
Boston University

OpenBU http://open.bu.edu

Boston University Theses & Dissertations Boston University Theses & Dissertations

2021

Persistent monitoring of targets with

uncertain states

https://hdl.handle.net/2144/43104

Downloaded from DSpace Repository, DSpace Institution's institutional repository

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

PERSISTENT MONITORING OF TARGETS WITH

UNCERTAIN STATES

by

SAMUEL CERQUEIRA PINTO

B.S., Technological Institute of Aeronautics, 2017
M.S., Technological Institute of Aeronautics, 2018

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2021

© 2021 by
SAMUEL CERQUEIRA PINTO
All rights reserved

Approved by

First Reader

Sean B. Andersson, PhD
Professor of Mechanical Engineering
Professor of Systems Engineering

Second Reader

Roberto Tron, PhD
Assistant Professor of Mechanical Engineering
Assistant Professor of Systems Engineering

Third Reader

Christos G. Cassandras, PhD
Distinguished Professor of Engineering
Professor of Electrical and Computer Engineering
Professor and Division Head of Systems Engineering

Fourth Reader

Julien M. Hendrickx, PhD
Professor of Mathematical Engineering
UC Louvain

As far as we are capable of knowledge
we sin in neglecting to acquire it. Gottfried Leibniz

iv

Acknowledgments

First, I want to thank my advisor, prof. Sean B. Andersson. He gave me uncon-

ditional support over these years at Boston University, and guided me whenever I

needed but also gave me enough freedom to pursue my own ideas and interests. He

was always very patient to review my drafts and was always available to engage in

discussions about the ideas we were pursuing. Then, I also want to thank especially

profs. Christos G. Cassandras and Julien M. Hendrickx, that even though were not

exercising the official role of advisors, they provided me with a great amount of sup-

port and guidance and were very patient in guiding me through my research. I also

want to express my sincere gratitude to prof. Roberto Tron for being part of my

thesis committee and for all the support and thoughtful comments that he has given

me in the examinations that were part of my PhD.

One of my great joys of my doctorate was to meet such an excellent group of fellow

students, that besides collaborating with my research work and classes, also made my

days here more enjoyable and fun. In particular, I want to thank my collaborators

Shirantha Welikala, Nicholas Vickers, Fatemeh Sharifi and Sean Sanchez for their

hard and insightful work in the papers we coauthored. I also want to thank specially

all members of the Andersson Lab for your support and great discussions, be it

during formal meetings or over very informal conversations in the lab. I also want

to thank my friends in the Robotics Lab that were very supportive throughout the

entire process.

I am very thankful to the Department of Mechanical Engineering and Center for

Information and Systems Engineering staff, especially Mrs. Patty Robinson-Angel

and Christina Polyzos, for always helping me when I needed administrative support

and for organizing such great social events, that definitively had a big impact in

getting to know better the faculty and my fellow students.

v

Last, but not least, I want to extend my gratitude to my fiancée, my parents and

siblings. Thanks for your understanding throughout this process: moving to another

country, far from the family, comes with its own challenges. Travel restrictions made

things even more difficult, but you always supported me in my decisions and I knew

I could rely on you. Finally, I thank my friends from Elmbrook that were really an

extended family for me in the United States.

vi

PERSISTENT MONITORING OF TARGETS WITH

UNCERTAIN STATES

SAMUEL CERQUEIRA PINTO

Boston University, College of Engineering, 2021

Major Professor: Sean B. Andersson, PhD
Professor of Mechanical Engineering
Professor of Systems Engineering

ABSTRACT

In a wide range of domains, such as pipeline inspection, surveillance in smart

cities and tracking of multiple microparticles by an optical microscope, a common

goal is to use mobile agents to persistently monitor a set of targets. We refer to this

as the persistent monitoring problem. In this dissertation, we assume that each of

these targets has an internal state that evolves with linear stochastic dynamics. The

agents can observe these states when they are close to the targets, and the goal is

to plan agent trajectories such that the sensed data can be used to minimize the

uncertainty of the estimation process. We study scalable approaches for planning

agent trajectories that minimize the long term uncertainty of the target states. We

design algorithms that are computationally efficient and simple to implement, but

grounded in mathematically proven performance guarantees.

First we approach the problem from a continuous time perspective with the goal of

finding locally optimal agent trajectories using a gradient descent scheme. We assume

that trajectories are fully defined by a finite set of parameters and compute the cost

gradients. Considering periodic agent trajectories and an infinite time horizon, we

vii

prove that, under some natural assumptions, the uncertainty of each target converges

to a limit cycle. We also show that, in 1D environments with bounded controls, an

optimal control is parametric. In multidimensional settings, we propose an efficient

parameterization using Fourier curves. Simulation results show the efficiency of our

approach.

Next, we consider a graph-constrained, single-agent version of the problem, where

agents can only move in the edges of the graph and observe the target when they

are visiting the node corresponding to it. We prove that, in this scenario, an optimal

policy is such that all the agent have a common peak uncertainty. Using this property

of the optimal solution, we develop lightweight algorithms that, instead of directly

solving the optimization problem, balance the dwelling times to fulfill such property

of an optimal policy. In some particular situations, global optimality of the proposed

algorithm is proven. Using a custom-designed greedy exploration scheme, we develop

an efficient method for obtaining efficient target visiting sequences. We extended

this approach to multi-agent scenarios by using a divide-and conquer strategy, where

targets are divided in clusters and each of these clusters is only visited by one agent.

Then, we extend those ideas to a discrete time version of the problem. We show

that, for a periodic trajectory with fixed cycle length, the problem can be formulated

as set of semidefinite programs. This allowed us to leverage efficient SDP solvers to

provide fast solutions to the persistent monitoring problem. We design a scheme that

leverages the spatial configuration of the targets to guide the search over this set of

optimization problems to provide efficient trajectories.

Finally we describe an application of the proposed techniques to the problem of

tracking multiple diffusing particles using a feedback-driven confocal microscope. The

proposed persistent monitoring algorithm was used as the higher level controller in a

hierarchical scheme, defining which particle should be tracked at each instant. Then

viii

an extremum seeking controller was used as a lower level controller in order to track

the moving particle and provide efficient observations.

ix

Contents

1 Introduction 1

1.1 The Persistent Monitoring Problem 1

1.2 Literature Review . 2

1.2.1 Related Problems . 2

1.2.2 Persistent Monitoring Formulations 4

1.3 Contributions . 11

2 Problem Formulation and Steady State Optimization 16

2.1 Problem Formulation . 16

2.2 Transient Optimization . 21

2.3 Steady State Persistent Monitoring 23

2.4 Steady State Gradients . 25

2.5 Parameterization of an Optimal Trajectory in 1-D with speed bounds 31

2.5.1 Computation of
∂sj(q)

∂θ
. 36

2.5.2 Initialization of the Optimization 37

2.5.3 1D Simulation Results . 38

2.6 Fourier Curves for Multi-Dimensional Persistent Monitoring 41

2.6.1 Initialization . 42

2.6.2 2D and 3D Simulation Results 44

3 Minimax Persistent Monitoring Embedded on a Graph 47

3.1 Infinity norm cost function . 48

3.2 Properties of an Optimal Policy . 50

x

3.2.1 Target’s Perspective of a Periodic Policy 50

3.2.2 Necessary Condition for Optimality 52

3.3 Optimal Dwelling Sequence on a Constrained Visiting Sequence . . . 60

3.4 Optimal Dwelling Sequence on an Unconstrained Visiting Sequence . 71

3.5 A Greedy Solution for Determining an Optimal Visiting Sequence . . 75

3.5.1 The metric used to evaluate a visiting sequence 76

3.5.2 Possible types of modifications for a visiting sequence 79

3.5.3 Greedy Algorithm . 84

3.5.4 Spectral Clustering Based Graph Partitioning 85

3.6 Extension to Multi-Agent Problems 88

3.6.1 Target-exchange scheme (TES) used to refine sub-graphs . . . 91

4 Discrete Time Formulation 104

4.1 Discrete Time Model . 105

4.2 An Optimization Approach for Computing the Infinite Horizon Cost . 106

4.3 Optimization of Persistent Monitoring Schedules 111

4.4 Simulation Results . 117

4.4.1 Discussion . 120

5 Application to Multiple Particle Tracking 122

5.1 Brief Background on Multiple Particles Tracking 122

5.2 Problem Statement . 124

5.2.1 Proposed Solution . 126

5.3 Extremum Seeking Single Particle Tracking 127

5.4 Scheduling Multiple Particle Tracking 131

5.5 Simulation and Results . 132

5.5.1 Trajectory estimation from photon data 136

xi

6 Conclusions and Future Work 139

6.1 Conclusion . 139

6.1.1 Future Work . 140

A Conditions on the existence of gradients of the steady state covari-

ance matrix 142

References 145

Curriculum Vitae 152

xii

List of Tables

3.1 Parameters used in the simulation. 70

3.2 Parameters used in the simulation of unconstrained visiting sequence. 75

3.3 Performance comparison of different agent control methods under dif-

ferent persistent monitoring problem setups 94

5.1 Summary of differences between the MPT setting and the PM model,

and the assumptions being used in order to apply PM to the MPT

model. 132

5.2 Mean number of collected photons per second normalized by I0,i for

100 runs of each of the simulation setups. 135

5.3 RMSE Estimation error of 100 simulation runs. 138

xiii

List of Figures

2·1 Results of a simulation with two agents and five targets. (a) Evolution

of the overall cost as a function of iteration number on the gradient

descent. (b) Trajectories of the agents at the final iteration. The

dashed lines indicate the positions of the targets and the grey shaded

area the visibility region of the agent. (c) Evolution of the trace of the

estimation covariance matrices of the five targets. 40

2·3 Simulation results in a 3D environment with two targets and ten agents.

In red, the initial trajectory in the gradient descent optimization, in

blue, the trajectory at the end of the optimization. The projection of

the final agent trajectories in three planes is plotted in dashed purple. 46

2·4 Evolution of the cost function in the gradient descent optimization in

the 3D scenario. 46

3·1 Temporal evolution of the steady state covariance matrix and wait-

ing/observation times. 52

3·2 Illustration of the proof of Proposition 9. 66

3·3 Results of simulating Algorithm 3. In (a), the balanced peak uncer-

tainty, as a function of the cycle period. The red dots mark the values

of T that were explored by the golden ratio search. In (b)-(c), we show

the evolution of the peak uncertainty and the dwell-time for each target. 69

3·4 Results obtained after optimizing the visiting and dwelling sequences. 70

xiv

3·5 Results obtained after optimizing the unconstrained visiting and dwelling

sequences. 75

3·6 Three types of cycle modification operations (CMOs). 81

3·7 An example for CMO Type - I. Here, the edge (11, 31) is replaced by

the shortest path (11, 42), (42, 31). 82

3·8 Examples for CMO Type II and III. In (c), target 12 was inserted to

the initial cycle (b). In (d), targets 12, 43 were added to the initial

cycle (b). 83

3·9 Example 1: The Greedy Cycle Construction Process. 95

3·10 Example 2: A Constructed Greedy Cycle. 96

3·11 Example 3: A Constructed Greedy Cycle. 96

3·12 Three types of cycle expansion operations (CEOs). 97

3·13 Greedy cycle expansion process for the computation of disparity values

w.r.t. target 1: {d(1, j) : j ∈ V} using Alg. 7. The red contours in

(b)-(g) show the expanded cycle Ξ̄′ after executing Steps 5-9 of Alg. 7

with i = 1. 98

3·14 Clustering results and the greedy cycles constructed in each sub-graph

for individual agents. 99

3·15 Clustering results (for the graph in Fig. 3·14(a)) when the shortest

path distance is used as the disparity metric. 100

3·16 Target Exchange Scheme (TES) Example 1. Initial set of sub-graphs

(in (b)): Ĵ(G) = 16.3 = max{16.3, 6.9, 9.7}. Final set of sub-graphs

(in (d)): Ĵ(G) = 11.6 = max{11.2, 11.6, 10.9} (Balanced and improved

by 28.8%). 101

xv

3·17 Target Exchange Scheme (TES) Example 2. Initial set of sub-graphs

(in (b)): Ĵ(G) = 12.3 = max{7.2, 12.3, 4.4}. Final set of sub-graphs

(in (e)): Ĵ(G) = 8.3 = max{7.7, 8.3, 5.6} (Balanced and improved by

32.5%). 102

3·18 The persistent monitoring problem setups used in the performance

comparison (at the initial condition). 103

4·1 Example graph for illustrating Alg. 10. 117

4·2 Results of the simulation with three targets. (a) Comparison of the

trajectories generated by the RRC and the SDP-PM approaches. The

trajectory displayed for RRC is the one with lowest cost among 5 inde-

pendent runs of the algorithm. The presented trajectory was obtained

after 200 iterations of the SDP-PM algorithm and 1500 iterations of

RRC. The grey area represents the positions for which the agent can

sense a given target. (b) Cost and cumulative computation time as

a function of the iteration number for SDP-PM. (c) Cost and cumu-

lative computation time as a function of the iterations of RRC. The

solid lines represent average among 5 runs and the dashed lines are the

observed maximum and minimum of the cost and computational time.

None of the 5 instances of SDP-PM found a feasible solution before

345 iterations. 118

4·3 Simulation results in the setting containing 7 targets 120

5·1 Simulation of Extremum Seeking Controller trajectories starting at two

different positions showing failure to converge (blue), and convergence

(black). The arrows indicate the movement direction. 129

xvi

5·2 Number of cycles to convergence as a function of the initial relative

position of the laser and particle. The initial distance is normalized by

the radius R. 130

5·3 Mean squared tracking error as a function of Kp, for f = 60 Hz and

particle diffusion coefficient Dx = Dy = 0.1 µm2/s. 130

5·4 Particle and laser trajectories, while tracking three particles in the first

simulation scenario. The laser trajectory is in black and the particles

are in blue, yellow and red. 134

5·5 Photons collected at each time step (Ts = 10−4 s) in the first simulation

scenario. The colors in the plot indicate which particle emitted those

photon. 134

5·6 Illustration of a raster scanning trajectory considering a similar sim-

ulation setup. The agent trajectory is in black, while the particle

trajectories are colored. 136

5·7 Estimation error over time using the offline estimator. The colors of

the plots match the colors of the particle in Fig. 5·4. The shaded areas

mark when the laser was orbiting around each particle. 137

5·8 Estimation error over time with perturbed parameters. The shaded

areas mark when the laser was orbiting around each particle. 137

xvii

List of Abbreviations

CMO Cycle Modification Operations
ES Extremum Seeking
ESC Extremum Seeking Controller
KF Kalman Filter
MPT Multiple Particle Tracking
MSEE Minimum Squared Estimation Error
MTSP Multiple Traveling Salesman Problem
MVRP Multiple Vehicle Routing Problem
PM Persistent Monitoring
RRC Rapid-Exploring Random Cycle
RRT Rapid-Exploring Random Tree
TSP Traveling Salesman Problem

xviii

1

Chapter 1

Introduction

1.1 The Persistent Monitoring Problem

The general problem of multi-agent persistent monitoring involves a collection of

mobile agents moving through a spatial domain to interact with targets at specific

locations to, in some sense, control or monitor some state of those targets. We assume

that the variable that one wants to control is inherently dynamic and that its evolution

is affected by some stochastic noise. Therefore, this is not a static estimation problem,

but rather a dynamic one, where these variables cannot be measured just once but

rather must be monitored over time. Furthermore, we consider only cases where the

number of available agents to do this monitoring is lower than the number of targets

to be monitored, since in this case the agents have to move through the environment

in order to periodically visit the targets, as opposed to having a static sensor being

assigned to each target.

This paradigm finds applications across a wide range of domains, such as in eco-

logical monitoring (Lin et al., 2018), infrastructure safety verification (Ostertag et al.,

2019), ocean temperature surveillance (Lan and Schwager, 2016), deep-sea exploration

(Alam et al., 2018) and multiple particle tracking (Pinto et al., 2021b).

The design goal is to obtain an optimal motion policy for the agents that minimizes

a measure of the uncertainty in the estimates of the states of the targets. Therefore,

the task of planning the agent trajectories is intrinsically related to the estimation of

the targets states.

2

This general persistent monitoring description covers many different instances of

the problem. For example, the evolution of the uncertainty over time can be described

by different dynamics, the space can be continuous, discrete or even abstracted by a

graph, the cost function can be any metric of the covariance matrix, etc. In the next

sections of this introduction we explore different approaches the persistent monitoring

(PM) problem and its relation to previous literature. We then place our specific for-

mulation of the persistent monitoring problem within this larger context and describe

how this dissertation contributes to the literature in the field.

1.2 Literature Review

1.2.1 Related Problems

This section gives a brief overview of problems that do not fully match the general

description of the persistent monitoring problem, but have common features with

it. This overview is by no means exhaustive and only reflects the problems that,

in the author’s judgement, are the most closely related to the persistent monitoring

problem. Both the similarities and the distinctions between the related problems and

persistent monitoring are highlighted.

This problem is closely related to the Multi Traveling Salesman Problem (MTSP)

(Bektas, 2006) and Multi-Vehicle Routing Problem (MVRP) (Laporte, 2009), where,

given a set of targets (possibly constrained to a graph-based structure), the goal is to

find a cycle in which the agents efficiently visit all the targets in order to minimize

the traveled distance or total travel time. These problems are proved to be computa-

tionally intractable (NP-hard) and most of the scalable solutions to these problems

rely either on local optimization or heuristics (Pasqualetti et al., 2012; Bektas, 2006;

Laporte, 2009). The major difference between the MTSP and MVRP and PM is

that the optimization goal we consider is to minimize the uncertainty rather than

3

distance or time between two consecutive observations of a given target. Note that

the estimation uncertainty is subject to a dynamic evolution in time. Thus, in PM

the agents must not only visit targets, but also dwell on them for some time in order

to control their uncertainty. Therefore, in addition to planning trajectories in space,

PM also requires planning the time used to effectively collect the data.

Another closely related problem is the sensor allocation problem (Le Ny et al.,

2010), where a set of sensors can observe a set of targets, but, due to the fact that

the number of available sensors is lower than the total number of targets, some of

the sensors have to switch among the targets they observe. The goal is to design a

time multiplexing policy that minimizes the estimation error and an efficient globally

optimal algorithms for this problem is given in (Le Ny et al., 2010). While in this

case the optimization goal is equivalent to the PM objective, the sensor allocation

formulation assumes that sensors are fixed and can instantly transition to observe

different targets. As a result, it cannot model situations where there is a delay

associated to transitioning to different targets. In fact, the optimal policy described in

(Le Ny et al., 2010) consists in switching the target to be observed with an unbounded

frequency. This, of course, is impractical for real world sensors.

The coverage control problem also has similarities with the persistent monitoring

problem. There, agents are assumed to have a radius from which they can observe

the environment. The goal is to cover as much of the environment as possible by

efficiently spreading the agents around it (Wang, 2010; Sun et al., 2020). However,

in this problem the agents eventually converge to fixed positions that maximize the

overall coverage. This is a major contrast to persistent monitoring, where, for optimal

solutions, agents do not converge to static positions, but rather move around the

environment persistently.

Lastly, persistent monitoring also has a close link to the distributed estimation

4

problem (Olfati-Saber, 2007; Chong et al., 1982), where data from different sensors

in the network is fused to estimate the state of variables of interest. While the esti-

mation aspect of persistent monitoring can be approached as a distributed estimation

problem, in the distributed estimation literature it is usually assumed that the agent

trajectory is either fixed or known a priori. In the case of persistent monitoring,

the goal is to design the agent trajectory such that maximum information can be

extracted during the estimation process.

1.2.2 Persistent Monitoring Formulations

In this subsection, we give an overview of different formulations and approaches to

the persistent monitoring problem available in the literature. In order to organize

the vast literature in the field, some key aspects of the general persistent monitoring

problem (such as type of dynamic evolution of the uncertainty, scalability of the

proposed solution and time/space discretization) were identified. We identify how

previous publications approach these different aspects and discuss how our present

work relates to them.

Uncertainty dynamics and cost function

While the general goal of PM is persistently observe an uncertain variable, the def-

inition of uncertainty and assumptions on how the variable evolves over time varies

drastically within the persistent monitoring literature. Some works frame the problem

as that of planning agent trajectories in order to maximize the chance of detecting

events happening randomly at specific locations in the mission space (Pasqualetti

et al., 2012; Baykal et al., 2020). In (Jones et al., 2015), there is no explicit un-

certainty model, but temporal logic constraints are used to ensure that targets are

visited sporadically, with inter-visit times defined by a frequency range. Note that

this formulation does not explicitly define a cost function related to uncertainty and

5

as a result it lacks a clear notion of optimality. A recent work (Chen et al., 2020)

does not assume a prior model for the uncertainty dynamics, but tries to learn it. It

focuses on jointly designing trajectories and learning the target uncertainty evolution

using reinforcement learning. However, this solution needs to be trained specifically

for the mission space of interest, and thus, is computationally expensive and lacks

generality. Other works consider a simple model for the uncertainty evolution over

time, with it increasing with a constant rate when the target is not being observed

and decreasing with a constant rate otherwise (Cassandras et al., 2013; Welikala and

Cassandras, 2021a; Yu et al., 2018).

In this dissertation, however, we consider a version of Persistent Monitoring which

was initially introduced in a very general sense in (Grocholsky et al., 2003), where

the goal was to sense and estimate a dynamic processes evolving at fixed locations in

space rather than detecting events. This paper models the variable of interest as a

process evolving with a nonlinear dynamical model corrupted by noise. Additionally,

it considers a nonlinear observation model, again corrupted by noise. Nonetheless,

(Grocholsky et al., 2003) does not discuss efficient solutions to the problem proposed

and the generality of the formulation hinders the ability to develop efficient compu-

tational solution methods.

Later work (Hussein, 2008; Lan and Schwager, 2014) assumes a more specific

model, considering linear dynamics and observation models, with additive Gaussian

noise. This is the model that we will consider in the present dissertation. It can be

shown that, for this model, the maximum likelyhood estimator is a Kalman Filter

(or Kalman-Bucy filter, in the continuous time case). This simplifies the problem

in the sense that the optimal estimator can be designed completely decoupled from

the agent trajectories. Moreover, the dynamics of the uncertainty are given by a

differential Riccati equation. The optimization goal in these works is to minimize

6

Mean Squared Estimation Error (MSEE). They use an optimal control approach

that relies on a solution of the two-point boundary value problem resulting from a

Hamiltonian analysis.

Additionally, (Lan and Schwager, 2013; Lan and Schwager, 2016) introduces a

variant of the Rapid-Exploring Random Tree (RRT) algorithm designed for cyclic Per-

sistent Monitoring in discrete time, named Rapid-Exploring Random Cycle (RRC).

In contrast to all the approaches cited so far that only consider the transient version

of the problem, (Lan and Schwager, 2013; Lan and Schwager, 2016) explicitly aims

to optimizes the steady state trajectory, and thus it only plans for one cycle of the

periodic trajectory and the algorithm does not scale with the time horizon.

Mission Space

In terms of space discretization, the approaches in the literature can be divided into

countinuous space, discretized space and graph-abstraction.

The continuous space formulations allow the agents to move throughout a con-

tinuous set. Some of these formulations assume the environment is obstacle free

(Cassandras et al., 2013; Zhou et al., 2018; Lin and Cassandras, 2014). Other contin-

uous space formulations are able to incorporate the presence of regions that the agent

cannot move through into their formulation (Lan and Schwager, 2016; Wang et al.,

2019). Moreover, some of these formulations, seeking computational or mathematical

simplicity for their solutions, are restricted to one dimensional settings (Cassandras

et al., 2013; Zhou et al., 2018; Ostertag et al., 2019). The discrete space formulation

consists in discretizing the entire continuous space by a series of voxels (Chen et al.,

2020). This approach works well when coupled with reinforcement learning, since

learning over continuous space adds some additional challenges. Both continuous and

discrete time formulations can easily consider that agents can sense targets even if

their position do not coincide, a property that is true in many real-world sensors.

7

Abstracting the environment by a graph, where nodes are the targets and the

edges represent the travel time between different targets, is also a common in the

scientific literature (Pasqualetti et al., 2012; Welikala and Cassandras, 2020; Welikala

and Cassandras, 2021b; Yu et al., 2018). By abstracting the environment using a

graph, the problem of planning a trajectory is simplified to that a graph-exploration

problem coupled to the decision of how long to dwell at each node (Yu et al., 2018;

Yu et al., 2017; Welikala and Cassandras, 2020; Welikala and Cassandras, 2021b).

Often these approaches assume that only one agent will visit a given target at each

time instant and the solutions tend to be more computationally scalable than those

presented for continuous or discrete settings. However, usually these formulations

assume that the target can only be sensed when the agent visits that node, but a

notable exception is (Zhou et al., 2019; Zhou et al., 2020), where no such assumption

is made.

This present dissertation will approach the problem both from continuous space

(Chapters 2 and 4) and graph-based model (Chapter 3) points of view. The solutions

for continuous space formulations will carry a higher computational load, but allow

for a more complete problem formulation. Meanwhile, the algorithm for designing

persistent monitoring policies for the graph-based model is more efficient computa-

tionally, but does not give as much flexibility in the problem formulation.

Time discretization

In terms of time discretization, approaches in the literature are either assumed to

be continuous (Grocholsky et al., 2003; Cassandras et al., 2013; Lan and Schwager,

2014; Yu et al., 2017) or discrete-time formulations (Lan and Schwager, 2013; Lan and

Schwager, 2016). One noticeable fact is that the literature in (distributed) sequential

Bayesian estimation (often the base for designing the estimation algorithms for the

persistent monitoring problem, such as the Kalman Filter) are much more well devel-

8

oped for the discrete time case. It is also important to notice that many real world

sensors operate in dicrete-time and some of them (such as LIDARs) indeed have very

low rates compared to the dynamics of the processes they can be used to observe.

Thus, in these cases a discrete-time formulation may be desirable. However, often

solving the continuous time version of the problem allows solutions over the set of

real numbers instead of requiring combinatorial (integer) decisions, and thus permits

for more computationally efficient algorithms (Welikala and Cassandras, 2021b; Cas-

sandras et al., 2013; Welikala and Cassandras, 2020). Also, many real world sensors

(such as sonar) have a rate that is usually faster than the dynamics of the system

they are used to observe, thus a continuous time approximation of its behavior is

acceptable.

In this dissertation, we consider both a discrete time formulation in Chapter 4

and a continuous time one in Chapters 2 and 3.

Solution Approach

Some of the persistent monitoring formulations available do not focus on the scala-

bility and computational cost, and therefore are limited to simple settings, with few

targets and agents (Grocholsky et al., 2003; Smith et al., 2011; Chen et al., 2020).

Some other works (Hussein, 2008; Lan and Schwager, 2014) approach the problem

by an optimal control perspective and aim at directly solving the two-point bound-

ary value problem resulting from the Halmitonian analysis. However the solution of

the two-point value problem is numerically challenging and computationally expen-

sive. More specifically, there is no algorithm that can ensure that a solution will be

found for these numerical problems, even when one exists. Typical algorithms rely on

shooting methods that involve the numerical solution of matrix differential equations.

This imposes a computational burden that grows with the time horizon. Addition-

ally, a Hamiltonian analysis only gives necessary conditions for optimality and it is

9

often the case that solutions encountered using these methods are severely suboptimal

(Lin and Cassandras, 2014; Lan and Schwager, 2014), since this Hamiltonian analysis

establishes necessary but not sufficient conditions for optimality.

Another class of approaches is based on sampling methods (Lan and Schwager,

2013; Lan and Schwager, 2016), inspired by the well known Rapid-Exploring Random

Tree (RRT) algorithm. In this case, the space is randomly sampled and the resulting

samples are arranged in a tree-based structure, so that when a full cycle is found it

can be efficiently extracted from the structure. However, as shown in (Pinto et al.,

2021a), this algorithm can fail to converge within a reasonable time even in setups

with few targets and a single agent, especially when the process can only be sensed

from a finite range from the targets. Note that the practical success of RRT is directly

linked to the ability of biasing the samples towards the goal. However, the extension

of this algorithm to cycles does not have the same capability of introducing efficient

samples by using biased distributions, since the goal is not to reach a specific location,

but rather a cycle. Therefore, the exploration is done in a completely blind manner,

which hinders the practical applicability of this algorithm in many scenarios.

The approaches for planning persistent monitoring trajectories that will be ex-

plored in this dissertation largely depend on gradient-based optimization. These can

be understood as a natural development of previous work done at Boston University,

led by Andersson and Cassandras (Cassandras et al., 2013; Zhou et al., 2018; Yu et al.,

2018), where the uncertainty metric for each of the targets that grew linearly with

time when the agent was not observed or decreased linearly when an agent visited

it. Using Hamiltonian analysis, these works have shown that in the uni-dimensional

case, the optimal control admits a given finite dimensional parameterization. When

multiple dimensions are considered, efficient parameterizations for the agents trajec-

tories can also be obtained. This ability to parameterize the optimal trajectories

10

allowed for the usage of gradient-based methods, which are able to provide scalable

solutions with respect to the number of agents, targets and time horizon, while still

being numerically stable. A drawback of these gradient based methods is that they

are not guaranteed to converge to global optima. In this dissertation we will, at

least in some cases, give algorithms that achieve global optimality. Some previous

works have studied initialization techniques aimed at escaping poor performing local

optima (Zhou et al., 2018) and the distributed computation of the gradients (Zhou

et al., 2020).

One of the main challenges of the gradient-based algorithms just mentioned is that

their computational cost increases with the time horizon. However, when perform-

ing persistent monitoring, one wants to observe a variable for a very long amount of

time. A work that was done concurrently with this thesis (Welikala and Cassandras,

2020) introduced a performance metric evaluated only on the asymptotic behavior of

cyclic agent trajectories. This means that the transient performance was not part of

the optimization. This approach overcomes the difficulty of planning for long time-

horizons. However, it relied on one key assumption: that each target would only

be observed by at most one agent over the entire mission. Given this assumption,

a divide-and-conquer strategy was employed, and the targets were partitioned us-

ing clustering techniques. A similar divide-and-conquer strategy will also be used

in this dissertation, as we developed lightweight algorithms with guaranteed global

optimality for some specific settings in the single agent case.

A recent work (Welikala and Cassandras, 2021b) considered a receding horizon,

distributed approach that only relied on lightweight computations. This algorithm is

compatible with real-time implementation and produces very efficient trajectories in

most of the scenarios analyzed. However, this approach has the drawback that, de-

pending on the graph structure and the parameters that define the targets uncertainty

11

evolution, the agents may never visit a unstable target, making the infinite horizon

uncertainty become unbounded. In our present dissertation, we focus on algorithms

that guarantee that the infinite horizon uncertainty will be bounded.

1.3 Contributions

In this present dissertation, we consider the uncertainty model where each target has

an internal state that evolves with linear stochastic dynamics corrupted by additive

Gaussian noise and likewise each agent can observe the internal state with a linear

observation model. The signal to noise ratio of the observation is a function of the

distance between the agent and the target. In this setting, the maximum likelihood

estimator is a Kalman-Bucy filter in the continuous time case (and a simple Kalman

filter in the discrete time version) and the mean estimation error is directly related

to the covariance matrix of this filter. Since the probability distribution associated

to this filter is also Gaussian, it is fully defined by its mean and covariance. The

covariance, in particular, captures entirely the concept of uncertainty, and thus is

always present in the cost functions that we consider in this work.

In the first contribution of this dissertation, we use continuous time models, and

study the asymptotic behavior of the covariance matrix under cyclic agent policies

to understand under which conditions we can expect the agent trajectory to lead to

a bounded estimation error over infinite time horizons. There we prove that, as long

as the system has some controllability and observability properties, the covariance

matrix will converge to a limit cycle that is independent of the initial conditions.

Then, we explore the computation and existence of derivatives of the covariance

matrix with respect to the agent trajectory parameters, both in the transient and

steady-state versions of the problem. Note that the steady-state version is especially

interesting because when the optimization is done in this setting, we overcome the

12

issue of having the computational cost scale with the time horizon.

We then study the minimization of the minimum squared error among all the

targets. We show that, under certain conditions, an optimal trajectory in 1D en-

vironments is parametric. Moreover, we introduce an efficient parameterization for

multi-dimensional scenarios based on Fourier curves. Using these parameterizations,

we use gradient-based methods to optimize the trajectory. In order to provide an ef-

ficient initialization that leads to a bounded uncertainty, we take advantage of MTSP

solutions. Then we use an optimization problem to transform this MTSP solution

into agent trajectories parameters values.

Using these parameterizations, we provide tools to efficiently represent and opti-

mize the schedules for agents visiting targets. If we consider finite horizon schedules,

as time grows to infinity, the number of parameters to represent a trajectory also

tends to grow infinitely large. We, however, restrict ourselves to a periodic trajectory

and approach the problem from an infinite horizon perspective. We show that under

some very natural assumptions the estimation error converges to a limit cycle and we

provide tools for optimizing one period of the limit cycle trajectory. This approach

is particularly useful, since the agent trajectory is usually represented using only a

small number of parameters.

