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ABSTRACT 

Novel advances in engineering and data analytics are revolutionizing both our 

ability to monitor Parkinson’s disease (PD) patient symptoms and our understanding of 

neuropathology.  Despite promise, key challenges exist before patient monitoring 

technologies become standard in clinical settings, including 1) industry standardization of 

sensor-based analytical approaches; 2) validation of endpoint sensitivity to degree of 

impairment and medication state; and 3) consensus regarding appropriate devices, 

algorithms, data requirements, and statistical analysis requirements for symptom 

measurement outside of the clinic. In addition to the need for better patient monitoring, 

no disease-modifying therapeutics currently exist and thorough understanding of the 

neuropathology of PD remains elusive. To this end, large network brain simulations that 

leverage efficient computational frameworks are beginning to provide insight into 

mechanisms that facilitate pathological oscillations and may serve to identify new 

therapeutic targets.  

To address current limitations in patient monitoring and our understanding of 

neuropathology, in this dissertation I 1) develop and evaluate validity and reliability of an 
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open-source, wearable sensor-based algorithm for measuring gait in PD patients, 2) 

evaluate and compare sensitivity of at-home measurements relative to in-clinic 

measurements, 3) evaluate sensitivity of wearable-derived features for measuring degree 

of gait impairment and treatment response in PD patients, and 4) investigate the effect of 

synaptic parameters on beta synchrony and entrainment in a large-scale spiking model of 

the subthalamic nucleus-globus pallidus externa (STN-GPe) network of the basal ganglia. 

Importantly, I find that sensor-derived features derived from the at-home environment 

differ from and are more sensitive to small changes compared to in-clinic, traditional 

assessments. Furthermore, I demonstrate the capacity for a single, lower back sensor-

based algorithm to estimate gait features with sufficient sensitivity to detect degree of 

gait impairment and treatment effect in a mild-to-moderate PD population. Lastly, I 

demonstrate that weak synaptic connections between STN and GPe allows the STN-GPe 

network to entrain to a wide range of frequencies outside of the beta range, thus 

elucidating constraints on conditions required for beta production. Together, my work 

provides new insights into the feasibility and benefits of sensor-based symptom 

monitoring and PD-related neuropathology.  
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CHAPTER ONE: INTRODUCTION 

Introductory Overview 

Parkinson’s disease (PD) is the second-most common neurodegenerative disorder 

that manifests as a variety of stereotypical motor and non-motor abnormalities (Poewe et 

al., 2017). PD affects approximately 1 million individuals in the US aged greater than 45 

years and global incidence estimates range from 5 to 35 new cases per 100,000 

individuals yearly (Marras et al., 2018; Poewe et al., 2017). Despite high prevalence, no 

disease-modifying treatments currently exist to prevent or slow the progression of PD. 

Rather, the current standard of care is to manage primary motor and non-motor 

symptoms.  

Novel computational approaches aim to improve symptom monitoring and 

prognoses for individuals with PD. For over 50 years, the use of the dopamine precursor 

amino acid, levodopa, to replace lost dopaminergic signal in the nigrostriatal pathway has 

been the standard of care for managing the symptoms of PD. However, long term adverse 

effects such as levodopa-induced dyskinesia and end-of-dose wearing off are major 

drawbacks of current therapeutic options (Rascol et al., 2003). By extension, although 

dopaminergic treatments can be effective at managing motor symptoms of PD, most do 

not improve, and can often exacerbate, non-motor symptoms (Wishart & Macphee, 

2011). To this end, ongoing clinical trials for treatments covering a broad range of targets 

aim to improve prognosis (Soderbom, 2020). However, evaluation of therapeutic efficacy 

suffers from infrequent monitoring and lack of quantitative assessments (Erb et al., 

2020). For example, a well-accepted standard for measuring motor fluctuations and 
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dyskinesias, the Patient Hauser Diary, has significant caveats including reduced 

compliance, recall bias, and diary fatigue (Papapetropoulos, 2011). Therefore, there is a 

need for obtaining quantitative, longitudinal endpoints related to everyday functioning 

and quality of life from individuals with PD (Espay et al., 2019).  

Furthermore, in addition to patient monitoring, novel computational algorithms 

have the potential to improve understanding of underlying disease pathology and create 

new treatment options (Humphries et al., 2018). For example, abnormally amplified and 

sustained beta-frequency oscillations (~20 Hz), found throughout the cortico-basal 

ganglia-thalamic loop, are implicated in motor impairments in PD patients, most 

significantly with bradykinesia and rigidity at rest (Little & Brown, 2014). Deep brain 

stimulation treatment has demonstrated that modulation of pathological oscillations can 

reduce troubling motor symptoms and is currently part of the standard of care for 

managing symptoms in refractory PD (Hartmann et al., 2019). However, current standard 

of care deep brain stimulation is ineffective, and can oftentimes exacerbate, gait 

impairment, speech, and affective and cognitive symptoms, and is thus insufficient for 

treating dysfunction of multiple circuits (Lozano et al., 2019). Therefore, there is a need 

for better understanding of systems level network dynamics and development of novel 

oscillation-modulating therapeutic approaches (Holt & Netoff, 2016). To this end, 

computational modeling offers the ability to manipulate and record from large simulated 

networks of neurons, thus providing insight into pathological network dynamics. Current 

research in computational modeling aims to improve oscillation-modulating treatment 
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options by generating new insights into the origin and network conditions that facilitate 

pathological oscillations.  

In summary, novel computational analytical approaches are revolutionizing our 

ability to investigate disease pathology and monitor patient symptoms, thus facilitating 

development and evaluation of novel therapies that change patient lives. In this 

dissertation, I aim to leverage new computational techniques toward improving patient 

monitoring and elucidate a better understanding of the underlying brain pathology of PD. 

Specifically, I 1) develop and open-source a sensor-based, analytical approach to measure 

gait in PD patients; 2) evaluate the degree to which sensor-based approaches can measure 

gait impairment and medication state; 3) evaluate key differences between at-home 

patient monitoring relative to in-clinic monitoring; and 4) investigate STN-GPe network 

conditions that facilitate pathological oscillations throughout the cortico-basal ganglia-

thalamic loop. It is my hope that the results of this work will help move the needle toward 

better patient monitoring and a clearer understanding of neuropathology in PD.  

Parkinson’s Disease Treatment and Evaluation 

Background and Treatment 

 Parkinson’s disease affects over 6 million people worldwide, making it the second 

most common neurodegenerative disorder after Alzheimer’s disease (GBD 2016 

Parkinson’s Disease Collaborators, 2018). Historically, Parkinson’s disease has been 

described by its motor manifestations, most notably tremor, which was the focus of the 

original clinical description of the disease by James Parkinson in 1817 (Parkinson, 2002). 

Since then, clinical diagnosis of the disease has expanded to include other cardinal, 
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movement-related symptoms, including rest tremor, bradykinesia, rigidity, and loss of 

postural reflexes (Jankovic, 2008). Flexed posture and motor freezing are also among 

classical signs of Parkinson’s disease. In addition to motor symptoms, non-motor 

symptoms are an increasingly appreciated feature of Parkinson’s disease and include 

autonomic dysfunction; cognitive and neurobehavioral disorders; and sensory and sleep 

abnormalities (Wishart & Macphee, 2011).  

The neuropathology of PD is not fully understood, however the pathological 

hallmark is α-synuclein protein build up in various regions of the brain as well as 

accompanied neurodegeneration of dopaminergic neurons in the substantia nigra pars 

compacta (McGregor & Nelson, 2019). Loss of substantia nigra pars compacta 

dopaminergic neurons, and consequential striatal dopamine loss, is thought to be the core 

mechanism underlying cardinal motor symptoms in PD. Currently, there are no disease 

modifying treatment options for PD, only management of symptoms, and for over 50 

years, L-DOPA has been the standard of care. L-DOPA is an amino acid precursor to 

dopamine and functions by supplementing loss of striatal dopamine. Despite initial 

effectiveness at treating motor symptoms of PD, chronic L-DOPA exposure leads to 

motor complications in ~30% of patients after 2-3 years of exposure and greater than 

50% after 5 years. Therefore, there is unmet patient need for novel dopaminergic and 

non-dopaminergic treatments to address L-DOPA-induced motor fluctuations, 

dyskinesia, and L-DOPA-resistant motor features such as treatment-resistant tremor, 

freezing of gait, postural instability, falls, and swallowing and speech disturbances 

(Poewe et al., 2017).  
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To this end, new treatment options are on the horizon for both managing 

symptoms and neuroprotection in PD. For example, dopaminergic treatments and 

invasive, later-line therapies such as deep brain stimulation are in ongoing clinical 

development for primary motor symptoms of PD. Additionally, various non-

dopaminergic therapies are being investigated for management of non-motor symptoms, 

including psychosis, dementia, and gastrointestinal symptoms. Despite numerous clinical 

trials to date, no disease modifying treatments have shown therapeutic efficacy. However, 

compounds targeting a-synuclein aggregates or protecting neurons via alleviation of 

mitochondrial dysfunction and neuroinflammation are in ongoing development 

(Soderbom, 2020).  

Clinical Evaluation and Limitations 

Despite the promising landscape of therapeutic opportunities in PD, the ability to 

diagnose, evaluate treatment efficacy, and measure progression is limited. PD is clinically 

defined by the presence of bradykinesia combined with either resting tremor, rigidity, or 

both (Postuma et al., 2015). However, onset of motor symptoms may only occur years or 

decades after the earliest, prodromal stages of PD (Gaenslen et al., 2011). Indeed, early 

manifestations, including constipation, rapid eye movement sleep disorder behavior, 

hyposmia, asymmetric vague shoulder pain, and depression, are not on their own 

sufficient to diagnose PD, which therefore leads to a long delay in diagnosis (Bloem et 

al., 2021). Furthermore, the presence of comorbidity may complicate the diagnostic 

process, commonly leading to misclassification of early stage PD (Beach & Adler, 2018). 
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Progression of PD and the effect of treatment to both motor and non-motor 

symptoms are commonly measured using the Movement Disorder Society-Sponsored 

Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) in clinical 

trials (Goetz et al., 2008). The MDS-UPDRS consists of four parts in which a patient 

answers a series of questions, completes self-administered questionnaires, and conducts 

several movement related tasks under the supervision of a trained neurologist. Although 

the MDS-UPDRS addresses several drawbacks of the previously administered UPDRS 

developed in the 1980’s, including ambiguities in scoring and administration, there are 

still limitations related to precision of motor symptom measurement, especially in early 

PD (Holden et al., 2018; Regnault et al., 2019).  

Despite widespread use and utility, several challenges exist generally when using 

patient-reported measures (Kingsley & Patel, 2017). Depending on disease severity, 

patients may not be in a physical or psychological state to give reliable opinions related 

to their health. Furthermore, patients may have a preconceived notion concerning how 

their answers will be interpreted and impact their care leading to adjusting their answers 

accordingly. To this end, the Hawthorne effect is a concept widely reported that may 

cause bias, idiosyncratically changing patient behavior when being observed and leading 

to over or underestimation of health experiences (McCambridge et al., 2014; Pickering et 

al., 2002). Additionally, difficulty reaching the clinic is a major drawback of in-clinic 

patient-reported measures. Factors such as remote geographic location, time constraints, 

and disease outbreaks largely impact recruitment and data collection in clinical research 

studies. 
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Another limitation of the MDS-UDPRS is related to mobility assessment and 

evaluation. Part III of the MDS-UPDRS consists of a motor examination that evaluates 

various aspects of mobility, including, but not limited to, speech, facial expression, 

rigidity, tremor, bradykinesia, and gait. For example, in order to evaluate the degree of 

gait impairment in a PD patient, the patient will be asked to walk at their normal pace 

approximately 10 meters, before turning around and returning to the examiner. A trained 

clinician, based on their observations related to stride amplitude, stride speed, height of 

foot lift, heel striking, turning, and arm swing will assign a rating between 0 and 4 based 

on the degree of gait impairment (Goetz et al., 2019). The ability for a neurologist to 

reliably evaluate gait impairment by eye is challenging and may be biased based on the 

experience of the doctor and how well they are able to see and quantify symptoms. In 

addition to subjectivity, the UPDRS is burdensome, as it relies on patients, commonly 

with reduced mobility, to travel and spend several hours at a local clinic. Furthermore, 

the MDS-UPDRS only provides a description of symptoms during a single snapshot in 

time. In contrast, symptoms of PD are dynamic and may change over the course of the 

day depending on various factors, including time of day, day of week, sleep the day 

before, and timing of medication, especially during later stages of the disease when motor 

fluctuations are more common.    

Alternative methods of symptom measurements exist in addition to the UDPRS. 

For example, questionnaires and motor diaries are commonly used to monitor symptoms 

and evaluate treatment efficacy in clinical trials (Hauser et al., 2000; Stacy et al., 2005). 

The Hauser diary is a written home diary that requires patients to complete an assessment 
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of functional status every 30 minutes during normal living. The change in time reported 

in the “OFF” period and “ON” period with troublesome dyskinesia may be used as a 

clinical marker for treatment efficacy. Despite being a gold standard in clinical trials, the 

Hauser diary has significant limitations, including reduced accuracy and reliability 

largely due to poor adherence and recall bias, limited time resolution, added burden to 

patients, and insufficient measurement of impairment severity (Erb et al., 2020). In 

summary, gold standard methods for monitoring PD patient disease progression and 

response to therapy have significant drawbacks. Therefore, new biomarkers and methods 

for symptom evaluation are needed.   

Digital Health Technologies Toward Better Symptom Monitoring 

New advances in engineering and computational algorithms have the potential to 

significantly improve patient monitoring. Specialized camera systems and sensors have 

been researched and used extensively for decades to quantitatively measure aspects of 

health such as sleep and gait. However, specialized laboratories and trained technicians 

are generally needed to conduct these studies and therefore prohibit widespread use for 

clinicians and clinical studies. In contrast, the past few decades have seen the emergence 

of many technologies that facilitate remote monitoring, including sensor-embedded smart 

phones, wearable devices, smart home equipment and appliances, and interconnectivity 

of embedded computing devices in everyday objects via the internet (Majumder & Deen, 

2019; Morgan et al., 2020).  

Remote patient monitoring has the capacity to address many limitations of 

traditional clinical assessments including observer bias, difficulty reaching a clinic, and 
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subjective measurements. Additionally, researchers, clinicians, and patients are hopeful 

that digital health technologies will provide a more complete picture of disease burden. 

At-home patient monitoring has the potential to provide a nuanced perspective not 

currently provided by in-clinic assessments of micro level detail, including continuous 

symptom measurement and medication response, and macro level detail, including 

habitual behavioral patterns, activity levels, and sleep quality (Del Din, Godfrey, Mazzà, 

et al., 2016). For clinicians and patients, improved measurement may contribute to 

enhanced symptom management and care, thus improving patient outcomes. From the 

industry perspective, the potential for early disease identification and progression 

monitoring, better diagnostics, enhanced recruitment and assessment of treatment 

efficacy are attractive aspects of digital health technologies.  

Over the past decade, positive regulatory engagement and feedback is bolstering 

the development of digital health technologies. The concept of digital health has evolved 

significantly since its first introduction in 2000 as encompassing internet-focused 

applications and media to improve medical content, commerce, and connectivity (S. R. 

