-free conditions for the entire 42 days culture duration.

Construct Properties in Response to Varying Replenishment Regimens

In an initial study, construct cell numbers and mechanical properties were measured at

day 42 after culture with conventional low replenished media volumes at each supplemen-

tation point (1mL and 3mL) with varying media replenishment frequencies to highlight the

importance of media replenishment for these replenished media volumes. It is important

to note that the cumulative media volume administered to constructs over the 42-day cul-

ture duration increases with replenishment frequency (e.g., 18mL for Thrice-Weekly versus

6mL for Weekly versus 3mL for Biweekly). Construct DNA and mechanical properties ex-

hibited a trend of decreasing with decreasing replenishment frequency, as anticipated. (Fig.
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2·2 A B).

(A)

(B)

Figure 2·2: (A) Cell number and (B) Young’s modulus (EY ) of constructs
after 42 days of culture with low replenished media volumes (1mL and
3mL) to tissue constructs and varying replenishment frequencies. Values
in brackets indicates replenished media volume administered per construct
at each replenishment point.
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In the next study, construct outcomes were assessed in response to varying media re-

plenishment frequencies but with the larger replenished media volumes, designed to match

or exceed the cumulative media volume over the culture duration that is administered dur-

ing the conventional replenishment regimen (18mL per construct over 42 days).

Here, we observed that for the conventional replenishment frequency (TW), the admin-

istration of conventional cumulative media volumes achieved constructs that approached

native EY and sGAG content after 42 days. With reduced cumulative media volumes, TW

replenishment induced a reduction in tissue properties. For less frequent replenishment

groups (W, BW, RF), construct EY , sGAG, and DNA (cell numbers) generally increased

with cumulative media volume administration. Constructs reached native EY properties

for groups of W-54mL, BW-18mL, BW-54mL, RF-18mL, RF-54mL. Importantly, these

results demonstrate that engineered cartilage with native properties can be generated us-

ing lower replenishment frequencies, provided that one administers the same level of total

volume of media over the culture duration. Using this methodology, one can generate

native-property-matched cartilage even under replenishment-free culture conditions.
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(A)

(B)

(C)

Figure 2·3: Mechanical and biochemical properties of constructs. (A)
Compressive Young’s modulus (EY ) and (B) sGAG content of constructs at
day 14, day 28, and day 42 for thrice-weekly (TW), weekly (W), biweekly
(BW), and replenishment-free (RF) media replenishment groups. Value in
group name indicates cumulative media volume administered per construct
over the entire culture duration. Value in brackets indicates replenished me-
dia volume administered per construct at each replenishment point. Red
horizontal dashed line shows the mechanical property and sGAG content of
the native articular cartilage. (C) Cell number of constructs at day 42.
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Cell Live/Dead Quantification

The periphery cell viability showed significant cell death in the periphery both in thrice-

weekly media replenishment (TW-3mL) and replenishment-free (RF-3mL) groups (Fig.

2·4 A B), which were two groups with the lowest cumulative media volume. However,

when the administered cumulative media volumes increase to 6mL or higher, no cell via-

bility loss is observed (Fig. 2·4 A B). The cell viability is consistent with the DNA content

measures (Fig. 2·2 C). Cell viability loss was most prominent in the cell peripheral regions

(Fig. 2·3 C E). As such, the corner area is adopted for cell viability quantifications.
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(A) (B)

(C)

(D)

(E)

(F)

Figure 2·4: Cell viability quantification. (A) Periphery cell viability quan-
tification for thrice-weekly media replenishment groups with different cu-
mulative media volumes (n = 3). (B) Periphery cell viability quantification
for replenishment-free groups with different cumulative media volumes (n =
3). (C) Cell live/dead image for a whole construct (with cell death). (E) Cell
live/dead image for a whole construct (without significant cell death). (D &
F) The quantification area is the top left square of figures C and E (size is
1mm×1mm). Red dots indicate the dead cells and green dots represent the
live cells.
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2.4 Discussion

While the field of cartilage tissue engineering (TE) has progressed considerably over the

past 25 years, few efforts have been undertaken to optimize media replenishment proto-

cols. The results of this work support that the generation of functional cartilage tissue

specimens can be achieved using media replenishment frequencies that are far lower than

those conventionally adopted, provided that sufficient volumes of media are administered.