However, this gradient-based parametric control solution relies on the solution of

N ×M × P matrix differential equations obtained at each gradient step, where N

is the number of targets, M the number of agents and P the number of parameters

used to describe the trajectory of an agent. Therefore, solving these matrix differential

equations is a major computational burden for settings with many agents and targets.

Our next contribution is to overcome such computational limitations by using simple,

lightweight algorithms that can scale to networks with large numbers of targets. These

algorithms are developed from a single-agent perspective and later extended to multi-

13

agent settings using a divide and conquer strategy. Further, unlike previously, we

assume that the PM goal is to minimize the worst-case (instead of the average)

uncertainty over all the target states. This choice of the PM goal not only leads to a

considerable reduction in the computational burden, but is also an appropriate choice

in many PM applications. For example, when monitoring safety-critical systems

that cannot operate over a given threshold (for instance, a maximum temperature),

one wants to optimize the “worst-case” performance (as opposed to optimizing an

“average” chance of violating it). Some examples of applications where a critical

threshold on the state uncertainty should not be exceeded include monitoring wildfire

or faults in civil infrastructure systems using unmanned aerial vehicles (Lin et al.,

2018; Shakhatreh et al., 2019).

For this formulation, we prove that, for a fixed sequence of target visits (visiting

sequence), the worst-case uncertainty is the same for all targets when the agent uses

the corresponding optimal sequence of dwell-times. This property alone is sufficient

to determine the optimal dwelling sequence when each target in the considered vis-

iting sequence is visited only once during a single cycle. In particular, this problem

of determining the optimal dwelling sequence can be seen as a resource allocation

problem where each target competes for the agent’s dwell-time at that target. We

next prove that a simple feedback law can be used to determine this optimal dwelling

sequence efficiently. This same notion is then extended to the case where each target

in the considered visiting sequence is allowed to be visited multiple times during a

cycle. The only remaining problem, which we also address, is that of determining the

optimal visiting sequence. We show that if each target is visited at most once during

a cycle, a high-performing sub-optimal visiting sequence can be found by solving a

Traveling Salesman Problem (TSP) and then executing a sequence of greedy Cycle

Modification Operations (CMOs) on the obtained TSP solution.

14

The process of greedy cycle exploration requires an extensive number of evalua-

tions of the cost of a given visiting sequence. Thus, we design a novel lower bound

of the cost that does not require the computation of the dwelling times, and thus is

much more efficient computationally and can be used as a proxy for the cost. Beyond

using this lower bound on the greedy exploration, we also share ideas on how to use

it to generate targets clusters, in order to extend our ideas to multi-agent scenarios

using a divide-and-conquer strategy.

In addition, we explore a discrete time formulation of the problem, where both

the computation of the steady state uncertainty and the local optimization of the

trajectory can be framed as a single optimization problem, a semidefinite program

(SDP). We then benefit from efficient and reliable SDP solvers and are able to quickly

solve a local version of the persistent monitoring problem. Moreover, we are not

limited to local optimality, as we have also embedded this local SDP-based optimizer

into a higher level algorithm that searches globally for different periodic trajectories.

This higher level scheme leverages the spatial distribution of the targets and then feeds

the lower level optimization with configurations that will lead to feasible schedules.

Due to the infinite number of candidate trajectories, we still are not able to guarantee

global optimality. However, simulation results show that the approach proposed

in this dissertation is able to efficiently handle problems with a small to moderate

number of targets, providing trajectories with good performance even in the initial

iterations of the higher level algorithm and also significantly improving them as it

runs longer. Moreover, trajectories generated with the approach proposed here give a

significant reduction (91%) in terms of estimation error when compared to RRC (Lan

and Schwager, 2016) in a simple simulation scenario, while also showing significant

computational time reduction.

The last contribution of this dissertation is to apply the minimax PM approach

15

into the domain of Multiple Particle Tracking (MPT) using a confocal feedback-driven

microscope. In this case, the agent is the microscope laser that can move through the

sample, acquiring a scalar signal (intensity) from the targets (particles). However,

the targets in this scenario are not static, as assumed in the PM formulation, and the

observations are not linear. Therefore, in order use to PM tools in this domain, we

use a lower level extremum seeking controller (Ashley and Andersson, 2016) that is

responsible for tracking a single particles during the dwelling time given by the PM

planner.

16

Chapter 2

Problem Formulation and Steady State

Optimization

In this chapter, we give the general formulation of the persistent monitoring problem

that will be used throughout this dissertation. Small variations of this formulation

will be discussed in the other chapters, and the distinctions from the formulation here

presented will be clearly stated.

In addition to the formulation, in this chapter we study properties of the persistent

monitoring problem as the time horizon goes to infinity. In particular, we describe

sufficient conditions for the existence of a bounded covariance matrix and how to

compute the gradients of this covariance matrix with respect to parameters of a

parametric trajectory.

We introduce convenient parameterizations for both one dimensional and multi-

dimensional scenarios. Then, using gradient-descent based techniques we optimize

these trajectories, considering a cost given by the L− 2 norm of the uncertainty. An

initialization scheme that leads to efficient locally-optimal trajectories is also given.

The results in this chapter have been previously published in (Pinto et al., 2019; Pinto

et al., 2020c; Pinto et al., 2020a; Pinto et al., 2020b).

2.1 Problem Formulation

Consider an environment with a set of M points of interest (targets) at fixed positions

xi ∈ R
P , i = 1, ...,M . Each of these targets has an internal state φi ∈ R

Li that

17

needs to be monitored and that evolves according to linear time-invariant stochastic

dynamics:

φ̇i(t) = Aiφi(t) + wi(t), (2.1)

where wi(t) is a white noise process distributed according to wi(t) ∼ N (0, Qi), i =

1, . . . ,M, and wi(t) and wj(t) are statistically independent if i 6= j. Suppose that

there is a collection of N mobile agents at positions si(t) ∈ R
P that can move with

the following kinematic model:

ṡj(t) = uj(t), uj(t) ∈ U , j = 1, ..., N, (2.2)

where uj is a controllable input, and U is the set of admissible inputs.

Each of these agents is equipped with sensors that can observe the targets accord-

ing to the following model:

zi,j(t) = γj (sj(t)− xi)Hiφi(t) + vi,j(t), (2.3)

where vi,j(t) is a white noise process distributed according to vi,j(t) ∼ N (0, Ri) with

vi,j(t) independent of vk,l if i 6= k or j 6= l, and γi,j : RN 7→ R is a function that

captures the interdependence of measurement quality and the relative position from

a given agent to a target. The intuition behind this function is that the instantaneous

signal to noise ratio (SNR) can be computed as:

E
[
‖zi,j(t)− vi,j(t)‖2

]

E[‖vi,j(t)‖2]
= γ2

i,j (sj(t)− xi)
‖Hiφi(t)‖2
tr(Ri)

, (2.4)

where tr(·) is the trace of the matrix. Notice that the term ‖Hiφi(t)‖2 (tr(Ri))
−1 is a

deterministic scalar that does not depend on the relative position between the target

and the agent. Therefore, the function γi,j captures entirely how the position of the

agent affects the quality of the measurement. It is worth noting that in most of the

18

applications of mobile agents to sensing there is a limited sensing range or the quality

of the measurement gets worse as the agent moves farther away from the target. The

general model of γi,j is capable of capturing both the finite range and the dependence

between measurement quality and relative position of the target from the agent. Even

though the analysis in this dissertation does not depend on the specific γi,j, for the

sake of concreteness we use the following form in this chapter:

γi,j(α) =







0, ‖α‖ > ri,j,
√

1− ‖α‖
ri,j

, ‖α‖ ≤ ri,j.

(2.5)

The intuition behind this specific form is that the best measurement quality is

achieved when the agent’s location coincides with that of the target with the SNR

decaying linearly as it moves away, until the agent reaches the distance of its sensing

radius ri,j, after which only noise is observed.

In this work we approach the problem from a centralized perspective. Therefore,

at a given instant, the combined observations from all the agents of a single target

can be grouped in a vector z̃(t) as:

zi(t) =
[
z′i,1 ... z′i,N

]′
= H̃i(s1, ..., sn)φi(t) + ṽi(t), (2.6)

where

H̃i =
[
γ1(s1 − xi)H

′
i · · · γN(sN − xi)H

′
i

]′
, ṽi(t) =

[
v′i,1(t) ... v′i,N(t)

]′
,

(2.7)

and, since vi,j(t) is independent of vi,k(t) if k 6= j, E[ṽ′i(t)ṽi(t)] = R̃i = diag(Ri, ..., Ri).

The overall goal is to obtain estimators φ̂i(t, z(t)) and open-loop control inputs uj(t)

19

to minimize the following cost function:

J =
1

tf

tf∫

0

(
M∑

i=1

E[e′i(ζ)ei(ζ)] + ξ

N∑

j=1

u′
j(ζ)uj(ζ)

)

dζ, (2.8)

where ei(t) = φ̂i(t) − φi(t) and tf is the time horizon. This cost function represents

a weighted sum of the mean squared estimation error and the control effort; thus,

the weighting factor ξ is responsible for balancing the importance of these two opti-

mization goals. The model in (2.7) defines a linear time-varying stochastic system.

Based on a similar statement from (Lan and Schwager, 2014), we have the following

proposition:

Proposition 1. The optimal unbiased estimator φ̂i for the the cost function (2.8), dy-

namics (2.1) and observation model (2.3), with given trajectories sj(t) is the Kalman-

Bucy filter, which is given by the following equations:

˙̂
φi(t) = Aiφ̂i(t) + Ω(t)iH̃

′
i(t)R̃

−1
i

(

z̃i(t)− H̃i(t)φ̂i(t)
)

, (2.9a)

Ω̇i(t) = AiΩi(t) + Ωi(t)A
′
i +Qi − Ωi(t)H̃

′
iR̃

−1
i H̃iΩi(t), (2.9b)

where Ωi(t) is the covariance matrix of the estimator.

Proof. The set of all linear unbiased estimators φ̂i(t) of φi(t), as discussed in Sec. IV

of (Athans and Tse, 1967), is:

˙̂
φi(t) =

(

Ai −Gi(t)H̃i(t)
)

φ̂i(t) +Gi(t)z̃i(t), (2.10)

with E[φ̂i](0) = E[φi(0)] and G(t) is a gain function. If Ωi(t) = E[ei(t)e
′
i(t)], where

ei = φ̂i(t)− φi(t), then

Ω̇i(t) =
(

Ai −Gi(t)H̃i(t)
)

Ωi(t) +Gi(t)R̃iG
′
i(t)

+Qi + Ωi(t)
(

A′
i − H̃i(t)

′G′
i(t)
)

,
(2.11)

20

and Ωi(0) = Ωi,0. Defining the following cost:

J =

tf∫

0

(
M∑

i=1

tr (Ωi(t
′)) + βu′(t′)u(t′)

)

dt′ (2.12)

The Hamiltonian is then

H =
M∑

i=1

tr (Ωi(t)) + βu′
j(t)uj(t) +

M∑

i=1

tr
(

Γi(t)Ω̇i(t)
)

+
N∑

j=1

αj(r)sj(t), (2.13)

where Γi is the costate of Ωi and uj(t) and sj(t) are considered to be known. Using

Pontryagin’s minimum principle, at an optimal trajectory, since Gi is unconstrained,

we have
∂H⋆

∂Gi

= 0. (2.14)

Substituting the dynamics of the covariance matrix (2.11) on (2.14), we get

−ΓiΩiH̃
′
i − Γ′

iΩiH̃
′
i + Γ′

iGiR̃i + ΓiGiR̃i = 0. (2.15)

Now, again from the minimum principle,

Γ̇i = −
∂H
∂Ωi

− (Ai −GiH̃i)
′Γi − Γi(Ai −GiH̃i)− I. (2.16)

Since Γi(tf) = 0 due to the boundary conditions of Pontryagin’s minimum principle,

the symmetric nature of this ODE allow us to see that Γi will be symmetric for

t ∈ [0, tf]. Moreover, note that the ODE is linear and the single non-homogeneous

term is -I. Since Γi(tf) = 0,

Γi(t) = −
t∫

tf

Φ′(t, tf)Φ(t, tf)dt, Φ(a, b) = exp





b∫

a

(Ai −G(β)H̃i(β))dβ



 .

(2.17)

This implies that Γi(t) ≻ 0 for t ∈ [0, tf). Therefore, since Γi(t) is invertible and

symmetric, (2.15) can be reduced to

ΩiH̃
′
i + Ω′

iH̃
′
i = 2GiR̃i. (2.18)

21

Since the covariance matrix Ωi is also symmetric,

Gi(t) = Ωi(t)H̃i(t)R̃
−1
i (t). (2.19)

Plugging this expression into (2.11) and (2.10), we get the usual Kalman-Bucy filter

equations, which along with the initial conditions Ωi(0) = Ωi,0 and φ̂i(0) = E[φi(0)],

have unique solutions.

Using (2.7), we can rewrite (2.9b) as:

Ω̇i(t) = AiΩi(t) + Ωi(t)A
′
i +Qi − Ωi(t)GiΩi(t)

N∑

j=1

γ2
i,j(t), (2.20)

where Gi = H ′
iR

−1
i Hi and γi,j(t) = γi,j(sj(t)− xi). Using the fact that E [e′i(t)ei(t)]

= tr(E [ei(t)e
′
i(t)]) = tr(Ωi(t)), we can rewrite the cost function in (2.8) as

J =
1

tf

tf∫

0

(
M∑

i=1

tr(Ωi(ζ)) + ξ
N∑

j=1

u′
j(ζ)uj(ζ)

)

dζ. (2.21)

The goal is then to minimize the cost (2.21) subject to the dynamics in (2.20) and

(2.2). In other words, we aim to design a trajectory that minimizes a weighted sum of

the mean control effort and the mean estimation error, given that the control is such

that uj ∈ U . The estimation error is linked to the trajectory through the dynamics

of the covariance matrix of the Kalman-Bucy Filter.

2.2 Transient Optimization

Even tough we focus on the optimization of infinite horizon trajectories, we briefly

review the procedure for optimizing trajectories with finite time horizon in order to

later extend to the infinite horizon setting. In this section, we establish a general

formulation and in the next sections we approach specific settings. We assume that

the agent trajectories can be fully defined by a finite set of parameters since, as will

22

be discussed for specific setups, parameterizations tend to naturally fit the persistent

monitoring problem. In this chapter, we aim at computing locally optimal solutions

with respect to these parameters using gradient descent, and later in this dissertation

we target more broad notions of optimality. Therefore, we initially discuss how to

compute the gradients for the finite horizon version of the problem. We define the

set of parameters that fully describe the trajectory for t ∈ [0, tf] as Θ = {θ1, ..., θD}.
Recalling the expression for the cost (2.21), we can compute the partial derivative

with respect to one of the parameters of the trajectory θd as:

∂J

∂θd
=

1

tf

tf∫

0

(
M∑

i=1

tr

(
∂Ωi

∂θd
(ζ)

)

+ ξ

N∑

j=1

∂(u′
juj)

∂θd
(ζ)

)

dζ. (2.22)

Note further that, given the dynamics of the covariance matrix in (2.20), ∂Ωi

∂θd
is

the solution of the following ODE:

∂Ω̇i(t)

∂θd
= Ai

∂Ωi

∂θd
(t)+

∂Ωi(t)

∂θd
A′

i +Qi−
(
∂Ωi(t)

∂θd
GiΩi(t) + Ωi(t)Gi

∂Ωi(t)

∂θd

) N∑

j=1

γ2
i,j(t)

− Ωi(t)GiΩi(t)
N∑

j=1

∂γ2
i,j

∂θd
(t), (2.23)

with initial conditions ∂Ωi

∂θd
(0) = 0. Also, we know that

∂γ2
i,j(t)

∂θ
=

P∑

p=1

∂γ2
i,j(t)

∂s
ep
j

∂s
ep
j (t)

∂θd
, (2.24)

where ep, p = 1, ..., P is the p-th coordinate of the space the agents move in. Given

the specific definition of γi,j in (2.5), we can easily see that

∂γ2
i,j

∂seij
=







s
ep
j −x

ep
i

rj‖sj−xi‖ , if ‖sj − xi‖ < rj,

0, otherwise.

(2.25)

23

The only terms that we have not yet given a procedure to compute are
∂(u′

juj)

∂θd
(t)

and
∂s

ep
j

∂θd
(t). The computation of both of these terms is intrinsically related to the

specific parameterization chosen and details of their computation will be discussed

later in this work.

2.3 Steady State Persistent Monitoring

For a persistent monitoring task to be successful, it is necessary that targets are

visited infinitely often as time goes to infinity, because otherwise their uncertainty

can become unbounded. Periodicity naturally fits into the persistent monitoring

paradigm, since targets need to be visited infinitely often and, although a periodic

structure of the solution is not necessarily optimal, simulation results in the transient

case show that the trajectories tend to converge to oscillatory behavior (Pinto et al.,

2019). On top of that, previous results show that in the discrete time version of this

problem, periodic schedules can approximate arbitrarily well the cost of an optimal

schedule (Zhao et al., 2014) and it is natural to extend this result to the continuous

time setting. Moreover, if periodicity is assumed, the infinite horizon trajectory is

fully defined by the trajectory of a single period. This often leads to the need of only

a very small number of parameters to describe the infinite horizon trajectory and,

as a consequence, only a small number of parameters have to be optimized in order

to generate efficient trajectories. With that in mind, we explore the properties of

periodic solutions to the persistent monitoring problem when the system fulfills the

following very natural assumptions.

Assumption 1. The pair (Ai, Hi) is detectable, for every i ∈ {1, ...,M}.

Assumption 2. Qi (the covariance matrix of the additive noise of the internal state

dynamics) and the initial internal state covariance matrix Σi(0) are positive definite,

for every i ∈ {1, ...,M}.

24

The intuition behind the first assumption is that sensing can make the uncertainty

of each target bounded even for long horizons. The second one guarantees that the

covariance matrix will always be positive definite, a fact that will be used to prove

Prop. 3, that gives insights into the computation of the steady-state covariance

derivatives. Under these assumptions, first we explore conditions under which the

convergence of the covariance matrix is achieved. For the sake of notation conciseness,

we define

ηi(t) =
N∑

j=1

γ2
i,j(t), (2.26)

which represents the instantaneous power level of the sensed signal, combining all the

agents’ observations of the same target i. Using a procedure similar to the one used in

the proof of Lemma 9 in (Le Ny et al., 2010), we establish the following proposition:

Proposition 2. If ηi(t) is T -periodic and ηi(t) > 0 for some non-degenerate interval

[a, b] ∈ [0, T], then, under Assumption 1, there exists a unique non-negative stabilizing

T -periodic solution to (2.20).

Proof. According to (Bittanti et al., 1984, p. 130), a pair (Ai, ηi(t)Hi) of a periodic

system is detectable if and only if for every eigenpair (x, λ) with x 6= 0,

Aix = λx =⇒ ∃ [a, b] ∈ [0, T] s.t. ηi(t)e
λtHix 6= 0, (2.27)

∀t ∈ [a, b] and [a, b] is non-degenerate. Notice that, due to Assumption 1, for any

eigenvector x of Ai, Hix 6= 0. Therefore, when ηi(t) > 0 (i.e. any t ∈ [a, b]),

ηi(t)e
λtHix 6= 0, which implies that (Ai, ηi(t)Hi) is detectable. Therefore, the collo-

rary to Theorem 3 in (Nicolao, 1992, p. 95) shows that there exists a non negative

T -periodic solution to (2.20), Ω̄i(t), and

lim
t→∞

(Ωi(t)− Ω̄i(t)) = 0

for any solution Ωi(t) with positive definite initial condition Ωi(0).

Prop. 2 implies that, if ηi(t) is periodic, given any initial covariance matrix Ωi(0),

the estimation covariance for target i converges to a T -periodic matrix Ω̄i(t), as long

25

as target i is visited for some non-zero amount of time in the periodic trajectory.

Therefore,

∀δ > 0, ∃ t0 s.t. |Ω̃i(t)− Ωi(t)| ≤ δ, ∀t ≥ t0,

which implies that

lim
t→∞

1

t

t∫

0

|tr(Ω̃i(t
′)− Ωi(t

′))| dt′ ≤ δ. (2.28)

This discussion implies that, if we run a periodic trajectory for long enough,

the mean estimation error will become arbitrarily close to the mean steady state

estimation error. Therefore, if we plan only (one period of) the steady state trajectory,

the actual estimation error will be arbitrarily close to that of the planned trajectory

as time goes to infinity. Even though Prop. 2 states that the solution of the periodic

Riccati equation is globally attractive, it does not provide any convergence rate for

its numerical computation. However, the problem of computing numerical solutions

to this Riccati equation has been studied in other works and we refer the reader to

(Varga, 2013) for a good review and discussion of these methods.

Similarly to the transient case, we intend to optimize the trajectory of the agents

using gradient descent. However, the computation of the steady state gradients of

the covariance matrix is more challenging than the transient case. In the sequel, we

provide the procedure to compute these gradients when they exist.

2.4 Steady State Gradients

Assuming that the trajectory is periodic and all the targets are visited, we introduce

the change of variable q = t/T , where T is the period of the trajectory. The steady

26

state cost can be rewritten as:

J =

1∫

0

(
M∑

i=1

tr(Ω̄i(q)) + ξ

N∑

j=1

ū′
j(q)ūj(q)

)

dq, (2.29)

where ū(q) = u(qT). Similar to (2.22), we know that, given some parameter θd ∈ Θ:

∂J

∂θd
=

1∫

0

(
M∑

i=1

tr

(
∂Ω̄i(q)

∂θ

)

+ ξ
N∑

j=1

∂(ū′
jūj)(q)

∂θd

)

dq. (2.30)

The dynamics of Ω̄i(q) are

˙̄Ωi(q) =
dΩ̄i(q)

dq
= T (AΩ̄i(q) + Ω̄i(q)A

′ +Q− ηi(q)Ω̄i(q)GΩ̄i(q)). (2.31)

If we want to compute the gradient with respect to a parameter θd, we get the following

dynamics (note that the period may be a function of the parameters or a parameter

itself):

∂ ˙̄Ωi(q)

∂θd
− T

(

A
∂Ω̄i(q)

∂θd
+

∂Ω̄i(q)

∂θd
A′ − ηi(q)Ω̄i(q)G

∂Ω̄i(q)

∂θd
− ηi(q)

∂Ω̄i(q)

∂θd
GiΩ̄i(q)

)

=

T
∂ηi(q)

∂θd
Ω̄i(q)GiΩ̄i(q) +

∂T

∂θd

˙̄Ω

T
. (2.32)

If the partial derivative ∂Ω̄i(q)/∂θd exists, it is a 1-periodic solution of (2.32), since

Ω̄i itself is periodic with period one. We define the following auxiliary problems:

Σ̇H − T
(
A− ηiΩ̄iG

)
ΣH = 0, ΣH(0) = I, (2.33)

Σ̇ZI − T
(
A− ηiΩ̄iG

)
ΣZI − TΣ′

ZI

(
A− ηiΩ̄iG

)′
= T

∂ηi
∂θ

Ω̄iGΩ̄i +
∂T

∂θd

Ω̇i

T
, ΣZI(0) = 0,

(2.34)

where the time dependence of ηi(q), Ωi(q),ΣZI(q) and ΣH(q) was omited for concise-

27

ness. Then, we can use the following proposition to compute the partial derivatives

with respect to the parameters that define the trajectory:

Proposition 3. Suppose ΣH is a solution of (2.33), ΣZI is a solution of (2.34),

Assumptions 1 and 2 hold, and that target i is observed at least once in the period T .

Then, the equation

Λ = ΣH(1)ΛΣ
′
H(1) + ΣZI(1) (2.35)

has a unique solution Λ. Additionally, when ∂Ω̄i(q)
∂θd

exists,

∂Ω̄i(q)

∂θd
= Σ′

H(q)ΛΣH(q) + ΣZI(q).

Proof. Suppose Λ and Λ̃ are solutions of (2.33), then

Λ− Λ̃ = ΣH(1)
(

Λ− Λ̃
)

Σ′
H(1) (2.36)

which is equivalent to

vec
(

Λ− Λ̃
)

= (ΣH(1)⊗ ΣH(1)) vec
(

Λ− Λ̃
)

, (2.37)

where vec(·) is the operator the performs the matrix vectorization and ⊗ represents

the matrix Kronecker product. Notice that Λ = Λ̃ is a solution of (2.37). This

solution is the unique solution if and only if 1 is not an eigenvalue of ΣH(1)⊗ΣH(1).

On the other hand, the eigenvalues of ΣH(1)⊗ΣH(1) are all in the form µ1µ2, where

µ1 and µ2 are distinct eigenvalues of ΣH(1) (Zhang, 2011).

In the following we show that all the eigenvalues of ΣH(1) have absolute value

lower than one. For that, first notice that since Q is positive definite, Ω̄i is also

positive definite and hence, invertible. Define

W = Ω̄−1
i ,

and, since Ẇ = −Ω̄−1
i

˙̄ΩiΩ̄
−1
i = −W ˙̄ΩiW , using (2.20) and (2.26), the dynamics ofW

can be expressed as:

Ẇ = −T (WA+ A′W +WQW − ηiG). (2.38)

28

Therefore, if we define the Lyapunov Function V = Σ′
HWΣH , we have that:

d

dq
(Σ′

HWΣH) = Σ′
H

(

TWA+ TA′W + TηiG+ Ẇ
)

ΣH

= −TΣ′
HWQWΣH .

(2.39)

By integrating the previous relation, we have

Σ′
H(1)W(1)ΣH(1)− ΣH(0)W(0)ΣH(0) = −T

1∫

0

Φ(q, 0)′WQWΦ(q, 0) dq, (2.40)

where Φ(q1, q2) is the transition matrix of the system (2.33) betwen times q1 and q2.

Moreover, since Ω̄i(q) is periodic with period one and ΣH(0) = I, we have that

Σ′
H(1)W(0)ΣH(1)−W(0) = −T

1∫

0

Φ(q, 0)′WQWΦ(q, 0) dq. (2.41)

Note that WΦ(q, 0) is full rank on a nontrivial set, since W is positive definite and

Φ(q, 0) is full rank for at least a non-degenerate interval due to Assumption 1 and

the fact that target i is observed at least once in an period. This, along with the

fact that Q is positive definite, implies that the integral in (2.41) will be a positive

definite matrix. Therefore,

Σ′
H(1)W(0)ΣH(1)−W(0) ≺ 0. (2.42)

Consequently, one can see that

(ΣH(1)x)
′W(0)(ΣH(1)x)

x′W(0)x
< 1, (2.43)

for every nonzero x. Since W(0) is positive definite, (2.43) shows that the norm

of the matrix ΣH(1) induced by W(0) (i.e., ‖ΣH(1)‖W (0)) is less than 1, therefore

its spectral radius is smaller than 1. This implies that the absolute value of all the

eigenvalues of ΣH(1) are smaller than 1. Hence, ΣH(1)⊗ΣH(1) is stable, and Λ = Λ̃.

29

Moreover, (2.35) has one solution given by

Λ =
∞∑

j=1

(ΣH(1))
j ΣZI(1) (ΣH(1)

′)
j
. (2.44)

We point out that the sum in (2.44) converges, since the absolute value of the eigen-

values of ΣH(1) are all lower than 1.

Now, note that (2.32) is a first order linear matrix differential equation and its

general solution is given by

Σ(q) = Σ′
H(q)Σ(0)ΣH(q) + ΣZI(q). (2.45)

Since there is a unique solution to (2.45), and when ∂Ω̄i(q)/∂θd exists it must satisfy

(2.45), we know that Σ(q) = ∂Ω̄i(q)/∂θd.

Also, note that the Lyapunov equation in (2.33) can be efficiently solved for low-

dimensional systems using the algorithm proposed in (Barraud, 1977) and imple-

mented in MATLAB function dlyap. We also highlight that, in order to compute

the gradient, the partial derivatives of the steady state covariance matrices must be

computed using the procedure in Prop. 3. Then, these partial derivatives are used

along with (2.30) to compute the partial derivatives of the cost, which compose the

gradient ∇J . Algorithm 1 summarizes the procedure to compute the steady state

gradients.

In order to locally optimize the trajectories, the gradient computation needs to

be used along with some gradient descent scheme. We describe the optimization

procedure we used in Alg. 2, where κl is a scalar positive gain, the proj operator

projects the parameters into the set of feasible parameters (uj(t) ∈ U) by minimizing

the L-2 norm. As a side note, this projection might be difficult to compute in general

and, therefore when choosing a parameterization it is important to make sure that

there are efficient ways to compute this projection numerically.

30

Algorithm 1 Steady State Gradient Computation

1: procedure ComputeSteadyStateGradient

2: Input: Θ
3: Compute s1(q), ..., sN(q) from the parameterization
4: for i ranging from 1 to M do
5: Compute the steady state covariance Ω̄i(q)

6: Compute ∂
∂θ

∫ tf
0

∑N
j=1 u

′
j(ζ)uj(ζ)dζ according to the parameterization

7: Compute
∂sj(t)

∂θ
and ∂T

∂θ
according to the parameterization

8: for every θ in Θ do
9: for i ranging from 1 to M do
10: Compute ∂Ωi(q)

∂θ
as indicated in Prop. 3.

11: Compute ∂J
∂θ

using (2.30)

12: Output: ∇J

Algorithm 2 Gradient Descent

1: procedure Gradient Descent

2: Input: Θ0,
3: ||∇J || ← ∞
4: l ← 0
5: while ||∇J || > ǫ do
6: ∇J ←ComputeGradient(Θl)
7: Θl+1 ← proj(Θl − κl∇J)
8: l ← l + 1

9: Output: Θl

31

2.5 Parameterization of an Optimal Trajectory in 1-D with

speed bounds

When the agents and targets are constrained to a line, a particularly interesting case

arises when the absolute value of controls is bounded (U = {u ∈ R | |u| < umax})
and there is no penalty for control effort in the optimization cost J (i.e. ξ = 0). The

reason for considering this case is that we can represent optimized controls using a

simple parameterization that could even lead to global optimality. It is worth noticing

that in many real-world applications of persistent monitoring, agents are constrained

to (possibly multiple) uni-dimensional mobility paths, such as powerline inspection

agents, cars on streets, and autonomous vehicles in rivers.

Assuming proper rescaling, we can consider −1 ≤ uj ≤ 1, i.e., U = [−1, 1]. In

the remainder of this section, we derive properties of the optimal control, establish a

parameterization that is able to represent an optimal control, and then compute the

gradients necessary in order to optimize the trajectories.

In order to derive the properties of an optimal control, we first introduce the

following lemma. The intuition behind it is that if a target is observed for a longer

time (or with better quality), its uncertainty will be lower. We note that, although

this lemma is introduced in this Section, it is not restricted to the 1D setting with

bounded input.

Lemma 1. Given Ω1(t) and Ω2(t), two bounded covariance matrices under the dy-

namics in (2.20) with A = A1 = A2, G = G1 = G2, Q = Q1 = Q2, then if

Ω1(0) − Ω2(0) is negative semi-definite and η1(t) ≥ η2(t) ∀t, then Ω1(t) − Ω2(t) is

a negative semi definite matrix for all t ≥ 0.

Proof. Define β = Ω1(t) − Ω2(t). The dynamics of β is described by the following

equation.

β̇(t) = Aβ(t) + βA′ − η1(t)Ω1(t)GΩ1(t) + η2(t)Ω2(t)GΩ2(t). (2.46)

32

Adding and subtracting the terms η1(t)Ω2(t)GΩ2(t) and η1(t)Ω1(t)GΩ2(t) to the equa-

tion, we can rewrite (2.46) as:

β̇(t) = Aβ(t) + βA′ − η1(t) [Ω1(t)Gβ(t) + β(t)GΩ2(t)]

+ [η2(t)− η1(t)] Ω2(t)GΩ2(t). (2.47)

From Thm. 1.e in (Kriegl et al., 2011), since β(t) is a C1 matrix, its eigenvalues can

be C1 time parameterized. Let µn denote the nth eigenvalue of β(t) and xn(t) the

corresponding unit norm eigenvector. Then, from Thm. 5 in (Lancaster, 1964) we

have that

µ̇n = x′
nβ̇xn.

Also, notice that by using (2.47) and the fact that λmin

(
D+D′

2

)
≤ x′Dx

‖x‖ ≤
λmax

(
D+D′

2

)
= ‖D‖, for any square matrix D,

µ̇n ≤ ‖A‖µn − η1βµn + [η2 − η1] x
′
nΩ2GΩ2xn

≤ ‖A‖µn − η1βµn,

where β = λmin ((Ω1 + Ω2)G+G(Ω1 + Ω2)). Using Gronwall’s inequality (Gronwall,

1919) and the fact that the solution of a first order linear homogeneous ODE does not

change sign, we conclude that µn(t) ≤ 0, ∀ t ∈ [0, T] and, therefore, β(t) is negative

semidefinite.

In Lemma 1, Ω1 and Ω2 can also be understood as covariance matrices for the

same target but under different agent trajectories.