Frank, 2000; Mathews et al., 2019). Since then, regulatory authorities, such as the Food 

and Drug Administration (FDA), have expanded the scope of digital health to include 

categories such as mobile health, health information technology, wearable devices, 

telehealth and telemedicine, and personalized medicine. Key guidance were issues in 

2016 by the FDA and World Health Organization regarding evaluation and validation 

frameworks for all digital health solutions (Guo et al., 2020). Additionally, targeted 

guidance on solution classification and evidence requirements, including the FDA Pre-
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certification Program, are enabling streamlined approval of digital health solutions 

(Digital Health Software Precertification (Pre-Cert) Program, 2021). Regulatory 

initiatives will continue to facilitate development and productionization of digital health 

technologies toward revolutionizing healthcare.  

Challenges for Sensor-Based Measurement 

Improvements in form factor and battery life have enabled small wearable inertial 

measurement unit (IMU) devices to continuously record inertial data for periods of days 

and weeks in free-living settings. The small form factor and extended battery life reduces 

burden to patients as the device is not overly intrusive or uncomfortable and removal for 

charging is unnecessary. Despite advancements, several challenges exist before clinical 

adoption of wearable sensors.  

First, data acquired from wearable devices in raw form is challenging to interpret. 

This is especially true considering traditional signal processing-based time series features 

lack clinical relevance and interpretability. Therefore, computational algorithms are 

needed to translate raw inertial data into clinically interpretable symptom features that are 

relevant to patient function and quality of life. Indeed, the past several decades have 

produced a large array of tools and algorithms that aim to measure a variety of symptoms. 

Despite progress, lack of open-source algorithms are available for research and clinical 

studies, thus limiting accessibility and standardization of measurement approaches.  

Another challenge facing widespread clinical adoption of wearable sensor 

technologies is lack of standardization and sufficient validation. Generally speaking, 

studies demonstrating analytic approaches, outcome measures, protocol design, devices, 
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and device placement are small and inconsistent (Del Din, Godfrey, Mazzà, et al., 2016). 

The lack of large scale studies and study variability lead to difficulty comparing results 

and increases uncertainty in the interpretation of results (Walton et al., 2020). For 

example, gait speed may seem like a straightforward clinical feature that can be measured 

in at-home environments. However, differences between how algorithms define walking 

bouts (whether length cutoffs exist for bouts or whether minimum step requirements exist 

for shorter bouts) may critically impact post-hoc statistical analysis (Del Din, Godfrey, 

Mazzà, et al., 2016). Therefore, standardized devices, algorithms, protocols, and evidence 

frameworks are needed in order to support regulatory acceptance and clinical adoption.  

Neuroanatomy and Significance of Gait 

 Research to develop and validate standardized algorithmic solutions to translate 

raw inertial data to meaningful patient symptom measurements is needed. One active area 

of research, largely applicable to PD, is the use of wearable sensors to measure gait. 

Specifically, gait speed has been regarded as the sixth vital sign and is a significant 

component of patient quality of life (Middleton et al., 2015). Previous literature has 

shown gait to be influenced by various factors including age, personality, and mood and 

there is strong association between gait speed and general health and mortality (Pirker & 

Katzenschlager, 2017).  

Studies in feline animal models have been largely used to study the nervous 

system regulation of gait. Higher order brain regions, including the cerebral cortex and 

basal ganglia, have been shown in decerebrate cats to play a role in skilled locomotor 

performance and goal-oriented gait behavior. Specifically, bilateral pyramidal tract 
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lesions in cats leads to severe impairment of skilled locomotor performance on tasks 

requiring the cat to walk along a narrow beam or ladder (Liddell & Phillips, 1944). In 

addition to skilled locomotion, higher order brain regions have a role controlling goal-

oriented gait behavior. For example, bilateral removal of the caudate nucleus in cats 

results in a persistent approach-attachment behavior in which the cat will approach and 

attempt to contact any moving person, cat, or object, seemingly unable to terminate the 

locomotor behavior (J. R. Villablanca, 2010). Furthermore, removal of both cerebral 

cortex and striatum results in incessant gait, without the necessity of any external 

stimulus (J. Villablanca & Marcus, 1972).  

In addition to the effect of higher order brain regions on gait, lower level brain 

regions such as the brainstem and spinal cord also play a large role in healthy gait 

behavior. For example, when a decerebration is made at the precollicular-premammillary 

level, cats retain the ability to spontaneously initiate locomotion and maintain postural 

control, albeit gait is machine-like and control of distal forelimb is often defective 

(Armstrong, 1986; Hinsey et al., 1930). However, a slightly lower transection at the 

precollicular-postmammillary level disrupts the cat’s ability to spontaneously elicit gait 

and introduces the need for electrical or chemical stimulation to the midbrain locomotor 

region (which roughly corresponds to the cuneiform nucleus and pedunculopontine 

tegmental nucleus in humans) in order to initiate locomotion (Takakusaki, 2017). The 

critical brainstem region between these transactions is recognized as the subthalamic 

locomotor region, and mostly corresponds to the lateral hypothalamic area. In addition to 

multiple areas of the brain controlling gait, spinal neural circuitry, termed central pattern 
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generators, are also crucial for basic locomotor motor pattern. All of these processing 

steps have their own impact on the ability to walk normally. To this end, gait may be 

impacted in specific ways based on the particular pathogenesis of neurodegenerative 

disease.  

The complex, multimodal nature of gait regulation facilitates the ability to 

measure nervous and muscular system disruptions by measuring specific characteristics 

of gait, thus provide insight into the state and progression of neurodegenerative and 

muscular disorders. In the case of PD, gait impairment and freezing of gait progressively 

worsen from early to later stages of the disease and can offer insight into disease severity 

and subtype (Mirelman et al., 2019). For example, in the early stages of PD, patient gait 

speed slows, step length shortens, arm swing amplitude shortens, and interlimb 

asymmetry is common. In contrast, gait in mild-to-moderate and advanced stage PD is 

altered, so that asymmetry decreases, double limb support increases, and cadence 

increases, reflecting a stereotypical shuffling of gait. Additionally, trouble initiating gait, 

freezing of gait, and higher fall risk become more pronounced as disease severity 

progresses. Thus, gait features serve as a method to observe severity and progression of 

disease. Additionally, gait may be used to monitor the effect of treatment. To this end, 

dopaminergic treatments generally improve certain aspects of impaired gait including 

speed and step length. However, many temporal gait characteristics may not respond to 

dopaminergic medication, and in fact, dopaminergic treatment can even further impair 

gait via L-DOPA-induced motor fluctuations, freezing of gait, postural instability, and 
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falls (Mirelman et al., 2019; Poewe et al., 2017). Therefore, gait may act as a useful 

marker for therapeutic effect.  

Furthermore, measuring gait provides utility not only for PD patients, but for 

various muscular and neurodegenerative disease patients. Gait can be affected at multiple 

locations in the nervous and musculoskeletal systems. In PD, gait and postural 

disturbance is thought to be impacted via several mechanisms, including disturbances in 

dopaminergic and cholinergic systems, cognitive impairment leading to failure of 

integrative sensory processing, impaired motor cortical areas, and disturbances in 

posture-gait areas of the brainstem (Takakusaki, 2017). However, there are many 

neurodegenerative diseases and muscular dystrophies that produce their own unique 

symptoms of gait impairment based on affected locations. For example, Friedreich’s 

ataxia is the most common inherited ataxia that consists of peripheral sensory 

neuropathy, spinocerebellar tract degeneration, and cerebellar pathology that manifests as 

characteristically unsteady gait with loss of balance and incoordination of the lower 

extremities (Ashizawa & Xia, 2016; Cook & Giunti, 2017). In contrast, knee 

osteoarthritis is a particularly common arthritis that consists of joint disease creating 

meaningful differences in knee adduction, flexion moment, and flexion angle during gait 

(Favre & Jolles, 2016). In each case, unique gait signatures can be measured to provide 

insight into disease state and treatment effect.  

Sensor-Based Gait Measurement 

In order to measure clinical aspects of gait, gait can be broken down into 

component parts. To this end, temporal features describe the amount of time it takes for a 
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patient to accomplish certain phases of a stride. For example, the stance phase of gait, 

refers to the period between when the heel first touches the floor and the toe, of that same 

foot, comes off the floor. In contrast, spatial features, such as stride length, measure 

distances of particular phases of gait. Healthcare specialists evaluate patient health using 

a variety of spatiotemporal gait parameters (Muro-de-la-Herran et al., 2014).  

Recently, novel algorithms have been proposed to derive spatiotemporal 

components of gait using inertial measurement unit (IMU) devices. IMU devices consist 

of a micro-electro-mechanical system (MEMS) transducer that transforms mechanical 

movement signal into an electrical signal (Brognara et al., 2019). A MEMS device of 

significant interest to the digital health community is the accelerometer. Due to minimal 

size, battery efficiency, and reduced cost, accelerometers have been the subject of 

significant research efforts with the goal of developing a patient compliant method of 

translating electrical, time-series signals into clinically relevant information (Del Din, 

Godfrey, Mazzà, et al., 2016).  

Various numbers and placements of IMU devices have been proposed for 

measuring biomechanical behaviors, such as gait. Generally speaking, the closer a device 

lies to the movement of interest, the better the data quality and ability to measure that 

movement is. However, other logistics come into play when attempting to measure 

patient movement in free-living conditions. For example, device wearability and comfort 

is a major requirement when designing digital health solutions. The detriment of non-

compliance for a particular device or a particular location supersedes any benefit of an 

exceptionally accurate algorithm. Furthermore, battery life and number of sensors are 
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also considerations when choosing a device. For example, a device that does not require a 

patient to remove, charge, and place the device back on at a later time is largely 

beneficial compared to a device requiring frequent charging. To this end, the requirement 

of multiple sensors adds additional burden to patients. Therefore, various logistics, such 

as device, number of devices, and placement, must be considered when developing a 

digital health solution. 

One sensor set-up, that has been largely investigated by several research labs, 

consists of a single device on the lower back (Del Din, Godfrey, & Rochester, 2016a; 

Esser et al., 2011, 2012; Trojaniello et al., 2014, 2015). In fact, a recent review of 

relevant articles from 2008-2018 reports the most common set-up is a single sensor 

(13/36) and the most common placement of a single sensor is the lower back (8/13) 

(Brognara et al., 2019). The benefits of a sensor on the lower back for measuring gait 

include the ability to measure gait features from both sides of the body using a single 

sensor, measurement of asymmetries, measurement of other relevant clinical behaviors 

such as sit-to-stand transitions, and overall patient willingness to wear the device on the 

lower back location.  

A recently proposed algorithm for estimating temporal features of gait from the 

lower back has shown strong validity compared to other approaches (McCamley et al., 

2012), reliability in patient populations (Trojaniello et al., 2015), and robustness to small 

variabilities in positioning at the lower back (Trojaniello et al., 2014). The approach 

leverages a gaussian continuous wavelet and peak detection to estimate initial (heel 

strike) and final (toe off) contacts toward estimation of temporal gait features (McCamley 
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et al., 2012). The approach becomes quite powerful in combination with another robust 

inverted pendulum model algorithm to measure spatial features of gait (Del Din, Godfrey, 

& Rochester, 2016a; Zijlstra & Hof, 2003). Despite these novel approaches, a 

standardized, open-source implementation of these algorithms does not exist, thus 

limiting accessibility, replication of results, and improvements from the community. By 

extension, questions remain regarding sensor-based algorithm effectiveness at measuring 

patient relevant changes in gait, including degree of impairment and effect of treatment. 
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Introduction 

Gait impairments are present across a broad range of conditions and often have a 

significant impact on the functional mobility and quality of life of an individual. 

Clinicians and researchers commonly assess gait using either observational scales (e.g. 

Unified Parkinson’s Disease Rating Scale) or performance-based tests (e.g. timed-up-

and-go). However, these assessments can only be performed intermittently because of the 

need for a trained clinician. In contrast, wearable devices can be used for continuously 

capturing data from sensors (e.g. accelerometer, electrocardiogram) outside the clinic. 

Recently, several groups (Del Din, Godfrey, & Rochester, 2016a; McCamley et al., 2012; 

Trojaniello et al., 2014; Zijlstra & Hof, 2003) have published algorithms for deriving 

features of gait from data collected using inertial sensors like accelerometers. However, 
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an implementation of these algorithms is not readily available to researchers, thus 

hindering progress. 

GaitPy is an open-source Python package that implements several published 

algorithms in a modular framework for extracting clinical features of gait from a single 

accelerometer device mounted on the lower back (L5 vertebra, illustrated in figure 2.1). 

The package has been developed to make it easy for researchers to derive measures of 

gait from raw accelerometer data. As shown in figure 2.2, the package includes modules 

with three main functions: 1) classify bouts of gait; 2) extract clinical features of gait 

from each bout; and 3) visualize detected gait events. 

 
Figure 2.1. Location of the wearable device on the lower back and orientation of the vertical 

acceleration axis of the accelerometer relative to the body. 
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Figure 2.2. A high-level overview of GaitPy API and functions associated with various 

modules. 

Processing Pipeline 

GaitPy can be used to derive gait features from data collected in the clinic as well 

as under free- living conditions (e.g. at home). The package accepts input data in a 

customizable format, thereby not restricting the user to a standard file type. GaitPy 

utilizes vertical acceleration data from a wearable device located on the lower back 

(lumbar region) and consists of three main processing modules. 

 classify_bouts is an optional module intended to be used for processing data 

collected under free-living or unsupervised conditions. The module uses a pre-trained gait 

classification model to detect bouts of gait from a continuous stream of raw 

accelerometer data. It first converts data to units of gravity (g) and down-samples it to 

50Hz. Data is then segmented into non- overlapping 3-second epochs and signals features 

are derived for each epoch. The pre-trained gait classification model then classifies each 

3-second epoch as gait or not-gait. 
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extract_features module utilizes a Gaussian continuous wavelet transform based 

approach (McCamley et al., 2012) and inverted pendulum model (Zijlstra & Hof, 2003) 

to calculate spatial and temporal gait features. Vertical acceleration data is first converted 

from units of gravity (g) to meters per second squared (m/s2) and down-sampled to 50 

Hz. Using the approach described in Del Din et al. 2016 (Del Din, Godfrey, & Rochester, 

2016a), we then derive spatial and temporal features of gait. Additionally, an 

optimization procedure is performed to remove extraneous event detections and is 

described in more detail below. The extract_features module expects data segments that 

only contain gait. So, if input data consists of both gait and non-gait data, it is 

recommended to first apply the classify_bouts function in order to identify periods of gait 

at the resolution of 3-second epochs. extract_features will then concatenate concurrent 3-

second epochs of gait into bouts and extract features for each bout. 

plot_contacts module generates an interactive plot of raw data along with the 

initial and final contact events detected by the gait event detection algorithm (McCamley 

et al., 2012). The plot facilitates debugging and presentation of results. 

Outputs 

As shown in figure 2.2, the outputs of GaitPy modules include classification of 

gait bouts, a set of gait feature values extracted for each bout, and a plot of raw sensor 

data marked with detected gait events (initial contact/heel strike and final contact/toe off). 