Prior work and the initial experimental characterization of this study emphasize the

importance of media supply for cartilage TE outcomes. Here it is confirmed that for the

administration of conventional replenished volume of media (1mL) and low replenished

volume (3mL) to constructs, thrice weekly media replenishment protocols are indeed nec-

essary to generate engineered cartilage with functional properties. For these low replen-

ished volumes, a reduction to weekly replenishment frequency leads to a 50% reduction

in construct EY (Fig. 2·3 B). The need for frequent media replenishment for conven-

tional low replenished media volumes (1mL) is unsurprising, and consistent with prior

investigations[18].

In consideration of this established constraint, the principal hypothesis of the current

project was that the required frequency of media replenishment can be reduced through the

administration of larger replenished volumes of media to tissue constructs. Through the

parametric investigation of the influence of variations to media volumes and replenishment

frequencies on the material properties and composition of engineering cartilage, this hy-

pothesis has been validated. Here is it shown that by increasing the replenished media vol-

ume administered at each replenishment point, a native cartilage EY can be reached in con-

structs for weekly or bi-weekly replenishment frequencies or for entire replenishment-free

culture regiment (Fig. 2·3 A). Importantly, while a reduction in replenishment frequency

requires the administration of higher volumes of media at each replenishment point, the to-

tal volume of media administered over the course of the culture duration does not increase.
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Essentially, a cultivation protocol of “front-loading” the media administration at the start

of culture performs equally well to the conventional use of frequent media replenishments.

The emergence of serum-free, chemically-defined chondrogenic media formulations

for cartilage TE provides a unique opportunity to develop optimizations for culture proto-

cols. Historically, the need for frequent replenishment protocols (daily or every-other-day)

was established for cell culture protocols using serum, a biologic supplement that consists

of thousands of potentially influential nutrients and signaling molecules. The identifica-

tion of the numerous key growth-promoting molecules in serum and the characterization

of their stability in TE applications would constitute a significant challenge. In contrast,

chemically-defined chondrogenic media is composed of only a few dozen nutrients and

signaling molecules—as such, the identification of their intrinsic stability and consumption

rates for media replenishment optimization becomes a far more feasible endeavor. To this

end, in the current study, the stability of several chondrogenic media constituents is mon-

itored. The monitoring of insulin, ascorbic acid, and glucose were selected based on their

established importance for engineered cartilage growth[19]. Interestingly, the stability of

these mediators is dependent on their mechanism of degradation in tissue culture systems.

While glucose exhibits long-term stability in cell-free culture media at 37°C, it can undergo

accelerated depletion as a result of cell consumption (Fig. 2·1 A). In contrast, insulin levels

undergo depletion even in the absence of live cells, likely due to the characteristic intrinsic

instability of the protein at 37°C (Fig. 2·1 B). The supply of consumption-limited media-

tors, such as glucose, can be enhanced by simply increasing the replenished media volume

(Fig. 2·1 A B C). However, as results demonstrate, increasing the replenished media vol-

ume has a limited effect on mitigating the depletion of mediators with intrinsic stability

limitations, such as insulin (Fig. 2·1 B). The successful use of replenishment-free culture

platforms in this TE system suggests that although insulin exhibits an exponential decay

during culture, levels remain sufficiently high over time to promote high ECM deposition
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rates. In the future, if required, the stability of proteins with intrinsic instability limitations

can potentially be enhanced via biomaterial delivery platforms[26].

The development of replenishment-reduced or replenishment-free cultivation protocols

can potentially be transformative for the field of cartilage tissue engineering. As currently

constituted, thrice-weekly replenishment protocols represent a significant labor burden

for lab-based researchers and clinical technicians. It further adds a contamination risk,

which inherently exists in any sterile tissue manipulation protocol. In recent years, tissue

banks have made efforts to move away from replenishment-based cultivation strategies.

The Missouri Osteochondral Preservation System (MOPS)[27, 28] represents an exam-

ple of replenishment-free live tissue maintenance for osteochondral allograft preservation.

However, similar platforms have yet to be designed for cartilage TE cultivation platforms.

The results of this study support the feasibility of such replenishment-free cultivation ap-

proaches. In the future, replenishment protocols will need to be optimized for specific TE

systems, which will vary with respect to cell source, cell density, and media composition.
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Appendix A

Development of Cell Culture Media
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Supplementary of the Constituents in
Chondrogenic Media
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