Before proceeding to the proposition about an optimal control structure, a few

definitions are necessary. We define an isolated target i as a target such that

min
k 6=i
|xi − xk| > 2rmax, rmax = max

i,j
{ri,j}.

Therefore, an isolated target is a target for which an agent cannot see another target

when visiting it. Referring to the regions in space where an agent can sense a target

33

as “visible area”, the minimum distance between visible areas dmin is defined as:

dmin = min
i,k
|xi − xk| − 2rmax > 0,

We can then claim the following proposition.

Proposition 4. In an environment where all the targets are isolated, given any policy

uj(ξ), j = 1, ..., N , then there is a policy ũj(ξ) with ũj(ξ) ∈ {−1, 0, 1} ∀ξ ∈ [0, t] and

with the number of control switches for each agent (i.e. discontinuities in ũj(ξ)) upper

bounded by 2 t
dmin

+ 4 such that J(u1, ..., uN , t) ≥ J(ũ1, ..., ũN , t).

Proof. We prove this result by construction: given a policy uj(t
′) with ηi(t

′) associated

to it (as defined by (2.26)), we will construct an alternative policy ũj(t
′) associated

with η̃i(t
′) such that η̃i(t

′) ≥ ηi(t
′) ∀t′ ∈ [0, t] and i = 1, ...,M , and then use Prop. 1,

along with the definition of the cost (2.21), to show that the alternative policy has

lower or equal cost than the original one.

Initially, we focus on the policy uj(t
′). We say that an agent j “visits” a target

i if at some time t′, |sj(t′) − xi(t
′)| < rj. For every agent in the policy uj(t

′), there

is an ordered collection of targets it visits in [0, t]. Therefore, there must exist a set

of indices of all the targets visited by agent j: {yj0, ..., yjKj
} ∈ {1, ...,M}, such that

yjp 6= yjp−1 and agent j visited no other target in the time between visiting targets yjp
and yjp−1. This is the sequence of all the targets that agent j visited over [0, t], not

considering consecutive visits to the same target. In other words, the same target can

be present more than once in the sequence {yj0, ..., yjKj
} but, if that is the case, it will

not be in consecutive positions.

For each of these visits, we can define the initial visiting time tjp for p = 1, ..., Kj

as

tjp = inf{t′|t′ > tjp−1 and agent j visits target yjp at time t′},

and tj0 = 0 and tjKj+1 = t. Also note that while t′ ∈ [tjp−1, t
j
p), agent j only influences

the value of ηi(j) of the target it is currently visiting. We propose the following

34

alternative policy, where ũj(t
′) for t′ ∈ [tjp−1, t

j
p) is such that:

ũj(t
′) =







sj(t
j
p)−sj(t

′)

|sj(tjp)−sj(t′)|
, if

|sj(tjp)−sj(t
′)|

tjp−t′
≤ 1,

x
y
j
p
−sj(t

′)

|x
y
j
p
−sj(t′)| , if

|sj(tjp)−sj(t
′)|

tjp−t′
> 1 and

sj(t
′) 6= xyjp

.

0, otherwise.

Notice that this construction provides a feasible trajectory, since the original trajec-

tory is assumed feasible. Also, in the alternative policy ũj(t
′) ∈ {−1, 0, 1} ∀t′ ∈ [0, t],

since the speed is either zero or a scalar divided by its absolute value.

The intuition behind the proposed alternative policy is that at the beginning of

each visit, the agent moves with maximum speed towards the target yjp and if it

reaches the target, it dwells on top of it. However, it must move in a way such that

it begins the next visit at the same time as in the original policy, i.e., the positions

of agent j associated to the alternative policy s̃j(t
′) is such that s̃j(t

j
p) = sj(t

j
p).

Also, for time t′ ∈ [tjp, t
j
p+1] both the original and the alternative policies only

influence the value of ηi for i = yjp, since in the alternative policy the agent is closer

(or at least as close) to the currently visited target. Thus, from (2.26) we have that

η̃i(t
′) ≥ ηi(t

′), ∀t′ ∈ [0, t], i ∈ {1, ...,M}.

Therefore, using Lemma 1 and the cost definition (2.21), we get that

J(ũ1, ..., ũN , t)− J(u1, ..., uN , t) =
1

t

t∫

0

M∑

i=1

tr
(

Ω̃i(t
′)− Ωi(t

′)
)

≤ 0.

which shows that the alternative policy has a lower or equal cost compared to the

original one. Note that, due to velocity constraints, in both the original and the

alternative policy there is a maximum of t
dmin

+1 visits to targets per agent. Moreover,

in the alternative policy, an agent has at most 2 velocity switches at each target visit.

Therefore, at most 2 t
dmin

+ 4 velocity switches can happen due to target visits, plus

one switch to match the initial position of the original policy and another to match

the terminal position of the original policy. This implies that the maximum number

of velocity switches in the alternative policy is 2 t
dmin

+ 4.

35

The result in Prop. 4 implies that when the targets are isolated, we can always

get an optimized control such that uj(t) ∈ {−1, 0, 1}, ∀t, even if the trajectory

is constrained to be periodic. This property allows the optimal trajectory to be

described by a finite set of parameters. In this work in particular we are looking into

periodic trajectories and, hence, this property implies that the movement in each

period of agent j consists of a sequence of dwelling at the same position for some

duration of time followed by moving at maximum speed to another location, until

the agent returns to its initial position at that cycle. Therefore, one period of the

trajectory of an agent j can fully be described by the following set of parameters:

1. T , the period of the trajectory.

2. sj(0), the initial position.

3. ωj,p, p = 1, ..., Pj, the normalized dwelling times for agent j, i.e., the agent

dwells for ωj,pT units of time before it moves with maximum speed for the p-th

time in the cycle.

4. τj,p, p = 1, ..., Pj, the normalized movement times for agent j, i.e., the agent j

moves for τj,pT units of time to the right (if p is odd) or to the left (if p is even)

after dwelling for ωj,pT units of time in the same position.

To enforce non-negative movement and dwell times, we add the following con-

straints:

τj,m ≥ 0, ωj,m ≥ 0, T ≥ 0. (2.48)

Notice that this description does not exclude transitions of uj of the kind ±1 → ∓1
and ±1 → 0 → ±1, since it allows ωj,m = 0 and τj,m = 0. In addition to the

constraints in (2.48), in order to ensure periodicity, we need to make sure that the

sum of the movement times and dwelling times does not exceed one period and that

36

the total time spent moving to the left is equal to the total time spent moving to the

right over one period (i.e. the agent returns to its initial position at the end of the

period). Therefore, we have the additional constraints:

Pj∑

m=1

(τj,m + ωj,m) ≤ 1,

Pj∑

m=1

(−1)mτj,m = 0. (2.49)

This parameterization defines a hybrid system in which the dynamics of the agents

remain unchanged between events and abruptly switch when an event occurs. Events

are given by a change in control value at completion of movement and dwell times.

Note that these may occur simultaneously, for instance, if the dwell time is zero

(representing a switch of control from ±1 to ∓1).
Given this parameterization, we use the procedure given in Alg. (1) to optimize

the cost. However, one item missing for computing the gradient of the covariance

matrix was the gradient of the agent position with respect to the parameters defining

the trajectory(
∂sj(q)

∂θ
), which will be given in the next subsection.

2.5.1 Computation of
∂sj(q)

∂θ

The position of agent j at normalized time q, after the k-th event and before the

k + 1-th is

sj(q)− sj(0) =







T

(

(−1)k/2+1

(

q −∑k/2−1
p=1 (τj,p + ωj,p)

+ ωj, k
2

)

+
∑k/2

p=1(−1)p+1τp

)

, k even,

T
∑ k−1

2

p=1(−1)p+1τj,p, k odd.

(2.50)

Therefore,

∂sj
∂τj,m

=







(

(−1) k
2
+1 + (−1)p

)

T, m < k
2
, k even,

(−1)m+1T, m ≤ k−1
2
, k odd,

(2.51)

37

∂sj
∂ωj,m

=







1, m < k
2
, k even,

0 , otherwise,

(2.52)

∂sj(q)

∂T
=

sj(q)− sj(0)

T
, (2.53)

∂sj
∂sj(0)

= 1. (2.54)

2.5.2 Initialization of the Optimization

While in Alg. 2 we use a gradient descent approach to locally minimize the cost func-

tion, it is necessary to find an initial parameter configuration. Therefore, we propose

a method to efficiently compute a starting point for the optimization. Proposition 2

states that if every target is visited at least once in a periodic trajectory, then the

steady-state covariance matrix exists. However, if in a periodic trajectory one of the

targets is never visited and its internal state dynamics is unstable, then the estima-

tion error will grow without bounds as time goes to infinity. Therefore, such initial

trajectories are excluded. We now discuss a method for finding initial trajectories

that will always lead to a feasible initial configuration. Note that due to the local

nature of our optimization procedure, different initial conditions can lead to different

local optima. We, therefore, leverage intuition to provide reasonable initial solutions

with the hope that they will converge to good local optima.

The idea of finding a schedule where all the targets are visited fits naturally into

a graph search paradigm, where the targets are modelled as nodes and the edge

weights between nodes are the distances between the targets. The problem of finding

a feasible schedule can be translated to the one of finding N sequences (that represent

the schedule of each agent) of nodes where each target belongs to at least one of these

38

sequences. One can add to that a cost function that guides the way in which these

sequences are created. A goal that intuitively will lead to reasonable initial solutions

is to minimize the distance of the agent that has the longest travel path. This is

the well known MTSP (see (Bektas, 2006) for a good overview of this problem and

approaches to solve it). It is worth mentioning that the MTSP is NP-hard, and,

therefore, intractable in the general setting. However, meta-heuristic approaches can

provide feasible, though not necessarily optimal, solutions. In this work, we use

the genetic algorithm described in (Tang et al., 2000) to find heuristic solutions.

This approach is interesting because it finds a feasible solution in the first iteration

and refines it as the number of iterations increases. Therefore, one can decide how

much computation time to spend, leveraging the tradeoff between optimality and

computation effort spent in generating this initial trajectory.

The MTSP problem finds a minimal length cycle and therefore can be immediately

converted to parameters that represent one period of the steady state solution. We

choose the dwelling times to be initially zero.

2.5.3 1D Simulation Results

In the simulations, we wanted to highlight one interesting aspects of the solution,

rather than simply give an example of the techniques discussed in this subsection. We

analyzed a steady state problem with 2 agents and 5 targets. We used the following

matrices in the state evolution model

Ai =

[
−1 −0.1
−0.1 0.01

]

, Qi = diag(1, 1),

and the following parameters for the observation model

Hi = diag(1, 1), Ri = diag(1, 1), rj = 0.9.

39

However, instead of using the initialization method proposed in this section, we used

the following set of parameters:

s01(0) = 2.7, s2(0) = 6.8, T 0 = 6, τ 01 = τ 02 = 0.01[10, 1, 10]3,

ω0
1 = ω0

2 = 0.0125[1]11.

The goal of using these initialization parameters was to have both agents sharing

one target in the first iteration of the optimization process and then explore whether

or not they would remain sharing the target after the local optimization procedure.

The gradient descent step size was set to be constant, κ0 = κl = 0.02.

Figure 2·1 shows the results of the optimization in this scenario. Notice that even

though both agents and all the targets have the same dynamical models, the solution

at the last iteration of the optimization was such that one of the agents visits three

of the targets and the other two of them. One interesting aspect of the trajectories

of the targets in Fig. 2·1b is that, while in the period between times 6 and 8 agent 1

makes a movement with small amplitude around target 1, the effects of this oscillatory

movement are hard to notice in the trace of the covariance of target 1 in Fig. 2·1c.
Therefore, even though it is intuitively clear that staying still rather than moving with

this oscillatory behavior will lead to a lower cost solution, the difference in terms of

cost is minor. Also, notice that the solution has not yet fully converged, as can be

seen in Fig. 2·1a; the simulation was terminated at this point due to computation

time. Finally, we highlight that while the maximum number of switches in a direction

allowed to each agent was set to 11, the final solution appears to have fewer because

some of the movement and dwelling times in the final solution are essentially zero.

40

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iteration

22

23

24

25

26

27

28

29

30

C
o
s
t

(a) Cost vs. iteration number

0 2 4 6 8 10

Time

0

1

2

3

4

5

6

7

8

9

10

P
o
s
it
io

n

Agent1

Agent2

(b) Agent trajectories at final iteration

0 2 4 6 8 10

Time

0

2

4

6

8

10

12

T
ra

c
e

 o
f

C
o

v
a

ri
a

n
c
e

 M
a

tr
ix

Target1

Target2

Target3

Target4

Target5

(c) Trace of the covariance for each tar-
get

Figure 2·1: Results of a simulation with two agents and five targets.
(a) Evolution of the overall cost as a function of iteration number on the
gradient descent. (b) Trajectories of the agents at the final iteration.
The dashed lines indicate the positions of the targets and the grey
shaded area the visibility region of the agent. (c) Evolution of the
trace of the estimation covariance matrices of the five targets.

41

2.6 Fourier Curves for Multi-Dimensional Persistent Moni-

toring

For the 1D case we derived a parameterization with a finite number of parameters of

the optimal solution. Unfortunately, the same result does not extend to the multi-

dimensional persistent monitoring problems, since the multi-dimensional Hamiltonian

analysis leads a much larger set of singular arcs, where the behavior of the agent is

undefined in the general case. Therefore, instead of looking for an exact represen-

tation of the optimal trajectory, we focus on a family of parameterized curves that

can approximate very general curves. While our approach is general, we pick as an

illustration the case where speed is not bounded, since in that setting the projection

operation in line 7 of Alg. 2 becomes trivial. Note that whenever the constant that

weights the control effort penalization is not zero, i.e. ξ 6= 0 as defined in (2.29), the

fact that the control effort is considered in the total cost will not allow the control to

be unbounded. An appropriate choice of ξ can provide adequate speed bounds for any

given dynamics of the system. As a side note, we highlight that bounded speeds can

also be handled in this framework, however the projection operator in the gradient

descent optimization becomes more complex. Thus, for the sake of simplicity, we only

discuss the case without control bounds.

Since periodicity is an essential feature of the steady-state analysis discussed in this

work, a natural choice is to use a truncated Fourier series to represent the movement

of the agents in each of the coordinates ep, p = 1, ..., P , i.e.

s
ep
j (q) = s

ep
j,0 +

K∑

k=1

a
ep
j,k sin(2πfkq) + b

ep
j,k(cos(2πfkq)− 1), (2.55)

where fk are integer frequencies and, therefore, s
ep
j (q) is periodic with period 1.

The set of parameters that fully characterize all the agents trajectories is Θ =

{{aepj,k}, {b
ep
j,k}, {s

ep
j,0}, T}, j = 1, .., N , p = 1, ..., P , k = 1, ..., K. As in the 1D case, in

42

order to compute the derivative of the covariance matrix, it is necessary to compute

∂sk
∂θ

. Note that

dsj
dq

= T
dsj
dt

. (2.56)

Using (2.55), we can compute

N∑

j=1

1∫

0

∥
∥
∥
∥

dsj
dt

∥
∥
∥
∥

2

dq =
N∑

j=1

P∑

p=1

K∑

k=1

(2πfk)
2

2T 2

((
a
ep
j,k

)2
+
(
b
ep
j,k

)2
)

, (2.57)

and, therefore,

∂

∂a
ep
j,k

N∑

j=1

1∫

0

∥
∥
∥
∥

dsj
dt

∥
∥
∥
∥

2

dq =
(2πfk)

2

2T 2
a
ep
j,k, (2.58a)

∂

∂b
ep
j,k

N∑

j=1

1∫

0

∥
∥
∥
∥

dsj
dt

∥
∥
∥
∥

2

dq =
(2πfk)

2

2T 2
b
ep
j,k, (2.58b)

∂

∂s
ep
j,0

N∑

j=1

1∫

0

∥
∥
∥
∥

dsj
dt

∥
∥
∥
∥

2

dq = 0, (2.58c)

∂

∂T

N∑

j=1

1∫

0

∥
∥
∥
∥

dsj
dt

∥
∥
∥
∥

2

dq =
N∑

j=1

P∑

p=1

K∑

k=1

−(2πfk)2
T 3

((
a
ep
j,k

)2
+
(
b
ep
j,k

)2
)

. (2.58d)

2.6.1 Initialization

In the multi-dimensinal optimization, we still use the suboptimal solution of the

MTSP problem as a starting point. However, unlike the 1-D scenario with the move-

ment and dwelling time parameterization, the heuristic solution of the MTSP problem

cannot be directly converted to a Fourier Curve trajectory. The solution of the MTSP

problem gives, for each agent j, a cyclic schedule of targets Sj = {y1j , ..., y
Yj

j , y1j} and,
therefore, it is still necessary to obtain the parameters Θ = {{aepj,k}, {b

ep
j,k}, {s

ep
j,0}, T}

from this schedule. We define dmj as the cumulative distance that the agent has trav-

eled when it reaches the m-th target in the schedule Sj, and Dj as the total distance

43

traveled by an agent in one cycle. We then look for a feasible truncated Fourier series

trajectory such that at the normalized time q = dmj /(DjT), the agent is at a distance

lower or equal to the sensing radius (multiplied by a factor 1 − δ, 0 < δ < 1, in

order to give some distance margin) from the target. The position of the agent at

the beginning of the cycle is set to be the position of the first target in the schedule

Sj.The period T can be set to any positive number. For each agent, the following

optimization problem gives a set of feasible {aepj,k}, {b
ep
j,k}.

minimize
a
ep
j,k, b

ep
j,k

P∑

p=1

K∑

k=1

fk|aepj,k|+ fk|bepj,k|

subject to

∥
∥
∥
∥
sj

(
dmj
Dj

)

− xymj

∥
∥
∥
∥
2

< (1− δ)rj, m = 1, .., Yj.

(2.59)

Note that if we substitute the definition in (2.55) into the constraint in (2.59), this

optimization can be formulated as a Quadratically Constrained Program, which is a

convex optimization problem and thus can be solved efficiently. From our experience,

minimizing a weighted sum of absolute values in the objective function of (2.59) has

led to smooth initial trajectories. However, other optimization objectives could be

used.

It is worth observing that for each of the agents, the trajectory generated by the

heuristic solution of the MTSP problem consists of segments of straight lines that

visit each of the targets in the schedule Sj. Note that this trajectory, as a function of

time, is composed by sequence of straight lines that can be projected in each of the

axis ep and the projection in that axis will still be a sequence of segments of straight

lines. Since piecewise linear functions can be well approximated by Fourier series,

there always exist a K large enough such that there is a solution to (2.59) because

for that K there is a representation of the trajectory that would be close enough to

the original MTSP solution such that it is able to satisfy the constraint in (2.59).

44

Therefore, we can always find feasible solutions to (2.59) if we have a MTSP solution.

2.6.2 2D and 3D Simulation Results

We demonstrate the results of the algorithm in a simulated 2D scenarios, with three

agents and 15 targets. All the internal states of the targets have the same state

dynamics, evolving according to (2.1) with

Ai =

[
−1 −0.1
−0.1 0.01

]

, Qi = diag(1, 1),

and the agents observation models are given by (2.3) with

Hi = Ri = diag(1, 1), rj = 0.5, η = 10−3.

For each of the agents, their trajectories had the first five harmonics in each axis,

i.e., fk = k, k = 1, ..., 5, ∀ j. In the initial step of the optimization, the period T was

set to 1. The initial coefficients a
ep
j,k, b

ep
j,k were obtained by solving the optimization

problem in (2.59). The MTSP solution was obtained after 3000 iterations of the

genetic algorithm proposed in (Tang et al., 2000) for solving the associated MTSP.

The initial position of each agent was set to coincide with the position of the first

target in the solution of the MTSP. A constant descent stepsize κl = 10−4 was used

in the gradient descent.

The positions of the targets were generated randomly from independent uniform

distributions ranging from −5 to 5 in both axis. Fig. 2·2a compares the trajectories

of the agents in the first and last step of the gradient descent optimization, while Fig.

2·2b shows the evolution of the cost as a function of the gradient descent step. The

results of the optimization show that the solution of (2.59) led to smoother trajec-

tories that still visited all the targets. The gradient descent changed the trajectories

geometry but did not change the visiting order. As can be observed in Fig. 2·2b, the

45

-5 0 5

-5

0

5

(a) Trajectories of the targets in the first (red
dashed line) and last (blue continuous line) it-
erations of the gradient descent optimization on
the scenario with 15 targets and 3 agents. The
target’s locations are marked in black and the
grey shaded are represent the regions where the
target can be sensed by an agent.

0 500 1000 1500 2000 2500 3000 3500 4000

Iteration

40

60

80

100

120

140

160

180

C
o

s
t

(b) Evolution of the cost function in
the gradient descent optimization in the
scenario with 15 targets and 3 agents.

cost has an abrupt reduction in the beginning of the optimization and then the con-

vergence speed reduces significantly. The optimization process lead to very significant

reductions of the cost, reducing it to less than one third of its initial value.

In order to illustrate the extension of techniques proposed in this paper to higher

dimensions, we present a result in a 3D environment, with 2 agents and 10 targets.

The Ai, Qi, Hi, Ri matrices and rj are the same as in the 2D simulations. A constant

gradient descent stepsize κl = 10−2 was used. The target locations were drawn from

a uniform distribution in the cube with coordinates ranging from [−5, 5] in each axis.

The trajectories after 4000 gradient descent iterations are shown in Fig. 2·3 and the

evolution of the cost is diplayed in Fig. 2·4.
The 3D results follow a very similar trend of the 2D ones. The trajectories provided

by the initialization procedure tend to be smoother, while the shape of the optimized

ones are stiffer.

46

Figure 2·3: Simulation results in a 3D environment with two targets
and ten agents. In red, the initial trajectory in the gradient descent
optimization, in blue, the trajectory at the end of the optimization.
The projection of the final agent trajectories in three planes is plotted
in dashed purple.

0 500 1000 1500 2000 2500 3000 3500 4000

Iteration

40

50

60

70

80

90

100

110

120

130

C
o
s
t

Figure 2·4: Evolution of the cost function in the gradient descent
optimization in the 3D scenario.

47

Chapter 3

Minimax Persistent Monitoring

Embedded on a Graph

In the previous section, we presented a gradient-based approach for solving the PM

problem. Although the computational effort for computing gradients scales well (lin-

early) with the number of agents and targets, it requires the solution of N ×M × P

matrix differential equations at each step of the iterative gradient-descent process,

where N is the number of targets, M is the number of agents and P the number of

parameters that define an agent trajectory. Therefore, the usage of gradient-based

methods are impractical for settings with large number of agents and targets.

In this chapter, we aim to introduce lightweight algorithms that can efficiently

address the PM problem. Towards that goal, we make some simplifications to the

problem formulation that will prove helpful in the development of a more computa-

tionally effective algorithm. Namely, the modifications in the problem formulation

are: instead of minimizing the L-2 norm of the covariance, we consider the L-∞
norm. This cost function is also an appropriate choice in many PM applications.

For example, when monitoring safety-critical systems that cannot operate over a

given threshold (for instance, a maximum temperature), it is natural to optimize the

“worst-case” performance (as opposed to optimizing an “average” chance of violating

it). Some examples of applications where a critical threshold on the state uncertainty

should not be exceeded include monitoring wildfire or faults in civil infrastructure

systems using unmanned aerial vehicles (Lin et al., 2018; Shakhatreh et al., 2019).

48

Moreover, we assume that each target cannot be observed by multiple agents; the

agent can no longer move freely, but is constrained to a graph-based structure; and

the agent can only observe the target when their position coincide.

With this new problem formulation, we are able to show that, for an agent tra-

jectory, the peak of the norm of the steady state covariance matrix should be the

same among all the targets. This allows us to develop an algorithm such that instead

of explictly minimizing the cost function, we instead try to calibrate dwelling times

in order to have this property hold. In some cases, this property alone is sufficient

to uniquely define the agent trajectory and, under certain conditions, leads to global

optimality.

It is important to note, however, that the algorithms described in this chapter are

not necessarily intended to replace the one given in the previous one. Rather, when the

goal is to minimize the L-2 norm, the trajectories given by this approach can be used

as efficient initial solutions in the gradient-based approach, even if their formulations

are not completely equivalent to each other. As a side note, since in this chapter we

consider that each target is observed by only one agent, and mostly approach the

problem from a single agent perspective, in order to simplify the notation, we omit

the index j from our variables. Later in the chapter we extend this to multi-agent

systems by using a divide-and-conquer strategy. The results in this chapter, especially

regarding the greedy exploration of cycles, were developed in close collaboration with

Shirantha Welikala (PhD, Sytems Engineering, Boston University, 2021).

3.1 Infinity norm cost function

In this section, we assume that the movement of the agent is constrained to a graph-

based structure. The environment to be surveilled is described by an undirected

graph G = (V , E) where the set V = {1, 2, ,M} represents M nodes (targets) and

49

the set E = {(i, j) : i, j ∈ V} represents all the edges (available for agents to travel

between targets). Each edge (i, j) ∈ E has an associated value di,j that represents

the travel-time an agent has to spend in order to travel from target i to target j.

Each target has an internal state that evolves according to the same linear dynamics

corrupted by additive noise described in the previous chapter.

Similarly to the previous chapter, we also consider here parametric policies. The

graph-based nature of the current model yields a natural parameterization: the

agent trajectory is described by its sequence of target visits (visiting sequence):

Ξ = [ξ1, ξ2, ..., ξN] where each ξk ∈ V and the corresponding sequence of dwell-times

(dwelling sequence) spent at each visited target: T = [t1, ..., tN] where each tk ≥ 0.

Moreover, here we assume that the internal states are observed only when target and

agent positions coincide, i.e., instead of the expression (2.5), we use the following

definition for γi,j:

γi,j(α) =







1, ‖α‖ = 0,

0, otherwise.

(3.1)

Our goal is to design an agent trajectory (i.e., to design Ξ and T) that minimizes

the persistent monitoring objective

J(Ξ, T) = max
i∈V

lim sup
t→∞

gi(‖Ωi(t)‖), (3.2)

which represents the maximum over time and over all the targets of a weighted norm

of the long term covariance matrix. In (3.2), the target-specific possibly non-linear

weighting function gi(·) is strictly increasing with gi(0) = 0 and limx→∞ gi(x) = ∞
and ‖·‖ is a norm on the space of positive semi-definite matrices. A usual choice is

to have gi(x) = αix, where αi is a constant target-specific weight, and ‖X‖ = tr(X).

If an optimal agent trajectory (Ξ∗, T ∗) exists, then we denote its associated cost

50

J∗(Ξ∗, T ∗) = minΞ,T J(Ξ, T).
As in the previous chapter, here we consider the steady-state version of the PM

problem and we constrain the agent trajectory to be cyclic. Therefore, as long as each

target with unstable dynamics is visited for any finite amount of time (see Prop. 2),

we can guarantee that its covariance matrix will converge to a limit cycle that does

not depend on the initial conditions. Moreover, this proposition also implies that the

lim sup in (3.2) can be replaced by the maximum over one period, i.e.

lim sup
t→∞

gi(‖Ωi(t)‖) = max
t∈[0,T]

gi(
∥
∥Ω̄i(t)

∥
∥). (3.3)

3.2 Properties of an Optimal Policy

3.2.1 Target’s Perspective of a Periodic Policy

We begin by defining some notations used in the remainder of this section. Recall that

the goal is to optimize the visiting sequence Ξ and the corresponding dwelling sequence

T . Also, recall that the common length NΞ of the vectors Ξ and T correspond to one

full cycle of the periodic trajectory.

Recall that the goal is to optimize the visiting sequence Ξ and the corresponding

dwelling sequence T . We now discuss the conversion of indices from the agent’s

perspective (i.e., Ξ and T) to the target’s perspective. First, for each target i, we

group all the instances where this target was visited and define the vector Pi =

[p1i , ..., p
Ni

i] where pji is the position in the visiting sequence Ξ that i is visited for the

jth time. Consider, for example, a visiting sequence Ξ = [1, 2, 1]. Then, N1 = 2,

N2 = 1 and P1 = [p11, p
2
1] = [1, 3], P2 = [p12] = [2].

Moreover, we define the tuple (a(q), b(q)) as the pair such that p
b(q)
a(q) = q. Hence,

a(q) is the target being visited at the agent’s qth visit and b(q) represents the number

of times this target has been visited so far (including the current visit).

Finally, we highlight some important timings and covariance matrix values at the

51

steady state covariance profile. Figure 3·1 illustrates all the definitions that we will

give. We start with tkon,i and tkoff,i (defined in Section 3.2.1) which are given by

tkon,i = tpki , (3.4a)

tkoff,i = di,a(pki +1) +

pk+1
i −1
∑

q=pki +1

(

t
b(q)
on,a(q) + da(q),a(q+1)

)

. (3.4b)

In (3.4b), di,a(c(k,i)+1) is the travel time between target i and the next target the agent

visits. The index q varies over all the visits the agent makes until it returns to target

i (note that c(k, i) and c(k + 1, i) give the index of two consecutive visits to target

i, from the agent’s perspective). Moreover, t
b(q)
on,a(q) is the time the agent spent at its

q-th visit and da(q),a(q+1) is the travel time between the agent’s qth and (q+1)th visit.

Additionally, we define τ ki as the instant when the kth visit to target i started and

P
k

i is the covariance at the beginning of this visit. Intuitively, variables with a bar

over them refer to a local maximum peak (P
k

i) and instant (τ ki). Similarly, τ ki and P k
i

are respectively the time instant and the covariance at the end of the kth visit and

represent locally minimum peaks, as represented in Fig. 3·1. More formally:

τ ki =
k−1∑

m=0

(
tmon,i + tmoff,i

)
, τ ki = τ ki + tkon,i, (3.5a)

P
k

i = Ω̄(τ ki), P k
i = Ω̄(τ ki). (3.5b)

Also, since both the agent trajectories and the steady state covariance are periodic,

we have that tkon,i = tk+Ni

on,i , tkoff,i = tk+Ni

on,i , P
k

i = P
k+Ni

i and P k
i = P k+Ni

i . On the other

hand, visiting instants are not periodic, but are spaced by T , hence τ k+Ni

i = T + τ ki

and τ k+Ni

i = T + τ ki .

52

Figure 3·1: Temporal evolution of the steady state covariance matrix
and waiting/observation times.

3.2.2 Necessary Condition for Optimality

In this section, our main goal is to show that, for any visiting sequence Ξ that contains

every target in V , the corresponding optimal dwelling sequence T must be such that

lim supt→∞ gi(‖Ωi(t)‖) is the same for all i ∈ V .
Towards this goal, we first introduce an auxiliary result that states that the steady-

state covariance increases when the target is not observed (ηi = 0) and decreases

otherwise (ηi = 1). However, we stress that this only holds at steady state. If, for

example, the initial uncertainty over target i is very small, then the transient uncer-

tainty could temporarily grow even if i is being observed. Similarly, the uncertainty

along certain directions may initially decrease even when i is not observed if it was

very large at the initial time.

Lemma 2. If tkoff,i > 0 and tpon,i > 0 for some p, k such that 1 ≤ p, k ≤ Ni, then
˙̄Ωi(t) ≺ 0 when the target is observed (ηi(t) = 1) and ˙̄Ωi(t) ≻ 0 otherwise (i.e. when

ηi(t) = 0).

Proof. Let Ωi,ss be the solution of the algebraic Riccati equation given by (2.20),

when ηi(t) = 1 and Ω̇i = 0, i.e.

AiΩi,ss + Ωi,ssA
′
i +Qi − Ωi,ssGΩi,ss = 0. (3.6)

53

Since the system is observable and Qi ≻ 0, Ωi,ss is guaranteed to be unique and

positive definite (Bittanti et al., 2012).

We then define a similar concept to Ωi,ss, but for the case where ηi(t) = 0, ∀t.
Intuitively, we want to define Ω∞

i as being the covariance matrix when the target is

never observed. Note that when Ai is unstable, the covariance matrix will diverge

thus Ω∞
i is not well defined. In particular, if Ai is unstable but some of the eigenvalues

of Ai are negative, the covariance does not diverge in every direction. Thus, in order

to overcome these peculiarities in “Ω∞
i ”, for a given vector ζ ∈ R

Li (i.e. ζ has the

same dimension as the the target state), we define ζ ′Ω∞
i ζ as:

ζ ′Ω∞
i ζ = lim

t→∞
ζ ′





t∫

0

exp(Aiγ)Qi exp(A
′
iγ)dγ



 ζ. (3.7)

Note that, if ηi(t) = 0, limt→∞ ζ ′Ωi(t)ζ = ζ ′Ω∞
i ζ, independently of the initial condi-

tion Ωi(0) (Bittanti et al., 2012).

Using Theorem 2 in (Dieci and Eirola, 1996), we get that the steady state covari-

ance matrix Ω̄i(t) generated by a cyclic schedule where target i observed by some

time part of the cycle (but not the entire cycle) is such that:

ζ ′Ωi,ssζ < ζ ′Ω̄i(t)ζ < ζ ′Ω∞
i ζ, (3.8)

for ∀ζ 6= 0 ∈ R
Li such that ζ ′Ω∞

i ζ is bounded. Informally, one can think of Ωi,ss and

Ω∞
i as being respectively lower and upper bounds on the covariance matrix.