We describe outputs of each of the processing modules below: 

classify_bouts generates a pandas dataframe or a H5 file containing the following 

columns: 
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a) window_start_time: Unix timestamp associated with the beginning of each 3-

second epoch in the data. 

b) window_end_time: Unix timestamp associated with the end of each 3-second 

epoch in the data. 

c) prediction: Output of the gait classification model (1=gait or 0=not gait) for each 

3-second epoch in the data. 

extract_features generates a pandas dataframe or a csv file containing: 

a) Bout number for each bout detected by classify_bouts (column name: 

bout_number).  

b) Length of bout in seconds (column name: bout_length_sec). 

c) Start time of bout (column name: bout_start_time).  

d) Total number of steps detected within each bout (column name: steps). 

e) Initial and final contact event timestamps in Unix time (column names: IC and FC 

respectively). 

f) Values of the following gait features are derived per stride: stride duration, step 

duration, cadence, initial double support, terminal double support, double support, 

single limb support, stance, swing, step length, stride length, gait speed. In 

addition, we calculate variability and asymmetry associated with a set of features. 

plot_contacts generates a HTML file containing an interactive time-series plot of 

raw vertical acceleration data labeled with detected gait events and bouts (shown in 

figure 2.3). 
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a) Initial contact: The moment in the gait cycle when foot touches the ground (i.e. 

heel strike) 

b) Final contact: The moment in the gait cycle when foot lifts off the ground (i.e. toe 

off) 

c) Gait bouts: A green vertical line marks the beginning of each detected gait bout 

and a red vertical line marks the end of the bout (Figure 2.3). 
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Figure 2.3. Time-series plot generated by plot_contacts module of the raw vertical 

acceleration data labeled with detected gait events (initial contact/heel strike and final 

contact/toe off) and bout classifications. The start and end times of classified bouts are 

labeled by green and red vertical lines respectively. During the period shown, the 

participant walked for about 30 seconds, paused, performed 5 sit-to-stand repetitions, 

paused again, and continued walking for about 30 seconds. 

 

Algorithms 

GaitPy includes two key algorithms for processing raw accelerometer data to 

derive gait features. The first algorithm is used for detecting bouts of gait from 

continuous accelerometer data collected under free-living conditions and the second 

algorithm derives temporal and spatial features of gait from pre-identified bouts of gait. 

Below is a brief description of the algorithms. 

Gait Classification 

In order to derive gait features from data collected under free-living conditions, it 

is essential to identify periods of walking activity. GaitPy includes a pre-trained random 

forest (Breiman, 2001) binary classifier that operates on time and frequency domain 

features extracted from 3-second epochs of vertical acceleration data. Prior to feature 

extraction, raw vertical acceleration data is down-sampled to 50Hz and band-pass filtered 

using a 0.5-3Hz 1st order Butterworth filter. Extracted signal features include dominant 

frequency, the ratio of the energy associated with the dominant frequency component to 

the total energy, the range of amplitude, the root mean square value of the signal, and the 

signal entropy. Gaitpy’s classify_bouts module applies this binary classifier to input data 

to classify each non-overlapping 3-second epoch as either gait or not-gait. 
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Gait Features 

GaitPy implements a slightly modified version of a Gaussian continuous wavelet-

based method (McCamley et al., 2012) and an inverted pendulum model (Zijlstra & Hof, 

2003) to extract features from data collected during bouts of gait. 

Three post-processing steps are applied to remove extraneous stride detections 

beyond physiological limits. Step 1: Strides longer than 2.25 seconds or shorter than 0.25 

seconds are removed (Najafi et al., 2003). Step 2: Strides with stance times exceeding 

70% of the maximal stride time of 2.25 seconds are removed (Hollman et al., 2011). Step 

3: Strides with an initial double support that exceed 20% of the maximal stride time of 

2.25 seconds are removed (Hollman et al., 2011). 
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Abstract 

Technological advances in multimodal wearable and connected devices have 

enabled the measurement of human movement and physiology in naturalistic settings. 

The ability to collect continuous activity monitoring data with digital devices in real-

world environments has opened unprecedented opportunity to establish clinical digital 

phenotypes across diseases. Many traditional assessments of physical function utilized in 

clinical trials are limited because they are episodic, therefore, cannot capture the day-to- 

day temporal fluctuations and longitudinal changes in activity that individuals 

experience. In order to understand the sensitivity of gait speed as a potential endpoint for 

clinical trials, we investigated the use of digital devices during traditional clinical 

assessments and in real-world environments in a group of healthy younger (n = 33, 18–40 

years) and older (n = 32, 65–85 years) adults. We observed good agreement between gait 

speed estimated using a lumbar-mounted accelerometer and gold standard system during 

the performance of traditional gait assessment task in-lab, and saw discrepancies between 

in-lab and at-home gait speed. We found that gait speed estimated in-lab, with or without 

digital devices, failed to differentiate between the age groups, whereas gait speed derived 

during at-home monitoring was able to distinguish the age groups. Furthermore, we 

found that only three days of at-home monitoring was sufficient to reliably estimate gait 

speed in our population, and still capture age-related group differences. Our results 

suggest that gait speed derived from activities during daily life using data from wearable 

devices may have the potential to transform clinical trials by non-invasively and 

unobtrusively providing a more objective and naturalistic measure of functional ability.  
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Introduction 

Gait is the primary means of mobility for most individuals and many conditions 

directly or indirectly have an impact on gait. Gait speed is considered an informative and 

reliable clinical measure in a wide range of disease populations; it is often referred to as 

the sixth vital sign (Fritz & Lusardi, 2009; Middleton et al., 2015). Previous studies have 

shown that lower gait speed is associated with cognitive decline, falls, and mortality 

(Hornyak et al., 2012; Pirker & Katzenschlager, 2017) and is an important indicator of 

health and function in ageing and disease (Peel et al., 2012). Conventional gait 

assessment is performed in the laboratory or clinic using a combination of observational 

scales (e.g. functional gait assessment) and performance tests (e.g. 6-minute walk test) 

where individuals perform prescribed walking tests under observation. These types of 

assessments may not be able to provide a reliable estimate of real world gait because 1) 

they are administered episodically, 2) can be subjective in nature, and 3) gait can be 

altered under observation (Hawthorne effect) (Mayo, 1934; McCambridge et al., 2014).  

Advances in wearable technology have enabled the measurement of gait using 

inertial sensors in free-living conditions(Tao & Feng, 2012). Using ground truth 

references such as instrumented mats and motion capture systems, researchers have 

validated novel gait measurement approaches that rely on a small number of battery-

efficient inertial sensors (Godfrey et al., 2015; Trojaniello et al., 2014). Comparative 

analysis has revealed that while these methods generally perform well, there are 

considerations such as study population and device location that can influence the 

reliability of measurements (Storm et al., 2016; Trojaniello et al., 2015). Therefore, the 
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validity of such methods needs to be rigorously assessed in different populations to 

establish their performance characteristics. In addition to assessing the accuracy with 

which they can measure spatial and temporal aspects of gait, it is also necessary to 

evaluate the sensitivity of measures derived during daily life for detecting clinically 

meaningful changes. Shah et al. showed that measures of quantity were able to better 

discriminate between patients with multiple sclerosis and controls whereas measures of 

quality were more discriminative for patients with Parkinson’s disease (PD) and controls 

(Shah et al., 2020). 

There is a growing body of research showing that gait assessments performed 

under controlled conditions (e.g. in the laboratory or clinic) are unable to capture the 

variability observed during daily life (e.g. in the home and community) (Brodie et al., 

2016; Hillel et al., 2019; Mueller et al., 2019; Takayanagi et al., 2019). Specifically, gait 

speed derived from data captured under continuous free-living conditions is slower than 

gait speed measured in the clinic in frail elderly or community-dwelling older adults 

(Takayanagi et al., 2019). It has been hypothesized that continuous, at-home monitoring 

provides a richer and more comprehensive view of an individual’s experience with the 

disease (Del Din, Godfrey, Mazzà, et al., 2016; Maetzler & Rochester, 2015). In fact, Del 

Din et al. showed that distinguishing PD patients and healthy volunteers using gait 

characteristics was improved  in free-living conditions (Del Din, Godfrey, Galna, et al., 

2016). In addition to the prospect of enhanced sensitivity of measurements, at-home 

monitoring has the potential to improve patient engagement in clinical research studies by 

reducing the need for frequent visits to the clinic, enabling more patients to participate, 
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and reducing the burden on patients and caregivers. For these reasons, at-home 

measurements are gaining traction as valid clinical endpoints from regulatory agencies. 

For example, the European Medicines Agency (EMA) recently approved 95th percentile 

stride velocity measured using a valid and suitable wearable device, as an acceptable 

secondary endpoint in pivotal or exploratory clinical studies for Duchenne muscular 

dystrophy (Committee for Medicinal Products for Human Use (CHMP), 2019). 

Despite growing evidence that at-home monitoring provides a more 

comprehensive assessment of gait, several hurdles need to be addressed to enable broader 

clinical adoption. Further clinical research that adopts and validates standardized sensor-

based methods in various populations under free-living conditions is needed to translate 

research findings and novel methods into practice (Steins et al., 2014). Additionally, 

questions remain regarding the processing and interpretation of at-home data (Hubble et 

al., 2015). An open question is the optimal monitoring duration necessary for reliable 

characterization of gait under free-living conditions. Obtaining data from multiple days 

and investigating day-to-day variability of at-home measures is necessary in order to 

assess the minimum required acquisition period and obtain reliable real-world estimates. 

However, additional days of monitoring results in increased patient burden and might 

reduce compliance in clinical trials, especially for patients suffering from particularly 

debilitating diseases. The required number of at-home monitoring days still remains 

arbitrary and can be affected by multiple factors such as the type of disease, treatment, 

age, geographical location, and socioeconomic status. In fact, previous studies have used 

data captured during monitoring durations that ranged from one day to several weeks for 
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their analysis (de Bruin et al., 2007; Del Din, Godfrey, Galna, et al., 2016; Godfrey et al., 

2014; Orendurff et al., 2008; Weiss et al., 2011). Several studies have also investigated 

day-to-day variability of at-home measures (de Bruin et al., 2007; Gretebeck & Montoye, 

1992; Hart et al., 2011; Kang et al., 2014; Levin et al., 1999; Matthews et al., 2002; Van 

Schooten et al., 2015). These studies have reported a minimum of three to six days of 

measurements required to obtain reliable estimates of physical activity, energy 

expenditure, and heart rate. However, the monitoring duration necessary for deriving a 

reliable estimate of gait speed under free-living conditions is not well understood. We are 

aware of only one recent study that reported a minimum monitoring duration of three 

days for reliable estimation of gait speed in slow-walking older adults with sarcopenia 

(Mueller et al., 2019).  

Herein, we present our work on assessment of gait in healthy younger (18-40 

years) and older (65-85 years) adults in both the laboratory and home setting using a 

single lumbar-worn wearable accelerometer. We aim to 1) assess the validity of 

measurements derived using the lumbar-worn wearable device by comparing them with 

those provided by a system that use multiple wearable devices (APDM) and an 

instrumented mat (GAITRite), 2) test the sensitivity of the median and 95th percentile gait 

speed derived from in-lab walk test and continuous at-home monitoring data to detect 

age-related group differences, and 3) propose a minimal at-home monitoring period for 

estimating gait speed reliably. 
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Results 

Gait Speed Can Be Derived Accurately From Single Lumbar-Worn Accelerometer. 

During in-lab assessments, participants walked three 4-meter laps on an 

instrumented mat (GAITRite) at their typical walking speed. While performing the task 

participants wore 6 devices (Opal, APDM), which were located at the sternum, lumbar, 

and bilaterally on the wrists and feet. We assessed the accuracy and reliability of gait 

features derived using 1) the APDM (6 sensor set) method (Mancini & Horak, 2016) and 

2) the GaitPy (single lumbar-mounted sensor) method (M. D. Czech & Patel, 2019) by 

comparing them with gait features provided by GAITRite (considered here as the gold 

standard). Figure 3.1 depicts the agreement of gait speed derived from APDM and GaitPy 

with respect to the GAITRite through correlation and the Bland-Altman plots. The 

intraclass correlation coefficient (ICC) between gait speed derived using the three 

methods showed moderate agreement (ICC = .66, lower and upper bounds = [.27 - .83]). 

While GaitPy had higher variability than APDM measurements (GAITRite vs GaitPy 

ICC = .49, lower and upper bounds = [-.07 - .77], after mean bias correction ICC = .72, 

lower and upper bounds = [.63 - .79]), both APDM and GaitPy had good agreement with 

GAITRite. The distributions of both APDM and GaitPy derived gait speeds were 
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homoscedastic with consistent 

mean biases with respect to 

GAITRite (GAITRite - APDM = 

.07m/s (5%), GAITRite - GaitPy = 

.17m/s (13%)). 

 

 

 

 

 

Table 3.1. Participant Demographics 
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Figure 3.1. Gait speed validation based on in-lab 4-m gait task. a Comparison of gait speed 

estimated using a six-sensor system (APDM) and an instrumented gait mat (GAITRite). The 

gait speeds derived from two systems were highly correlated (Pearson’s r = 0.98, left). 

Bland–Altman plots (right) showed minimal mean difference (mean difference = 0.07, blue 

solid line; LoA = [−003, 0.13], red solid lines; corresponding confidence intervals are in 

dashed lines). b Comparison of gait speed estimated using a single lumbar-worn sensor 

(GaitPy) and an instrumented gait mat (GAITRite). The gait speeds derived from two 

systems were also highly correlated (Pearson’s r=0.72, left). Bland–Altman plots (right) 

showed mean difference (mean difference = 0.17, blue solid line; LoA = [−0.09, 0.43] red 

solid lines; corresponding confidence intervals are represented by dashed lines). Both 

APDM and GaitPy had consistent bias compared to GAITRite and underestimated gait 

speed. LoA limits of agreement.  

In-Lab Gait Speed Did Not Distinguish Between Age Groups. 

In order to test if gait speed differs between the younger and older age groups 

(younger group, n = 33, age=29.2  4.6 years; older group, n=32, age=72.3  5.8 years, 
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full demographics in Table 3.1), we first performed group analysis on the in-lab gait 

speed. The overall repeated measures regression model included methods 

(GAITRite/APDM/GaitPy), age group (younger/older), visit (visit1/visit2), sex (F/M), 

height, and muscle mass as independent variables (fixed effects) and subject (random 

effect). The average gait speed estimated by different methods was significantly different 

(main effect of method: X2 = 199, p < 10-16; Fig. 3.2a). Pairwise comparisons further 

showed that both APDM (6-sensor) and GaitPy (single lumbar sensor) underestimated in-

lab gait speed compared to GAITRite (p values of all pairwise comparisons < 10-6). There 

was no main effect of age group (X2 = .28, p = .6). When pairwise comparisons of the 

age group differences were tested, none of the methods were able to differentiate between 

younger and older groups (Fig. 3.2b). There were a trending main effect of visit (X2 = 

3.79, p = .051), significant age group by sex interaction (X2 = 5.43, p = .02), and age 

group by sex by method interaction (X2 = 14.67, p < 10-3). No other variables or 

covariates had significant effects on gait speed. 

 
Figure 3.2. In-lab gait speed did not show any age group differences. a Gait speed estimated 

using different methods differed (χ2 = 199, p < 10-16). Both APDM and GaitPy 

underestimated gait speed during in-lab gait task compared to GAITRite (p < 10-6), which is 

used as the gold standard. b Gait speed estimated using any of the three methods did not 

differ between the two age groups (younger group, n = 33, age = 29.2 ± 4.6, 17F; older 



 

 

36 

group, n = 32, age = 72.3 ± 5.8, 16F; main age group effect: χ2 = 0.28, p = 0.6). Box and 

whiskers plots show the median and interquartile range, the lines extend to the 

smallest/largest value within 1.5 times interquartile range below/above the 25th/75th 

percentile, and the dots represent each individual data value.  

At-Home Gait Speed Differed Significantly Between Age Groups. 

Participants were asked to continuously wear an accelerometer (GeneActiv) 

attached to the lumbar region with an elastic belt for a period of approximately one week 

(range=[6-15] days, mean  SD = 8.72  1.88 days; younger group = 8.61  1.73 days; 

older group = 8.84  2.05 days}. There were no group differences between the number of 

walking bouts of younger and older groups during the at-home monitoring period (p = 

.8). We then performed group analysis on at-home gait speed of the two age groups. The 

linear mixed effects model showed significant age group differences for both median gait 

speed (X2 = 12.54, p = .006) and the 95th percentile gait speed (F = 22.59, p = 10-5) 

between the younger and older groups (Fig. 3.3a, b, respectively). The older group 

walked significantly slower than the younger group. There was a significant effect of day 

type (weekday/weekend, X2 = 42.08,  p < 10-5) as well as a group by day type interaction 

for median gait speed X2 = 13.38,  p = .002), indicating that the age group difference was 

larger during weekdays than weekends. The pairwise comparisons showed significant age 

group differences for weekdays (X2 = 21.81, p < 10-4), but not for weekends (X2 = 3.23, p 

= .33). There were no other effects of covariates or interactions. 
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Figure 3.3. At-home gait speed estimated using a single lumbar-worn sensor (GaitPy) 

differed between age groups. a The median gait speed estimated by GaitPy showed 

significant group differences between younger and older groups (p = 0.006). There was also 

significant main effect of day type (χ2 = 42.08, p < 10-5), and group by day type interaction 

(χ2 = 13.38, p = 0.002); i.e., the group difference was larger during weekdays than weekends. 

b The 95th percentile gait speed was also different between younger and older groups (p = 

10-5). Box and whiskers plots show the median and interquartile range, the lines extend to 

the smallest/largest value within 1.5 times interquartile range below/above the 25th/75th 

percentile, and the dots represent each individual data value.  

Weak Association Between At-Home and In-Lab Gait Speed. 

We evaluated the agreement between in-lab and at-home gait speed, both 

estimated from the lumbar sensor using the GaitPy method (M. D. Czech & Patel, 2019). 

Separate regression analyses were used to test if the median and the 95th percentile gait 

speed at-home predicted the in-lab gait speed. Although both the median and 95th 

percentile gait speed at-home significantly predicted the in-lab gait speed, they only 

explained around 20% of the variance with significant intercept (median: Adjusted R2 = 

.18, F(1,62) = 14.77, beta = .57, p < 10-3, 95th percentile: Adjusted R2 = .25, F(1,62) = 

21.45, beta = .47, p < 10-5). Correlation analysis showed only a moderate relationship 

between at-home and in-clinic gait speed metrics (Spearman's Rho = .35 and .42, Fig. 

3.4). 
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Figure 3.4. Weak association between in-lab and at-home gait speed. a The median gait 

speed at home showed a significant slope and an intercept (β = 0.57, p < 10-3, I = 0.65; p < 

10-5). The two gait speed measures were moderately correlated (Spearman’s rho = 0.35, p = 

0.004), and at-home median gait speed explained only 18% of the variance of in-lab gait 

speed. b When a regression analysis was performed to explain the in-lab gait speed with the 

95th percentile gait speed, at-home gait speed showed a significant slope and an intercept (β 

= 0.47, p < 10-4; I=0.54, p=10-4). The two gait speed measures showed moderate correlation 

(Spearman’s rho=0.42, p=0.0005). At-home 95th percentile gait speed explained only 25% of 

the variance of in-lab gait speed. Shaded area shows the 95% confidence interval  

Data From Three Days At Home Are Sufficient For Estimating Gait Speed. 

We investigated the minimum amount of data (in terms of steps or days) required 

from at-home monitoring in order to reliably estimate gait speed. Median ICC was used 

to assess agreement between gait speed estimated using subsets of data (bootstrap with 

replacement across various days of monitoring) and gait speed estimated using full data 

set (i.e. all available days). Compared to the full data, the agreement between {two days 

or more and full data was excellent (ICC > .75) for both median (ICC = .85, [.65-.93]) 

and 95th percentile gait speed (ICC = .89, [.66-.95], Fig. 3.5a, b). The improvement on 

ICC values becomes minimal starting from three days with ICC > .75 for all bootstraps. 

Moreover, good agreement was observed for both median and 95th percentile gait speed 

for 5,000 steps, and excellent agreement was observed for both median and 95th 
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percentile gait speed when participants walked 15,000 or more successive steps, though 

there was substantial variance, especially for median gait speed (Fig. 3.5c, d). The 

improvement in 95th percentile gait speed becomes minimal starting from 20,000 steps. 

Based on these findings, we investigated the impact of monitoring duration on 

detecting differences between the two age groups based on at-home measures of gait 

speed. We applied a t-statistic bootstrapping method (Efron, 1979) to create various 

subsets of days and compared them to the entire data set collected outside the lab. Similar 

to the results above, differences between median gait speed for the two age groups were 

significant with data from only two at-home days (all at-home data vs two days: p  .05, 

Table 3.2). Moreover, for 95th percentile gait speed, distinguishability between younger 

and older groups for one day of data was comparable to full data set obtained outside the 

lab (all at-home data vs one day: p > .05, Table 3.2). 

 
Figure 3.5. Amount of data needed to reliably estimate gait speed at home. Subset of data in 

terms of successive steps or randomly selected days was compared to the full data set (ICC 
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> 0.75 represents excellent agreement between two measurements). Minimum required data 

to estimate both (a) median gait speed and (b) 95th percentile gait speed was 2–3 days of 

monitoring data. (c, d) At least 15,000 and 10,000 concurrent steps were required to reliably 

estimate median and 95th percentile gait speed, respectively. Box and whiskers plots show 

the median and interquartile range, the lines extend to the smallest/largest value within 1.5 

times interquartile range below/above the 25th/75th percentile, and the dots represent each 

individual data value.  

 

 
Table 3.2. The Minimum Number of At-Home Monitoring Days Required to Differentiate 

the At-Home Gait Speed Between Younger and Older Groups Similar to Full Data. 

Discussion 

In this cross-sectional study involving healthy adults divided into two age groups 

(younger [18-40 years], older [65-85 years]), we derived gait speed from participants 

during in-lab gait tasks as well as from approximately nine days of continuous at-home 

monitoring. We aimed to 1) validate and evaluate the performance of a method for 

measuring gait relying on a single lumbar-worn accelerometer (GaitPy) with respect to a 

reference method relying on 6 devices (APDM), and an instrumented mat (GAITRite) as 

the gold standard device in-lab; 2) test the ability of gait speed estimated in-lab and at-

home to distinguish between the two age groups; 3) determine the amount of at-home 

data required to reliably estimate the median and 95th percentile gait speed, and 4) 

evaluate the sensitivity of gait speed measured at-home for detecting age-related 

differences in a healthy population. 
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Validity of Sensor-Based Estimates of Gait Speed. 

Assessing the validity of sensor-based methods for estimating gait speed in a 

controlled setting (e.g. laboratory or clinic) is essential for understanding its performance 

characteristics. The algorithm we implemented in GaitPy for estimating gait speed using 

a single lumbar-worn sensor has been shown to be comparable to gait measures derived 

using bilaterally worn ankle-mounted devices and has previously been successfully 

applied in a variety of disease populations, including Parkinson’s disease, Huntington’s 

disease, and stroke patients, both in-lab and at-home (Del Din, Godfrey, & Rochester, 

2016a; Esser et al., 2011; Storm et al., 2016; Trojaniello et al., 2015). Compared to shin 

or foot sensors, a single lumbar-worn sensor enables relatively easy removal and 

reapplication during certain periods of the day, including bathing and sleeping. 

Additionally, the lumbar position is a convenient location for measuring bilateral 

asymmetries of gait which may be important in certain disease populations, including 

Parkinson's disease. In this study, we confirmed the validity of a lumbar-worn sensor and 

observed that in-lab gait speed estimated using data from a single lumbar-worn sensor 

(GaitPy) showed good agreement with an instrumented mat (GAITRite). We further 

observed a consistent bias for both GaitPy (13%) and APDM (5%, reference 6-device 

system) compared to the instrumented mat. However, GaitPy derived gait speed had 

higher variability than APDM, likely the result of reliance on a single device. This 

suggests that there might be a sensitivity trade off when utilizing fewer devices for 

measuring gait speed. Although, based on our previous findings, this trade off may be 

minimal (M. Czech et al., 2020). Using gyroscope in combination with the accelerometer 
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could potentially lead to better gait characterization, especially important to capture 

rotational information for turns and falls, with a cost of higher battery usage. Despite 

limitations in sensitivity, gait speed estimated using a single lumbar-worn device has 

been shown to distinguish between disease states as well as detect the effects of treatment 

(Del Din, Godfrey, Galna, et al., 2016). Additional work investigating the validity of gait 

feature estimation using a single lumbar-mounted device in various disease populations is 

still needed. Our results suggest that a single lumbar-worn device can provide sufficient 

accuracy for monitoring gait under free-living conditions and at the same time minimize 

participant’s burden. 

Impact of Environment on the Assessment of Gait Speed. 

There is mounting evidence that gait measurements differ between in-lab and at-

home environments (Brodie et al., 2016; Hillel et al., 2019; Mueller et al., 2019; 

Takayanagi et al., 2019). In our study, in-lab gait speed derived using either wearable 

sensors or GAITRite was unable to distinguish between the two age groups, whereas at-

home gait speed showed the older group walked significantly slower than younger 

participants. We further confirmed our findings using uninstrumented measurements, 

which were collected as part of the traditional Short Physical Performance Battery 

(SPPB) assessment on the same participants (i.e. the time for participants to perform the 

walk test timed using a stop watch), and found no differences between age groups based 

on stop watch time (average time to walk 4-meters, younger group: 3.8  0.5s, older 

group: 3.7  0.5s, X2 = 1.08, p = 0.3). Furthermore, other gait metrics such as step time 

and stride length derived from in-lab assessments failed to differentiate the age groups 
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(Supplementary Table A.1). In-lab measures are acquired during single visits whereas at-

home measurements enable continuous evaluation over prolonged periods, providing the 

ability to capture nuanced therapeutic effects (Del Din, Godfrey, Mazzà, et al., 2016). 

Our findings are consistent with evidence that while a participant might change his/her 

behavior for a short period of time under observation (e.g. no age group difference for 

gait speed during in-lab assessments), it is unlikely that they will be able to do so during 

long periods of passive monitoring under free-living conditions (Takayanagi et al., 2019). 

We have not observed a sex effect, but there was an age group by sex interaction 

during the short in-lab walk test captured by both instrumented and uninstrumented 

measurements (see Supplementary Fig. A.1). This effect did not exist in the at-home 

monitoring data, and we suggest that the interaction effect is due to the participants’ 

change of behavior during short, observed assessments in the lab environment (i.e., 

observer effect). Therefore, healthy volunteer studies interested in at-home gait speed as 

an endpoint may not need independent grouping based on sex. However, controlling for 

age may be needed in studies with wide age ranges. 

Several studies have proposed that gait should be considered as the sixth vital sign 

(Fritz & Lusardi, 2009). For example, higher gait speed predicted better survival (Hardy 

et al., 2007) and lower gait speed was associated with serious falls that resulted in a visit 

to the emergency room in older adults with mild cognitive impairment (Pieruccini-Faria 

et al., 2020). In healthy adults, real world gait speed is expected to decrease 

approximately 0.03 m/s every decade over the life span of an adult, resulting in a 

difference of around 0.12 m/s after 40 years (Schimpl et al., 2011). In our study, we 
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observed that at-home gait speed differed by ~0.9 m/s on average between the younger 

and older groups (approximately four decades apart), and that group difference in median 

gait speed was driven by weekday rather than weekend periods (Supplementary Fig. 

A.2a).  We also observed that age-based differences existed for various bout length, 

especially for short (ranging between 10s to 30s) and medium bouts (ranging between 

30s to 60s), although gait speed increased with bout length (effect of age group: X2 = 

6.62, p = .02, effect of bout length: X2 = 557, p < 10-16 Supplementary Fig. A.2b). 

Furthermore, not only gait speed but other gait features differed by age group 

(Supplementary Table A.2). Similar trend was observed in patient populations such as 

Parkinson’s disease, where significant group differences in at-home gait features were 

observed compared to healthy volunteers (Del Din, Godfrey, Galna, et al., 2016). 

Although these are cross sectional studies, accurate estimation of real-world gait and 

evaluating its sensitivity to clinically meaningful change; e.g., the disease state or its 

progression, are extremely important. We have shown that gait metrics derived from at-

home monitoring with a single lumbar-worn sensor provided more sensitive information 

to differentiate two age groups compared to in-clinic assessments, and that there is only a 

weak association between at-home and in-lab gait speed. This result was recently 

reported in older adults (Hillel et al., 2019; Mueller et al., 2019; Takayanagi et al., 2019), 

and it was also shown that gait speed derived during longer walking bouts in the 

laboratory appears to be better correlated with at-home measurements (Mueller et al., 

2019). These findings provide further evidence for implementing wearable devices in 

clinical trials for monitoring physical function at-home instead of in-clinic assessments. 
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The use of wearable devices out-of-lab settings not only provides a better assessment of 

real-world activity but also brings additional benefits of remote monitoring. For example, 

it enables to enroll patients who live in remote regions with difficult access to clinic or 

reduces the exposure of participants who may be vulnerable to healthcare settings during 

a pandemic. In summary, remote data capturing offers the ability to design decentralized 

trials, which may become crucial for a wide variety of clinical trials in the near future. 

Overall, the median gait speed measured at-home was lower than in-lab gait speed 

for both age groups. This result suggests that at-home gait speed may be affected by one 

or more factors that are present during daily life. One possible factor may be the 

cognitive challenges that are typically present during performance of activities of daily 

living. Several studies suggest that mobility relies on cognitive resources (Beauchet et al., 

2016; Mielke et al., 2013; Verghese et al., 2007). In fact, it has been recently shown that 

mobility assessments performed at home better reflect cognitive functioning compared to 

those performed in the laboratory (Giannouli et al., 2018). Additionally, Hillel et al. 

showed that gait speed measured during in-lab dual-task walking is comparable to the 

gait speed measured during at-home monitoring (Hillel et al., 2019). The presence of a 

relationship between cognition and mobility performance may explain the reduced at-

home gait speed compared to in-lab gait speed we observe in our data. Additional factors 

such as mood and fatigue may also contribute to the at-home gait, more so than in-lab, 

where participants may put forth their best effort.  
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Impact of Data Quantity on Gait Speed Estimation. 