Now that we have defined these lower and upper bounds, we go back to analyze the

steady state covariance matrix resulting from an agent trajectory that visits target i.

First we show that, at steady state, the covariance will increase when the target is not

observed. Towards that, we analyze dynamics of the steady state covariance matrix ˙̄Ωi

in time instants where the target is not observed (ηi = 0), thus ˙̄Ωi = AiΩ̄i+Ω̄iA
′
i+Qi.

If we pick ζ to be a right eigenvector of (Ai +A′
i) and its corresponding eigenvalue λ,

we get that

(Ai + A′
i)ζ = λζ =⇒ A′

iζ = λζ − Aiζ. (3.9)

Analogously, we have that ζ ′Ai = λζ ′ + ζ ′A′
i. Using these relations, we get that

ζ ′(AiΩ̄i + Ω̄iA
′
i)ζ is given by

ζ ′(AiΩ̄i + Ω̄iA
′
i)ζ = 2λζ ′Ω̄iη −

(
ζ ′A′

iΩ̄iζ + ζ ′Ω̄iAiζ
)
. (3.10)

54

Since ζ ′A′
iΩ̄iζ + ζ ′Ω̄iAiζ is a scalar, it is equal to its transpose, ζ ′(AiΩ̄i + Ω̄iA

′
i)ζ.

Therefore, we conclude that

ζ ′(AiΩ̄i + Ω̄iA
′
i)ζ = 2λζ ′Ω̄iζ. (3.11)

Using this result, we compute ζ ′ ˙̄Ωiζ, which is given by:

ζ ′ ˙̄Ωiζ = ζ ′(AiΩ̄i + Ω̄iA
′
i +Qi)ζ = ζ ′

(
λΩ̄i +Qi

)
ζ. (3.12)

Note that, if λ is non-negative, then the expression (3.12) is necessarily positive,

thus ζ ′ ˙̄Ωi(t)ζ > 0. However, if λ is negative, then (3.7) implies that ζ ′Ω∞
i ζ is bounded

and and that its time derivative, limt→∞ ζ ′(AiΩ+ΩAi+Q)ζ, converges to zero, for any

initial condition Ω(0). Since ζ ′(AiΩ+ΩAi)ζ = λΩ, we get that λζ ′Ω∞
i ζ + ζ ′Qiζ = 0.

Since here we consider the case where λ < 0 and we know that Ω̄i ≺ Ω∞
i , we conclude

that λζ ′Ω̄iζ + ζ ′Qiζ > λζ ′Ω∞
i ζ + ζ ′Qiζ = 0. Thus, we claim that ζ ′ ˙̄Ωiζ > 0 whenever

ηi = 0. Since the eigenvectors of Ai +A′
i are a basis of RLi , we have that any ξ ∈ R

Li

can be written as a linear combination of these eigenvectors. Therefore, χ′Ω̄iχ is

positive for any χ ∈ R
Li whenever ηi = 0, which implies that Ω̄i(t) ≻ 0 if ηi(t) = 0.

We then consider the instants when the target is observed (ηi = 1). Note that

Ω̇i,ss = 0. Then we define U = Ω̄i − Ωi,ss, for which
˙̄Ωi = U̇ . Using (2.20) and (3.6),

we get that

U̇ = Ai(Ω̄i − Ωi,ss) + (Ω̄i − Ωi,ss)A
′
i − Ω̄iGiΩ̄i

+ Ωi,ssGiΩi,ss

= AiU + UA′
i + Ωi,ssGiΩi,ss − Ω̄iGiΩ̄i

= (Ai −GiΩi,ss)U + U(Ai −GiΩi,ss)
′ − UGiU.

(3.13)

Additionally, using the fact that U̇−1 = U−1U̇U−1, we have

U̇−1 = U−1(Ai − Ωi,ssGi) + (Ai − Ωi,ssGi)
′U−1 −Gi.

We now consider a right eigenvector ζ of ((Ai − Ωi,ssGi) + (Ai − Ωi,ssGi)
′) and its

corresponding eigenvalue λ. Note that the algebraic Riccati equation (3.6) can be

rewritten as:

(Ai − Ωi,ssGi)Ωi,ss + Ωi,ss(Ai − Ωi,ssGi)
′ +Qi + Ωi,ssGiΩi,ss = 0. (3.14)

55

Multiplying this equation by ζ on the right and ζ ′ on the left, we get

λζ ′Ωi,ssζ + ζ ′(Qi + Ωi,ssGiΩi,ss)ζ = 0, (3.15)

which implies that λ < 0, since ζ ′Ωi,ssζ and ζ ′(Qi+Ωi,ssGiΩi,ss)ζ are strictly positive.

Then, computing ζ∗U̇−1ζ, we get

ζ ′U̇−1ζ = λζ ′U−1ζ − ζ ′Giζ,

thus ζ ′U̇−1ζ < 0, since U = Ω̄i − Ωi,ss ≻ 0 and λ < 0. Since all the eigenvectors of

((Ai − Ωi,ssGi) + (Ai − Ωi,ssGi)
′) together form a basis of RLi , we have that U̇−1 is

negative definite and thus ˙̄Ωi = U̇ is also negative definite, which concludes the proof

of the lemma.

The intuitive explanation of the importance of this Lemma is that it gives an

insight on how to optimize the dwelling times: when local maximum uncertainty

peaks are different, it is possible to observe for less time the target with the lowest

peaks (increasing its uncertainty) and for more time the targets with largest peak

(thus decreasing it). This way, maximum uncertainty over all the targets would go

down.

We now show that the peak uncertainties can only be achieved at very specific

instants of time: those where the target switches from not being observed to being

observed. This is an important result, since it guarantees that we can compute the

cost function by only looking at a finite number of time instants. As a reminder, we

define the covariance at the beginning of the kth observation of that target as P
k

i .

Lemma 3. If target i is visited for a strictly positive amount of time, then

lim supt→∞ gi(‖Ωi(t)‖) = max1≤k≤Ni
gi(
∥
∥P

k

i

∥
∥).

Proof. First, note that since Ωi(t) converges to the bounded periodic function Ω̄i(t)

and gi(·) is continuous, lim supt→∞ gi (‖Ωi(t)‖) = max0≤t≤T gi
(∥
∥Ω̄i(t)

∥
∥
)
. For any time

t for which ∃ ǫ > 0 such that ηi(t + ǫ) = 0, Lemma 2 implies that Ω̄i(t + ǫ) ≻ Ω̄i(t).

Conversely, if ∃ ǫ > 0 ηi(t− ǫ) = 1, Ω̄i(t− ǫ) ≻ Ω̄i(t).

56

Therefore, the maximization of gi
(∥
∥Ω̄i

∥
∥
)
can only happen in one of the instants

when the target switches from not being observed (ηi = 0) to being observed (ηi = 1).

The covariance at these instants is given by P
k

i (see also Fig. 3·1).

Using Lemmas 2, 3, we next show how the peak values P
k

i vary with tmon,i and tmoff,i,

for any k,m where 1 ≤ k,m ≤ Ni. For this, we use the fact that the parameters tmon,i

and tmoff,i, ∀m fully define (up to a time-shift) the evolution of the steady state covari-

ance matrix Ω̄i(t). The following proposition has an intuitive interpretation: when a

target is observed for a longer time, its peak uncertainty will be lower. Conversely, if

the time between observations increases, then the peak uncertainty will be higher.

Proposition 5. ∂P
k
i

∂tmon,i
≺ 0 and ∂P

k
i

∂tm
off,i

≻ 0.

Proof. First, we prove that ∂P
k
i

∂tmon,i
≺ 0. Towards that, we define Φm

i as

Φm
i =

tmon,i∫

0

exp
(
Ai − Ω̄i(t+ τmi)Gi

)
dt. (3.16)

To understand the intuition behind Φm
i , we first recall Prop. 3 which states that the

derivative ∂Ω̄
∂tmon,i

(t), when it exists, for t ∈ (τmi , τ
m
i) is given by:

∂Ω̄

∂tmon,i
(t) = ΣT (t)

∂Ω̄

∂tmon,i
(τmi)Σ(t), (3.17)

where Σ is the solution of the following ODE:

Σ̇(t)− (A− Ω̄i(t)Gi)Σ(t) = 0, Σ(τmi) = I. (3.18)

Moreover, Φm
i = Σ(τmi) can be interpreted as the transition matrix between times

τmi and τmi of the homogeneous version of the ODE for which the derivative ∂Ω̄
∂tmon,i

(t)

is a solution. The existence of the derivative is discussed in Appendix A of this

dissertation.

Now, by computing the derivative of Ω̄i(t) with respect to tmon,i as t → (τ ki)
− (we

recall that that at time t = τ ki the derivative is discontinuous, since at this instant the

target switches from not being observed to being observed), we obtain the following

57

recursive expression:

∂Ω̄

∂tmon,i
(τmi) =

∂Pm
i

∂tmon,i
= (Φm

i)
T ∂P

m−1

i

∂tmon,i
Φm

i + ˙̄Ωi((τ
m
i)

−). (3.19)

Furthermore, defining Ψm
i = exp(Ait

m
off,i) and using again Prop. 3, we get that:

∂P
m+1

i

∂tmon,i
= (Ψm

i)
T ∂P

m+1
i

∂tmon,i
Ψm

i . (3.20)

Now, repeating the same steps and propagating the previous expression to the

k-th visit, m ≤ k ≤ m+Ni − 1, we get the recursion:

∂P
k

i

∂tmon,i
= (Λk,m

i)T

(

∂P
m−1

i

∂tmon,i
+ (Φm

i)
−T ˙̄Ωi((τ

m
i)

−)(Φm
i)

−1

)

Λk,m
i , (3.21)

where Λk,m
i =

∏k−1
α=m Ψα

i Φ
α
i . In particular, for k = m+Ni − 1, due to periodicity, we

have:

∂P
m−1

i

∂tmon,i
= (Λm+Ni−1,m

i)T

(

∂P
m−1

i

∂tmon,i
+ (Φm

i)
−T ˙̄Ωi((τ

m
i)

−)(Φm
i)

−1

)

Λm+Ni−1,m
i , (3.22)

which is a Lyapunov equation. Note that Λm+Ni−1,m
i is stable, as discussed in Propo-

sition 3. Therefore all of its eigenvalues have modulus lower than one. Also, since

Λm+Ni−1,m
i is a product of matrix exponentials, its null space is trivial. This implies

that, since Lemma 2 tells us that ˙̄Ωi((τ
m
i)

−) ≺ 0, the Lyapunov equation has a unique

negative definite solution and therefore ∂P
m−1
i

∂tmon,i
≺ 0.

Moreover, note that, for m ≤ k < m+Ni − 1,

∂P
m−1

i

∂tmon,i
= (Λm+Ni−1,k

i)T
∂P

k

i

∂tmon,i
Λm+Ni−1,k

i , (3.23)

which leads us to conclude that, ∀k, ∂P
k
i

∂tmon,i
≺ 0.

The argument to claim that ∂P
k
i

∂tm
off,i

≻ 0 is very similar to the one we just use to

58

show that ∂P
k
i

∂tmon,i
≺ 0. Therefore, only a brief summary will be given. Note that

∂P
m

i

∂tmoff,i
= (Λm,m−1

i)T
∂P

m−1

i

∂tmoff,i
Λm,m−1

i + ˙̄Ωi((τ
m
i)

−). (3.24)

Using a similar recursion as in the previous proof, we get that

∂P
m−1

i

∂tmoff,i
= (Λm+Ni,m−1

i)T
∂P

m−1

i

∂tmoff,i
Λm+Ni,m−1

i + (Λm+Ni,m
i)T ˙̄Ωi((τ

m
i)

−)Λm+Ni,m
i . (3.25)

As ˙̄Ωi((τ
m
i)

−) ≻ 0, then
∂Pm−1

i

∂tm
off,i

≻ 0 and thus ∂P
k
i

∂tm
off,i

≻ 0.

In the sequel, we present the main result in this section in the form of a proposition

that can be interpreted analogously to resource allocation problems where different

targets are competing for the same resource tkon,i. If all the targets have the same

utility, except possibly those where the agent never dwells, an equilibrium in the

minimax sense is reached. Hence, we denote as “active” a target that is visited for

a non-null amount of time at least once during a cycle. In other words, a target i is

said to be active if
∑Ni

k=1 t
k
on,i > 0. A target is said to be inactive if the agent visits

it but
∑Ni

k=1 t
k
on,i = 0.

Unlike typical resource allocation problems, here the total resource
∑M

i=1

∑Ni

k=1 t
k
on,i

is not fixed. The reason why the total resource does not go to infinity (i.e. the period

is guaranteed to be finite) is that increasing tkon,i to one target has an adverse effect

on all other active targets.

Let us define the set of all active targets as A ⊆ V . Note that a target with

unstable internal state dynamics has to be active; otherwise, the cost (3.2) will be

unbounded. However, if a target has a stable Ai, its infinite horizon uncertainty

without ever being observed can be lower than some other target’s uncertainty, and

thus the optimal policy would be to make such targets inactive.

59

Proposition 6. For a fixed visiting sequence Ξ, a corresponding dwelling time se-

quence T that optimizes the cost (3.2) satisfies:

lim sup
t→∞

gi(‖Ωi(t)‖) = lim sup
t→∞

gj(‖Ωj(t)‖),

for all i, j ∈ A. Additionally, if i ∈ A and p 6∈ A, then

lim sup
t→∞

gi(‖Ωi(t)‖) ≥ lim sup
t→∞

gp(‖Ωp(t)‖).

Proof. First we focus on active targets and prove the first part of the proposition by

contradiction, showing that if the property given in the proposition does not hold,

then there is a way to re-balance the observation times that is guaranteed to improve

the performance. Suppose that for some target i

gi
(∥
∥P

max

i (t1:Ni

on,i , t
1:Ni

off,i)
∥
∥
)
< gj

(∥
∥
∥P

max

j (t
1:Nj

on,j , t
1:Nj

off,j)
∥
∥
∥

)

,

where the upper index max indicates the maximum over k of gi(
∥
∥P k

i

∥
∥). We now

propose to decrease the amount of time of all observations of i by ǫ, while maintaining

all other observation times for all the targets constant. According to (3.4b) in the

proof of Lemma 2, this implies that the waiting time between observations for all the

other targets will decrease. This updated policy (dwelling sequence) generates a new

set of observation times for target i, (denoted by t̃1:Ni

on,i), and updated waiting times

between visits for all the other active targets, (denoted by t̃
1:Nj

off,j), while maintaining

t1:Ni

off,i and t
1:Nj

on,j constant. Note that ∃ ǫ > 0 such that t̃kon,i = tkon,i−ǫ for all k ∈ {1, .., Ni}
and t̃moff,j < tmoff,j for some m ∈ {1, ..., Nj}. Using Proposition 5, we get:

P
max

i (t̃1:Ni

on,i , t
1:Ni

off,i) ≻ P
max

i (t1:Ni

on,i , t
1:Ni

off,i), (3.26)

P
max

j (t
1:Nj

on,j , t̃
1:Nj

off,j) ≺ P
max

j (t
1:Nj

on,j , t
1:Nj

off,j). (3.27)

Using the fact that both the norm and the derivative are continuous and strictly

increasing, we can always pick an ǫ small enough such that the new peak of target i

is lower or equal to the new peak of j, i.e.,

gj

(∥
∥
∥P

max

j (t
1:Nj

on,j , t̃
1:Nj

off,j)
∥
∥
∥

)

< gj

(∥
∥
∥P

max

j (t
1:Nj

on,j , t
1:Nj

off,j)
∥
∥
∥

)

,

gi
(∥
∥P

max

i (t̃1:Ni

on,i , t
1:Ni

off,i)
∥
∥
)
≤ gj

(∥
∥
∥P

max

j (t
1:Nj

on,j , t̃
1:Nj

off,j)
∥
∥
∥

)

.

60

Since under the updated policy, all the peaks P
m

j , 1 ≤ m ≤ Nj, 1 ≤ j ≤ M , are

lower for all the targets except i, we recall Lemma 3 and conclude that this updated

policy has a lower cost than the previous one. Hence, the previous policy cannot be

optimal, which proves the first part of the proposition.

For the second part of the proposition, we note that in an optimal solution if

a target is inactive, its constant steady state covariance matrix has to be bounded,

since otherwise the cost of the PM problem would be unbounded. Additionally, we

note that its uncertainty at all times could be reduced by giving it a positive dwell-

time (and thus increasing the common peak uncertainty of the active targets, and,

as a consequence, the cost), using a very similar argument as in the first part of this

proof. Thus, in an optimal dwelling sequence, a target will be inactive only if its peak

uncertainty is lower (or equal) than that of the active targets.

This proposition gives a necessary condition for the optimality of the dwelling

sequence. Moreover, its constructive proof also gives insight on how to locally optimize

the dwelling sequence for a given visiting sequence. However, in general, this property

is not sufficient for determining an optimal dwelling sequence. In the next section,

we will restrict ourselves to a specific set of visiting sequences Ξ where the optimality

condition in Proposition 6 can indeed be exploited to optimize the dwelling times at

each target.

3.3 Optimal Dwelling Sequence on a Constrained Visiting

Sequence

While in the previous section we discussed a necessary condition for optimal dwelling

time allocation, this condition alone is not sufficient to fully determine a globally

optimal trajectory, since when a target is visited multiple times, this proposition does

not give any insight on the values of the peak uncertainties for all the peaks, except

the one with worse uncertainty. In this section we restrict ourselves to consider

only visiting sequences Ξ where each target is visited at most once during a cycle

(called “constrained” visiting sequences) and then extend that algorithm to more

61

general settings in the next section. Under this assumption, which applies throughout

this section, we develop a practical algorithm that optimizes the dwelling sequence

corresponding to a given Ξ. In some specific setups, we show that this approach

gives the globally optimal dwelling sequence. Later on in this section, we discuss the

process to obtain an optimal visiting sequence Ξ′. As a side note, in this section we

will omit the upper index of P i, ton,i and toff,i, since Ni ≤ 1, ∀i ∈ Ξ.

The main idea behind our approach is to exploit the property that all peak uncer-

tainties (P i) of active targets must coincide in an optimal solution. In particular, we

develop an iterative scheme that balances the dwell-times (ton,i) such that the peak

uncertainties coincide upon convergence of the algorithm. The update law used to

update the dwell-times ton,i of the active targets in this iterative scheme is:

ton,i[k + 1] = ton,i[k] + kp log

(

gi
(∥
∥P i

∥
∥
)

gavg

)

, (3.28)

where gavg =
(
∏

j∈A gj
(∥
∥P j

∥
∥
))

1
|A|

and kp is a small positive constant and |A| is the
cardinality of A. Equation (3.28) can be interpreted as aiming to achieve “consensus”

regarding the peak uncertainties P i among the active targets, and thus its structure

is very similar to geometric mean consensus algorithms (Bullo, 2020). The expression

(3.28) does not require the computation of gradients, which makes it computationally

much less demanding than gradient-based approaches, such as those found in Chapter

2.

Remark 1. At each iteration of (3.28), it is necessary to compute P i (given by the

steady state solution of the Riccati equation) and gavg. For computing P i, we use

the Structure Preserving Doubling algorithm described in (Chu et al., 2004), which

converges quadratically and is numerically stable. On the other hand, we note that

gavg can be computed distributively through a consensus protocol if P i is computed

locally by each target (Bullo, 2020).

In order to simplify the convergence analysis of this update law, we abstract it

62

with the following differential equation:

d

dr
ton,i =







0, if i 6∈ A, gi(‖P̄i‖)
gavg

≤ 1,

kp log

(
gi(‖P i‖)

gavg

)

, otherwise.
(3.29)

Note that this version of the update law considers continuous parameter variation,

i.e., the auxiliary variable r should be understood as the continuous time equivalent

of “iteration index” and does not carry any actual “time” interpretation. Also, note

that the hybrid structure of this update law allows for active targets become active

and for inactive targets to become inactive, based on their ton,i and g(
∥
∥P i

∥
∥) values.

Proposition 7. Under the update law (3.29), the function maxi,j∈A |gi(
∥
∥P i

∥
∥) −

gj(
∥
∥P j

∥
∥)| is asymptotically stable.

Proof. Note that dP i

dr
= ∂P i

∂ton,i

dton,i
dr

+ ∂P i

∂toff,i

dtoff,i
dr

and

M∑

i=1

dton,i
dr

= kp log

(∏

j∈A gj
(∥
∥P j

∥
∥
)

gavg

)

= kp|A| log
gavg
gavg

= 0,

Therefore, under this control law, the period is constant. Thus,
dton,i
dr

= −dtoff,i
dr

.

Hence, for the active targets, dP i

dr
= (∂P i

∂ton,i
− ∂P i

∂toff,i
)kp log

gi(‖P i‖)
gavg

. Consequently, if

gi(
∥
∥P i

∥
∥) > gavg,

dP i

dr
≺ 0. Conversely, if gi(

∥
∥P i

∥
∥) < gavg, then

dP i

dr
≻ 0.

Since gavg is the geometric mean, it is guaranteed to be between the maxi-

mum and minimum values of gj(
∥
∥P j

∥
∥)). Thus, if maxi∈A gi(

∥
∥P i

∥
∥) 6= gavg, then

d
dr
maxi∈A gi(

∥
∥P i

∥
∥) < 0 and d

dr
minj∈A gj(

∥
∥P j

∥
∥) > 0.

Therefore, since both

max
i∈A

gi(
∥
∥P i

∥
∥) and min

j∈A
gj(
∥
∥P j

∥
∥)

are monotonic and bounded, they converge. Now suppose they do not converge to

the same value. Then, there exists r∗ such that for r > r∗,

log

(

max
i∈A

gi(
∥
∥P i

∥
∥)/min

j∈A
gj(
∥
∥P j

∥
∥

)

≥ α > 0.

63

Then, for the target j with minimum peak uncertainty, dton,j/dr ≤ −α/|A|, which
means that the target j will eventually become inactive, since its observation time

will reach zero within a finite increase of r. Therefore, a target cannot belong in the

active set as r →∞ unless its peak uncertainty converges to maxi∈A gi(
∥
∥P i

∥
∥), which

proves the proposition.

Remark 2. In the proof of Proposition 7, we see that d
dr
maxi gi(

∥
∥P i

∥
∥) < 0. There-

fore, the update law (3.29) always reduces the cost defined in (3.2). This also implies

that if not all the targets have the same peak value gi
(∥
∥P i

∥
∥
)
, then the cost can be

reduced by that update law.

Remark 3. The log in (3.29) is only one among many options of the update law.

The essential feature is that (3.29) preserves the total dwelling time among different

targets. Proposition 7 would still hold if we used other update laws that preserved

this property. One of the possible update laws is d
dr
ton,i = gi(

∥
∥P i

∥
∥)/

∑

j gi(
∥
∥P j

∥
∥)

when i ∈ A. Here we use the log structure as our simulations indicate it yields good

convergence rates.

Now we show that the value achieved by update law (3.29) is unique, i.e. it does

not depend on the observation time distribution at r = 0.

Lemma 4. For a given cycle period T and a fixed constrained visiting sequence Ξ,

there is a unique observation time distribution such that gi(
∥
∥P i

∥
∥) = gj(

∥
∥P j

∥
∥), ∀ i, j ∈

Ξ.

Proof. Note that gi(
∥
∥P i

∥
∥) is a function only of ton,i, since the period T is fixed (i.e.

toff,i = T − ton,i). Additionally, Prop. 5 asserts that gi(
∥
∥P i

∥
∥) is strictly decreasing

with ton,i. Suppose there are two different sets of dwelling times (ton,i and t′on,i),

and consequently different costs gcon and g′con such that all targets have the same

peak value. Without loss of generality, we assume gcon < g′con, which implies that

ton,i > t′on,i. However, since the period is the same, we must have
∑

i ton,i =
∑

i t
′
on,i,

which yields a contradiction.

Finally, we give a specialization of Proposition 6 to the particular case discussed

in this section.

64

Proposition 8. For a fixed constrained visiting sequence Ξ and a given cycle period

T , the dwelling sequence under the update law (3.29) converges to the optimal dwelling

sequence (i.e., to T ′) that minimizes the cost function J(Ξ, T) in (3.2).

Proof. For any dwelling sequence such that the period is T , the update law (3.29)

always reduces the cost while maintaining T constant if gi(
∥
∥P i

∥
∥) is not the same for

all the targets. Since there is a unique way such that every target has the same peak

(and the update law (3.29) ensures convergence to it), the dwelling sequence after

convergence of (3.29) has to be optimal, otherwise (3.29) would be able to improve

the cost.

For a fixed visiting sequence Ξ, we so far have shown a simple way to optimize the

dwelling sequence given a fixed cycle period T . However, we have not addressed the

problem of optimizing the value of the cycle period T . For this task, we use golden

ratio search (Kiefer, 1953) that finds the global optimum in a unimodal function and

local optima in a generic single variable function. The complete golden ratio search

procedure is given in Alg. 3. The function gcon(T) corresponds to running the update

law in (3.28) until convergence and the value gcon(T) is the value of gavg at the final

iteration and r = (1 +
√
5)/2 (i.e., the search intervals are divided according to the

golden ratio).

Algorithm 3 Search for the Optimal Cycle Period

1: Input: Tmin, Tmax.
2: T1 ← Tmax − (Tmax − Tmin)/r
3: T2 ← Tmin + (Tmax − Tmin)/r
4: while |gcon(T2)− gcon(T1)| < ǫ do
5: if f(T2) > f(T1) then
6: Tmax ← T2

7: else Tmin ← T1

8: T1 ← Tmax − (Tmax − Tmin)/r
9: T2 ← Tmin + (Tmax − Tmin)/r

10: Return: (T1 + T2)/2

65

Particular case: scalar state. Here we show that when the internal target state

φi is a scalar (i.e. Li = 1), the optimal peak uncertainty is a unimodal function

of the cycle period T , in which case an globally optimal allocation of dwelling times

can be achieved. First, we define a function βi(ρ, T) that returns the dwell-time

ton,i for a given target to achive a peak uncertainty of ρ with cycle period T . Note

that, by definition, toff,i = T − βi(ρ, T), and it defines a peak uncertainty level as

gi(||P i(βi(ρ, T), T − βi(ρ, T))||) = ρ.

Note that the function β(ρ, T) is well defined for any ρ such that gi(||Ωi,ss||) ≤
ρ ≤ gi(||Ω∞

i ||) and T > 0. This is due to the fact that ρ = gi(||Ωi,ss||) will give

ton,i = β(ρ, T) = T and ρ = gi(||Ω∞
i ||) will give ton,i = β(ρ, T) = 0. Since the peak

uncertainty of target i varies continuously with ton,i, we have that there will always

be a ton,i that yields a given value of ρ, if gi(||Ωi,ss||) ≤ ρ ≤ gi(||Ω∞
i ||) and T > 0.

Now, we make the following technical assumption on the smoothness of the func-

tion β(ρ, T), that is used on the proof of the following proposition. Note that while

this assumption can be proved to hold, such a proof is outside the scope of this

dissertation.

Assumption 3. The function β(ρ, T) is differentiable with respect to T whenever

Ωi,ss < ρ < Ω∞
i .

Lemma 5. When the state φi is a scalar, the function ∂βi(ρ,T)
∂T

is strictly positive and

increasing.

Proof. When computing ∂β(ρ,T)
∂T

, we leave the upper peak P i,k(ton,i, toff,i) constant and

vary the period T . However, the lower peak P i,k(ton,i, toff,i) does not remain constant.

Indeed, the variation of the lower peak can be computed as:

∂P i,k

∂T
= ˙̄Ωi(τ

−
i)

∂βi(ρ, T)

∂T
= − ˙̄Ωi(τ

+
i)

(

1− ∂βi(ρ, T)

∂T

)

Therefore, ∂βi(ρ,T)
∂T

=
2AiP i+Qi

P 2
iGi

> 0. Note that since P i > Ωi,ss, 0 < ∂βi(ρ,T)
∂T

< 1.

Therefore, toff,i also increases as T increases. This implies that P i decreases with the

increase of T , since P i = exp(−2Aitoff,i)(ρ+Qi)−Qi.

66

Figure 3·2: Illustration of the proof of Proposition 9.

Computing the variation of ∂βi(ρ,T)
∂T

with respect to Pi, we get that
∂

∂Pi

(
∂βi(ρ,T)

∂T

)

=

−2AiPi+Qi

P 3
i Gi

, which is negative for any positive value of Pi. Since ∂βi(ρ,T)
∂T

is strictly

decreasing with Pi and Pi is strictly decreasing with respect to T , we get that ∂βi(ρ,T)
∂T

is strictly increasing with the increase of T .

Lemma 6. Given a visiting sequence Ξ, where each target is only visited once, the

equation
∑

i∈Ξ βi(ρ, T) = T − ttravel has a unique solution in T with ρ fixed.

Proof. Denoting Γ(T) =
∑

i∈Ξ βi(ρ, T)−T + ttravel and using Lemma 5, we know that
∂Γ
∂T

is a strictly increasing function. Now suppose that Γ(T) has 3 or more distinct

roots and we pick three of them T1 < T2 < T3. The mean value theorem tells us that

there is θ1 ∈ (T1, T2) such that ∂Γ
∂T

(θ1) = 0 and θ2 ∈ (T2, T3) such that ∂Γ
∂T

(θ2) = 0.

This is a contradiction since θ2 > θ1 and ∂Γ
∂T

is strictly increasing.

Proposition 9. When the state φi is a scalar, for a given visiting sequence Ξ, the

optimal peak is a unimodal function of T .

Proof. We prove this proposition by contradiction, supposing that there are at least

two extremum points when considering the optimal peak as a function of T and

showing that this contradicts Lemma 6.

We now show that, if there are two extremum points, then there is at least one

peak value that could be generated by three different values of T . First, note that

when T → ttravel the upper peak tends to maxi gi (‖Ω∞
i ‖), since in that case no

target is observed. In any non-degenerate dwell-times distribution, we have Pi ≺ Ω∞
i .

Moreover, since there are at least two extremum points, there must exist a minimum

67

(at T = T1) and a maximum (at T = T2). Note that since the consensus peak for

T = ttravel is a maximum, we have ttravel < T1 < T2.

Let us denote gcon(T) as the consensus peak for a given period T and take ǫ > 0

such that gcon(T2)− ǫ > g(T1) and gcon(T2)− ǫ = gcon(Tb) = gcon(Tc), for some Tb, Tc

such that T1 < Tb < T2 and Tc > T2. Note that, since T2 is a point of maximum and

gcon(·) is continuous, such Tb, Tc and ǫ exist. Additionally, we note that there exists a

Ta ∈ [ttravel, T1] such that gcon(Ta) = gcon(T2)− ǫ, since gcon(T) is assumed continuous

and gcon(ttravel) > gcon(T2) − ǫ > gcon(T1). These times, along with their respective

gcon are illustrated in Fig. 3·2.
Therefore, if there are two extremum points, then gcon(Ta) = gcon(Tb) = gcon(Tc),

with Ta 6= Tb 6= Tc, which contradicts Lemma 6. Therefore, when an extremum

point exists, it is a unique global minimum and hence the optimal peak is a unimodal

function of T .

Optimal Visiting Sequence We now focus on determining the optimal con-

strained visiting sequence (i.e., Ξ′). We will show that the optimal visiting sequence

that visits every target is the minimum length tour that visits all the nodes in the

network G = (V , E).

Proposition 10. Among all the constrained visiting sequences where all targets are

visited, for any dwelling sequence T , the visiting sequence given by the TSP solution

(Ξ = ΞTSP) has the lowest cost J(Ξ, T) in (3.2).

Proof. Recall that toff,i is the sum of all the entries in the dwelling sequence T (omit-

ting ton,i) and the sequence of travel-times corresponding to the visiting sequence Ξ.

Since Ξ is a constrained visiting sequence, every target is visited only once. Hence,

the visiting sequence given by the TSP solution ΞTSP is the one with the least amount

of total travel-time and, according to Prop. 5, gi(
∥
∥P i

∥
∥) strictly increases with toff,i.

Since for any dwelling sequence T , the values of toff,i, ∀i, are minimized if Ξ = ΞTSP

we conclude that the visiting sequence Ξ = ΞTSP yields the lowest cost.

Remark 4. The problem of computing the optimal TSP cycle is NP-hard. However,

efficient sub-optimal solutions are available (see e.g. (Tang et al., 2000)). The ap-

proach we discussed for optimizing the dwelling sequence does not rely on having the

optimal TSP cycle and indeed can handle any cycle as long as every target is sensed

68

(with a non-zero dwell-time) exactly once. Therefore, if finding the TSP cycle is

computationally infeasible, we still can use a sub-optimal cycle (visiting sequence).

Note that in an optimal visiting sequence, inactive targets do not necessarily have

to be a part of the agent’s tour (and, even if they are, the agent will not have to

dwell on them). Thus, when searching for the optimal visiting sequence, we can omit

inactive targets, as long as the cost after the exclusion is lower than the cost of moving

through that target without dwelling.