Our results suggest that at least two to three days of monitoring is required to 

estimate both median and 95th percentile gait speed in healthy volunteers. When the age 

groups were analyzed separately, we found only one to two days of data was needed to 

reliably estimate gait speed in the older cohort whereas two to three days were needed for 

the younger cohort. This result suggests more day-to-day variance in gait speed in the 

younger cohort (Supplementary Fig. A.3), as also reflected by the significant effect of 

day type as well as age group by day type interaction (Supplementary Fig. A.2a). 

Additionally, our results (Table 3.2) suggest that two days of data was necessary to 

estimate differences between young and old using median gait speed, whereas one day 

was needed for 95th percentile gait speed. Indeed, the upper and lower ICC bounds were 

tighter for 95th percentile gait speed compared to median gait speed, suggesting less day-

to-day variability of 95th percentile gait speed. The lower variability of 95th percentile gait 

speed could have contributed to the improved distinguishability of young and older 

groups with less data compared to median gait speed. It may also be the case that median 

gait speed is a more sensitive indicator of age. A previous study employed a similar 

approach to quantify the minimum days required for reliable estimation of physical 

activity in older adults, and found that two days were sufficient for seven of the nine 

activities (Van Schooten et al., 2015). In accordance with our results, another study in 

older adults found that three days of accelerometer data were needed to accurately predict 

physical activity levels (Hart et al., 2011), and another recent study found that a 
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monitoring period of three days is necessary for gait speed estimation in frail older adults 

(Mueller et al., 2019). 

Impact of Gait Characterization on Future Studies. 

We believe our results on healthy participants with two age groups will be helpful 

for future studies with multiple disease populations; e.g., for selecting important 

variables, deciding the test environment, and minimal monitoring period. Moreover, we 

suggest this study provides an evidence on the ability of gait speed to detect minimal 

change between two close populations, especially important during the early stages of 

gait impairment, where only subtle differences may be detected relative to healthy 

participants, and during disease progression. However, validation of GaitPy performance 

in advanced disease populations may be needed to verify accuracy of the algorithm. 

Additionally, disease specific effects, such as motor fluctuations seen in some PD 

patients due to wearing off medication, could produce changes in variability of at-home 

gait speed. Therefore, future work would be needed to consider the potential impact of 

disease-specific changes on algorithm reliability and gait speed variability.  

Limitations. 

In the present study, we measured gait speed in healthy adults for just over one 

week, (mean  SD = 8.72  1.88 days). The group analyses were conducted based on the 

full data, however, we limited gait speed reliability analysis to participants with at least 

five days of data (number of participants who had five days of data with at least 1,000 

steps per day = 64, number of participants who had five days of data with at least 100 
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steps per day = 65). Although we instructed our participants to wear the device 

continuously, we did not have a robust way to determine participant compliance for a 

lumbar-worn accelerometer. Therefore, we set a minimum threshold of 100 steps for 

including a day in our analyses. We investigated different step threshold values (10, 250 

and 1,000 per day) but they did not have any significant impact on the results 

(Supplementary Fig. A.4). Accurate determination of participant compliance remains a 

challenge in the field and a limitation of this study. 

Another limitation of this analysis is that the randomly selected days, varying 

from one to five days, were compared to the full data set which captured on average nine 

days of at-home monitoring. Moreover, we have observed that the type of day 

(weekend/weekdays) has a significant effect on gait metrics (Supplementary Table A.2 

and Supplementary Fig. A.2a). In our analysis, we only tested for steps or days without 

labeling the type of day, since that would introduce another limit for bootstrapping. 

Further analysis accounting for the day type showed that including weekend day out of a 

total of three days only slightly improved reliability of both median and 95th percentile 

gait speed estimation (Supplementary Fig. A.5). Future studies may benefit from longer 

monitoring periods in order to obtain more substantial baseline data to replicate these 

findings. 

Conclusion 

Our results suggest that a single lumbar-worn sensor can be used for monitoring 

gait under free-living conditions and capture meaningful information about real-world 

function that might not be possible in controlled settings (e.g. laboratory or clinic). We 
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have shown that, despite higher variability, at-home gait speed was able to capture age-

related group differences in healthy volunteers. In contrast, in-lab gait speed measured 

using either of the three methods did not differentiate between the two age groups. 

Moreover, we found that there was a weak correlation between at-home and in-lab gait 

speed, and gait speed measured at-home was lower than in-lab for both age groups. 

Finally, two to three days of at-home monitoring is sufficient for reliably estimating 

median and 95th percentile gait speed in both older and young healthy adults. 

Methods 

Subjects and Procedure 

We recruited 65 participants in total, 33 healthy young participants (age = 29.2  

4.6 years, 17F, BMI = 23.4  2.6) and 32 healthy older participants (age = 72.3  5.8 

years, 16F, BMI = 24.5  2.6, Table 3.2) to take part in two instrumented in-lab 

assessments each lasting approximately two hours in duration about 7-14 days apart, and 

an at-home portion in between the two visits (range = [6-15] days, mean  SD = 8.72  

1.88 days; younger group = 8.61  1.73 days; older group = 8.84  2.05 days). 

Throughout this manuscript at-home activity monitoring refers to monitoring all activity 

outside the laboratory; i.e., real-world environment or daily life. The in-lab portion was 

completed at the Pfizer Innovation Research Lab (PfIRe Lab) in Cambridge, 

Massachusetts. The study was reviewed and approved by Advarra IRB (protocol number: 

Pro00029419). All participants signed the written informed consent. The eligibility 

criteria included no significant health problems, as reviewed by the study physician 
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during medical history intake; body mass index (BMI)  18.5 kg/m2 and < 30 kg/m2 or 

absolute weight < 125 kg; and the predetermined score for VES-13 (Vulnerable Elders 

Survey).  

During the in-lab portion, participants were instrumented with six wearable 

inertial devices (Opal, APDM Inc., Portland, Oregon) consisting of 3-axis accelerometer, 

gyroscope, and magnetometer worn on the sternum, lumbar (L4 position), and bilaterally 

on the wrists and feet. The devices recorded data from 3-axis accelerometer, gyroscope 

and magnetometer at a sampling rate of 128 Hz. Subjects were asked to complete a 

battery of activities, including sit-to-stand tasks, postural/balance tasks, and a gait task, as 

part of the SPPB (Short Physical Performance Battery) assessment. The analysis 

presented herein was limited to data from the gait task during which participants walked 

three laps on an instrumented mat (GAITRite, CIR Systems Inc., Franklin, New Jersey) 

while wearing the APDM 6-sensor set. Uninstrumented measurements were also acquired 

using stop watch to register the time to complete the tasks as part of the standard SPPB 

assessment. 

For the at-home portion, participants were instructed to wear a device 

(GENEActiv, Activinsights Ltd., UK) on their lower back and wrist continuously for a 

period of about 7 to 14 days. Both devices recorded 3-axis accelerometer data at 

sampling rate of 50Hz. Only accelerometer data from the lumbar-worn device was used 

for the analysis presented herein. 
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Gait Feature Extraction. 

Three separate methods were used for estimating gait speed during the 

performance of a gait task in the laboratory. Ground truth gait speed was estimated from 

data collected using an instrumented mat (GAITRite) using a vendor supplied proprietary 

algorithm (GAITRite Software version 4.8.5). Additionally, 6 inertial sensors (Opal, 

APDM) located on the sternum, lower back, and bilaterally on the wrists and feet, were 

used to estimate gait speed using a vendor supplied proprietary algorithm (APDM 

Mobility Lab v2.0.0.2018). Lastly, we estimated gait speed from accelerometer data 

recorded using a lumbar-mounted device (Opal, APDM), using an open-source algorithm 

(GaitPy v1.6.0) we implemented in Python v3.6 (M. D. Czech & Patel, 2019). GaitPy 

uses a wavelet-based method to enhance patterns that occur in the vertical acceleration 

signal for first detecting heel strike and toe off events during a gait cycle (McCamley et 

al., 2012). Gait speed is then estimated by integrating the vertical acceleration signal to 

derive vertical displacement and applying an inverted pendulum model as described by 

Zijlstra et al. (Zijlstra & Hof, 2003).   

GaitPy was also used to estimate gait speed from data collected at home. For at-

home data, GaitPy first uses a binary classifier to detect bouts of gait. Bouts of gait less 

than three seconds apart are concatenated into a single bout before estimating gait speed 

on a stride by stride basis.  
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Statistical Analysis. 

Statistical analysis was performed in R version 3.5.2 with following main 

packages: `lme4' for linear mixed effect regression (lmer), `car' for type-III Anova, 

`BlandAltmanLeh' for Bland-Altman plots, and `psych' for ICC. 

For in-lab walk test, for each digital device and algorithm aforementioned, the 

median of gait metrics across all steps for each lap was computed. Then, the median 

values across all laps per visit were used for statistical analysis. Bland-Altman plots were 

used to test the homoscedasticity of the gait speed derived from APDM and GaitPy 

compared to the instrumented mat (GAITRite). Agreement of gait speed across multiple 

devices were characterized with ICC2,1 (two-way random effects, absolute agreement, 

with respect to single measurement). Pearson’s correlation coefficients were also 

computed to test for the consistency between gait speed estimated using different 

methods. 

The group analysis of in-lab walk tests was performed using a linear mixed 

effects regression model with repeated measures followed by ANOVA. Each participant 

had data from two in-lab visits. The statistical model included method 

(GAITRite/APDM/GaitPy), age group (younger/older), sex (F/M) as main factors, and 

height and muscle mass as covariates. Random effects (participant/visit and 

participant/device) were also included to account for within participant variability. 

The statistical testing of the at-home data was conducted using linear mixed 

effects model with repeated measures followed by ANOVA. In order to account for 

outliers, which are upper and lower extremes in bout length, bouts that lasted less than 10 
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seconds or more than 3,000 seconds were excluded from the analysis. Moreover, only 

bouts with at least four detected gait cycles were included in the analyses to ensure robust 

gait parameter estimation. For each participant, median gait speed was estimated per 

walking bout and then fed into the statistical model. Age group (younger/older), sex 

(F/M), and type of day (weekday/weekend) were added as main fixed factors, and height 

and muscle mass were added as covariates. Random effects (participant/type of day/each 

day) were also added to account for within participant variability. 95th percentile gait 

speed was summarized over all walking bouts and fed into the same linear model 

excluding type of day and random effects. 

In addition, the same analyses including ICC, Bland-Altman, and group analysis 

were repeated for each gait metric. The group analysis p-values were corrected for 

multiple comparisons using false discovery rate (FDR) correction.  

The association between in-lab and at-home gait speed was evaluated using a 

linear regression model (lm in `lme4' package), using in-lab gait speed as the dependent 

variable and at-home gait speed as the independent variable. The agreement between in-

lab and at-home gait speed was assessed using Spearman’s rho to account for outliers. 

The amount of data required for reliable estimation of gait speed under free-living 

conditions was determined by drawing bootstrap samples (with replacement) from the at-

home data by increasing 1) the number of consecutive steps to estimate the gait speed 

from 5,000 steps to 25,000 steps, and 2) the number of days to estimate the gait speed 

from 1 days to 5 days. 1,000 bootstraps were performed in each subgroup, and the 

analysis included participants with at least total 25,000 steps (62 participants) and 5 days 
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of data (65 participants) during the continuous at-home monitoring period for steps and 

days analyses, respectively. For each bootstrap, we computed the median gait speed and 

the 95th percentile gait speed per participant, and then computed the ICC with respect to 

the gait speed estimated from the full data for that participant. Full data for a participant 

ranged from 6 to 15 days based on the detected gait cycles. Reliability of estimated gait 

speed was assessed according to the following benchmarks: ICC  0.4 indicates ‘poor’, 

0.4 to 0.59 ‘moderate’, 0.6 to 0.74 ‘good’, and 0.75 to 1 ‘excellent’ reliability (Domenic 

V, 1994). 

The number of at-home monitoring days required for detecting differences in gait 

speed of the younger and older groups’ was determined using bootstrapping followed by 

group analysis (Efron, 1979). Specifically, participants with at least 100 steps per day and 

5 days of data were included and 1,000 bootstraps were drawn for each number of days 

varying from 1 to 5 days. For each bootstrap, the t-statistic with the contrast of age group 

difference was compared (t-bootstrap, Fig. 3.5) with respect to the t-statistic of the full 

data (t-original, Fig. 3.5), and the proportion of t-bootstrap that were greater than the 

original t-statistic were used to compute the p-value. 
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Abstract 

Background: Measuring free-living gait using wearable devices may offer higher 

granularity and temporal resolution than the current clinical assessments for patients with 

Parkinson disease (PD). However, increasing the number of devices worn on the body 

adds to the patient burden and impacts the compliance.  
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Objective: This study aimed to investigate the impact of reducing the number of 

wearable devices on the ability to assess gait impairments in patients with PD.  

Methods: A total of 35 volunteers with PD and 60 healthy volunteers performed a gait 

task during 2 clinic visits. Participants with PD were assessed in the On and Off 

medication state using the Movement Disorder Society version of the Unified Parkinson 

Disease Rating Scale (MDS-UPDRS). Gait features derived from a single lumbar-

mounted accelerometer were compared with those derived using 3 and 6 wearable 

devices for both participants with PD and healthy participants.  

Results: A comparable performance was observed for predicting the MDS-UPDRS gait 

score using longitudinal mixed-effects model fit with gait features derived from a single 

(root mean square error [RMSE]=0.64; R2=0.53), 3 (RMSE=0.64; R2=0.54), and 6 

devices (RMSE=0.54; R2=0.65). In addition, MDS-UPDRS gait scores predicted using 

all 3 models differed significantly between On and Off motor states (single device, 

P=.004; 3 devices, P=.004; 6 devices, P=.045).  

Conclusions: We observed a marginal benefit in using multiple devices for assessing gait 

impairments in patients with PD when compared with gait features derived using a single 

lumbar-mounted accelerometer. The wearability burden associated with the use of 

multiple devices may offset gains in accuracy for monitoring gait under free-living 

conditions.  

Introduction 

Gait is a complex sensorimotor activity involving dynamic spatial-temporal 

coordination of the legs, trunk and arms. Gait impairments negatively impact the 
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functional mobility of patients with Parkinson’s disease (PD) (Bouca-Machado et al., 

2018; Mirelman et al., 2019). In the early stages of PD, gait impairments manifest as 

reduced gait speed, shorter stride lengths, gait asymmetry with higher variability of gait 

measures and reduced amplitude of arm swing. As the disease progresses, gait measures 

become less asymmetric, but impairments continue to increase in severity. Worsening 

gait impairments coupled with balance and postural control issues lead to a significant 

reduction in mobility and an increased risk for falls in advanced PD (Ebersbach et al., 

2013; Hausdorff, 2009; Mirelman et al., 2019).  

Clinical assessment of gait in PD is limited to observational scales such as the 

Movement Disorder Society-Sponsored Unified Parkinson’s Disease Rating Scale (MDS-

UPDRS) (Goetz et al., 2008) and performance-based tests such as the Timed Up and Go 

(Podsiadlo & Richardson, 1991). While these tools have been clinically validated, 

assessments are influenced by the observer effect (Hawthorne effect) and quality of 

instructions (McCambridge et al., 2014). Assessments are susceptible to rater bias and, 

because symptoms are rated on an ordinal scale, they lack the resolution to detect 

changes that occur on a continuum. In addition, because trained raters can only perform 

these assessments infrequently, they provide intermittent snapshots, which are inadequate 

for fully characterizing day-to-day variability of symptoms (Galperin et al., 2019).  

Advances in wearable technology allow for the development of systems for 

objective measurement of gait (Maetzler et al., 2013; Salvi et al., 2020; Tao & Feng, 

2012; Zhong & Rau, 2020). While many of these systems (e.g. APDM Mobility Lab) 

(Mancini & Horak, 2016) provide a broad range of measures quantifying various spatial 
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and temporal aspects of gait, they require the use of multiple sensing devices making 

continuous, long-term monitoring outside the lab or clinic difficult. Recent research 

efforts to develop methods employing a single waist-mounted inertial sensing 

(accelerometer and gyroscope) device demonstrate feasibility of monitoring gait in 

patients with mobility deficits, including PD, Huntington’s disease, post-stroke, and 

sarcopenia (Del Din, Godfrey, & Rochester, 2016a; Godfrey et al., 2015; Mueller et al., 

2019; Trojaniello et al., 2014, 2015). Studies show moderate to good agreement between 

frequency domain features (e.g. dominant frequency amplitude, dominant frequency 

width) extracted from the accelerometer time series and subscales of the MDS-UPDRS 

associated with gait and balance (Rodriguez-Molinero et al., 2017; Weiss et al., 2011). 

However, unlike gait features like stride length and gait speed, such signal features do not 

have direct clinical meaning and are therefore difficult to use for the purpose of clinical 

decision-making. Temporal (e.g. swing time) and spatial (e.g. stride length) gait features 

derived from a single accelerometer on the lower back (L5 vertebrae) have demonstrated 

moderate to excellent agreement with an instrumented walkway for 8 out of 14 gait 

parameters in healthy older adults and patients with PD (Del Din, Godfrey, & Rochester, 

2016a). Furthermore, gait features derived under free-living conditions had greater 

discriminative power compared to laboratory-based gait assessments for differentiating 

between healthy older adults and patients with PD (Del Din, Godfrey, Galna, et al., 

2016). Compared to bilaterally worn ankle-mounted devices, lumbar-mounted 

accelerometers were satisfactory for measuring temporal gait features in young healthy 

adults despite being less accurate (Storm et al., 2016). 
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While it is feasible to monitor gait using a single lumbar-mounted wearable 

device, the relationship between number of devices used for deriving temporal and spatial 

gait features, and their ability to detect clinically meaningful changes is not well 

understood. Herein, we employ a method that relies on a single lumbar-mounted 

accelerometer that presents a significantly lower usability burden and affords better 

wearability compared to methods that rely on 3 or 6 devices (M. D. Czech & Patel, 2019; 

Del Din, Godfrey, & Rochester, 2016a; McCamley et al., 2012; Zijlstra & Hof, 2003). 

However, the tradeoffs of reducing the number of devices may include lower accuracy in 

the estimation of gait features, measuring fewer aspects of gait, and reduced sensitivity 

for detection of clinically meaningful differences. Therefore, in order to objectively 

evaluate this tradeoff, we 1) assessed the accuracy and reliability of gait features derived 

using a single lumbar-mounted accelerometer relative to a reference system (APDM 

Mobility Lab) (Mancini & Horak, 2016); and 2) assessed the impact of reducing the 

number of sensing devices on the criterion and discriminative validity of gait features in 

patients with PD.  

Methods 

Study Participants 

We recruited 35 participants with mild to moderate PD (Hoehn & Yahr ≤3; Age: 

68.3±8.0 years; males/females: 23/12) taking regular dopaminergic medication (average 

Levodopa-equivalent daily dose 165.5±81.3 mg) and 60 healthy volunteers (age: 

44.1±10.7; males/females: 27/33). PD Participants were recruited and tested at Tufts 

Medical Center, Boston, Massachusetts. All procedures were approved by The Tufts 
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Health Sciences Institutional Review Board (IRB), #12371. The protocol for the healthy 

cohort was approved by the Schulman IRB, #201500837, and run at Pfizer Andover, 

Massachusetts.  

One PD participant self-reported as ON with dyskinesia and was therefore 

excluded from the analysis since the dyskinesia might interfere with gait feature 

measurements. Additionally, one healthy volunteer was removed from the analysis due to 

technical errors with data capture. The clinical and demographic characteristics of 

participants whose data were available for analysis are listed in Table 4.1. 

Characteristic Healthy (n = 59) PD (n = 34) 

 Mean ± SD Mean ± SD 

M/F (n)  27/32 23/11 

Age (years) 44.4 ± 10.5 68.1 ± 8.1 

Height (m) 1.7 ± 0.1 1.7 ± 0.1 

BMI (Kg/m2) 25.3 ± 4.8 28.9 ± 7.1 

Hoehn and Yahr (n) - HYI – 2 

  HYII – 26 

  HYIII – 6 

Levodopa Equivalent Daily Dose (mg/day) - 164.5 ± 81.1 

MDS-UPDRS III Gait score  - ON 

  1.0 ± 0.9 

  HYI – 0.0 ± 0.0 

  HYII – 0.8 ± 0.7 

  HYIII – 2.0 ± 0.9 

  OFF 

  1.4 ± 0.9 

  HYI – 0.0 ± 0.0 

  HYII – 1.2 ± 0.7 

  HYIII – 2.7 ± 0.5 

Table 4.1. Clinical and Demographic Characteristics. 

Device Setup 

As illustrated in Supplementary figure A.6a, participants were instrumented with 

six wearable devices (Opal, APDM, Inc.) located bilaterally on the wrist and foot, and at 
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the lumbar (approximately at the L5 vertebra) and sternum locations. Each device 

recorded raw data from 9-axis inertial sensors (tri-axial accelerometer, tri-axial gyroscope 

and tri-axial magnetometer) at a sampling rate of 128 Hz. 

Experimental Protocol 

Participants performed a battery of physical activities and cognitive tasks over the 

course of two visits. Both visits were identical for healthy participants but were 

randomized for PD participants so that they were in the ON state (~ 1 hour after 

medication intake, confirmed with patient self-report and clinician report) during one 

visit and in the OFF state (~3 hours after last medication intake, confirmed with patient 

self-report and clinician report) during the other visit. Physical activities during each visit 

included scripted activities of daily living (e.g. tying a shoe, opening and closing a door) 

and motor assessments from the MDS-UPDRS part III (e.g. 2-minute gait task, finger 

tapping). In this paper, we present analyses based on data collected during the 2-minute 

gait task. This is to ensure uniform testing conditions for determining the agreement of 

post-experiment sensor data processing. During this gait task, participants were instructed 

to walk back and forth along a straight 10-meter track at a comfortable pace for a period 

of two minutes. PD participants were assigned an MDS-UPDRS gait score on an ordinal 

scale of 0 to 4 by a neurologist to assess the degree of gait impairment. Sample sizes (n) 

for MDS-UPDRS gait scores of 0, 1, 2, and 3 across both visits were 17, 27, 18, and 6 

respectively. 
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Gait Feature Extraction 

APDM Mobility Lab is a commercially available system widely used for 

objective assessment of gait and requires data from 3 to 6 wireless, body-worn Opal 

inertial devices (Mancini & Horak, 2016; Washabaugh et al., 2017). We used APDM 

Mobility Lab to derive a set of lower limb, lumbar and trunk range of motion, and upper 

limb gait features from 6 wearable devices placed on the lower back, sternum, and 

bilaterally on the feet and wrists (Supp. Table A.3). Using 3 sensors located on the lower 

back and both feet, Mobility Lab can only derive features related to the lower limb and 

lumbar range of motion. Therefore, we used only features related to lower limb and 

lumbar range of motion as the 3-sensor feature set (Supp. Table A.3). To derive gait 

features from a single lumbar-mounted tri-axial accelerometer, we developed and 

implemented a previously published wavelet-based method (Del Din, Godfrey, & 

Rochester, 2016a) in a Python v3.6 package called GaitPy (Supp. Figure A.6) (M. D. 

Czech & Patel, 2019). A complete list of gait features derived from a single lumbar-

mounted device, and those requiring additional devices can be seen in Supplementary 

Table A.3. 

Statistical Methods 

Statistical analysis were performed in R version 3.4.1 (R Core Team, 2017) using 

the following packages: ‘psych’ for intraclass correlation coefficient (ICC), 

‘BlandAltmanLeh’ for Bland-Altman plots, ‘nlme’ for linear mixed-effects model, ‘car’ 

for type-III Anova, and ‘MASS’ for stepwise model selection. 

The median value of each gait feature extracted from data collected during the 2-
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minute walking task was calculated for each visit separately. Test-retest reliability of gait 

features was assessed by calculating the ICC on data collected from healthy volunteers 

during visit 1 and visit 2. ICC was also used in addition to Bland-Altman plots and 95% 

limits of agreement to evaluate agreement between gait features derived using GaitPy and 

APDM Mobility Lab. Results are presented in Table 4.2 where values are ICC2, 1  

coefficient (two-way random effects, absolute agreement) with lower and upper 

confidence bounds, reported as ICC coefficient [lower upper]. Test-retest reliability and 

agreement between features were assessed according to the following benchmarks: ICC ≤ 

0.4 indicates ‘poor’, 0.4 to 0.59 ‘moderate’, 0.6 to 0.74 ‘good’, and 0.75 to 1 ‘excellent’ 

reliability (Domenic V, 1994). Variation of gait features with the MDS-UPDRS gait 

score in patients with PD was assessed using the Kruskal-Wallis test. Post-hoc Conover-

Iman tests were used for pairwise comparisons and multiplicity was adjusted using false 

discovery rate correction.  

Gait features derived using a single, 3, and 6 devices were separately used to fit 

three longitudinal mixed effects regression models to predict the clinician’s MDS-

UPDRS gait score (using the lme function in ‘nlme’ R package). Prior to model fitting, 

pairwise correlation between sensor features was computed and highly correlated features 

were removed. Gait features and covariates including age, gender, visit number, BMI, 

and years since first symptoms were modeled as fixed effects and participant as a random 

effect. An unstructured correlation matrix was used. Numerical features were 

standardized to have zero mean and unit variance. Stepwise model selection was 

performed using Akaike Information Criterion (AIC) as a cost function to achieve the 
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optimal model fit (using the stepAIC function in ‘MASS’ R package). ANOVA findings 

were reported as chi-squared (X2) values and corresponding p-values using Type III sum 

of squares (statistics were derived using the ‘car’ R package). Final models were used to 

predict the clinician’s score using leave-one-subject-out cross validation. We report the 

root mean square error (RMSE) and marginal R2 representing the variance explained by 

the model fixed effects. Paired Wilcoxon signed-rank test were used to compare 

predicted gait scores between ON and OFF states. 

Results 

Accuracy of Gait Features Derived Using a Single Device 

Gait features derived during the 2-minute walk task using GaitPy (single lumbar-

mounted device) were compared with the same features derived using the APDM 

Mobility Lab (6 devices) for healthy and PD participants separately using data from both 

visits. Gait features derived using the APDM Mobility Lab are used as the reference since 

APDM has been validated against data from an instrumented treadmill and has been 

extensively used in both healthy and PD populations (Godinho et al., 2016; Washabaugh 

et al., 2017). Excellent agreement was observed between the two methods for stride time 

and step time in both healthy and PD participants (ICC≥0.86; Table 4.2). Furthermore, 

excellent agreement was observed for stance time, stride length, and gait speed in PD 

participants (ICC=0.86, 0.88, and 0.89 respectively), and agreement was good in healthy 

participants (ICC=0.68, 0.60, and 0.70 respectively) (Table 4.2). Bland-Altman analysis 

revealed a trend that mean difference between GaitPy and APDM Mobility Lab was 

smaller for longer stance times (Supp. Figure A.7a). Good agreement was also observed 
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for swing time in both healthy and PD patients (0.64≤ICC≤0.73; Table 4.2). In contrast, 

double support showed poor agreement in healthy volunteers (ICC=0.20) and moderate 

agreement in PD patients (ICC=0.46; Table 4.2). Asymmetry and variability features also 

showed poor agreement (ICC≤0.31; Table 4.2) between the two methods for both healthy 

and PD participants.  

Reliability of Gait Features Derived Using a Single Device 

Test-retest reliability of gait features derived using GaitPy was assessed using 

data collected from healthy participants only. Excellent-test retest reliability (ICC≥0.85; 

Table 4.2) was observed for all spatial and temporal gait features. Asymmetry and 

variability features showed poor to excellent test-retest reliability (0.14≤ICC≤0.77; Table 

4.2). 

Gait feature 

Agreement between gait features 

derived with APDM Mobility Lab and 

GaitPy 

Test-Retest 

reliability of gait 

features derived 

from GaitPy 

 Healthy PD Healthy 

Spatial and temporal gait features 

Stride time (s) 0.92 [0.02, 0.98] 0.86 [0.73, 0.92] 0.94 [0.84, 0.97] 

Step time (s) 0.92 [0.09, 0.98] 0.90 [0.71, 0.95] 0.91 [0.83, 0.95] 

Double support (s) 0.20 [-0.07, 0.52] 0.46 [0.16, 0.66] 0.90 [0.84, 0.94] 

Stance time (s) 0.68 [-0.05, 0.91] 0.86 [0.48, 0.95] 0.93 [0.84, 0.96] 

Swing time (s) 0.73 [0.03, 0.90] 0.64 [0.48, 0.76] 0.92 [0.86, 0.95] 

Step length (m) - - 0.86 [0.77, 0.91] 

Stride length (m) 0.60 [0.25, 0.78] 0.88 [0.79, 0.93] 0.85 [0.76, 0.91] 

Gait speed (m/s) 0.70 [0.11, 0.87] 0.89 [0.71, 0.95] 0.88 [0.80, 0.93] 

Variability (var) gait characteristics 

Stride time var (s) 0.01 [-0.02, 0.04] 0.04 [-0.04, 0.15] 0.56 [0.36, 0.71] 

Step time var (s) 0.01 [0.00, 0.04] 0.04 [-0.03, 0.14] 0.53 [0.31, 0.69] 

Double support var (s) 0.02 [-0.03, 0.08] 0.21 [-0.10, 0.51] 0.14 [-0.11, 0.38] 

Stance time var (s) 0.01 [-0.02, 0.05] 0.09 [-0.04, 0.30] 0.61 [0.42, 0.75] 
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Swing time var (s) 0.00 [-0.03, 0.04] 0.02 [-0.03, 0.09] 0.44 [0.21, 0.63] 

Step length var (m) - - 0.74 [0.59, 0.83] 

Stride length var (m) 0.00 [-0.01, 0.03] 0.00 [-0.06, 0.08] 0.75 [0.61, 0.84] 

Gait speed var (m/s) 0.01 [-0.01, 0.04] 0.01 [-0.04, 0.09] 0.77 [0.65, 0.86] 

Asymmetry (asy) gait characteristics 

Step time asy (s) 0.11 [-0.06, 0.29] 0.16 [-0.05, 0.36] 0.44 [0.21, 0.62] 

Double support asy (s) 0.00 [-0.15, 0.16] 0.10 [-0.14, 0.33] 0.39 [0.16, 0.59] 

Stance time asy (s) 0.17 [-0.08, 0.41] 0.31 [0.01, 0.54] 0.57 [0.38, 0.72] 

Swing time asy (s) 0.22 [-0.09, 0.52] 0.29 [0.02, 0.51] 0.54 [0.33, 0.70] 

Step length asy (m) - - 0.72 [0.56, 0.82] 
Table 4.2. Agreement Between Gait Features Derived Using the APDM Mobility Lab and 

GaitPy, and Test-Retest Reliability of Gait Features Derived With GaitPy in Healthy 

Volunteers. ICC coefficient values showing excellent agreement (between 0.75 and 1) are 

highlighted. 