We now describe a procedure to obtain an optimal visiting sequence, without the

restriction that every target must be visited (but still constrained to at most one visit

per target). First, we order the targets according to their steady state uncertainty

in the case where they are never observed, gi(‖Ω∞
i ‖). This quantity can be either

finite or unbounded, and those targets which have infinite gi(‖Ω∞
i ‖) must necessarily

be active. Among the targets with stable dynamics, the optimal action may be

to never visit them, if gi(‖Ω∞
i ‖) is low enough. In order to determine the optimal

sequence, we then progressively exclude the targets with lowest unobserved steady

state uncertainty, until the overall cost stops to benefit from such exclusion.

More formally, we assume that targets 1, ...,M follow an increasing order according

to gi(‖Ω∞
i ‖). Then, the goal is to find the index m∗ that minimizes the cost

C(m∗) = max(gm∗(‖Ω∞
m∗‖),Peak-Uncertainty(Ξ∗(m∗)),

where Ξ∗(m∗) is the shortest visiting sequence that visits all targets m∗+1, ...,M and

Peak-Uncertainty(Ξ) gives the peak uncertainty, given optimal dwelling sequence for

the constrained visiting sequence Ξ computed using the iterative procedure given

in (3.29). The cost C(m∗) coincides with the overall PM (3.2) cost, considering

Ξ = Ξ∗(m∗) and optimal dwelling times. A simple way to solve this optimization is

by sequentially evaluating the cost for m∗ = 0, 1, 2, ...,M , however the optimal value

69

ofm∗ can also be determined more efficiently using Fibonacci search (Overholt, 1973),

that only requires evaluating the cost O(logM) times.

Note that the peak uncertainty of targets that remain active will never get worse

by excluding a target from the set of active targets A. Therefore, since the described
procedure always excludes all the targets with unobserved steady state uncertainties

lower than gm∗(‖Ω∞
m∗‖), it is guaranteed to find the optimal visiting sequence.

1.5 2 2.5 3

Cycle Period

45

50

55

60

(a) Peak value after balance among tar-
gets, as a function of cycle period.

50 100 150 200 250

Iteration Number

20

30

40

50

60

70

80

90

(b) Peak uncertainty at the optimal pe-
riod.

50 100 150 200 250

Iteration Number

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(c) Dwell-time at the optimal period.

Figure 3·3: Results of simulating Algorithm 3. In (a), the balanced
peak uncertainty, as a function of the cycle period. The red dots mark
the values of T that were explored by the golden ratio search. In (b)-
(c), we show the evolution of the peak uncertainty and the dwell-time
for each target.

70

Some Simulation Results We have implemented the model described in (2.1)

and (2.3), with parameters indicated in Table 3.1. Note that targets are also assigned

colors that will be used to identify each target in figures containing the simulation

results. For simplicity, the internal states of the targets were assumed to be scalars.

Each target’s location was drawn from a uniform distribution in [0, 0.5]× [0, 0.5]. The

target locations are displayed in Fig. 3·4b and the graph was assumed to be fully

connected, with edge costs being the distance between two targets. Moreover, for the

definition of the optimization goal as in (3.2), we used gi(ξ) = ξ, ∀i, and ‖Γ‖ = |Γ|.

Table 3.1: Parameters used in the simulation.

Target 1 2 3 4 5
Color blue red yellow purple green
Ai 0.3487 0.1915 0.4612 0.2951 0.1110
Qi 1.1924 1.2597 0.8808 1.7925 0.4363
Ri 2.3140 7.1456 4.2031 5.2866 7.5314

For the visiting sequence, we considered the TSP cycle and Alg. 3 was then used

to find the corresponding optimal dwelling sequence. The parameter kp in Eq. (3.28)

was chosen to be 10−2 and we set [Tmin, Tmax] = [0.1ttravel, 3ttravel], where ttravel is the

total travel-time required to complete the cycle.

0 0.5 1 1.5

Time

10

20

30

40

50

g
i(|

|
i(t

)|
|)

(a) Covariance over one period.

0.1 0.2 0.3

0.2

0.3

0.4

(b) Agent trajectory (black) and target
locations (colored).

Figure 3·4: Results obtained after optimizing the visiting and dwelling
sequences.

71

The results are shown in Figs. 3·3 and 3·4. In particular, Fig. 3·3 shows the

evolution of the steady-state covariance matrix norm over one complete period of

the agent trajectory, under the optimal dwelling sequence. In Fig. 3·3, details of

the optimization process are highlighted. In Fig. 3·3a, we can see how the peak

uncertainty behaved as a function of the period (after balancing the dwelling times

among targets). Moreover, this figure also highlights that the golden ratio search

scheme efficiently converged to a global minimum. Figs. 3·3b and 3·3c show how

the dwelling sequence and the peak covariance varied while using the update law

(3.29). Initially, all targets are visited for the same amount of time. However, as the

iterations go on, the dwell-time spent on some targets becomes larger than that of the

others. As expected, in the final iteration, all the peak covariances have converged to

the same value (consensus).

3.4 Optimal Dwelling Sequence on an Unconstrained Visit-

ing Sequence

In Sec. 3.3, we only considered situations where each target was visited at most

once in every cycle . We designed a procedure that computed the optimal dwelling

sequence for a given visiting sequence and made some remarks about selecting the

optimal visiting sequence. This section extends these ideas to settings where targets

can be visited multiple times in a cycle (referred to as unconstrained sequences).

In particular, we design an algorithm that aims to obtain a dwelling sequence such

that the peak uncertainty (i.e., gi(
∥
∥P̄ k

i

∥
∥)) is the same at each visit k for every active

target i. In other words, the goal is not only to have every target with the same

maximum peak uncertainty, but also that the peak uncertainties within visits to the

same target have the same peak value. Since multiple visits to the same targets are

allowed, finding an optimal visiting sequence is more challenging than in Sec. 3.3,

72

as the possibilities for visiting sequences are more extensive and the optimization of

the dwelling sequence in this case is not guaranteed to be optimal, even for a fixed

period. Thus, in this section, we assume the visiting sequence is pre-determined and

the process of determining an optimized (but not necessarily globally optimal) visiting

sequence will be discussed in Sec. 3.5.

As we now consider situations where targets can be visited multiple times, to

maintain the same notation as before, let

ton,i =

Ni∑

r=1

tron,i, (3.30)

where the index r refers to the rth visit to the target of interest, in the given visiting

sequence Ξ. Thus, we maintain the same update law as in the case with constrained

visiting sequences, given in (3.28).

However, only defining the total dwell-time spent at each target is not sufficient to

determine the peak uncertainties as one has to determine how long the agent dwells at

each of its visits at each target. To this end, we consider an additional optimization

step, that takes place for each target for each total dwell-time update step k (of

(3.28)). In particular, starting from an arbitrary valid distribution of dwell-times

tpon,i[1] such that
∑Ni

p=1 t
p
on,i[1] = ton,i[1], we propose the update law:

tpon,i[m+ 1] = tpon,i[m] + kp log

(

gi
(∥
∥P

p

i

∥
∥
)

gavg,i

)

, (3.31)

where gavg,i =
(
ΠNi

p=1P̄
p
i

) 1
Ni . The intuition behind this update law is that, similar to

how a total dwell-time can be split among different targets to reach the same peak

value, it can be split within the same target in order to yield the same peak value

(at the beginning of each visit to that target). The complete optimization process

is described in Alg. 4. We use the procedure in Alg. 5 (referenced as “MV”) that

73

is responsible for balancing the dwelling time of multiple visits (MV) to the same

target. Additionally, we point out that the procedure “computeToff” is responsible

for computing the time between subsequent visits to the same target using (3.4b) and

“SSPeaks” computes the steady state peak uncertainty values.

Algorithm 4 Computing the optimal dwelling sequence

1: Input: Visiting sequence Ξ, Cycle period T .
2: k ← 1;
3: ton,i[k]← 1/N ;
4: for i ∈ {1, ..., N} do
5: for p ∈ {1, ..., Ni} do
6: tpon,i[k]← ton,i[k]/Ni;

7: gprev ←∞;
8: while True do
9: for i ∈ {1, ..., N} do
10: [P̄i[k], t

p
on,i[k]]← MV(i, ton,i[k], t̃

p
on,j[k], T,Ξ);

11: gavg ←
(
∏

j∈A gj
(∥
∥P j

∥
∥
))

1
M

;

12: if |gavg − gprev| < tol then
13: Break;
14: else

15: ton,i[k + 1] = ton,i[k] + kp log

(
gi(‖P i‖)

gavg

)

;

16: for i ∈ {1, ..., N} do
17: for p ∈ {1, ..., Ni} do
18: t̃pon,i[k + 1]← ton,i[k+1]

ton,i[k]
t̃pon,i[k];

19: k ← k + 1;

20: Return: P̄ p
i [k], ton,i[k]

When the visiting sequence is unconstrained, one special difficulty in optimizing

the dwelling sequence is: to compute the steady state covariance, a target must know

the information about the agent dwell-times at other targets. Recall that when each

target was only visited once during a cycle, the number of visits Ni = 1 = p and thus

tpoff,i was computed based only on the dwell-time at target i, i.e. tpoff,i = T − tpon,i.

On the other hand, when multiple visits are allowed to each target, to compute

the steady state covariance, one has to know the values of tpon,i, t
p
off,i as well as t

p
on,j for

74

Algorithm 5 Computing dwell-times at a target: Process MV

1: Input: t, ton,i, t
p
on,j 6=i, T , Ξ.

2: tpoff,i ← computeToff(tpon,j 6=i, T,Ξ);
3: gprev,i ←∞;
4: m← 1;
5: while True do
6: [P̄ 1

i , ..., P̄
Ni

i] = SSPeaks(tpon,i, t
p
off,i);

7: gavg,i ←
(
∏

j∈A gj
(∥
∥P j

∥
∥
))

1
M

;

8: if |gavg,i − gprev,i| < tol then
9: Break;
10: else
11: for p ∈ {1, ..., Ni} do
12: tpon,i[m+ 1] = tpon,i[m] + kp log

(
gi(‖P p

i‖)
gavg,i

)

;

13: gprev,i ← gavg,i;
14: m← m+ 1;

15: Return: gavg,i, t
p
on,i;

all j 6= i (see (3.4b)). This interdependence does not allow independently optimizing

the dwell-times and computing the steady state covariance at each target. Thus, as

can be observed in line 18 of Alg. 4, to compute the steady state covariance (and

dwelling sequence) at each target, what we propose is to assume each dwell-time holds

the same proportional share of the total time as it did in the previous iteration. This

assumption, however is heuristic and proving the convergence or optimality of this

proposed method remains a topic of current research. Nevertheless, our simulation

results lead us to believe that this algorithm (Alg. 4) converges for any positive cycle

period T .

Simulation Results. In order to demonstrate the dwelling time allocation algo-

rithm, we simulated it in a setting with 5 targets. The system parameters are given in

3.2. The visiting sequence was set to 5-4-3-5-1-2. In this simulation setting, target 5

(green) was visited twice over the period, and both peak uncertainties have the same

75

value, after convergence of the dwelling time allocation algorithm.

0 0.5 1 1.5 2

Time

6

8

10

12

14

16

18

20

22

24

T
ra

c
e

(a) Covariance over one period.

0 0.05 0.1 0.15 0.2 0.25 0.3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b) Agent trajectory (black) and target
locations (colored).

Figure 3·5: Results obtained after optimizing the unconstrained vis-
iting and dwelling sequences.

Table 3.2: Parameters used in the simulation of unconstrained visiting
sequence.

Target 1 2 3 4 5
Color blue red yellow purple green
Ai 0.0307 0.3468 0.1706 0.1621 0.3029
Qi 1.7739 1.0277 0.7247 1.0540 0.3690
Ri 3.812 2.9165 5.3625 3.0293 4.8251

3.5 A Greedy Solution for Determining an Optimal Visiting

Sequence

In previous sections, we explored how to determine the dwelling sequence for a given

fixed visiting sequence, constrained or not. In the constrained case, we also char-

acterized the optimal visiting sequence. Naturally, to optimize the cost (3.2), the

next step is to determine the optimal unconstrained visiting sequence on the given

target network G. For this problem, the visiting sequence given by the corresponding

TSP is only a sub-optimal solution unless the visiting sequence is constrained (see

76

Prop. 10). In this section, we introduce a heuristic approach, specifically designed

for the persistent monitoring formulation considered in this chapter, that iteratively

refines a visiting sequence.

We first derive a lower bound of the cost of a visiting sequence that does not

require computation of dwelling times. The goal of designing this lower bound is to

use it to guide the greedy exploration scheme. Note that, in the greedy exploration

process, the cost of a proposed visiting sequence needs to be evaluated multiple times.

Avoiding the determination of the dwelling times through use of this lower bound

proxy will significantly reduce the computational cost.

Our proposed greedy exploration uses a (possibly suboptimal) TSP solution based

on the genetic algorithm based TSP solver (see e.g. (Singh and Baghel, 2009)), since it

is computationally more efficient than, for example, using mixed-integer programming

techniques (Hari et al., 2019). Using this TSP solution, the proposed greedy method

explores several possible modifications to the current solution and executes the most

profitable (greedy) modification. Intuitively, this greedy algorithm’s computational

efficiency depends on two factors: (i) the execution time required for the exploration of

a single modified solution and (ii) the number of different modified solutions explored

in each iteration. In order to strategically limit the computation time, motivated by

(Welikala and Cassandras, 2020), we propose a novel metric that can be utilized to

efficiently evaluate a solution (i.e., to explore a visiting sequence). To limit the latter,

we exploit several structural properties of this PM setup.

3.5.1 The metric used to evaluate a visiting sequence

The optimal cost for a given visiting sequence (say Ξ̄) is J(Ξ̄, T ′), where J is as in

(3.2) and T ′ is the optimal dwelling sequence. The optimization process to compute

Ξ̄ was described in Sec. 3.4. In this section, we establish a lower bound to J(Ξ̄, T ′) as

Ĵ(Ξ̄) ≤ J(Ξ̄, T ′), so that it can be used to efficiently evaluate any visiting sequence

77

Ξ̄.

Let us denote a generic visiting sequence by Ξ̄ = {pj}j=1,2,...,N where each pj ∈ V .
Note that the visiting sequence Ξ̄ fully defines a corresponding sequence of edges ξ̄ ⊆ E
as ξ̄ = {(pj−1, pj)}j=1,2,...,N with p0 = pN . Since targets are allowed to be visited more

than once during a cycle, some elements in Ξ̄ may have repeated entries (i.e., there

may be pj, pl ∈ Ξ̄ such that pj = pl even though j 6= l). For notational convenience,

we define an equivalent cycle to Ξ̄ that has unique entries as Ξ = {pkj}j=1,2,...,N where

pkj represents the kth instance of the target pj ∈ Ξ̄. Recall that we previously used

Ni to represent the number of times target i is visited in a cycle. Therefore, for

each pkj ∈ Ξ, 1 ≤ k ≤ Npj , the corresponding sequence of edges of Ξ is denoted by

ξ = {(plj−1, p
k
j)}j=1,2,...,N . For example, if V = {1, 2, 3} in G, Ξ̄ = {2, 3, 1, 3, 1, 3} is

an example cycle where its equivalent version would be Ξ = {21, 31, 11, 32, 12, 33}. In
essence, any given visiting sequence can be represented by the corresponding cycle Ξ̄

or by any of its equivalent representations ξ̄, Ξ or ξ.

Next, let us define the auxiliary target-pool of a target pj ∈ Ξ̄ as τpj =

{p1j , p2j , . . . , p
Npj

j }. The sub-cycle of a target pkj ∈ Ξ is denoted as Ξk
pj

and is defined in

Ξ starting after pk−1
j and going to pkj . For instance, in the previous example, the sub-

cycles corresponding to targets 32 and 11 are Ξ2
3 = {11, 32} and Ξ1

1 = {33, 21, 31, 11}
respectively. Similarly, ξkpj is used to denote the sequence of edges of the correspond-

ing sub-cycle Ξk
pj
. We further define wk

pj
as the total sub-cycle travel time required

to traverse the edges in ξkpj .

We next prove that, for any dwelling sequence T ,

J(Ξ̄, T) ≥ max
i∈Ξ̄

Li(t̄i), (3.32)

78

where

Li(t̄i) = gi

(

|| exp (Ait̄i)Ωss,i exp(A
T
i t̄i)

+

t̄i∫

0

exp(Ai(t̄i − τ))Qi exp(A
T
i (t̄i − τ))dτ ||

)

, (3.33)

with Ωss,i being the positive definite solution of the algebraic Riccati Equation

AiΩss,i + Ωss,iA
′
i +Qi − Ωss,iGiΩss,i = 0

and

t̄i = max
k:ik∈τi

wk
i . (3.34)

Note that wk
i can be understood as the kth revisit time of the target i ∈ Ξ̄ if no

dwell-time was spent at any target in the sub-cycle ξki .

Remark 5. The definition of t̄i in (3.34) is equivalent to max1≤k≤Ni
tkoff,i when tnon,m =

0 for all targets m and visiting instances n. In other words, t̄i is the time spent

exclusively traveling between two consecutive visits to target i given no dwell-time on

any of the targets in the visiting sequence.

The intuition behind this lower bound is that it computes the peak target co-

variance (which directly affects the cost J(Ξ̄, T) in (3.2)) as if when the target is

visited, its covariance instantaneously decreases to the steady state value. This is a

key observation as it provides a computationally efficient metric

Ĵ(Ξ̄) = max
i∈Ξ̄

Li(t̄i), (3.35)

to estimate the cost J(Ξ̄, T) of a known visiting sequence Ξ̄. As stated earlier, we

use this Ĵ(·) metric in our greedy scheme to efficiently evaluate and thus compare the

cost of different visiting sequences so as to find the one that yields the lowest proxy

for the actual cost.

79

Proposition 11. J(Ξ̄, T) ≥ maxi∈Ξ̄ Li(t̄i) holds for any dwelling sequence T and

visiting sequence Ξ̄, with Li defined as in (3.35).

Proof. From the general solution of a linear matrix Riccati equation we get that

P
k

i =

tk−1
off,i∫

0

exp(Ai(t
k−1
off,i − τ))Qi exp(A

T
i (t

k−1
off,i − τ))dτ

+ exp(Ait
k−1
off,i)P

k−1
i exp(AT

i t
k−1
off,i) (3.36)

Moreover, we note that Ω̄i(t) ≻ Ωss,i, where Ωss,i is the steady state covariance matrix

of target i when it is permanently observed. Therefore,

P
k

i ≺
toff,i∫

0

exp(Ai(t
k−1
off,i − τ))Qi exp(A

T
i (t

k−1
off,i − τ))dτ

+ exp(Ait
k−1
off,i)Ωss,i exp(A

T
i t

k−1
off,i) (3.37)

Note that if we replace toff,i by t̄i, we get the definition of Li(t̄i) in (3.32). Using

Lemma 2, we know that if t̄i ≤ max1≤k≤Ni
tkoff,i, then J(Ξ̄, T) ≥ maxi∈V Li(Ξ̄)

Note that this metric does not require the computation of dwelling times and thus

can be immediately computed for a given trajectory. Additionally, we highlight that

this metric for fast approximate cost evaluation can be used in conjunction with any

heuristic method for exploration of visiting sequences, and is not exclusively tied to

the specific heuristic we consider.

3.5.2 Possible types of modifications for a visiting sequence

As stated earlier, in each greedy iteration, we explore several modified versions of

the current visiting sequence. In particular, we use three types of cycle modification

operations (CMOs) to obtain modified cycles. Before discussing each of them, we

first introduce some notation and a lemma.

Let us denote Ξ̄ as the current cycle in a greedy iteration and Ξ as its equivalent

80

representation with unique entries and denote the respective sequences of edges ξ̄ and

ξ. We define the critical target ik ∈ Ξ as i = argmaxγ∈Ξ Ĵ(Ξ̄) and k = argmaxα∈τi wα

(i.e., the optimal i ∈ Ξ̄ in (3.32) and the optimal k ∈ {1, 2, . . . , Ni} in (3.34)) as ik∗.

The corresponding sub-cycle, the sequence of edges in this sub-cycle, and the total

sub-cycle travel time are denoted as Ξk∗
i , ξk∗i and wk∗

i , respectively.

Lemma 7. The metric Ĵ(Ξ̄) can only be reduced (improved) by modifying the sub-

cycle Ξk∗
i so that wk∗

i is decreased.

Proof. From (3.32), (3.34) and (3.33), it is clear that Ĵ(Ξ̄) = Li(w
k∗
i). According to

(3.33), Li(·) is a monotonically increasing function. Therefore, to reduce the metric

Ĵ(Ξ̄), the maximum revisit time wk∗
i should be decreased. This can only be achieved

if the corresponding sub-cycle Ξk∗
i is modified.

The above lemma implies that we only need to modify a portion of the complete

cycle Ξ̄ (the sub-cycle Ξk∗
i) to improve the metric Ĵ(Ξ̄). This result significantly

reduces the number of modified cycles that need to be explored in a greedy iteration.

We are now ready to introduce the three types of cycle modification operations shown

in Fig. 3·6.

CMO Type - I Remove an edge (lm, jn) ∈ ξk∗i and replace it with the fastest path

between targets l, j ∈ Ξ̄.

Clearly, this modification is only effective if the fastest path between targets l, j ∈
Ξ̄ is not the direct path (lm, jn) ∈ ξk∗i that we remove. In practice, this CMO is useful

in early greedy iterations - as we propose to start the greedy process with the TSP

solution, where the agent is constrained to visit each target only once. Hence, such a

TSP cycle may contain edges with high travel-time values that can be omitted if the

agent is allowed to make multiple visits to some targets.

One example where CMO Type - I has helped to reduce the Ĵ value is illustrated in

Fig. 3·7. The cycle diagrams in Fig. 3·7(b) and (c) convey the {Li(w
k
i), i

k ∈ Ξ} values

81

Figure 3·6: Three types of cycle modification operations (CMOs).

(as vertical gray colored bars) and travel-time values between targets (as circular red

colored segments) of the cycle. Each such cycle diagram also indicates: (i) the cycle

version with the unique entries Ξ, (ii) the lower bound metric value Ĵ(Ξ̄) and (iii) the

critical target ik∗.

CMO Type - II Remove an edge (lm, jn) ∈ ξk∗i such that lm 6= ik∗ and jn 6= ik∗.

Then, replace it with two edges: (lm, ik∗), (ik∗, jn).

The rationale behind this CMO is given in the following lemma that provides a

way to evaluate whether this CMO improves Ĵ(Ξ̄), without the need even to compute

the lower bound.

Lemma 8. If the travel-times between targets l,m, i ∈ Ξ̄ are such that |wl,m−wi,m| <
wl,m, then the CMO Type - II described above improves the Ĵ(Ξ̄) value.

Proof. The CMO Type - II adds an extra visit to the target ik∗ by dividing its

sub-cycle Ξk∗
i into two: say Ξk1

i and Ξk2
i . Using the triangle inequalities, it can be

shown that the corresponding new revisit times: say wk1
i and wk2

i , will be lower than

82

0 0.5 1

X

0

0.2

0.4

0.6

0.8

1
Y

1

2

3

4

5

(a) Graph G = (V, E)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

5
1

2
1

4
1

1
1

3
1

 = { 5
1
,2

1
,4

1
,1

1
,3

1
 }

(b) Initial cycle

0 0.5 1
0

0.2

0.4

0.6

0.8

1

5
1

2
1

4
1

1
1

4
2 3

1

 = { 5
1
,2

1
,4

1
,1

1
,4

2
,3

1
 }

(c) After a CMO Type - I.

Figure 3·7: An example for CMO Type - I. Here, the edge (11, 31) is
replaced by the shortest path (11, 42), (42, 31).

the previous (critical) revisit time wk∗
i . The proof is complete by observing that

Ĵ(Ξ̄) = Li(w
k∗
i) (from (3.32), (3.34), (3.33)) and Li(·) is a monotonically increasing

function.

CMO Type - III Select a target jn ∈ Ξk∗
i such that jn 6= ik∗ and insert two new

target visits: {ik∗, jn+1} immediately after it.

83

Similar to the CMO Type - II, this CMO also adds an extra visit to the critical

target ik∗.Lemma 8indicates under which conditions that this CMO can improve the

metric Ĵ(Ξ̄). An illustrative example of CMO types I and II is shown in Fig. 3·8.

0 0.5 1

X

0

0.2

0.4

0.6

0.8

1

Y

1

2

3

4

5

(a) Graph G = (V, E)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

5
1

2
1

4
1

1
1

3
1

2
2 4

2
3

2

 = { 5
1
,2

1
,4

1
,1

1
,3

1
,2

2
,4

2
,3

2
 }

(b) The Initial Cycle

0 0.5 1
0

0.2

0.4

0.6

0.8

1

5
1

2
1

4
11

1

3
1

2
2

4
2

1
2

3
2

 = { 5
1
,2

1
,4

1
,1

1
,3

1
,2

2
,4

2
,1

2
,3

2
 }

(c) After a CMO Type - II.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

5
1

2
1

4
11

1

3
1

2
2

4
2

1
2

4
3
3

2

 = { 5
1
,2

1
,4

1
,1

1
,3

1
,2

2
,4

2
,1

2
,4

3
,3

2
 }

(d) After a CMO Type - III.

Figure 3·8: Examples for CMO Type II and III. In (c), target 12 was
inserted to the initial cycle (b). In (d), targets 12, 43 were added to the
initial cycle (b).

Under these three types of CMOs, the total number of modified cycles to be

84

explored in a greedy iteration is strictly less than 3|Ξk∗
i | (where | · | is the cardinality

operator). Most importantly, as greedy iterations proceed, according to the CMO

Type - II and III discussed above, we always break the critical sub-cycle Ξk∗
i into two.

Therefore the value of |Ξk∗
i | will effectively decrease with the iterations.

3.5.3 Greedy Algorithm

To efficiently construct a visiting sequence (say Ξ̄G), we propose the greedy scheme

given in Alg. 6 (where ǫ is a positive number that can be as small as desired that

ensures that the cost improvement at each iteration is not infinitesimal). It starts

with the TSP solution and involves two sequential greedy expansion loops. In the

first loop, only the CMO Type - I is explored, and in the second loop, both CMO

Type II and III are explored in parallel. In a greedy iteration, the gain of executing

a CMO defined as

∆G = Ĵ(Ξ̄)− Ĵ(Ξ̄′) (3.38)

is explored where Ξ̄ is the current visiting sequence and Ξ̄′ is the modified visiting

sequence.

Lemma 9. The greedy algorithm given in Alg. 6 terminates after a finite number of

iterations.

Proof. The first greedy loop executes the CMO Type - I iteratively. Since it attempts

to replace edges of the TSP solution with alternative fastest paths, it will only run for

at most |ΞTSP | iterations. To prove the termination of the second greedy loop, we use

the fact that Ĵ(Ξ̄) is lower bounded: Ĵ(Ξ̄) ≥ 0. Note also that each greedy iteration

maintains the condition ∆G ≥ ǫ, which implies that Ĵ(Ξ̄) decreases monotonically

over the greedy iterations. Hence, it is clear that ∆G → 0 as greedy iterations go on,

and thus the second greedy loop will terminate.

Simulation Results We create random persistent monitoring problems by ran-

domly generating network topologies together with target parameters. Such a PM

85

Algorithm 6 Greedy Construction of a Visiting Sequence

1: Input: Network topology: G = (V , E)
2: Ξ̄← Ξ̄TSP = {TSP solution for G = (V , E)};
3: ∆G ← ǫ ;
4: while ∆G ≥ ǫ do ⊲ First greedy loop.
5: Ξ̄′ ← argmax

Ξ̄′

∆Ĵ(Ξ̄′|Ξ̄, I);

6: ∆G ← Ĵ(Ξ̄)− Ĵ(Ξ̄′);
7: Ξ̄← Ξ̄′;

8: ∆G ← ǫ;
9: while ∆G ≥ ǫ do ⊲ Second greedy loop.
10: Ξ̄′ ← argmax

Ξ̄′, Y ∈{II,III}
∆Ĵ(Ξ̄′|Ξ̄, Y)

11: ∆G ← Ĵ(Ξ̄)− Ĵ(Ξ̄′);
12: Ξ̄← Ξ̄′;

13: Return: Ξ̄G ← Ξ̄ ⊲ Greedily constructed cycle.

setup is shown in Fig. 3·9(a). Figures 3·9(b)-(e) show the evolution of the greedy

visiting sequence Ξ̄ and its cost (in terms of the metric Ĵ(Ξ̄)) over three consecutive

greedy iterations. Another two randomly generated persistent monitoring problems

together with their respective high-performing greedily constructed visiting sequences

are shown in Figs. 3·10 and 3·11.

3.5.4 Spectral Clustering Based Graph Partitioning

In order to partition the graph G = (V , E), we use the well-known spectral clustering

technique (von Luxburg, 2007) mainly due to its advantages of: (i) simple imple-

mentation, (ii) efficient solution and (iii) better results compared to conventional

partitioning techniques like the k-means algorithm (von Luxburg, 2007). In partic-

ular, the spectral clustering method derives the graph partitions based on a set of

inter-target similarity values {sij ∈ R≥0 : i, j ∈ V} so two targets that have high sim-

ilarity will end up belonging to the same partition and two targets with low similarity

to different ones.

86

Similarity Values In persistent monitoring, a similarity value sij should represent

the effectiveness of covering both targets i and j in V using a single agent (We-

likala and Cassandras, 2020). Specifically, we define sij using the Gaussian Similarity

Function

sij = exp

(

−|d(i, j)|
2

2σ2

)

. (3.39)

where d : V×V → R≥0 is a disparity metric between two targets and σ is a parameter

that controls how rapidly the similarity sij falls off with the disparity d(i, j). Accord-

ing to (3.39), note that the similarity and disparity metrics are inversely related. We

next focus on defining an appropriate disparity metric for the considered persistent

monitoring paradigm.

Remark 6. As a candidate for the disparity metric d(i, j), neither using the phys-

ical distance nor the shortest path distance (between the targets i and j) provides

a reasonable characterization to the underlying persistent monitoring aspects of the

problem - as such metrics disregard target parameters as well as agent behaviors when

monitoring targets.

Considering the above remark, we propose a novel disparity metric named covering

cycle cost (CCC):

d(i, j) = min
Ξ̄: i,j∈Ξ̄

Ĵ(Ξ̄), (3.40)

with Ĵ(Ξ̄) defined as in (3.35). The intuition behind this metric is that, given two

targets, the similarity is given by the lowest value of the lower bound (that serves as a

proxy for the actual post) among all the closed path that contains these two targets.

We also name the argmin of (3.40) as the optimal covering cycle (OCC) and denote

it as Ξ̄∗
ij. Simply, the OCC Ξ̄∗

ij is the best way to cover targets i, j ∈ V in a single

cycle so that the corresponding cycle metric Ĵ(·) is minimized. Therefore, if the CCC

value is higher for a certain target pair, it implies that it is not effective to cover both

those targets in a cycle (in other words, by a single agent). Thus, it is clear that

the disparity metric d(i, j) defined in (3.40) provides a good characterization of the

87

underlying persistent monitoring aspects of the problem.

Due to the combinatorial nature of the computation of the metric in (3.40), we

use a greedy technique to obtain a sub-optimal solution for it. In particular, given a

target pair i, j ∈ V , we start with a candidate cycle Ξ̄ = {i} which is then iteratively

expanded (by adding external targets in V\Ξ̄) in a greedy manner (using the greedy

expansion approach similar to the ones described in Sec. 3.5) until it includes the

target j. The terminal state of the candidate cycle Ξ̄ is then considered as the OCC

Ξ̄∗
ij. The same procedure is next used to greedily construct the OCC Ξ̄∗

ji. Finally, the

corresponding CCC value, i.e., the disparity metric d(i, j) in (3.40) is estimated as:

d(i, j) = 1
2
(Ĵ(Ξ̄∗

ij) + Ĵ(Ξ̄∗
ji)).

Note, however, that for the computation of the similarity metric, the set of targets

that will be part of Ξ is not defined a priori. Thus, the greedy expansion process

considered here is slightly different from the one in Sec. 3.5. Therefore, for the sake

of completeness, we now provide the details of the iterative greedy cycle expansion

mechanism considered in this section. Take Ξ̄ as the current version of the candidate

cycle in a certain greedy iteration. Here ξ̄ (similarly to ξ) represents the corresponding

sequence of edges. Note however that, unlike ξ, the sequence Ξ̄ may not contain all

the targets in V (i.e., |V\Ξ̄| > 0). There are three types of cycle expansion operations

(CEOs) as shown in Fig. 3·12 that can be used to expand the current cycle Ξ̄ so that

it includes an external target i ∈ V\Ξ̄.

CEO Type - I Replace an edge (l, j) ∈ ξ̄ with two edges: {(l, i), (i, j)}.

CEO Type - II Select a target j ∈ Ξ̄ and inset two target {i, j} following j in the

sequence Ξ.