Criterion Validity of Sensor-Derived Gait Features 

We assessed the ability of gait features derived using methods relying on different 

device setups (single device, 3 devices and 6 devices) to discriminate between UPDRS 

gait scores. Based on available APDM Mobility Lab documentation (APDM, 2019), we 

were able to determine which gait features are available using either a 3-device setup or a 

6-device setup. Therefore, for the purpose of this comparison, we limited our analysis to 

the 1-device setup (using GaitPy) and 3 and 6 device setups using APDM Mobility Lab.  

The spatial features of gait (i.e. gait speed, stride length, and step length) varied 

most significantly with UDPRS gait score in PD participants (Supp. Table A.4). Using 

leave-one-subject-out cross validation, the longitudinal mixed effects regression model 

based on gait features derived using a single lumbar-mounted device predicted the 

clinician’s gait score with an RMSE=0.64 and an R2=0.53. The predicted score 

significantly distinguished between scores of 1 and 2 (P<.001), and marginally 

distinguished between scores of 0 and 1 (P=.071), and 2 and 3 (P=.178) (Figure 4.1a). 
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Stance time (X2=12.78, P<.001), step length (X2=49.16, P<.001), and step length 

asymmetry (X2=6.65, P=.01) had significant effect on describing the MDS-UPDRS gait 

score.  

Comparable performance was observed for a model based on gait features derived 

using data from 3 devices (RMSE=0.64, R2=0.54). The R2 value for the 3-device model 

was only slightly higher than the single-device model. The predicted gait score could 

significantly distinguish between MDS-UPDRS gait scores of 0 and 1 (P=.017), 1 and 2 

(P<.001), and 2 and 3 (P=.025) (Figure 1b). Pitch at initial contact (X2=7.33, P=.007), 

maximum pitch (X2=10.50, P=.001), cadence (X2=14.93, P<.001), initial mid-swing 

duration (X2=4.51, P=.034), and pitch at toe off variability (X2=6.43, P=.011) had a 

significant effect on describing the MDS-UPDRS gait score.  

The model based on gait features derived using data from 6 devices achieved 

better performance than the single and 3-device model at predicting clinician gait score 

(RMSE=0.54, R2=0.65). The predicted gait score significantly distinguished between 

MDS-UPDRS gait scores of 0 and 1 (P=.001), 1 and 2 (P<.001), and 2 and 3 (P=.022) 

(Figure 4.1c). Pitch at initial contact (X2=8.87, P=.003), maximum pitch (X2=5.37, 

P=.021), cadence (X2=19.80, P<.001), initial mid-swing duration asymmetry (X2=5.71, 

P=.017), trunk sagittal average angle (X2=18.88, P<.001), upper limb foot phase 

difference (X2=4.98, P=.026), maximum pitch variability (X2=8.60, P=.003), trunk 

sagittal average angle variability (X2=5.02, P=.025), BMI (X2=9.97, P=.002), and years 

since first symptom (X2=6.98, P=0.008) had a significant effect on describing the MDS-

UPDRS gait score.  
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Figure 4.1. MDS-UPDRS gait score model performance fit using gait features from (a) 

single device at the lumbar (L5) location (GaitPy), (b) 3 devices (APDM Mobility Lab), and 

(c) 6 devices (APDM Mobility Lab). 

Discriminative Validity of Sensor-Derived Gait Features  

We assessed the ability of predicted gait scores derived using methods relying on 

different device setups (single device, 3 devices and 6 devices) to discriminate between 

ON and OFF motor states. As shown in Figure 4.2a, the clinician-rated MDS-UPDRS 

gait score was significantly different (P=.001) between the patient-reported ON and OFF 

state. Similarly, predicted gait scores, estimated from 1, 3, and 6 device models (Figure 

4.2(b-d)), all significantly differentiated between ON and OFF states (P=.004, .004, and 

.045 respectively). 
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Figure 4.2. Distribution of the (a) clinician-rated gait score, (b) single-device predicted gait 

score, (c) three-device predicted gait score, and (d) six-device predicted gait score, grouped 

by patient reported ON and OFF motor states. 

Discussion 

Principle Findings 

In this exploratory, non-interventional study involving healthy and PD 

participants, we derived gait features from participants during two in-clinic visits using 

wearable devices. We found that gait features derived from a single lumbar-mounted 

accelerometer could predict the clinician rated gait impairment score to a similar degree 

as gait features derived from 3 or 6 sensors. Additionally, analogous to clinician rated 

scores, predicted gait scores using gait features derived from either 1, 3, or 6 devices all 

significantly distinguished between ON and OFF medication states. Our results suggest 
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that a subset of gait features, derivable using a single lumbar-mounted accelerometer, 

may be sufficient to measure degree of gait impairment and the effects of treatment in PD 

patients. 

Accuracy and Reliability of Gait Features Derived Using a Single Device 

Agreement of GaitPy with the reference system (APDM Mobility Lab) was 

assessed in both healthy and PD participants. While we observed moderate to excellent 

agreement between most temporal and spatial features of gait derived using GaitPy from 

a single device and gait features provided by APDM Mobility Lab using 6 devices, 

agreement was poor for asymmetry and variability features. Notably, agreement was 

better in PD participants for 4 out of 7 temporal and spatial features. The difference 

between ICC values for healthy and PD participants was significant for stance time (0.86 

vs. 0.68), stride length (0.88 vs. 0.60) and gait speed (0.89 vs. 0.70). This result contrasts 

prior work (McCambridge et al., 2014) where good agreement with the reference system 

(gait mat) for both PD participants and age matched healthy controls was observed. 

However, unlike prior work, the two groups in our study were not age matched. To this 

end, PD patients showed a wider range of values for gait speed and stride length 

compared to healthy volunteers, especially in the lower range, which may have 

contributed to better agreement (Supp. Figure A.7(b,c)).  

We evaluated test-retest reliability of gait parameters derived using GaitPy in a 

sample of 59 healthy volunteers. Test-retest reliability for GaitPy was excellent for all 

spatial and temporal features, whereas it was poor to excellent for asymmetry and 

variability features. These results suggest temporal and spatial features of gait can be 
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reliably measured using a single accelerometer mounted on the lower back. However, as 

has been reported previously (Del Din, Godfrey, & Rochester, 2016a), agreement and 

reliability of variability and asymmetry features might be sensitive to the measurement 

technique employed (e.g. sensing modality, device location). This is partially because 

asymmetry and variability are small measurements, which are significantly affected by 

noise or error in the measurement of temporal or spatial features. Potential sources of 

measurement error for GaitPy include (1) biomechanical approximation of the inverted 

pendulum model, (2) error in estimation of vertical displacement from vertical 

acceleration and (3) distal location of the sensing device relative to the feet. 

Tradeoffs Between Gait Features Derived Using Different Device Setups 

We assessed criterion and discriminative validity of MDS-UPDRS gait scores 

using linear mixed effects models based on gait features derived using data from a single 

device, 3 devices and 6 devices. Although a single device provides substantially fewer 

features of gait compared to either 3 or 6 devices, 17 of the 34 features that varied most 

significantly (P<.01) with MDS-UPDRS gait score can be derived using a lumbar-

mounted sensor (Supp. Table A.4). This includes many gait features known to be affected 

in PD, including stance time, gait speed, step-to-step asymmetries, and gait variability 

(Ebersbach et al., 2013; Hausdorff, 2009).  

While the 6-device model (RMSE=0.54, R2=0.65) performed slightly better at 

estimating MDS-UPDRS gait score, performance of the 3-device model (RMSE=0.64, 

R2=0.54) was comparable to the single device model (RMSE=0.64, R2=0.53). However, 

unlike the 3 and 6 device models, the single device model was unable to significantly 
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distinguish between adjacent scores of 0 and 1, and of 2 and 3. One potential reason for 

this could be the small number of observations for class 3 (n = 6). Additionally, gait 

features related to pitch and mid-swing duration that were significant for both the 3 and 

6-device model could not be derived using the single device model. This indicates 

features derived from the lower extremity (e.g. foot) might have a higher predictive 

power. Indeed, 3 of 10 features in the 6-device model and 3 of 5 features in the 3-device 

model that were significant were related to pitch of the foot.  

When we assessed the ability of gait scores predicted by the linear mixed effects 

models to differentiate between ON and OFF motor states, we found significant 

differences (P<.05) for gait scores derived using 1, 3, and 6 device models. Additionally, 

the OFF to ON gait score directionality was largely consistent between those produced by 

each model and the clinician-rated gait score. In 10 of the 12 subjects, the clinician score 

and the predicted score differences between ON and OFF state were in the same direction 

(Supp. Figure A.8a). This was comparable with the 3-device model (10/12) (Supp. Figure 

A.8b) and 6-device model (10/12) (Supp. Figure A.8c).  

Limitations 

Data analyzed in this study were collected during performance of motor 

assessments in the laboratory settings and could be affected by the observer effect and 

heightened awareness of the patient. Gait features derived using wearable devices were 

not validated against a gold-standard reference (e.g. an instrumented walkway or a 

motion capture system). This limitation of our work is mitigated to some extent by prior 

work, in which the authors evaluated the algorithm implemented in GaitPy against an 
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instrumented walkway (Psaltos et al., 2019). Another limitation of our work is healthy 

and PD participants were not age matched. Therefore, the results for accuracy and 

reliability in our healthy cohort might be different in healthy older adults. Additional 

work is required to validate the results presented herein on an independent dataset as well 

as confirm the ability of GaitPy to accurately assess gait impairment in free-living 

conditions. 

Conclusion 

Our results suggest that a single tri-axial accelerometer on the lower back may be 

sufficient to characterize gait impairments in patients with PD. Algorithms that estimate 

gait features from a lumbar-mounted sensor, such as GaitPy, could provide clinically 

meaningful measures of changes in severity of gait impairments and changes in motor 

state associated with effects of treatment in patients with PD. The long battery life of an 

accelerometer-only device and high degree of utility associated with a single device worn 

on the lower back, enables further investigations to assess the validity of this approach 

for monitoring gait under free-living conditions. Comparing sensor-derived gait features 

with classical patient reported motor diary-based approaches in their ability to detect 

treatment related effects may enable insight into the utility of a single lumbar-mounted 

sensor in free-living environments. Our ongoing efforts are focused on performing 

clinical validation in a semi-supervised setting as an intermediate step between the clinic 

and at-home. 
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Introduction 

Selective loss of dopaminergic neurons in the substantia nigra that project to the 

basal ganglia (BG) is a common, though not exclusive, feature in degenerative 

parkinsonian disorders (PD) (Braak et al., 2004; Dickson, 2018). Progressive 

neurodegeneration in nigrostriatal pathways is associated with a variety of motor 

symptoms including bradykinesia, rigidity, and rest tremor (Xia & Mao, 2012).  

According to the classical model of BG function, loss of midbrain dopamine neurons is 

hypothesized to have opposing effects on striatal medium spiny neurons (MSN), 

decreasing direct pathway MSN firing rate and increasing indirect pathway MSN firing 

rate (McGregor & Nelson, 2019). The net result is an increase in globus pallidus internus-

mediated thalamic and cortical inhibition, thereby suppressing movement. However, in 

addition to firing-rate changes, there is growing evidence that exaggerated 

synchronization of neuronal activity in the cortico-BG-thalamic loop is mechanistically 

linked to disease pathology in patients with PD (Halje et al., 2019). The advent of 



 

 

76 

electrical deep brain stimulation has provided the opportunity to obtain human brain 

recordings and has confirmed excessive beta oscillatory activity in patients with PD 

(Brown et al., 2001; Hammond et al., 2007).  

Despite considerable attention to beta band (15-30 Hz) frequencies, both lower (1-

12 Hz) and higher (>30 Hz) frequencies have been reported in basal ganglia structures of 

normal and PD patients (Halje et al., 2019; Womelsdorf & Fries, 2007). Although low 

and high, and even beta (Courtemanche et al., 2003), frequencies have been implicated in 

healthy physiological function, exaggerated forms have been linked to pathological 

symptoms in PD (Wiest et al., 2021). Low frequency oscillations in delta, theta, and 

alpha ranges have been reported throughout the cortico-BG-thalamic loop, including the 

motor cortex, thalamus, striatum, subthalamic nucleus (STN), and globus pallidus (GP). 

Additionally, gamma (30-150 Hz) and high frequency oscillations (>150 Hz) have been 

reported in GP, STN, and cortical structures (see Halje et al., 2019 for extended list of 

references). Indeed, the ability of cortico-BG-thalamic loop structures to oscillate outside 

of the beta range is crucial to normal function and is to some degree restored in PD 

patients following treatment with L-Dopa (Cassidy et al., 2002). 

To date, much of the experimental and computational efforts have aimed to 

elucidate the origin of beta and how treatment such as deep brain stimulation reduces beta 

synchrony. However, studies investigating the physiological constraints that allow a wide 

range of frequencies to be transmitted through the cortico-BG-thalamic loop are lacking. 

In this study we reproduce a large-scale spiking model of the STN-GPe network to 

elucidate and distinguish network connection strength conditions that control beta 
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synchrony and those that control entrainment outside of beta range. Understanding 

network conditions that both reduce beta synchrony and facilitate oscillations outside of 

beta range may enable better understanding of pathological mechanisms and elucidate 

novel treatment targets for PD. 

Methods 

Network Model and Simulation 

We implemented a leaky integrate-and-fire model of the STN-GPe network as 

described in previous work (Mirzaei et al., 2017) in python (v3.8) using the Brian2 

(v2.4.2) framework. The model includes 2000 reciprocally connected GPe neurons (2% 

connection probability), 1000 STN neurons, 500 striatal neurons, and external poisson 

spike train input driving the GPe and STN at physiologically normal firing rates (~45 Hz 

and ~15 Hz, respectively) (Figure 5.1). GPe neurons receive excitatory synaptic input 

from the STN (2% connection probability) and inhibitory synaptic input from the 

striatum (100% connection probability). STN neurons receive inhibitory synaptic input 

from the GPe (3.5% connection probability).  

Previous results with this model demonstrate increased network beta synchrony 

and oscillatory power in response to increasing striatal firing rate input to GPe (Kumar et 

al., 2011). In order to validate expected model performance, we evaluated the effect of 

striatal firing rate on STN population rate frequency (Supplementary figure A.9). In line 

with previous results, beta synchrony increases with increasing striatal poisson input 

(Supplementary figure A.9 A). Furthermore, similar to previous results, beta synchrony is 
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quenched by reducing STN neuron excitability, even in the presence of strong striatal 

input (Supplementary figure A.9 B).  

 

Figure 5.1. Network model schematic. 