88

CEO Type - III Select two targets l, j ∈ Ξ̄ such that removing all the intermediate

targets between them will not reduce the number of distinct targets in Ξ̄.Then replace

those intermediate targets with the external target i.

In this greedy algorithm, the gain of executing a CEO Type - Y where Y ∈
{I, II, III} defined as

∆Ĵ(Ξ̄′, j|Ξ̄, Y) = Ĵ(Ξ̄)− Ĵ(Ξ̄′) (3.41)

is exploited to chose the most suitable: (i) CEO type Y , (ii) external target j and

(iii) expanded cycle Ξ̄′ (here, Ξ̄ stands for the current cycle). The exact form of the

greedy algorithm is provided in Alg. 7. In all, we use Alg. 7 together with (3.39) to

compute the similarity values: sij, ∀i, j ∈ V between different targets in the network

G.

Algorithm 7 The greedy cycle expansion algorithm for the computation of disparity
values {d(i, j) : i, j ∈ V}
1: Input: Network of targets G = (V , E)
2: d(i, j)← 0, ∀i, j ∈ V ;
3: for i ∈ V do ⊲ For each start node.
4: Ξ̄← {i}; ⊲ Initial cycle.
5: while |V\Ξ̄| > 0 do ⊲ Add all external targets.
6: [Ξ̄′, j]← argmax

Ξ̄′, j∈V\Ξ̄, Y ∈{I, II, III}
∆Ĵ(Ξ̄′, j|Ξ̄, Y); ⊲ The expanded cycle and

the added external target.
7: Ξ̄′ ← argmax

Ξ̄,Y ∈{II, III}
∆Ĵ(Ξ̄|Ξ̄′, Y) ⊲ An optional further refinement for Ξ̄′ step

based on CMOs.
8: d(i, j) = d(i, j) + 1

2
Ĵ(Ξ̄′);

9: Ξ̄← Ξ̄′ ⊲ Update the current cycle.

10: Return {d(i, j) : i, j ∈ V};

3.6 Extension to Multi-Agent Problems

In this section, we extend the developed single-agent persistent monitoring solution to

handle multi-agent systems. Let us denote the set of agents asA = {1, 2, . . . , N}. The

89

key idea here is to partition the target network G into N sub-graphs and then assign

individual agents to each of those sub-graphs. This “divide and conquer” approach

was motivated by two main reasons: (i) to uphold the “no target sharing” assumption

made early on (due to the fact that sharing is ineffective (Welikala and Cassandras,

2021a; Welikala and Cassandras, 2020)) and (ii) to maintain the applicability of the

developed single-agent persistent monitoring solution in previous sections. The main

steps of the proposed multi-agent persistent monitoring solution are outlined in Alg.

8. In it, to execute Steps 3 and 5, we respectively use the techniques developed in

Sections 3.5 and 3.4 (i.e., Alg. 6 and 4). The details of (the remaining) Steps 2 and

4 are provided in the following two subsections.

Algorithm 8 The multi-agent persistent monitoring solution.

1: Inputs: The network of targets G = (V , E) and agents A.
2: Partition the given graph G into N sub-graphs {Ga}a∈A.
3: Find a high-performing cycle Ξ̄a on each sub-graph Ga.
4: Refine the sub-graphs and respective cycles: {Ga, Ξ̄a}a∈A.
5: Compute the optimal dwelling sequence T a corresponding to each visiting se-

quence Ξ̄a.

Spectral Clustering Algorithm In spectral clustering, the Weighted Adjacency

Matrix W , the Degree Matrix D, and the Laplacian Matrix L plays a main role (von

Luxburg, 2007). In our case, W = S = [sij](i,j)∈V (i.e., the Similarity Matrix), D =

diag(d1, d2, · · · , dM) where di =
∑M

j=1 sij, and L = D−W . Similarly to (Welikala and

Cassandras, 2020), we specifically use the normalized spectral clustering technique

proposed in (Jianbo Shi and Malik, 2000) where the normalized Laplacian Lrw =

D−1L is used instead of L.

Algorithm 9 outlines the used normalized spectral clustering method. It gives

the target clusters V1,V2, . . . ,VN where each Va, a ∈ A is then used to form a sub-

graph Ga = (Va, Ea) out of the given graph G = (V , E) by selecting Ea ⊆ E as the

90

set of intra-cluster edges taken from E . Note that the set of inter-cluster edges (i.e.,

E\ ∪a∈A Ea) are now not included in any one of these sub-graphs.

Algorithm 9 Normalized Spectral Clustering Algorithm (Jianbo Shi and Malik,
2000)

1: Input: Normalized Laplacian Lrw.
2: Compute first N eigenvectors of Lrw as: u1, u2, · · · , uN .
3: Form U ∈ R

M×N using u1, u2, · · · , uN as its columns.
4: For i = 1, · · · ,M, let yi ∈ R

N be the ith row of U .
5: Cluster the data points {yi}i=1,··· ,M using the k-means algorithm into N clusters

as: C1, C2, · · · , CN .
6: Return {V1,V2, . . . ,VN} with each V i = {j : yj ∈ Ci}

Once the sub-graphs are formed, we follow Step 4 of Alg. 8 by executing the

greedy cycle construction procedure (i.e., Alg. 6) for each sub-graph. The resulting

visiting sequence on a sub-graph Ga is denoted as Ξ̄a and is assumed to be assigned

(arbitrarily) to an agent a ∈ A.

Simulation Results Figure 3·13 shows a few intermediate results obtained when

executing Alg. 7 (to compute disparity values according to (3.40)) for an example

target network.

Figure 3·14(a) shows an example target network with 15 targets. Assuming that

three agents A = {1, 2, 3} are to be deployed to monitor these targets, Fig. 3·14(b)
shows the generated sub-graphs when Alg. 9 is used. The yellow contours indicate

the cycles constructed within each sub-graph (using Alg. 6) for each agent to traverse.

Figs. 3·14(c)-(e) provide details of each agent’s cycle. In these figures, notice that

Ĵ(Ξ̄1) = 9.739, Ĵ(Ξ̄2) = 10.113 and Ĵ(Ξ̄1) = 8.951, which implies that the worst Li

(3.32) value over the network is 10.113 (by sub-cycle Ξ̄1
7 of target instant 7

1 on agents

2’s cycle).

We next use the same problem setup in Fig. 3·14(a) to highlight the importance

of the proposed disparity metric in (3.40). Figure 3·15(a) shows the clustering result

91

obtained when the similarity values required in Alg. 9 are computed using a shortest

path distance based disparity metric (instead of (3.40)). Observing the cycle assigned

for the Agent 1 shown in Fig. 3·15(b), it is evident that now the worst Li (3.32) value

over the network is 21.079 (i.e., a 108.4% degradation from the use of (3.41)).

3.6.1 Target-exchange scheme (TES) used to refine sub-graphs

Practically, it is preferred to have the persistent monitoring load balanced across all

the deployed agents. In other words, we prefer to have sub-graphs {Ga}a∈A that have a

numerically closer set of visiting sequence metrics {Ĵ(Ξ̄a)}a∈A. As a result of the used

disparity metric in (3.40), the spectral clustering algorithm (Alg. 9) often directly

provides such a balanced set of sub-graphs (e.g., like in Fig. 3·14(b) as opposed to

Fig. 3·15(a)).
However, to further enforce this requirement, we propose a target exchange scheme

(TES) between sub-graphs that attempts to balance the sub-graphs by minimizing

the metric:

Ĵ(G) = max
a∈A

Ĵ(Ξ̄a). (3.42)

Note that (3.42) can be simplified using (3.35), (3.34) and (3.32) into:

Ĵ(G) = max
a∈A

max
i∈Va

Li

(

max
k:ik∈τi

wk
i

)

. (3.43)

According to (3.43), note that Ĵ(G) is determined by a specific (critical) target

ik ∈ Ξa where the critical i, k, a are the optimal arguments of the three optimization

problems involved in the R.H.S. of (3.43). Analogous to Lemma 7, it is clear that

the only way to decrease Ĵ(G) is by modifying the sub-cycle corresponding to this

particular critical target instant ik ∈ Ξ̄a. Let us denote this critical sub-cycle as Ξk,a
i

and note that it is a segment of the cycle Ξ̄a constructed on the sub-graph Ga. A such

feasible sub-cycle modification is to remove a target j ∈ Ξk,a
i from agent a’s trajectory

92

(i.e., from sub-graph Ga). Clearly, one of the neighboring agents b ∈ A\{a} will have
to annex this removed target j into its cycle Ξ̄b.

Upon such a target exchange between sub-graphs Ga and Gb, typically, both cycles

Ξ̄a and Ξ̄b should be re-computed (using Alg. 6) respectively on the updated sub-

graphs Ga and Gb. Since Alg. 6 involves solving a TSP problem, we only use it when

the optimal target exchange, i.e., the optimal target j∗ ∈ Ξk,a
i to remove and the

optimal neighbor b∗ ∈ A\{a} to receive, is known. To find this optimal b∗ and j∗, we

again use a computationally efficient greedy scheme as follows.

First, we estimate the gain of annexing an external target j to a cycle Ξ̄b as

∆ĴA(j, Ξ̄
b) where

∆ĴA(j, Ξ̄
b) = max

Ξ̄b′ , Y ∈{I, II, III}
∆Ĵ(Ξ̄b′ , j|Ξ̄b, Y), (3.44)

where ∆Ĵ(Ξ̄b′ , j|Ξ̄b, Y) is given in (3.41) and I, II, III} refer to the three CEOs con-

sidered in this chapter.

Next, we estimate the gain of removing a target j from a cycle Ξ̄a as ∆ĴR(j, Ξ̄
a)

where

∆ĴR(j, Ξ̄
a) = Ĵ(Ξ̄a)− Ĵ(Ξ̄a#), (3.45)

where Ξ̄a# represents the contracted version of the cycle Ξ̄a. This contracted version

is obtained by following the steps: (i) remove the entries of j from Ξ̄a, (ii) bridge

the gaps created by this removal using corresponding fastest paths and (iii) refine the

obtained cycle (say Ξ̄a1) using CMOs (3.38). In particular,

Ξ̄a# = argmin
Ξ̄a′ , Y ∈{II,III}

Ĵ(Ξ̄a′ |Ξ̄a1, Y). (3.46)

The final step of determining the optimal target exchange: b∗, j∗ exploits

∆ĴA(j, Ξ̄
b) and ∆ĴR(j, Ξ̄

a) functions defined respectively in (3.44) and (3.45). In

93

particular, b∗ and j∗ are:

[b∗, j∗] = argmax
b∈A\{a}, j∈Ξa,k

i

∆ĴA(j, Ξ̄
b) + ∆ĴR(j, Ξ̄

a). (3.47)

Continuing the previous discussion, upon finding this optimal target exchange,

we modify the sub-graphs Ga and Gb∗ appropriately and use Alg. 6 to re-compute

the respective cycles Ξ̄a and Ξ̄b∗ on them. However, we only commit to this target

exchange if the resulting Ĵ(G) in (3.42) is better (i.e., smaller) than before. Clearly,

this target exchange process can be iteratively executed until there is no feasible

target exchange that results in an improved Ĵ(G) metric.

The proposed TES above is distributed as it only involves one agent (sub-graph)

and its neighbors at any iteration. Further, the proposed TES is convergent due to the

same arguments made in the proof of Lemma 9. Finally, apart from the fact that this

TES leads to a balanced set of sub-graphs, it also makes the final set of sub-graphs

independent of the clustering parameter σ in (3.39) that we have to choose.

Simulation Results Figures 3·16 and 3·17 illustrate the operation and the advan-

tages of the proposed TES for two different persistent monitoring problems.

Finally, we use the randomly generated persistent monitoring problems shown

in Fig. 3·18 to compare the performance (in terms of the cost J in (3.2)) of persis-

tent monitoring solutions: (i) the minimax approach proposed in this chapter (labeled

“Minimax”), (ii) the event-driven receding horizon control approach proposed in (We-

likala and Cassandras, 2021a) (labeled “RHC”) and (iii) the threshold-based basic

distributed control approach proposed in (Welikala and Cassandras, 2021a) (labeled

“BDC”). It should be highlighted that, compared to the minimax solution, both RHC

and BDC solutions: (i) are distributed on-line, (ii) can only handle one-dimensional

target state dynamics and (iii) have the objective of minimizing the average overall

94

target error covariance observed over a finite period. Despite these structural differ-

ences, it is important to note that all three solutions have the same ultimate goal of

maintaining the target error covariances as low as possible.

In particular, Fig. 3·18(a) and 3·18(b) show the initial conditions (i.e., at t = 0) of

the two persistent monitoring problem setups considered. After executing the agent

controls given by Minimax, RHC and BDC approaches until t = 500, the cost value

J in (3.2) was evaluated as the maximum target error covariance value observed in

the period t ∈ [450, 500]. The observed cost values are summarized in Tab. 3.3. The

superiority of the Minimax approach proposed in this chapter is evident from the

reported simulation results in Tab. 3.3. We note however that the other methods in

Tab. 3.3 were not designed for the specific cost metric we consider in this chapter

and, to the best of the authors knowledge, there is no algorithm in the literature

designed specifically for the cost function we consider there.

Table 3.3: Performance comparison of different agent control methods
under different persistent monitoring problem setups

Cost J in (3.2)
Agent Control Method

Minimax BDC (Welikala and Cassandras, 2021a) RHC (Welikala and Cassandras, 2021a)

Problem

Configuration

1 40.23 54.47 56.65

2 46.17 456.55 110.87

95

0 0.5 1

X

0

0.2

0.4

0.6

0.8

1

Y

1

2

3

4

5

6

7

(a) Graph G = (V, E)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

6
1

3
1

1
1

5
1

7
1

4
1

2
1

 = { 6
1
,3

1
,1

1
,5

1
,7

1
,4

1
,2

1
 }

(b) Initial Cycle: Ξ̄TSP

0 0.5 1
0

0.2

0.4

0.6

0.8

1

6
1

3
1

1
16

2

5
1

7
1

4
1

2
1

 = { 6
1
,3

1
,1

1
,6

2
,5

1
,7

1
,4

1
,2

1
 }

(c) Intermediate Cycle 1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

6
11
1

3
1

1
26

2

5
1

7
1

4
1

2
1

 = { 6
1
,1

1
,3

1
,1

2
,6

2
,5

1
,7

1
,4

1
,2

1
 }

(d) Intermediate Cycle 2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

6
11
1

3
1

1
26

21
3

5
1

7
1

4
1

2
1

 = { 6
1
,1

1
,3

1
,1

2
,6

2
,1

3
,5

1
,7

1
,4

1
,2

1
 }

(e) Greedy Cycle: Ξ̄G

Figure 3·9: Example 1: The Greedy Cycle Construction Process.

96

0 0.5 1

X

0

0.2

0.4

0.6

0.8

1

Y

1

2

3

4

5

6

7

(a) Graph G = (V, E)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1
1

2
1

3
1

5
1

4
1

6
1

4
2

7
1

 = { 1
1
,2

1
,3

1
,5

1
,4

1
,6

1
,4

2
,7

1
 }

(b) Greedy Cycle: Ξ̄G

Figure 3·10: Example 2: A Constructed Greedy Cycle.

0 0.5 1

X

0

0.2

0.4

0.6

0.8

1

Y

1

2

3

4
5

6

7

(a) Graph G = (V, E)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1
1

3
1

6
1

2
1

6
2

5
14

1

7
1

 = { 1
1
,3

1
,6

1
,2

1
,6

2
,5

1
,4

1
,7

1
 }

(b) Greedy Cycle: Ξ̄G

Figure 3·11: Example 3: A Constructed Greedy Cycle.

97

Figure 3·12: Three types of cycle expansion operations (CEOs).

98

0 0.5 1

X

0

0.2

0.4

0.6

0.8

1

Y

1

2
3

4

5

6

7

(a) Graph G

0 0.5 1

X

0

0.2

0.4

0.6

0.8

1

Y

1

2
3

4

5

6

7

(b) Ĵ(Ξ̄′) = 11.3

0 0.5 1

X

0

0.2

0.4

0.6

0.8

1

Y

1

2
3

4

5

6

7

(c) Ĵ(Ξ̄′) = 19.5

0 0.5 1

X

0

0.2

0.4

0.6

0.8

1

Y

1

2
3

4

5

6

7

(d) Ĵ(Ξ̄′) = 42.1

0 0.5 1

X

0

0.2

0.4

0.6

0.8

1

Y

1

2
3

4

5

6

7

(e) Ĵ(Ξ̄′) = 46.6

0 0.5 1

X

0

0.2

0.4

0.6

0.8

1

Y

1

2
3

4

5

6

7

(f) Ĵ(Ξ̄′) = 47.5

0 0.5 1

X

0

0.2

0.4

0.6

0.8

1

Y

1

2
3

4

5

6

7

(g) Ĵ(Ξ̄′) = 49.1

Figure 3·13: Greedy cycle expansion process for the computation of
disparity values w.r.t. target 1: {d(1, j) : j ∈ V} using Alg. 7. The red
contours in (b)-(g) show the expanded cycle Ξ̄′ after executing Steps
5-9 of Alg. 7 with i = 1.

99

0 0.5 1

X

0

0.2

0.4

0.6

0.8

1

Y

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

(a) Graph G

0 0.5 1

X

0

0.2

0.4

0.6

0.8

1

Y

5

6

11

12

1

3

4

7

8

9

10

2

13

14

15

(b) (Ga, Ξ̄a) : a ∈ A

0 0.5 1
0

0.2

0.4

0.6

0.8

1

11
1

6
1

5
1

11
2

12
1

 = { 11
1
,6

1
,5

1
,11

2
,12

1
 }

(c) Agent 1: Ξ̄1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

7
19
17
2

3
14

1

10
1

1
1

8
1

 = { 7
1
,9

1
,7

2
,3

1
,4

1
,10

1
,1

1
,8

1
 }

(d) Agent 2: Ξ̄2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

15
1

13
1

15
2

14
1

2
1

 = { 15
1
,13

1
,15

2
,14

1
,2

1
 }

(e) Agent 3: Ξ̄3

Figure 3·14: Clustering results and the greedy cycles constructed in
each sub-graph for individual agents.

100

0 0.5 1

X

0

0.2

0.4

0.6

0.8

1

Y

3

4

5

6

79

11

12

2

13

14

15

1
8

10

(a) (Ga, Ξ̄a) : a ∈ A

0 0.5 1
0

0.2

0.4

0.6

0.8

1

11
1

6
19

1
7

1

4
1

3
1

12
1

11
2

5
1

 = { 11
1
,6

1
,9

1
,7

1
,4

1
,3

1
,12

1
,11

2
,5

(b) Agent 1: Ξ̄1

Figure 3·15: Clustering results (for the graph in Fig. 3·14(a)) when
the shortest path distance is used as the disparity metric.

101

0 0.5 1

X

0

0.2

0.4

0.6

0.8

1

Y

12

3

4

5

6

7

8

9

10

11

12

(a) Graph G = (V, E)

0 0.5 1

X

0

0.2

0.4

0.6

0.8

1

Y
1 48

7

6

2

3

5

9

10

11

12

(b) Initial sub-graphs and cycles

0 0.5 1

X

0

0.2

0.4

0.6

0.8

1

Y

2 1 48

7

6

3

5

9

10

11

12

(c) After target exchange 1

0 0.5 1

X

0

0.2

0.4

0.6

0.8

1

Y

2 1 48

9

7

6

3

5

10

11

12

(d) After target exchange 2

Figure 3·16: Target Exchange Scheme (TES) Example 1. Initial set
of sub-graphs (in (b)): Ĵ(G) = 16.3 = max{16.3, 6.9, 9.7}. Final set
of sub-graphs (in (d)): Ĵ(G) = 11.6 = max{11.2, 11.6, 10.9} (Balanced
and improved by 28.8%).

102

0 0.5 1

X

0

0.2

0.4

0.6

0.8

1

Y

1

2

3

4

5

6

7

8

9

10

11

12

(a) Graph G = (V, E)

0 0.5 1

X

0

0.2

0.4

0.6

0.8

1

Y

2

4

5
10

12

3

6

7

8

11

1

9

(b) Initial sub-graphs

0 0.5 1

X

0

0.2

0.4

0.6

0.8

1

Y

7

2

4

5
10

12

3

6

8

11

1

9

(c) After target exchange 1

0 0.5 1

X

0

0.2

0.4

0.6

0.8

1

Y

8

7

2

4

5
10

12

3

6
11

1

9

(d) After target exchange 2

0 0.5 1

X

0

0.2

0.4

0.6

0.8

1

Y

8

7

2

5
10

12

3

6
11 4

1

9

(e) After target exchange 3

Figure 3·17: Target Exchange Scheme (TES) Example 2. Initial set
of sub-graphs (in (b)): Ĵ(G) = 12.3 = max{7.2, 12.3, 4.4}. Final set
of sub-graphs (in (e)): Ĵ(G) = 8.3 = max{7.7, 8.3, 5.6} (Balanced and
improved by 32.5%).

103

(a) Problem Configuration 1 (b) Problem Configuration 2

Figure 3·18: The persistent monitoring problem setups used in the
performance comparison (at the initial condition).

104

Chapter 4

Discrete Time Formulation

In this chapter, we approach the problem from a discrete time perspective. This

different perspective complements the work presented in the previous chapters, since

it allows us to approach a richer class of problem formulations. Note, however, that

the fact that the problem is in discrete time does not allow for fine design of dwelling

times and, thus, we cannot take advantage of properties of optimal policies like we

did in the previous chapter. Instead, we again approach the PM problem as an

optimization problem and solve it directly. However, instead of basing on gradient-

descent approaches, we formulate the Persistent Monitoring roblem as a semidefinite

program (SDP). Thus, we can take advantage of state of the art SDP solvers, that

are usually based on interior point methods that achieve polynomial-time convergence

(MOSEK ApS, 2019). This formulation is a bit more flexible than the one presented

in Chapter 3, allowing for sensing when the target-agent distance is not zero and

maintaining a continuous environment. Additionally, while we use a less flexible

model than the one presented in Chapter 2, our proposed solution in this chapter

is able to go beyond the local optimality discussed in that chapter. In terms of

computational effort, the algorithm discussed in this chapter is a middle ground

between the (relatively) cheap one in Chapter 3 and the expensive gradient-based

solution in Chapter 2. The results in this chapter have previously been published in

(Pinto et al., 2021a).

105

4.1 Discrete Time Model

In this chapter, we use the following discrete time model for the targets’ internal

states:

φ∆,i(k + 1) = A∆,iφ∆,i(k) + w∆,i(k), (4.1a)

z∆,i(k) = H∆,i(k)φ∆,i(k) + v∆,i(k), (4.1b)

where the letter index ∆ indicates the discrete time nature of that variable. As a

natural extension of the continous time version, we assume that w∆,i(k) and v∆,i(k) are

zero mean, mutually independent white Gaussian processes with constant covariance

matrices Q∆,i and R∆,i, respectively.

In this chapter again we assume that only one agent is available. Note that the

divide and conquer approaches in Chap. 3 could be easily extended to also take into

consideration this discrete time model. Moreover, we assume the following dynamics

for the agent:

s∆ = s∆(k) + u∆,k, ‖u∆,k‖ ≤ umax, (4.2)

and the observation model

H∆,i(k) =
√

γ∆,i(k)H∆,i,max, γ∆,i(k) =







(

1− (s∆(k)−xi)
2

r2i

)

, ‖s∆(k)− xi‖ ≤ ri,

0, otherwise.

(4.3)

This particular structure of H∆,i(k) captures the fact that the power of the signal de-

cays as the agent moves farther from the target, while the noise power stays constant.

If the distance between agent and target is larger than rj, the intensity of the signal

is zero, which is equivalent to not sensing at all. The particular quadratic decay was

chosen due to the fact that it can be easily incorporated into an SDP.

Analogously to the continuous time case, the optimal estimator is a Kalman filter

106

and we restrict ourselves to periodic trajectories. The goal is to minimize the infinite

horizon uncertainty, and we expect that the covariance matrix will converge to a

unique (positive definite) limit cycle k as goes to infinity. In order to ensure that this

convergence will indeed take place for trajectories where all the targets are visited,

we make the following natural assumptions:

Assumption 4. The pair (A∆,i, H∆,i,max) is observable, for every i ∈ {1, ...,M}.

Assumption 5. Q∆,i, R∆,i and the initial covariance matrix Σi(0) are positive defi-

nite, for every i ∈ {1, ..., N}.

Denoting Σi(k) as the covariance matrix of the Kalman filter estimator, the L-2
cost is then defined as:

C = lim
M→∞

1

M

M∑

m=1

N∑

i=1

tr(Σi(m)) =
1

τ

τ∑

k=1

N∑

i=1

tr(Σ̄i(k)), (4.4)

where τ is the period of the discrete time trajectory and Σ̄i is the steady state co-

variance matrix.

4.2 An Optimization Approach for Computing the Infinite

Horizon Cost

In order to jointly optimize the trajectory and compute the infinite horizon cost using

SDPs, we write the Kalman filter in a different format, known as the information filter.

We first briefly recall the relation between the Kalman filter and the information filter

equations and then we show how to compute the infinite horizon cost of a schedule

(i.e. periodic trajectory) using an SDP that solves the information filter equations.

107

Information Filter

Recal that the Kalman Filter equations can be written in two steps (prediction and

update) (Thrun, 2002). The covariance update in the prediction is given by

Σi(k|k − 1) = A∆,iΣi(k − 1|k − 1)A∆,i
T +Q∆,i (4.5)

and in the update step by

Σi(k|k) = Σi(k|k − 1)− Σi(k|k − 1)HT
∆,i(k)

× (H∆,i(k)Σi(k|k − 1)HT
∆,i(k) +R∆,i)

−1H∆,i(k)Σi(k|k − 1) (4.6)

where Σi(k|k) = Σi(k) and Σi(k|k−1) are the covariances at time k using information

up to time k and k−1 respectively. For details, see, e.g. (Anderson and Moore, 2012;

Thrun, 2002).

Under Assumption 5, we know that the covariance matrices Σi(k|k−1) and Σi(k|k)
are positive definite. Let us define Pi(k|k−1) = Σ−1

i (k|k−1) and Pi(k|k) = Σ−1
i (k|k).

Using the matrix inversion lemma (Thrun, 2002) in the prediction step (Thrun, 2002),

we know that

Pi(k|k − 1) = Q−1
i −Q−1

i A∆,i(Q
−1
∆,i + AT

∆,iPi(k − 1|k − 1)A∆,i)
−1AT

∆,iQ
−1
∆,i. (4.7)

Analogously, using the matrix inversion lemma on the update step leads to

Pi(k|k) = Pi(k|k − 1) +HT
∆,i(k)R∆,iH∆,ii(k). (4.8)

Merging both steps, we get the following recursion:

Pi(k|k) = Q−1
∆,i +HT

∆,i(k)R∆,iH∆,i(k)

−Q−1
∆,iA∆,i(Q

−1
∆,i + AT

∆,iPi(k − 1|k − 1)A∆,i)
−1AT

∆,iQ
−1
∆,i, (4.9)

108

which is the well known information filter recursion (Anderson and Moore, 2012) that

we will use from this point forward in the chapter. The information filter is optimal,

since it is simply a rearrangement of the Kalman filter equations, where instead of

propagating directly the covariance, the inverse of the covariance is propagated.

Cyclic Schedules and the algebraic Riccati equation

In this subsection, we discuss one method for computing the steady state covariance

matrix Σ̄i(k). We pick this specific method due to the fact that it can be easily

integrated in the SDP framework that we will explore in the next subsection. We

take an approach similar to (Fujimoto et al., 2016), where the steady state covariance

is computed using a single augmented algebraic Riccati equation (ARE). We point

out that we cannot directly use the results in (Fujimoto et al., 2016) because they use

the Kalman filter in its standard form and not the information version. In order to

move to the ARE formulation, we define the following augmented covariance P̃i,k =

diag(P̄i(k), ..., P̄i(k+τ−1)) and augmented parameters Λ̃i = diag(A∆,i, ..., A∆,i), Ψ̃i =

diag(Q∆,i, ..., Q∆,i), H̃i,k = diag(H∆,i(k), ..., H∆,i(k+τ−1)), R̃i = diag(R∆,i, ..., R∆,i).

The recursion in (4.9) can be rewritten in terms of the augmented states as:

P̃i,k = Ψ̃−1
i + H̃T

i,kR̃iH̃i,k − Ψ̃−1
i Λ̃i(Ψ̃

−1
i + Λ̃T

i P̃i,k−1Λ̃i)
−1Λ̃T

i Ψ̃
−1
i . (4.10)

For ensuring periodicity, we require that Pi(k + τ) = Pi(k), therefore,

Pi,k+1 = JPi,kJ
T , J =

[
0(N−1)Li×Li

ILi×Li

I(N−1)Li×(N−1)Li
0P×(N−1)Li

]

. (4.11)

Defining Q̃−1
i = (JTdiag(Q∆,i, ..., Q∆,i)J)

−1 and Ãi = J−Tdiag(A∆,i, ..., A∆,i) and

rearraging (4.10) we get the following algebraic Riccati equation for computing P̃i,k

for each of the targets i:

Q̃−1
i − P̃i,k + H̃T

i,kR̃iH̃i,k − Q̃−1
i Ãi(P̃i,k + ÃT

i Q̃
−1
i Ãi)

−1ÃT
i Q̃

−1
i = 0. (4.12)

109

Solving the ARE as an SDP

Even though the most efficient methods for solving AREs do not rely on SDPs, in

the path for jointly solving the ARE and optimizing the trajectory, we first describe

how to cast the solution of the ARE as an SDP. This will allow us to benefit from

the efficient solvers available for SDPs and from their convexity properties in order to

efficiently approach the persistent monitoring problem. Moving in this direction, we

first introduce a relaxed version of (4.12), where equality is replaced by inequality,

with the goal that, in the optimal solution of the optimization, the constraint will be

tight and equality will hold:

Q̃−1
i − Πi + H̃T

i,kR̃iH̃i,k − Q̃−1
i Ãi(Πi + ÃT

i Q̃
−1
i Ãi)

−1ÃT
i Q̃

−1
i < 0, (4.13)

where < 0 denotes that the matrix is positive semi-definite and Πi is a variable for

which we want Πi = P̃i,k as in (4.12) in the optimal solution of the optimization.

Using the Schur complement (Balakrishnan and Vandenberghe, 1995), this inequality

can be written as:

[
Q̃−1

i − Πi + H̃T
i,kR̃iH̃i,k Q̃−1

i Ãi

ÃT
i Q̃

−1
i Πi + ÃT

i Q̃
−1
i Ãi

]

< 0. (4.14)

We also define an upper bound Γi on the covariance matrix Γi < Πi, which in the

optimal solution will coincide with the covariance matrix. Using Schur’s complement,

this upper bound can be expressed as:

[
Γi I
I Πi

]

< 0. (4.15)

Now, we show that using an SDP, we can compute the exact solution of the

information filter and that the relaxations we proposed will indeed be tight in an

optimal solution. Moreover, we show that the cost function of the optimization is

110

equal to the trace of the augmented steady state covariance matrix. Inspired by

(Balakrishnan and Vandenberghe, 1995), where it is shown that the LQR Riccati

equation can be solved as an SDP, we give the following proposition:

Proposition 12. If the pair (Ãi, H̃i,k) is observable and Qi and Ri are positive defi-

nite, then the optimal solution of the SDP

min
Γi,Πi

tr(Γi)

s.t. (4.14), (4.15), Γi, Πi < 0.
(4.16)

is such that Π∗
i = P̃i,k is a solution of the ARE (4.12) and Γ∗

i = (Π∗
i)

−1.

Proof. First we show that Slater’s condition (Balakrishnan and Vandenberghe, 1995)

is satisfied on the dual problem. The dual of this SDP is:

minimize
Z, Y

tr
(

ZM+ Y
[
Γi 0
0 Πi

])

subject to − Z11 + Z22 + Y22 = 0,

Y11 = I,

Z, Y < 0,

(4.17)

where

Z =

[
Z11 Z12

ZT
12 Z22

]

, Y =

[
Y11 Y12

Y T
12 Y22

]

,

M =

[
Q̃−1

i + H̃T
i,kR̃iH̃i,k Q̃−1

i Ãi

ÃT
i Q̃

−1
i ÃT

i Q̃
−1
i Ãi

]

.

If we pick Y12 = 0, Y11 = 0 and Z11 ≻ Z22 ≻ 0, then Z ≻ 0 and Y ≻ 0 (i.e. strictly

positive definite), and Y and Z are feasible, therefore the dual is strictly feasible. On

top of that, given that the system is observable and Qi and Ri are full rank, then

(4.12) has a unique positive definite solution (Bittanti et al., 2012). Therefore, the

primal is feasible since Πi = P̃−1
i,k is a solution of the primal. Thus, strong duality and

complementary slackness hold. Now, using complementary slackness, we know that

in an optimal solution, [
Y ∗
11 Y ∗

12

(Y ∗
12)

T Y22

] [
Γ∗
i I
I Π∗

i

]

= 0, (4.18)

which implies that, given that Y ∗
11 = I, Γ∗

i = (Π∗
i)

−1 ≻ 0 and that Y ∗
22 = (Γ∗

i)
TΓ∗

i .

111

Therefore, since Z11 = Z22 + Y22, we know that Z∗
11 ≻ 0. Without loss of generality,

Z can be expressed as:

Z =

[
I
KT

]

Z11 [I K]

and, given that Z∗
11 ≻ 0 complementary slackness on (4.14) also implies that

[I K∗]

[
Q̃−1

i − Π∗
i + H̃T

i,kR̃iH̃i,k Q̃−1
i Ãi

ÃT
i Q̃

−1
i Π∗

i + ÃT
i Q̃

−1
i Ãi

]

= 0 (4.19)

which yields

Q̃−1
i − Π∗

i + H̃T
i,kR̃iH̃i,k − Q̃−1

i Ãi(Π
∗
i,k + ÃT

i Q̃
−1
i Ãi)

−1ÃT
i Q̃

−1
i = 0. (4.20)

In the optimal solution of the SDP, Γ∗
i is the augmented covariance matrix, i.e.

Γ∗
i = P̃−1

i,k . Therefore, minimizing tr(Γi) for all the targets is equivalent to minimizing

τ−1
∑τ

i=1 tr(Σ̄i(k)), which is the optimization objective in the persistent monitoring

problem, as expressed in (4.4). Thus, solving (4.16) gives us the squared estimation

error of a single target, given an agent trajectory. Although Prop. 12 is not directly

used to solve the Persistent Monitoring problem, it gives important insight into Prop.

13, which is the main result of this chapter.

4.3 Optimization of Persistent Monitoring Schedules

In order to obtain an efficient persistent monitoring schedule, one has to design an

agent trajectory that will lead to low uncertainty in the estimation. Therefore, in this

section, we give a procedure to jointly optimize the steady state uncertainty (4.4) and

the trajectory of the agent. If we knew in advance when ‖s(k)− xi‖ was larger than
ri, then (4.3) would be linear with d2i (k) at every time for every i, and the problem

would be an SDP. However, since we do not know whether or not ‖s(k)− xi‖ is larger
than ri, a set of SDPs needs to be solved in order obtain the optimal trajectory with

112

that period. Therefore, we propose in this section a two-step procedure, where in the

higher level, an algorithm produces sequences of targets to be visited by the agent and

determines which of the modes of (4.3) is active in each time step. The lower level,

on the other hand, assumes a fixed mode in (4.3) given by the higher level algorithm

and through the solution of an SDP produces a trajectory that minimizes the steady

state uncertainty.

Lower Level Problem

Recalling (4.3), in order to simplify notation on the rest of this subsection, we define

Gi = HT
∆,i,maxR∆,iH∆,i,max and its augmented version G̃i = diag(Gi, ..., Gi). Note

that HT
∆,i,kR∆,iH∆,i,k = γ∆,i(k)Gi and in the optimization γ∆,i(k) will be treated as

an optimization variable and Gi as a constant. Therefore,

H̃T
i,kR̃iH̃i,k =






γ∆,i(k)ILi×Li
· · · 0

...
. . .

...
0 · · · γ∆,i(k + τ)ILi×Li






︸ ︷︷ ︸
γ̃i,k

G̃. (4.21)

Moreover, we create variables d2i such that d2i (k) ≥ ‖s∆(k)− xi‖2. The underlying
goal of creating this variable is that the constraint will be binding in an optimal

solution, i.e., d2i (k) = ‖s∆(k)− xi‖2, therefore we can compute γ∆,i(k) using (4.3)

once d2i (k) is fixed. Finally, we define logical variables bi,k ∈ {0, 1} (that will be fixed
pre-defined variables in the optimization) as

bi,j =







0, ‖s∆(k)− xi‖ > ri,

1, ‖s∆(k)− xi‖ ≤ ri.

(4.22)

These logical variables represent whether or not the agent visits a given target i (i.e.,

the target within the agent’s sensing range) on time step k of the cycle and thus

113

define the mode in (4.3). With that in mind, we state Prop. 13.

Proposition 13. For fixed values of cycle length τ and logical variables bi,k, the

solution of the optimization (4.23), when it exists, minimizes the cost in (4.4), and

the optimal trajectory s∗∆(·) satisfies dynamic constraints (4.2).

minimize
Γi,Πi, s∆(·)

1

τ

N∑

i=1

tr(Γi)

subject to

[

Q̃−1
i − Πi + γ̃i,kG̃i Q̃−1

i Ãi

ÃT
i Q̃

−1
i Pi + ÃT

i Q̃
−1
i Ãi

]

< 0,

[
Γi I
I Pi

]

< 0,

Γi, Pi < 0,

‖s∆(k + 1)− s∆(k)‖2 ≤ u2
max,

‖s∆(τ)− s∆(1)‖2 ≤ u2
max,

d2i (k) ≥ r2i , if bi,k = 0,

γi(k) = 0, if bi,k = 0,

d2i (k) ≤ r2i , if bi,k = 1,

γ∆,i(k) = 1− d2i (k)

r2i
, if bi,k = 1,

∀i ∈ {1, ..., N}, ∀k ∈ {1, ..., τ}.

(4.23)

Proof. We only provide a sketch of the proof due to its similarity to Prop. 12. Using

complementary slackness, we conclude that, if the optimal solution of SDP (4.23) is

bounded, then when bi,k = 1, in the optimal solution d2i (k) = |s(k)−xi|22 and therefore

γi(k) = 1 − (|s(k) − xi|22)/r2i . Moreover, using the same arguments as in Prop. 12,

we conclude that Πi in an optimal solution of each feasible subproblem is a solution

of the information filter Riccati equation (4.12) and that Γi = Π−1
i , which means

that Γi is the covariance matrix. Note also that the optimization objective ensures

minimization of the infinite horizon cost defined as in (4.4) and the constraints ensure

that feasible trajectories are periodic and satisfy dynamics constraints (4.2).

Some brief insights on (4.23) are that the first three constraints are used in the

solution of the ARE, similar to Prop. 12. The following two constraints impose the

agent movement constraints (4.2) and periodicity. The next one is used to compute

114

the distance between the agent and the target and the last four constraints compute

γi based on the relative position of the agent and the target.

Higher Level Problem

Using the optimization problem (4.23), we have a procedure such that, for each cycle

period τ , we can solve an exponentially growing (2N×τ) number of SDPs, representing

different variations of bi,k, and obtain the optimal solution for that cycle period. This

approach is very inefficient due to the exponential scaling. We thus propose a graph-

based scheme that explores different combinations of τ and bi,k by exploring how

targets are spatially distributed and evaluates each combination using the low level

optimization (4.23).

Remark 7. While the idea of developing a higher level scheme that handles the ex-

ploration of visiting sequences was already explored in Chap. 3, this discrete time

formulation has a fundamental difference. There, one assumed that, given a vis-

iting sequence, we had an algorithm that could compute the dwell times in a non-

combinatorial manner. Note that in the discrete-time case, one could think of visiting

the same target for multiple consecutive time steps as the equivalent to dwelling at a

target. However, even computing the optimal number of steps to dwell is a combina-

torial problem here. Therefore, heuristics needs to be redesigned in order to correctly

approach this problem.

As a motivation for the higher level algorithm we propose, consider the case where

two targets are far enough apart that the agent seeing one target at a time instant

cannot see the other one in the following time step due to the constraints in the

dynamics. In a “blind” exploration of variables bi,k, one could encode the possibility

of the agent visiting these targets at consecutive time steps and such choice of bi,k

renders an infeasible solution of (4.23). The goal of the algorithm we introduce in

this section is to evaluate only sets of τ and bi,k that can produce feasible trajectories

according to the dynamics and the constraints as in (4.2). This algorithm is a “brute

115

force” approach and the exploration of more efficient exploration schemes are left to

future work (e.g. extend the greedy exploration scheme in Chap. 3 for more general

scenarios). We abstract the targets as nodes in a graph G. The goal is to find a

sequence of nodes to be visited. The cost ξ(i, h) of each edge (i, h) in the graph G
is the minimum number of time steps necessary for the agent to transition between

visiting these two targets, i. e.,

ξ(i, h) = max

(

1,

⌈‖xi − xh‖ − ri − rh
umax

⌉)

. (4.24)

Note that if an agent is visiting a given target, it can visit the same target in the

following time step. Therefore, the self-transition cost is such that ξ(i, i) = 1, for any

target. Given this structure, we can directly translate any sequence of visited nodes

S = {n1, ..., nF} to the number of time steps in a cycle, τ , and to bi,j, where

τ(S) = ξ(nF , n1) +
F−1∑

j=1

ξ(nj, nj+1). (4.25)

For example, given two nodes in a 2D environment at positions x1 = (0, 0) and x2(0, 1)

with umax = 0.3 and rj = 0.3, then ξ(1, 2) = ξ(2, 1) = 2 and ξ(1, 1) = ξ(2, 2) = 1. A

visiting sequence S = {1, 1, 2} would correspond to τ(S) = ξ2,1 + ξ1,1 + ξ1,2 = 5 and

(b1,1, ..., b1,5) = (1, 1, 0, 0, 0) and (b2,1, ..., b2,5) = (0, 0, 0, 1, 0).

We then propose Algorithm 10, which combines both stages and we name this

SDP-PM. The intuition behind this algorithm is that, initially, all the cycles in

which each target is visited for exactly one time step (i.e. cyclic permutations of

the targets) are added to a list and ordered according to the number of time steps

in that particular cycle. Then, these cycles are explored in order. In the explo-

ration, the cost of that particular cycle is evaluated and all the possibilities of visiting

one new (or the same) targets in that cycle are added to the list L. One thing

to note is that the first cycle to be explored will always be the traveling salesman

116

optimal solution and lower length cycles will always be explored first. As an illus-

Algorithm 10 SDP-PM

1: OptCost←∞
2: OptCycle← ∅
3: L ← ∅
4: for S ∈ permutation(1, ...N) do
5: Add (S, τ(S)) to L.
6: for i ∈ (1, ..., Niter) do
7: S ← removeF irst(L)
8: cost = lowerLevelOptimization(S)
9: if cost < OptCost then
10: OptCost← cost
11: OptCycle← S
12: for newV ertex ∈ (1, ..., N) do
13: for p ∈ (2, ...NS) do
14: Snew ← {S1:p−1, newV ertex,Sp:FS

}
15: Add (Snew, τ(Snew)) to L
16: return OptCost, OptCycle

tration of Alg. 10, consider the very simple graph shown in Fig. 4·1. The list

is initialized with all the possible cyclic permutations (lines 3-4) of the targets, i.e.,

L = {({1, 2, 3}, 12), ({1, 3, 2}, 12)}, where each element of the list is composed by a se-

quence of targets and the cycle length in that sequence, computed as in (4.25). Then,

the first node on the list ({1, 2, 3}, 12) is deleted from the list, its cost is evaluated, and

all the cycles that can be constructed from this element by adding one extra visit are

added to L. Therefore, when exploring this first element, the cycles added to the list

are ({1, 1, 2, 3}, 13), ({1, 2, 2, 3}, 13), ({1, 3, 2, 3}, 18), ({1, 2, 1, 3}, 14), ({1, 2, 2, 3}, 13),
({1, 2, 3, 3}, 13), ({1, 2, 3, 1}, 13), ({1, 2, 3, 2}, 16), and ({1, 2, 3, 3}, 13). However, the

list L is ordered according to cycle length, which means that the next cycle to be

explored would be the one with length 12, followed by any cycle with length 13.

117

Figure 4·1: Example graph for illustrating Alg. 10.

4.4 Simulation Results

We implemented the SDP-PM Alg. 10 with dynamics as in (4.1) with parameters

A∆,i = diag(1.1, 1.1), Q∆,i = diag(0.1, 0.1), (4.26)

and observation model as in (4.3) with parameters

Hmax =

[
1√
2

1√
2

− 1√
2

1√
2

]

, R∆,i = diag(1, 1), ri = 0.6. (4.27)

The agent maximum displacement in one time step is bounded by umax = 0.33. The

SDP optimization was implemented in MATLAB using YALMIP (Lofberg, 2004) and

solved using MOSEK (MOSEK ApS, 2019).

To the best of our knowledge, the only approaches proposed in the scientific lit-

erature similar enough to be used as a comparison are RRC and its variant RRC∗

(Lan and Schwager, 2016). We implemented RRC and compared it to our approach

(SDP-PM) in a simple environment, The results are shown in Fig. 4·2. Due to the

random nature of RRCs, we ran it five independent times and we show its best, worst

and average performances.

In fig. 4·2a, one can see that the trajectory produced by SDP-PM travels between

targets in a straight line, while RRC does not. Also, when the agent visits a target in

the SDP-PM trajectory, it always moves as close as possible to the center of the target

(given total time steps and speed limitations), which does not happen in RRC. The

118

-1 -0.5 0 0.5 1 1.5 2 2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

RRC

SDP-PM

(a) Trajectories using the SDP-PM
and RRC algorithms.

0 50 100 150 200

Iteration number

160

180

200

220

240

260

280

300

320

C
o
s
t

0

50

100

150

200

250

300

350

400

T
im

e
 (

s
)

Cost

Computation time (s)

(b) Cost and computation time for
SDP-PM.

400 600 800 1000 1200 1400

Iteration Number

0

2000

4000

6000

8000

10000

12000

14000

16000

C
o
s
t

0

200

400

600

800

1000

1200

1400

1600

1800

2000

C
o
m

p
u
ta

ti
o
n
a
l
T

im
e
 (

s
)

Cost

Computational Time (s)

(c) Cost and computation time for
RRC.

Figure 4·2: Results of the simulation with three targets. (a) Com-
parison of the trajectories generated by the RRC and the SDP-PM ap-
proaches. The trajectory displayed for RRC is the one with lowest cost
among 5 independent runs of the algorithm. The presented trajectory
was obtained after 200 iterations of the SDP-PM algorithm and 1500
iterations of RRC. The grey area represents the positions for which the
agent can sense a given target. (b) Cost and cumulative computation
time as a function of the iteration number for SDP-PM. (c) Cost and
cumulative computation time as a function of the iterations of RRC.
The solid lines represent average among 5 runs and the dashed lines are
the observed maximum and minimum of the cost and computational
time. None of the 5 instances of SDP-PM found a feasible solution
before 345 iterations.

119

reason is that, for fixed τ and logical variables bi,k, the trajectory generated by SDP-

PM is optimal, while RRC only has an asymptotic probabilistic notion of optimality,

with no deterministic guarantees for a finite number of iterations. Moreover, Figs.

4·2b and 4·2c show that, for reasonable computation times, SDP-PM produces much

better solutions in terms of cost. The solution found at the first iteration of SDP-PM

has the cost equal to 16.8% of the cost of the best (in terms of cost) of the 5 runs

of RRC after 1500 iteration. Comparing our approach after 200 iterations and RRC

after 1500, SDP-PM reports a cost of only 9% of the best solution of RRC. We also

note that SDP-PM produced a solution with bounded cost in its first iteration, while

RRC took between 345 and 1305 iterations to find its first feasible solution, i.e. where

the target covariances are bounded.

In order to illustrate the performance of our approach in a more complex setup,

we ran SDP-PM in an environment with 7 targets with their centers xi randomly

picked using a uniform distribution in [0, 4]× [0, 4]. The systems parameters were the

same as in the previous case, except that ri,j was set to 0.3. The results are displayed

in Figs. 4·3a and 4·3b. We note that we ran RRC 5 times in this environment, with

104 iterations in each trial, and in none of these did RRC find a feasible solution. By

analyzing SDP-PM results in this more complex environment, we can see that similar

to the simpler environment, SDP-PM finds a feasible solution very fast and refines

it within the first few iterations. One interesting aspect of the trajectory generated

is that the agent visits some targets for non-consecutive times. This highlights the

fact that the approach we propose here does not only locally search around the initial

trajectory we select (in this case, initially the TSP solution is the first to be evaluated,

where each target is visited once), but also is able to explore trajectories that have

major changes in the visiting order compared to the initial exploration schedule. This

gives rise to more complex behaviors, such as some targets being explored once, other

120

targets at multiple consecutive time steps, and also targets being visited multiple

times but at non consecutive instants.

-1 0 1 2 3 4 5

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

(a) Trajectory of the agent after 200 it-
erations of SDP-PM at more complex
scenario. The circular red marks rep-
resent the positions where the agent was
at the discrete time steps.

0 50 100 150 200

Iteration number

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

C
o
s
t

0

100

200

300

400

500

600

700

800

900

1000

T
im

e
 (

s
)

Cost

Computation time (s)

(b) Evolution of optimization cost and com-
putational time using SDP-PM in the scenario
with 7 agents.

Figure 4·3: Simulation results in the setting containing 7 targets

4.4.1 Discussion

In this chapter, we studied the discrete time version of the persistent monitoring

problem. Our approach to solving it consisted of separating the problem in its com-

binatorial and its convex parts, and then approaching them separately, using a lower

level and a higher level control optimization scheme. Similar ideas were already ex-

plored in Chap. 3, where the problems of computing visiting and dwelling sequences

were approached almost independently.

Note, however, as stressed already in Remark 7, there are substantial differences

between this discrete time approach and the continuous time one in Chap. 3. The

main one is that the lower level optimization in this Chapter cannot decide what

is the optimal number of time steps that the agent should spend visiting a given

target. This makes the combinatorial exploration problem much harder compared to

121

the one in Chap.˜3. Additionally, although our approach was able to outperform the

algorithm proposed in (Lan and Schwager, 2016), its lower level controller still faces

significant challenges. First, even using state of the art SDP solvers (that employ

polynomial-time interior point algorithms in their solutions), its computational cost

is much higher than computing an optimal dwelling time allocation using algorithm

5, considering a similar number of targets. Moreover, this SDP approach presents

numerical issues for even medium sized-problems (i.e. around 100 time steps and 10

targets). Meanwhile, the algorithm in 5 has been robust to the number of targets in

all the simulations setting we have explored.

With this in mind, it is natural to believe that in most scenarios (especially when

the sensing rate is fast compared to the movement dynamics) the approach in Chap. 3

is more adequate for modelling the problem. The hybrid nature of the model allows for

exploiting properties that handle a much more robust and efficient scheme for dwelling

sequence optimization, and makes it preferable in the vast majority of scenarios.

122

Chapter 5

Application to Multiple Particle Tracking

While the previous chapters were aimed at obtaining efficient algorithms for solving

the persistent monitoring problem, in the present chapter the goal is to use (and

adapt) those algorithms for a concrete real-world application: tracking multiple par-

ticles using a feedback-driven confocal microscope. The persistent monitoring ap-

proach used in this chapter is the one described in Chapter 3, since the fast dynamics

of the systems (and the need for online replanning) make all the other approaches

we described computationally prohibitive. The results in this section have previously

appeared in (Pinto et al., 2021b).

5.1 Brief Background on Multiple Particles Tracking

In the study of cellular biological systems, it is necessary to track and identify com-

ponents of the cell such as enzymes, RNA, molecular machinery, and viral pathogens.

One generically refers to these as “particles”. One set of methods for studying biol-

ogy at these length scales are a group of techniques collectively referred to as single

particle tracking (SPT) (Manzo and Garcia-Parajo, 2015; Shen et al., 2017). In these

methods, particles of interest are smaller than the diffraction limit of light but can be

visualized by labeling them with a fluorescent tag, making them visible to a fluores-

cence microscope (Mondal and Diaspro, 2013). By tracking a particle over time, one

can understand the particle’s motion model and the value of its motion parameters.

Additionally one can directly observe the particle’s behavior and interactions within

123

the cellular environment.

The application of SPT to the study of cellular biology has led to many break-

throughs in our understanding of subcellular processes. A few specific examples

include measuring the behavior and roles of molecular motors (Kural et al., 2005),

observing protein complex behavior in membrane localized processes (Aguet et al.,

2016), and discovering viral infection pathways (Brandenburg and Zhuang, 2007). In

each of these cases, the transport of the target particles can only be interpreted with

reference to the cellular context. In many cases, this context includes observing the

transport of multiple particles simultaneously.

Tracking multiple particles in a fluorescence microscope can be achieved in a

variety of ways. One common method is to acquire images with a laser scanning

microscope, such as a confocal fluorescence microscope or two-photon fluorescence

microscope. These microscopes work by scanning a laser through a raster pattern to

create an image. Unfortunately, the time to acquire a single image grows with the

number of pixels in the image, making large area or high resolution images too slow

for imaging dynamic particles. A paradigm change happened when feedback began

to be used to control the laser position to track a single particle continuously without

spending time away from the particle (Enderlein, 2000). Previous work by one of the

authors implemented this concept using an extremum seeking feedback formulation

(Andersson, 2011). While there are benefits in terms of speed and resolution, the main

limitation of feedback methods is that only one particle at a time can be tracked.

The need to track multiple particles motivated the development of more efficient

(non-raster scanned) multiple particle tracking (MPT) methods. Earlier work ex-

tended the single particle feedback methods by tracking each particle individually and

switching between particles at a constant rate (Shen and Andersson, 2009). However,

issues still remain such as the lack of a process to design efficient switching rules, the

124

inability to simultaneously handle particles with different diffusion coefficients, and

the challenge of collecting intensity signals that optimize the collected information

in order to improve the particle position estimation performance. The contribution

of this chapter is to demonstrate a multiple particle tracking method that addresses

these issues by combining a feedback driven tracking method with ideas from Chapter

3. The feedback scheme is drawn from the extremum seeking (ES) approach, intro-

duced in (Ashley et al., 2016), where the trajectory of the laser is adapted based on

the detected fluorescence. In particular, as will be discussed later in this chapter, the

ES controller can converge to a maximally informative trajectory, i.e., a limit cycle

where the acquired information optimal in terms of contributing to the estimation

process.

By formulating this as a persistent monitoring problem, the system is able to

autonomously decide which particle should be tracked at each instant in a way that

minimizes the overall estimation uncertainty. We integrate PM to the context of

multiple particle tracking, where the SPT algorithm plays the role of “data collection”

and PM is responsible for deciding the optimal time to switch from tracking one

particle to another.

5.2 Problem Statement

In this section, we formally define the problem of tracking multiple particles with a

laser scanning microscope. The goal of tracking these particles is to estimate their

positions over time in the cellular context so that one can identify their motion model,

as well as the values of the parameters that define the motion model accurately and

precisely. For simplicity of exposition, we assume the dynamics of the particles of

interest are given by a Brownian motion process, described in continuous time as

Ẋi[k] = Wi[k], Wi[t] ∼ N (0, Qi). (5.1)

125

In this equation, Xi is a random variable taking values in R
2 which represents the x

and y location of particle i, where i = 1, ..., N , and N is the number of tracked par-

ticles. Wi[k] is a zero mean white noise with covariance matrix Qi = diag(2Di, 2Di),

where Di is the i-th particle diffusion coefficient,.

Photon detection is a Poisson random process called shot noise. The mean de-

tected photon rate, Ii, for the fluorescent signal of a single particle at Xi and excited

by a tightly focused leaser beam centered at Xl is given by:

Ii = I0,i exp

(

−2 ||Xi −Xl||2
b2

)

, (5.2)

where b is the laser beam width and I0,i is particle i’s peak mean detected photon

rate, i.e. it is the mean intensity when the laser is positioned exactly above particle

i. Given a sampling period Ts, the total mean detected intensity I for an integration

time is the sum of each particle’s contribution, given by

I =
N∑

i=1

IiTs. (5.3)

We assume that can directly control the laser position velocity (i.e., Ẋl is the

control input), and the laser maximum velocity is upper bounded by vmax. Our goal

is to control the laser position Xl such that the detected intensity signals can be used

to efficiently estimate the particle trajectories. In other words, we want to define an

online control strategy where the laser position is updated using some feedback law

that aims to minimize the estimation error of each particle i, given by

Ns∑

k=1

E
[

||X̂i(kTs)−Xi(kTs)||2
]

, (5.4)

where Ns is the total number of samples collected, and X̂i is estimated position of

particle i generated using an offline estimator. Note that even though we use feedback

126

while capturing the intensity data, the estimates of the particle positions are not

necessarily computed simultaneously with the data acquisition process. Estimation

can then be done offline. As a result there are no strict computational time constraints

and the estimation can benefit from the entire dataset (as opposed to online methods,

where the estimator must be causal). While the goal of this chapter is the efficient

acquisition of informative measurements, we do apply an offline estimator in our

simulation results in Sec. 5.5 to help illustrate the results. However, a detailed study

of estimator design is out of the scope of this dissertation. Interested readers should

see e.g. (Lin and Andersson, 2019; Ashley et al., 2016).

5.2.1 Proposed Solution

Our approach to this problem is to implement a two level control scheme. This

allows us to divide the problem into two distinct parts, measurement and tracking of

single particles (low level control), and planning which particle to measure and the

duration of the measurement (high level control), which uses the PM algorithm. One

key assumption that enables this scheme is that the particles are separated enough so

that detected photons comes from a single particle chosen by the high level controller.

This assumption, while not always true in practice, is a common one in SPT and it

allows us to approach the multiple particle tracking problem as being constituted of

tracking individual particles sequentially and then cycling the laser between them.

Extensions to denser collections of particles is left to future work. The low level

control will be discussed in Sec. 5.3 and the higher level one in Sec. 5.4. Algorithm

11 describes precisely how the integration between the two controllers is done.

In Alg. 11, X̂on
i is an online estimate of the position of particle i, which means

we need an online estimator for the interface between the lower level and the higher

level controllers. We highlight that this online estimate needs to be computationally

cheap and causal, and is usually not the same estimate that will be used offline (i.e.

127

after all the data has been collected) to estimate the particle position with a high

accuracy. In Alg. 11 the procedure ScheduleNextObservedTarget(·, ·) is what we call
the “high level algorithm” and is based on PM.

Algorithm 11 Multiple Particle Tracking

1: while Experiment is Running do
2: [τ, j]← ScheduleNextObservedTarget(X̂on

i , i)
3: Move laser to X̂on

j .
4: Run lower level control for τ seconds.
5: Update X̂on

j .
6: i← j.

5.3 Extremum Seeking Single Particle Tracking

In this section, we discuss the lower level controller, responsible for tracking a single

particle for some duration. Considering the goal of minimizing the estimation error

in (5.4), one would like to design this controller such that the laser collects a photon

signal that is maximally sensitive to small changes in particle position. In this context,

we first analyze where is the best region to place the laser. We consider the random

observation model with mean given by (5.2), and from it derive the Fisher Information

Matrix (FIM) for estimating the particle position under the assumption of a fixed

particle position. The FIM for a Poisson temporal random process is

FIM(Xi −Xl) =

t1∫

t0

1

Ii(Xi −Xl)

∂Ii(Xi −Xl)

∂Xl

∂Ii(Xi −Xl)

∂Xl

T

dt, (5.5)

where the expected intensity Ii is given by (5.2) and [t0, t1] is the time interval when

particle i is being tracked (Snyder and Miller, 2012). We next apply the trace (T-

Optimality) criteria to the FIM (Pukelsheim, 2006) to get the cost function

J(Xi −Xl) = tr (FIM(Xi −Xl)) = −
16

b4

t1∫

t0

||Xi −Xl||2Ii(Xi −Xl)dt. (5.6)

128

Optimizing (5.6) gives that the laser positions that minimize the trace of the FIM are

given by a circle centered on the particle position with a radius of b√
2
(Gallatin and

Berglund, 2012). We denote this set of positions as the information optimal orbit. In

practice, the assumption we made about the particle position being fixed is not true.

However, this information optimal orbit provides a near optimal result as long as the

speed of the laser is fast relative to the particle motion.

The next step is to determine how to move the laser to the information optimal

orbit when the particle position is not known exactly. The search for a practical

controller to track a single particle leads us to select an extremum seeking controller

(ESC). Extremum seeking is a model free method that locally explores a scalar field

and drives the system state towards an extremal point in the field. In the case of SPT,

the scalar field is the expected amount of detected photons which has a maximum

centered on the particle’s location. The use of ESC allows for tracking using only the

collected intensity data, without the need of an online estimation scheme. (Note that

our complete tracking scheme described in Sec. 5.2.1 only needs an online estimate

for the high level controller and, as will be discussed in Sec. 5.4, ESC can be used to

provide this estimate.) A particular implementation of ESC that converges to an orbit

around a field extremum and that has been shown to work well in SPT applications

is that of a non-holonomic, reactive ESC (Andersson, 2011; Ashley and Andersson,

2016; Ashley and Andersson, 2017) given by

∆I = I[k]− I[k − 1],

θ[k] = θ0 + 2πfT − Kp

Ts

∆I,

xl[k] = xl[k − 1] + 2πRfTs cos θ[k − 1],

yl[k] = yl[k − 1] + 2πRfTs sin θ[k − 1].

(5.7)

In these equations, f is its oscillation frequency, ω = 2πf is its angular frequency,

129

(a) Laser trajectory (b) Laser distance from particle

Figure 5·1: Simulation of Extremum Seeking Controller trajectories
starting at two different positions showing failure to converge (blue),
and convergence (black). The arrows indicate the movement direction.

Ts is the controller time step, and R is a positive constant. When ∆I = 0, this

controller imposes a circular orbit with radius R. The feedback term is responsible

for guiding the system to an orbit centered at the extremum and radius R (Ashley

and Andersson, 2017). Therefore, when we set R = b/
√
2, ESC gives us a practical

method for converging to the information optimal orbit and enables us to adapt the

orbit as the particle moves.

We characterized the behavior of this lower level controller empirically. Fig. 5·1
shows the behavior of the ESC from two initial conditions with the particle being

tracked at the origin. If the initial conditions are too far away, the photon rate is not

high enough to drive the ESC to the target on any practical timescale. If the initial

conditions are close enough, the ESC converges to a cycle around the target. The

convergence behavior of the particular extremum seeker controller (in the presence of

source movement and observation disturbance) that we use here was formally analyzed

in (Pinto and Andersson, 2021).

To illustrate the behavior of the convergence rate, we picked Kp = 0.6 and ω = 60

Hz and plotted the number of cycles until convergence as a function of the starting

130

position within the trackable region. The results are shown in Fig. 5·2.

0.5 1 1.5 2 2.5 3

Normalized Initial Distance to the Particle

0

1

2

3

4

5

6

7

8

C
y
c
le

s
 t

o
 C

o
n

v
e

rg
e

Figure 5·2: Number of cycles to convergence as a function of the
initial relative position of the laser and particle. The initial distance is
normalized by the radius R.

The ESC is defined by three parameters, ω, Kp, and R. The radius is determined

by the information optimal orbit while the other two can be tuned to minimize the

tracking error. Using Monte Carlo simulations (that consider shot noise and used a

diffusion coefficient of D = 0.1), we picked f = 60 Hz. The mean squared tracking

error as a function of Kp is given in Fig. 5·3. It is important to keep in mind that

the specifics will depend strongly on the experimental conditions such as the diffusion

coefficient and background noise.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Kp

10
-3

10
-2

S
te

a
d

y
 S

ta
te

 M
S

E
 (

m
2
)

Figure 5·3: Mean squared tracking error as a function of Kp, for
f = 60 Hz and particle diffusion coefficient Dx = Dy = 0.1 µm2/s.

131

5.4 Scheduling Multiple Particle Tracking

With the low level controller of Sec. 5.3 in place, we now turn to the specifics of

the persistent monitoring formulation we use. As described in Chapter 2, in the

PM problem, we consider that the targets’ internal state (in this case, the particle

position) evolve with linear, time invariant stochastic dynamics. This assumption is

true for the Brownian motion model used here. It it was also assumed that when the

agent dwelt at a target, the target state could be observed with the linear, stochastic

observation model given by (2.3).

Therefore, to deploy the PM algorithm given in Chapter 3, we need a simple online

estimate that fits our estimation model (2.3). This is provided by ESC since, after

convergence to the radius R, it produces unbiased observations Z according to the

following relation:

Z = Xl +

[
−R sin θ
R cos θ

]

= Xi + Ṽi, (5.8)

where Ṽi is a noise term.

With this estimator, the PM algorithm determines the sequence for visiting the

particles and the time to spend at each particle. Intuitively, PM seeks to balance

the time spent at each of the particles, trading off estimation accuracy at any given

particle for performance over the entire collection of particles.

In the MPT setting, when the laser transitions to visit a given particle, it moves to

the particle’s last estimated position (as indicated in Alg. 11), as this is the most likely

particle position and the expected intensity signal is higher when the particle is closer

to the laser. The cost function (3.2) aims to minimize the worst case uncertainty on

the particles’ estimated position and this maximizes the chances that the observations

acquire enough photons for ESC to converge to an orbit centered in the particle.

Finally, while in our PM formulation the targets (particles) were assumed to have

a fixed position, here the particles move according to a Brownian motion model.

132

Table 5.1: Summary of differences between the MPT setting and the
PM model, and the assumptions being used in order to apply PM to
the MPT model.

MPT Setting PM Model Assumption

Moving particle. Fixed target. Particle movement is
slow compared to the

laser speed.

Non-linear observation
model.

Linear observation
model.

Extremum seeker
provides online, linear,
observable sensing

model.

Time-varying graph
structure (due to

particle movement).

Fixed graph structure. Online replanning
assume fixed graph
structure at each

cycle.

Measurements can
combine photons

coming from different
particles.

Targets are sensed
independently.

Particles are spread
away enough so that
photons come from a

single particle.

Therefore, here we rely on the assumption that their movement is slow compared to

the laser speed and thus the PM algorithm produces near optimal schedules. However,

this brings the need of replanning the PM schedule, to adapt it as particles move,

leading to the structure of Algorihm 11.

The differences between the MPT setting and the PM model are highlighted in

Table 5.1. There we also state the assumptions we made in order to justify applying

PM techniques to this problem.

5.5 Simulation and Results

In this section, we provide a set of simulations (with three particles in each) with the

goal of illustrating the performance of our proposed approach for tracking multiple

particles. For these simulations, we used the Brownian motion model in (5.1) and

the laser observation model in (5.2), with the parameters: Di = 0.1 µm2/s, I0,i = 5×

133

104 photons/s, b = 0.5 µm. The maximum laser speed was limited to vmax = 300 µm/s

and the simulation time-step was set to T = 10−4 s. The extremum seeking oscillation

frequency was set to f = 60 Hz, its gain to kp = 0.2 and the radius to R = b/
√
2. The

value of the covariance of the noise Ṽi in the observation model was obtained using

the simulated mean squared tracking error, given in Fig. 5·3. The particles’ initial

positions were drawn from a uniform distribution in [0 µm, 10 µm]× [0 µm, 10 µm].

In the initialization, we assumed that the controller had access to the approximate

initial position of the particles plus some zero mean Gaussian noise (with covariance

equals to diag(0.022, 0.022) µm2) . In practical settings, this initial position could be

obtained using, for example, a widefield image. The initial position of the laser was

[5 µm, 5 µm] and the total simulation time was 1 s.

To characterize the performance of the tracking algorithm, we analyzed the rate

of collected photons. Note that although the number of collected photons does not

directly translate into estimation performance (in particular the position where the

photons were collected is also important), it is still a good proxy for evaluating track-

ing performance, since in general, increasing the number of collected photons increases

the estimation performance.

The trajectory and the collected photons per sample for typical run of the simu-

lation are shown in Figs. 5·4 and 5·5, respectively. The colors in the intensity figure

match the particle from which those photons came from. Note that since the particles

were widely spaced relative to the width of the laser, all photons collected at each

time step were from a single particle. In this run, the mean collected photons rate

(normalized by I0) was 0.2905/sec.

To get a sense of the average performance of the tracking scheme, we ran 100

simulations with the same parameters, but with different initial positions and Brow-

nian motion realizations. The average detected photons rate over these runs was

134

4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

Figure 5·4: Particle and laser trajectories, while tracking three par-
ticles in the first simulation scenario. The laser trajectory is in black
and the particles are in blue, yellow and red.

Figure 5·5: Photons collected at each time step (Ts = 10−4 s) in the
first simulation scenario. The colors in the plot indicate which particle
emitted those photon.

135

0.2958× I0.

While the ESC does not use any model information, the high-level PM planner uses

prior knowledge of the process and observation noises. In practice, of course, these

terms are at best known only approximately. In order to illustrate the performance

of our tracking scheme to perturbations in the system parameters, we ran a set of

simulation with almost the same setup as in the previously described scenarios, except

that the values of the peak intensity and diffusion coefficient were modified to I0 =

4 × 104 photons/s and D = 0.11 µm2/s. The controller was not adjusted. In these

simulations, the average detected photons rate per second was 0.2703× I0, indicating

some drop in performance but some robustness to model uncertainty.

Finally, in order to give a sense of how our approach compares to a simple raster

scan, we also used the intensity signal for a raster scan trajectory. In this setup, the

laser moved along a zig-zag (raster) pattern with constant speed, equal to vmax. The

raster scan trajectory is shown in Fig. 5·6. Note that while the raster scan images

a large region without any particles, this is normal to raster scanning as the region

is set in open loop fashion. This simulation run yielded a normalized average photon

rate of 0.0132.

Table 5.2 summarizes the results simulation using the setups above mentioned.

Each setup was run 100 times, with random initial positions and diffusion noise real-

izations. The rate of acquired photons was consistent among the different simulation

runs using our tracking method and much higher than when using a raster scan.

Table 5.2: Mean number of collected photons per second normalized
by I0,i for 100 runs of each of the simulation setups.

Nominal params. Perturbed params Raster scan

0.2958 ± 0.0235 0.2703 ± 0.0795 0.0111 ± 0.0033

136

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Figure 5·6: Illustration of a raster scanning trajectory considering a
similar simulation setup. The agent trajectory is in black, while the
particle trajectories are colored.

5.5.1 Trajectory estimation from photon data

Although this work focuses on data collection, the overall goal of MPT is to accurately

estimate the particles’ positions offline. To illustrate how this can be done using the

intensity data from our simulations, we estimated the particles’ positions by applying

a Particle Filter and Rauch-Tung-Striebel Smoother (see e.g. (Lin and Andersson,

2019)). We note that we have not extensively explored different offline estimators and

likely other approaches could yield estimation with lower errors. The mean estimation

error over time in the first scenario is shown in Fig. 5·7. The RMSE was calculated

using

RMSE = ||(X̂i −Xi)||. (5.9)

RMSE results for the third simulation setting (with perturbed parameters) is shown

in Fig. 5·8. In these plots, the shaded regions indicate times when an individual

particle is being tracked. The RMSE of all runs and considering all simulation setups

is given in Table 5.3. Our estimation algorithm was able to keep the average error at

137

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

Time (s)

Figure 5·7: Estimation error over time using the offline estimator.
The colors of the plots match the colors of the particle in Fig. 5·4. The
shaded areas mark when the laser was orbiting around each particle.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

Time (s)

Figure 5·8: Estimation error over time with perturbed parameters.
The shaded areas mark when the laser was orbiting around each parti-
cle.

138

Table 5.3: RMSE Estimation error of 100 simulation runs.

Nominal params. Perturbed params

100.3± 38.1 nm 138.4± 66.3 nm

around 100 nm when the nominal parameters were used in this simulation. However,

the mismatch in Di I0,i, generated a higher estimation error. In future work we plan

to also estimate the model parameters along with the particles’ positions, aiming to

improve our estimation performance and robustness to modeling imperfections.

139

Chapter 6

Conclusions and Future Work

6.1 Conclusion

In this dissertation, we studied the problem of persistent monitoring of uncertain

targets. In particular, our contributions include the creation of scalable and efficient

ways to approach the version of the persistent monitoring model that assumes that

the state to be tracked evolves with a linear dynamic model and can be observed with

a linear observation model. We emphasized especially the advantages of analyzing the

problem from a steady-state perspective, assuming periodic trajectories. In such an

approach, the persistence of visits over infinite horizons was automatically enforced

and the computational complexity of the approaches do not scale with time horizon,

making it very suitable to long-term surveillance tasks. We showed that the compu-

tation of gradients in such case has a similar computational overhead compared to

computing a short-horizon gradient in the transient version of the problem.

However, in many scenarios that demand faster update rates in the planned tra-

jectories, even computing such gradients may be prohibitive. For such scenarios, we

considered some simplifications to the problem to allow faster solutions (leading to

the minimax approach) namely constraining the agent movement space to a graph

and using a divide-and-conquer approach, where targets were constrained to only be

visited by one agent. In this formulation, the problem reduces to separately comput-

ing an optimal visiting and dwelling sequence. We then developed a computationally

lightweight algorithm, that exploits properties of an optimal solution rather than

140

explicitly solving the optimization using gradient-based techniques. By imposing ad-

ditional assumptions to the problem, global optimality was guaranteed by using such

algorithm. This ensures that our approach has some robustness to undesired local

minima, unlike most of the previous works in the field.

We then explored the discrete-time version of the problem, which could be framed

and solved efficiently using a mathematical-optimization based framework. However,

due to its nature, the discrete time formulation cannot take advantage of the prop-

erties of an optimal solution, as we did in the minimax continuous-time formulation.

In practice, this means our approach to the discrete time version cannot be solved as

fast and robustly as the continuous time one, since it cannot directly take advantage

of the hybrid structure of the graph-based version of the problem, and must resort to

combinatorial optimization steps also when searching for the optimal dwelling time a

given target.

Finally, we showed that the use of this formulation is indeed compelling in real

world applications. By exploring the multiple particle tracking problem, we adapted

the current formulation to be able to handle a real world problem, where the dynamics

(especially the observation model) do not fully match the original model for which

the algorithms were developed. We were able to efficiently plan a laser trajectory

that could observe the diffusing particles with the desired rate and accuracy. The

advantages of such method compared to simple raster scanning were very evident.

6.1.1 Future Work

Persistent Monitoring for Non-causal Estimation

In the persistent monitoring formulation studied in this dissertation, it was implicitly

assumed that estimation was done in a causal manner. However, as demonstrated

in the multiple particle tracking application, sometimes the goal is to design an effi-

cient policy for acquiring data, and then only perform estimation offline. In such a

141

situation, there is no reason for considering only causal estimators.

Non-causal estimation can potentially greatly benefit the overall performance of

the estimation process. However, the dynamics of the covariance in the Kalman-Bucy

filter equations do not take into account the fact that “future” data can potentially

be used for estimation. Thus, one possible direction for future research is to replace

the covariance dynamics in order to also accommodate the potential of future data

being used in the estimation. This modification might require reevaluating all the

propositions related to convergence of the steady state covariance and its gradients

computation.

Tracking multiple potentially cluttered particles using feedback driven con-

focal microscopy

In our study of application of PM to MPT, an important assumption was that par-

ticles were separated enough so that they could be individually observed using the

extremum seeking controller. However, in a general setting, particles do not maintain

a minimum separation, and the distance between particles usually varies substantially

over time. Therefore, in order to apply PM in practical MPT settings, it is necessary

to augment our approach to be able to handle cluttered particles.

One first idea towards that direction is to use the lower level (extremum seeker)

controller to track small clusters of particles instead of individual ones. Towards

that, it is necessary to design an algorithm that, based on online measurements, is

able to either merge particles into a cluster when they are too close, or separate them

into different ones as they move farther apart. With this dynamic clustering process,

possibly PM could be used without drastic modifications. However, the question of

whether the ESC will be able to track these particle clusters still has to be investigated

in more depth. Otherwise, another low level controller has to be designed.

142

Appendix A

Conditions on the existence of gradients

of the steady state covariance matrix

In Chapter 2, we discussed the computation of the steady state partial derivatives

of the covariance matrix, however, the computation procedure was conditioned on

their existence. In this appendix, we discuss the existence of such gradients. Note

that, if in a periodic trajectory ηi(q) = 0 ∀q ∈ [0, 1] (i.e., target i is never visited),

the existence of the steady state covariance matrix is not guaranteed by Prop. 2.

Obviously, if the steady state covariance does not exist, its derivative will also not

exist. This illustrates the fact that the existence of ∂Ω̄i

∂θ
is not guaranteed. What

we show in this appendix is that, under very natural assumptions, the derivative ∂Ω̄i

∂θ

exists for the parameters that belong to the interior of the set of parameters that will

lead to convergence of the steady state covariance, except for a set of zero measure.

Since here we analyze the behavior of the steady state covariance with respect

to parameter variations, we will use a notation that explicitly shows the dependence

of the variables with the parameters. For example, Ω̄i is a function of q and of the

parameters Θ and, hence, it will be denoted as Ω̄i(q; Θ).

We define the set of parameters for which the steady state covariance is guaranteed

to exist as:

ϑ = {Θ | ηi(q, Θ̃) > 0 for some non-degenerate interval q ∈ [a, b]}, (A.1)

and Ψ as the interior of the set ϑ.

143

Our goal is to show that, for any Θ ∈ Ψ, the partial derivatives ∂Ω̄i(q;Θ)
∂θd

exist

locally. From Prop. 3, we know that, when this partial derivative exists, it is equal

to Σ(q; Θ). We also know that Σ(q; Θ) is well defined for any θ ∈ Ψ. We now make

the following assumption about the regularity of Σ:

Assumption 6. Σ(q; Θ) is locally Riemann integrable with respect to Θ for Θ ∈ Ψ

and q ∈ [0, 1].

In light of Proposition 3, Assumption 6 means that the parameterizations that

we consider do not allow for an infinite number of discontinuities of Σh(q; Θ) and

ΣZI(q; θ). Note that, due to the linear nature of their underlying differential equa-

tions, Σh(q; Θ) and ΣZI(q; θ) are bounded for any Θ ∈ Ψ. Therefore, Σ(q; Θ) is also

bounded.

Proposition 14. Under Assumptions 1, 2 and 6, the partial derivative ∂Ω̄i(q;Θ)
∂θd

, q ∈
[0, 1] and Θ ∈ Ψ, exists almost everywhere in [0, 1]×Ψ.

Proof. By construction, we pick two parameter sets Θ1 and Θ2, such that any convex

combination of Θ1 and Θ2 belongs to Ψ. Additionally, since our goal is to compute

the partial derivative with respect to θd, we pick Θ2 such that it differs from Θ1 only

in its d-th coordinate. Since the set Ψ is open, if we pick any Θ1 ∈ Ψ, we can always

find a Θ2 that fullfills the aforementioned properties.

We define the function Υ(q; Θ2) (which later we will show Υ(q; Θ2) = Ω̄i(q; Θ2))

as:

Υ(q; Θ2) = Ω̄i(q; Θ1) +

1∫

0

Σ(q; Θ1 + ξ(Θ2 −Θ1))dξ. (A.2)

Note that, if Υ(q; Θ2) = Ω̄i(q; Θ2) for generic Θ1,Θ2, then Σ(q; Θ) = ∂Ω̄i(q;Θ)
∂θd

almost

everywhere, since Σ(q; Θ) plays the role of a partial derivative in Eq. (A.2).

Ω̄i(q; Θ2) is uniquely defined by satisfying the differential equation (2.31) and

being periodic with period one. We then show that Υ(q,Θ2) also satisfies both of

these properties, which imply that indeed Υ(q,Θ2) = Ω̄i(q; Θ2).

First, notice that Υ(0;Θ2) = Υ(1;Θ2) since Ω̄i(0; Θ1) = Ω̄i(1; Θ1) and Σ(0,Θ) =

144

Σ(1,Θ), for any Θ ∈ Ψ. Also, since Σ(q; Θ) is a solution of (2.32),

1∫

0

Σ̇(q; Θ1 + ξ(Θ2 −Θ1))dξ = ˙̄Ωi(q,Θ2)− ˙̄Ωi(q,Θ1). (A.3)

Therefore, taking the derivative of (A.2) with respect to q and substituting (A.3), we

get

Υ̇(q,Θ2) =
˙̄Ωi(q,Θ2). (A.4)

Hence we conclude that Υ(q,Θ2) = Ω̄i(q; Θ2), and, as a consequence, ∂Ω̄i(q;Θ)
∂θd

exists

almost everywhere in Ψ. Additionally, as already stated in Prop. 3, ∂Ω̄i(q;Θ)
∂θd

= Σ(q,Θ)

wherever it exists.

Note that, as long Σ(q,Θ) is continuous with respect to Θ, the continuity of the

derivatives is also guaranteed for Θ ∈ Ψ and q ∈ [0, 1].

References

Aguet, F., Upadhyayula, S., Gaudin, R., Chou, Y.-y., Cocucci, E., He, K., Chen, B.-
C., Mosaliganti, K., Pasham, M., Skillern, W., et al. (2016). Membrane dynamics
of dividing cells imaged by lattice light-sheet microscopy. Molecular Biology of the
Cell, 27(22):3418–3435.

Alam, T., Reis, G. M., Bobadilla, L., and Smith, R. N. (2018). A Data-
Driven Deployment Approach for Persistent Monitoring in Aquatic Environ-
ments. In IEEE International Conference on Robotic Computing, pages 147–154.
10.1109/JOE.2020.2999695.

Anderson, B. D. and Moore, J. B. (2012). Optimal filtering. Courier Corporation.

Andersson, S. B. (2011). A Nonlinear Controller for Three-dimensional Tracking of a
Fluorescent Particle in a Confocal Microscope. Applied Physics B, 104(1):161–173.

Ashley, T. T. and Andersson, S. B. (2016). A Control Law for Seeking an Ex-
tremum of a Three-dimensional Scalar Potential Field. In 2016 American Control
Conference, pages 6103–6108. IEEE. DOI: 10.1109/ACC.2016.7526628.

Ashley, T. T. and Andersson, S. B. (2017). Tracking a Diffusing Three-dimensional
Source via Nonholonomic Extremum Seeking. IEEE Transactions on Automatic
Control, 63(9):2855–2866.

Ashley, T. T., Gan, E. L., Pan, J., and Andersson, S. B. (2016). Tracking Single
Fluorescent Particles in Three Dimensions via Extremum Seeking. Biomedical
Optics Express, 7(9):3355–3376.

Athans, M. and Tse, E. (1967). A Direct Derivation of the Optimal Linear Fil-
ter Using the Maximum Principle. IEEE Transactions on Automatic Control,
12(6):690–698.

Balakrishnan, V. and Vandenberghe, L. (1995). Connections Between Duality in
Control Theory and Convex Optimization. In 1995 American Control Conference,
volume 6, pages 4030–4034. DOI: 10.1109/ACC.1995.532689.

Barraud, A. (1977). A Numerical Algorithm to Solve AT XA-X=Q. In IEEE
Conf. on Decision and Control and 16th Symposium on Adaptive Processes and
Special Symposium on Fuzzy Set Theory and Applications, pages 420–423. DOI:
10.1109/CDC.1977.271607.

145

146

Baykal, C., Rosman, G., Kotowick, K., Donahue, M., and Rus, D. (2020). Persistent
Surveillance of Events with Unknown Rate Statistics. In Algorithmic Foundations
of Robotics XII, pages 736–751. Springer.

Bektas, T. (2006). The Multiple Traveling Salesman Problem: an Overview of
Formulations and Solution Procedures. Omega, 34(3):209 – 219.

Bittanti, S., Colaneri, P., and Guardabassi, G. (1984). Periodic Solutions of Periodic
Riccati Equations. IEEE Transactions on Automatic Control, 29(7):665–667.

Bittanti, S., Laub, A. J., and Willems, J. C. (2012). The Riccati Equation. Springer
Science & Business Media.

Brandenburg, B. and Zhuang, X. (2007). Virus trafficking–learning from single-virus
tracking. Nature Reviews Microbiology, 5(3):197.

Bullo, F. (2020). Lectures on Network Systems. Kindle Direct Publishing, 1.4
edition. With contributions by J. Cortes, F. Dorfler, and S. Martinez.

Cassandras, C. G., Lin, X., and Ding, X. (2013). An Optimal Control Approach to
the Multi-agent Persistent Monitoring Problem. IEEE Transactions on Automatic
Control, 58(4):947–961.

Chen, J., Baskaran, A., Zhang, Z., and Tokekar, P. (2020). Multi-agent reinforcement
learning for persistent monitoring. arXiv preprint arXiv:2011.01129.

Chong, C., Mori, S., Tse, E., and Wishner, R. (1982). Distributed Estimation in
Distributed Sensor Networks. In 1982 American Control Conference, pages 820–
826. IEEE. DOI: 10.23919/ACC.1982.4787968.

Chu, E.-W., Fan, H.-Y., Lin, W.-W., and Wang, C.-S. (2004). Structure-preserving
Algorithms for Periodic Discrete-time Algebraic Riccati Equations. International
Journal of Control, 77(8):767–788.

Dieci, L. and Eirola, T. (1996). Preserving Monotonicity in the Numerical Solution
of Riccati Differential Equations. Numerische Mathematik, 74(1):35–47.

Enderlein, J. (2000). Tracking of fluorescent molecules diffusing within membranes.
Applied Physics B, 71(5):773–777.

Fujimoto, K., Oji, Y., and Hamamoto, K. (2016). On Periodic Kalman Filters and
Multi-rate Estimation. In 2016 IEEE Conference on Control Applications, pages
934–939. DOI: 10.1109/CCA.2016.7587933.

Gallatin, G. M. and Berglund, A. J. (2012). Optimal laser scan path for localizing
a fluorescent particle in two or three dimensions. Optics Express, 20(15):16381–
16393.

147

Grocholsky, B., Makarenko, A., and Durrant-Whyte, H. (2003). Information-
theoretic Coordinated Control of Multiple Sensor Platforms. In 2003 IEEE In-
ternational Conference on Robotics and Automation (Cat. No. 03CH37422), vol-
ume 1, pages 1521–1526. IEEE. DOI: 10.1109/ROBOT.2003.1241807.

Gronwall, T. H. (1919). Note on the Derivatives with Respect to a Parameter of
the Solutions of a system of Differential Equations. Annals of Mathematics, pages
292–296.

Hari, S. K., Rathinam, S., Darbha, S., Kalyanam, K., Manyam, S. G., and
Casbeer, D. (2019). The Generalized Persistent Monitoring Problem. In
2019 American Control Conference, volume 2019-July, pages 2783–2788. DOI:
10.23919/ACC.2019.8815211.

Hussein, I. I. (2008). Kalman Filtering with Optimal Sensor Motion Plan-
ning. In 2008 American Control Conference, pages 3548–3553. IEEE. DOI:
10.1109/ACC.2008.4587043.

Jianbo Shi and Malik, J. (2000). Normalized Cuts and Image Segmentation. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 22(8):888–905.

Jones, A., Schwager, M., and Belta, C. (2015). Information-guided Persistent Moni-
toring Under Temporal Logic Constraints. In 2015 American Control Conference,
pages 1911–1916. DOI: 10.1109/ACC.2015.7171012.

Kiefer, J. (1953). Sequential Minimax Search for a Maximum. American Mathemat-
ical Society, 4(3):502–506.

Kriegl, A., Michor, P. W., and Rainer, A. (2011). Denjoy–Carleman Differentiable
Perturbation of Polynomials and Unbounded Operators. Integral Equations and
Operator Theory, 71(3):407.

Kural, C., Balci, H., and Selvin, P. R. (2005). Molecular motors one at a time: Fiona
to the rescue. Journal of Physics: Condensed Matter, 17(47):S3979.

Lan, X. and Schwager, M. (2013). Planning Periodic Persistent Monitor-
ing Trajectories for Sensing Robots in Gaussian Random Fields. In IEEE
Int. Conf. on Robotics and Automation, pages 2415–2420. IEEE. DOI:
10.1109/ICRA.2013.6630905.

Lan, X. and Schwager, M. (2014). A Variational Approach to Trajectory Planning
for Persistent Monitoring of Spatiotemporal Fields. In 2014 American Control
Conference, pages 5627–5632. DOI: 10.1109/ACC.2014.6859098.

Lan, X. and Schwager, M. (2016). Rapidly exploring random cycles: Persistent esti-
mation of spatiotemporal fields with multiple sensing robots. IEEE Transactions
on Robotics, 32(5):1230–1244.

148

Lancaster, P. (1964). On Eigenvalues of Matrices Dependent on a Parameter. Nu-
merische Mathematik, 6(1):377–387.

Laporte, G. (2009). Fifty years of Vehicle Routing. Transportation Science,
43(4):408–416.

Le Ny, J., Feron, E., and Dahleh, M. A. (2010). Scheduling Continuous-time Kalman
Filters. IEEE Transactions on Automatic Control, 56(6):1381–1394.

Lin, X. and Cassandras, C. G. (2014). An Optimal Control Approach to the Multi-
Agent Persistent Monitoring Problem in Two-dimensional Spaces. IEEE Transac-
tions on Automatic Control, 60(6):1659–1664.

Lin, Y. and Andersson, S. B. (2019). Simultaneous Localization and Parameter
Estimation for Single Particle Tracking via Sigma Points based EM. In 2019 IEEE
58th Conference on Decision and Control (CDC), pages 6467–6472. IEEE. DOI:
10.1109/CDC40024.2019.9029251.

Lin, Z., Liu, H. H., and Wotton, M. (2018). Kalman Filter-based Large-scale Wildfire
Monitoring with a System of UAVs. IEEE Transactions on Industrial Electronics,
66(1):606–615.

Lofberg, J. (2004). Yalmip: A toolbox for modeling and optimization in matlab. In
2004 IEEE International Conference on Robotics and Automation, pages 284–289.
IEEE. DOI: 10.1109/CACSD.2004.1393890.

Manzo, C. and Garcia-Parajo, M. F. (2015). A review of progress in single particle
tracking: from methods to biophysical insights. Reports on Progress in Physics,
78(12):124601.

Mondal, P. P. and Diaspro, A. (2013). Fundamentals of Fluorescence Microscopy:
Exploring Life with Light. Springer Science & Business Media.

MOSEK ApS (2019). The MOSEK optimization toolbox for MATLAB manual. Ver-
sion 9.0. Available at: http://docs.mosek.com/9.0/toolbox/index.html.

Nicolao, G. (1992). On the Convergence to the Strong Solution of Periodic Riccati
Equations. International Journal of Control, 56(1):87–97.

Olfati-Saber, R. (2007). Distributed Kalman Filtering for Sensor Networks. In 2007
46th IEEE Conference on Decision and Control, pages 5492–5498. IEEE. DOI:
10.1109/CDC.2007.4434303.

Ostertag, M., Atanasov, N., and Rosing, T. (2019). Robust Velocity Con-
trol for Minimum Steady State Uncertainty in Persistent Monitoring Applica-
tions. In 2019 American Control Conference, pages 2501–2508. IEEE. DOI:
10.23919/ACC.2019.8814376.

149

Overholt, K. J. (1973). Efficiency of the Fibonacci Search Method. BIT Numerical
Mathematics, 13(1):92–96.

Pasqualetti, F., Franchi, A., and Bullo, F. (2012). On Cooperative Patrolling: Op-
timal Trajectories, Complexity Analysis, and Approximation Algorithms. IEEE
Transactions on Robotics, 28(3):592–606.

Pinto, S. C. and Andersson, S. B. (2021). Analysis of an Extremum Seeking Con-
troller Under Bounded Disturbance. In 2021 IEEE 60th Conference on Decision
and Control (CDC) (to appear). IEEE.

Pinto, S. C., Andersson, S. B., Hendrickx, J. M., and Cassandras, C. G. (2019).
Optimal Multi-Agent Persistent Monitoring of the Uncertain State of a Finite Set
of Targets. In 2019 IEEE 58th Conference on Decision and Control (CDC), pages
4280–4285. IEEE. DOI: 10.1109/CDC40024.2019.9029521.

Pinto, S. C., Andersson, S. B., Hendrickx, J. M., and Cassandras, C. G. (2020a).
Multi-Agent Infinite Horizon Persistent Monitoring of Targets with Uncertain
States in Multi-Dimensional Environments. IFAC-PapersOnLine, 53(2):10963–
10968.

Pinto, S. C., Andersson, S. B., Hendrickx, J. M., and Cassandras, C. G. (2020b).
Multi-agent persistent monitoring of targets with uncertain states. arXiv preprint
arXiv:2004.09647.

Pinto, S. C., Andersson, S. B., Hendrickx, J. M., and Cassandras, C. G. (2020c).
Optimal Periodic Multi-Agent Persistent Monitoring of a Finite Set of Targets
with Uncertain States. In 2020 American Control Conference, pages 5207–5212.
IEEE. DOI: 10.23919/ACC45564.2020.9147376.

Pinto, S. C., Andersson, S. B., Hendrickx, J. M., and Cassandras, C. G. (2021a). A
Semidefinite Programming Approach to Discrete-time Infinite Horizon Persistent
Monitoring. arXiv preprint arXiv:2104.00166.

Pinto, S. C., Vickers, N. A., Sharifi, F., and Andersson, S. B. (2021b).
Tracking Multiple Diffusing Particles Using Information Optimal Control.
In 2021 American Control Conference, pages 4033–4038. IEEE. DOI:
10.23919/ACC50511.2021.9482619.

Pukelsheim, F. (2006). Optimal design of experiments. SIAM.

Shakhatreh, H., Sawalmeh, A. H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I.,
Othman, N. S., Khreishah, A., and Guizani, M. (2019). Unmanned Aerial Vehicles
(UAVs): A Survey on Civil Applications and Key Research Challenges. IEE
Access, 7:48572–48634.

150

Shen, H., Tauzin, L. J., Baiyasi, R., Wang, W., Moringo, N., Shuang, B., and Landes,
C. F. (2017). Single particle tracking: from theory to biophysical applications.
Chemical reviews, 117(11):7331–7376.

Shen, Z. and Andersson, S. B. (2009). LQG-based Tracking of Multiple Fluorescent
Particles in Two-dimensions in a Confocal Microscope. In 2009 American Control
Conference, pages 1682–1687. DOI: 10.1109/ACC.2009.5160593.

Singh, A. and Baghel, A. S. (2009). A new grouping genetic algorithm approach to
the multiple traveling salesperson problem. Soft Computing, 13(1):95–101.

Smith, S. L., Schwager, M., and Rus, D. (2011). Persistent Robotic Tasks: Moni-
toring and Sweeping in Changing Environments. IEEE Transactions on Robotics,
28(2):410–426.

Snyder, D. L. and Miller, M. I. (2012). Random point processes in time and space.
Springer Science & Business Media.

Sun, C., Welikala, S., and Cassandras, C. G. (2020). Optimal composition of hetero-
geneous multi-agent teams for coverage problems with performance bound guaran-
tees. Automatica, 117:108961.

Tang, L., Liu, J., Rong, A., and Yang, Z. (2000). A Multiple Traveling Salesman
Problem Model for Hot Rolling Scheduling in Shanghai Baoshan Iron & Steel Com-
plex. European Journal of Operational Research, 124(2):267 – 282.

Thrun, S. (2002). Probabilistic Robotics. Communications of the ACM, 45(3):52–57.

Varga, A. (2013). Computational Issues for Linear Periodic Systems: Paradigms,
Algorithms, Open Problems. International Journal of Control, 86(7):1227–1239.

von Luxburg, U. (2007). A Tutorial on Spectral Clustering.
http://arxiv.org/abs/0711.0189.

Wang, B. (2010). Coverage control in sensor networks. Springer Science & Business
Media.

Wang, Y.-W., Zhao, M.-J., Yang, W., Zhou, N., and Cassandras, C. G. (2019).
Collision-free trajectory design for 2-d persistent monitoring using second-order
agents. IEEE Transactions on Control of Network Systems, 7(2):545–557.

Welikala, S. and Cassandras, C. G. (2020). Asymptotic Analysis for Greedy Initial-
ization of Threshold-Based Distributed Optimization of Persistent Monitoring on
Graphs. IFAC-PapersOnLine, 53(2):3433–3438.

151

Welikala, S. and Cassandras, C. G. (2021a). Event-Driven Receding Horizon Con-
trol for Distributed Estimation in Network Systems. In 2021 American Control
Conference, pages 1559–1564. IEEE. DOI: 10.23919/ACC50511.2021.9483147.

Welikala, S. and Cassandras, C. G. (2021b). Event-driven receding horizon control of
energy-aware dynamic agents for distributed persistent monitoring. arXiv preprint
arXiv:2102.12963.

Yu, X., Andersson, S. B., Zhou, N., and Cassandras, C. G. (2017). Optimal Dwell
Times for Persistent Monitoring of a Finite set of Targets. In 2017 American
Control Conference, pages 5544–5549. IEEE. DOI: 10.23919/ACC.2017.7963817.

Yu, X., Andersson, S. B., Zhou, N., and Cassandras, C. G. (2018). Optimal Visiting
Schedule Search for Persistent Monitoring of a Finite Set of Targets. In 2018 Amer-
ican Control Conference, pages 4032–4037. DOI: 10.23919/ACC.2018.8431454.

Zhang, F. (2011). Matrix Theory: Basic Results and Techniques. Springer Science
& Business Media.

Zhao, L., Zhang, W., Hu, J., Abate, A., and Tomlin, C. J. (2014). On the Op-
timal Solutions of the Infinite-horizon Linear Sensor Scheduling Problem. IEEE
Transactions on Automatic Control, 59(10):2825–2830.

Zhou, N., Cassandras, C. G., Yu, X., and Andersson, S. B. (2019). Opti-
mal Threshold-Based Distributed Control Policies for Persistent Monitoring on
Graphs. In 2019 of American Control Conference, pages 2030–2035. DOI:
10.23919/ACC.2019.8814440.

Zhou, N., Cassandras, C. G., Yu, X., and Andersson, S. B. (2020). The Price
of Decentralization: Event-Driven Optimization for Multi-Agent Persistent Mon-
itoring Tasks. IEEE Transactions on Control of Network Systems. DOI:
10.1109/TCNS.2020.3047314.

Zhou, N., Yu, X., Andersson, S. B., and Cassandras, C. G. (2018). Optimal Event-
Driven Multiagent Persistent Monitoring of a Finite Set of Data Sources. IEEE
Transactions on Automatic Control, 63(12):4204–4217.

152

CURRICULUM VITAE

153

154