Statistical Analysis 

Spectral analysis of neuron population activity was used to evaluate oscillatory 

strength of the network. Population rate was calculated using the smooth_rate function in 

Brian2 v2.4.2 with 5 ms width. Power spectral density was then calculated from the 

normalized population rate using the mtspec function of the mtspec package (v0.3.2). 

Pearson correlation coefficient was used to investigate STN firing rate correlation with 

beta synchrony. Figures were generated and Pearson correlation coefficient was 

computed in R (v3.6.2) using the ggplot2 (v3.2.1) package. 

Results 

Weak Synaptic Connection Strength Between STN and GPe and Strong Reciprocal GPe 

Connection Strength Allows Network Entrainment to a Wide Range of Frequencies 

We investigated the ability of a network with weak GPe to STN and STN to GPe 

connection strengths and strong reciprocal GPe connection strength to entrain at 

frequencies outside of beta. The model entrained to frequencies outside of beta in 
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response to various rates of striatal periodic input (Figure 5.2A), whereas a model with 

strong connection weights between STN and GPe and low reciprocal GPe connection 

weights oscillates at beta regardless of periodic input rate (Fig 5.2B).  

 

Figure 5.2. An STN-GPe network model with (A) weak connection strength between STN 

and GPe and strong reciprocal GPe connection strength is entrainable to frequencies 

outside of beta range. In contrast, (B) strong connection strengths prevent entrainment to 

frequencies outside of beta range. Legend colors represent power spectral density values 

from the beta range calculated from normalized STN population rate.   

 

In order to investigate the effect of connection strengths on the ability for the 

STN-GPe network to entrain outside of the beta range, we simulated various connection 

weight values for GPe to STN, reciprocal GPe, and STN to GPe connections while 

inputting either theta (6 Hz) (Figure 5.3) or gamma (70 Hz) (Figure 5.4) periodic striatal 

inhibition to GPe. Under both theta or gamma striatal periodic input, 1) lower values of 

GPe to STN connection strength (Figure 5.3A-C, Figure 5.4A-C); 2) higher values of 

reciprocal GPe connection strength (Figure 5.3D-F, Figure 5.4D-F); and 3) lower values 
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of STN to GPe connection strength (Figure 5.3G-I, Figure 5.4G-I) showed greater 

entrainment to the incoming striatal periodic input.  

 

Figure 5.3. Network connection strengths control degree of theta entrainment. (A-C) GPe to 

STN connection strength is evaluated in relation with (A) STN firing rate, (B) GPe firing 

rate, and (C) beta synchrony. (D-F) Reciprocal GPe connection strength is evaluated in 

relation with (D) STN firing rate, (E) GPe firing rate, and (F) beta synchrony. Lastly, (G-I) 

STN to GPe connection strength is evaluated in relation with (G) STN firing rate, (H) GPe 

firing rate, and (I) beta synchrony. Legend colors represent power spectral density values 

from the theta range calculated from normalized STN population rate.   
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Figure 5.4. Network connection strengths control degree of gamma entrainment. (A-C) GPe 

to STN connection strength is evaluated in relation with (A) STN firing rate, (B) GPe firing 

rate, and (C) beta synchrony. (D-F) Reciprocal GPe connection strength is evaluated in 

relation with (D) STN firing rate, (E) GPe firing rate, and (F) beta synchrony. Lastly, (G-I) 

STN to GPe connection strength is evaluated in relation with (G) STN firing rate, (H) GPe 

firing rate, and (I) beta synchrony. Legend colors represent power spectral density values 

from the gamma range calculated from normalized STN population rate.   

STN Firing Rate Correlates With Beta Synchrony When Connections Between STN and 

GPe Are Strong 

In an STN-GPe network model with strong connection strength between STN and 

GPe and weak reciprocal GPe connection strength, beta power strongly correlates with 

STN firing rate (R=0.93) (Figure 5.5 D,E). In contrast, GPe mean firing rate is weakly 

predictive of beta synchrony (R=-0.13) (Figure 5.5 F). However, the relationship between 

STN firing rate and beta power is strongly reduced (R=0.52) in an entrainable model 

where STN and GPe connection strengths are weak and reciprocal GPe connection 

strength is high (Figure 5.5 A,B). In fact, STN firing rate is only slightly more predictive 

than GPe firing rate (R=-0.32) of network beta power in an entrainable network regime 

(Figure 5.5 C).  
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Figure 5.5. The relationship between STN firing rate and beta synchrony is less pronounced 

in an entrainable model. (A-C) The relationships between STN and GPe firing rates and 

beta synchrony in entrainable and (D-F) non-entrainable STN-GPe network models. 

Legend colors represent power spectral density values from the beta range calculated from 

normalized STN population rate.   

Discussion 

Principle Findings 

The advent of novel neural stimulation and recording technologies have facilitated 

discovery of important symptom-altering aspects of PD neuropathology. Specifically, 

beta oscillations have emerged as a clear contributor to motor symptoms of PD and 

exaggerated levels have been found throughout the cortico-basal ganglia-thalamic loop in 

untreated PD patients. However, with new information, comes additional questions, and 

understanding the origin and neural dynamics of beta oscillations have remained elusive. 

In this work, we investigate the neural dynamics of pathological oscillations in a 

computational model of the STN-GPe network. We demonstrate that synaptic connection 

strength has a crucial role controlling entrainability of the STN-GPe network. 
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Specifically, weak synaptic connections between the STN and GPe facilitate entrainment 

to a wide range of frequencies, whereas strong synaptic connections support intrinsic beta 

oscillations and prevent entrainment to all other frequencies. We also find that the ability 

of STN firing rate to drive beta oscillations is reduced as synaptic connection strengths 

are weakened.  

Origin and Mechanisms of Pathological Oscillations 

Beta oscillations in the cortico-basal ganglia-thalamic loop have been causally 

linked to motor impairments in PD patients, though, mechanics and origin have remained 

elusive. The cerebral cortex (Brittain & Brown, 2014; Hirschmann et al., 2011; Litvak et 

al., 2011; Marceglia et al., 2006), striatum (Corbit et al., 2016; McCarthy et al., 2011), 

and STN-GPe network (Bevan et al., 2002; Cruz et al., 2011; Fan et al., 2012; Plenz & 

Kital, 1999), have all been implicated in the generation of beta oscillations in 

pathological states. Indeed, it is even possible that beta is generated in multiple, 

coherently oscillating locations, facilitating the exaggerated beta synchrony seen across 

nuclei in the cortico-basal ganglia-thalamic loop (Fries, 2005). Better understanding of 

network conditions in which beta oscillations occur will facilitate a clearer understanding 

of the origin and mechanisms at play and provide a path to improved treatment options 

for patients. To this end, we investigate the dynamics of an STN-GPe network model and 

observe that weak synaptic connections between the STN and GPe prevents intrinsic 

production of beta oscillations and allows entrainment to a wide range of frequencies. In 

contrast, strong synaptic connections create a strong beta resonance in the STN-GPe 

network, regardless of input frequency, and prevent entrainment to all other frequencies. 
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Importantly, in healthy adults, the STN-GPe network has been shown to produce 

oscillations outside of the beta range, and indeed various oscillation frequencies are vital 

to normal function (Halje et al., 2019). Thus, based on our findings, we hypothesize that 

synaptic connections must be weak enough in healthy adults to produce physiologically 

appropriate oscillations at a wide range of frequencies.  

By extension, if the STN-GPe network is indeed acting as a source of pathological 

beta oscillations in PD, the network may undergo plastic changes that increase synaptic 

strength in order to produce exaggerated beta oscillations. Based on the results of our 

network model, the STN-GPe network does not intrinsically resonate at beta in its weak 

connection strength, non-pathological state. Indeed, our results suggest that external beta 

input is required to entrain the network to the beta frequency range. Thus, plastic changes 

increasing synaptic connection strengths between STN and GPe may occur in the 

pathological state. Limited studies to date have investigated the extent to which plastic 

changes occur based on oscillatory activity (King et al., 1999; Wespatat et al., 2004; 

Zanos et al., 2018). However, it has been theorized that spike timing-dependent plasticity 

(STDP) does indeed occur from oscillations, and, in fact, may be more efficient 

compared with conventional rate-based codes for STDP-based learning (Masquelier et 

al., 2009). Furthermore, in-vitro and computational modeling evidence has directly 

implied a role of plasticity in modulating spiking rates and temporal patterns of GPe 

activity (Hanson & Jaeger, 2002). By extension, animal models of PD and human studies 

in both the motor cortex and basal ganglia have cited evidence for defective synaptic 

plasticity, possibly contributing to the development of pathological synchrony in the 
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cortico-basal ganglia-thalamic loop (Udupa & Chen, 2013). Therefore, it is conceivable 

that plastic changes, increasing synaptic connection strengths between STN and GPe, 

drive exaggerated beta oscillations in the STN-GPe network. Further investigation into 

the extent of plastic changes occurring in the STN-GPe network in pathological 

conditions is warranted.  

Alternatively, the STN-GPe network may not be acting as the origin of beta in 

pathological conditions, but rather a conveyer or amplifier of beta from a preceding input. 

In our STN-GPe network model, weak synaptic connections were necessary to facilitate 

entrainment to frequencies outside of beta. Indeed, evidence has shown that even in 

pathological conditions, the basal ganglia should retain the ability to resonate at 

frequencies outside of beta (Brown, 2003). Thus, with the requirement of retaining 

entrainability, it may be the STN-GPe network preserves weak synaptic connections in 

pathological conditions, receives beta from upstream neurons, and conveys beta 

downstream through the cortico-basal ganglia-thalamic loop. This is in line with studies 

suggesting cortical or striatal origins of pathological beta production (Brittain & Brown, 

2014; McCarthy et al., 2011).  

Role of STN in Beta Oscillations 

Additionally, our results provide new insight into the role of STN and GPe firing 

rates in controlling oscillations in the STN-GPe network. Our results suggest that the 

strength of beta oscillations in a beta-producing STN-GPe model with strong synaptic 

connections correlates strongly with STN firing rate and not GPe firing rate. The causal 

relationship between STN firing rate and beta oscillations has been previously observed 
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in computational models (Bahuguna et al., 2020). The relationship is also in line with 

conceptual theories that increased STN activity suppresses movement (M. J. Frank, 2006) 

and experimental observations that indicate STN firing rates are decreased in response to 

DBS treatment (Meissner et al., 2005). However, based on our observations, the strong 

relationship between STN firing rate and beta synchrony weakens in an entrainable STN-

GPe network with weak synaptic connections. Thus, it may be the case that the 

amplifying effect of STN firing rate to beta oscillations in the STN-GPe network is 

exaggerated in a pathological state, compared to healthy, entrainable conditions.  

Future Work 

Although we do not resolve the debate surrounding the origin of beta oscillations, 

our results do provide constraints on the conditions for beta production. However, 

significant questions and additional work remain. Our results to date are observational 

and we have not yet established a mechanism to explain the relationship between 

synaptic connection strength and network entrainment. For example, it is unclear whether 

there exist subsets of neurons that have the capacity to entrain to frequencies outside of 

beta when STN-GPe synaptic connections are weak. By extension, it is unclear whether 

these subsets lose the capacity to entrain when synaptic connections are strong. Future 

work investigating the effects of firing rate, synaptic connectivity, and external input on 

model entrainment are of interest.  
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CHAPTER SIX: DISCUSSION 

Principal Findings and Significance 

From the original description of Parkinson’s disease by James Parkinson 

(Parkinson, 2002), to clinical scales and quantitative measurements (Godinho et al., 2016; 

Goetz et al., 2008), our understanding of symptoms and the effects of treatment in 

Parkinson’s disease continues to expand as we probe neurological circuits involved and 

monitor effects. The traditional model of cite-centric, controlled clinical trials has 

enabled development and evaluation of revolutionary medications. Though, as our desire 

for deeper insight into disease burden and quality of life persists, the pursuit for enriched 

measurement inevitably leads us to the home environment. Insight provided from 

measuring symptoms and treatment effect in free-living conditions may aid in elucidating 

diverse Parkinsonian phenotypes and facilitate novel, personalized medication treatments 

and plans.  

Studies investigating at-home monitoring technologies are in their infancy. Thus, 

challenges and questions regarding feasibility of continuous free-living data collection, 

interpretation, and standardization of algorithms, devices, and statistical methods remain. 

My work presented in this dissertation explores the feasibility and benefits of remotely 

monitoring symptoms related to Parkinson’s disease. In Chapter 2, I describe the 

development of a publicly available computational package for deriving gait features 

from a single accelerometer device on the lower back. In Chapter 3, I demonstrate strong 

accuracy and reliability of this algorithm in a healthy population made up of a younger 

and older cohort. I investigate the differences in gait speed between an in-clinic walking 
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task and daily, continuous monitoring of gait speed in free-living conditions and find a 

weak correlation between the two. Furthermore, I find that at-home gait speed is more 

sensitive in distinguishing between younger and older cohorts. I hypothesize that one 

reason for differences between at-home and in-clinic data is due to observer effect. 

Specifically, my results show higher gait speed in-clinic compared to at-home, suggesting 

an over-compensation that is more pronounced in older adults (Figures 3.2,3). 

Importantly, the improved sensitivity to small differences between cohorts, as well as the 

lack of bias due to observer effects, suggest symptom measurement in free-living 

environments may improve our ability to measure small disease and treatment related 

changes compared to traditional in-clinic assessments. Additionally, in Chapter 3, I 

investigate the amount of data needed to reliably estimate gait speed in free-living 

environments. I find that approximately 3 days of continuous monitoring is required for 

accurate estimation of gait speed, providing a minimum target for designing clinical 

studies.  

Next, in Chapter 4, I validate the lower back sensor-based algorithm for gait 

detection in a PD population and demonstrate strong accuracy and reliability for most 

gait features. Additionally, I find that the algorithm has minimal reduction in accuracy 

compared to using additional devices for predicting degree of gait impairment in PD 

patients. Furthermore, the algorithm has sufficient sensitivity to discriminate between 

medication states. These results suggest the ability to measure disease related impairment 

and treatment effect using a minimal sensor set-up, feasible for at-home use. Lastly, in 

Chapter 5, I find synaptic connection strengths between STN and GPe determine whether 
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the network produces beta intrinsically or requires external entrainment. This finding has 

important implications for the origin of beta oscillations and network reorganization in 

PD. Specifically, beta may originate from outside STN-GPe or it may be produced from 

STN-GPe only after plastic changes have occurred.  

Evidence for Benefits of At-Home Measurement 

Free-living monitoring has become technologically feasible due to novel 

improvements in engineering and data analytics (Del Din, Godfrey, Mazzà, et al., 2016; 

Polhemus et al., 2021). The potential benefits of free-living monitoring, as opposed to 

traditional in-clinic assessments and patient-reported outcomes, are intriguing. Indeed, 

continuous, at-home patient monitoring is free from limitations of traditional measures 

such as recall bias, observer effects, the requirement of traveling to a clinic, subjective 

measurements, and increased cost. To this end, benefits of free-living patient monitoring 

include reduced burden, additional insight into disease burden and therapeutic response, 

reduced cost, enhanced patient recruitment, and expanded access to treatments. Despite 

potential benefits, lack of thorough evaluation and understanding of in-clinic compared to 

at-home digital mobility outcomes has prohibited widespread use as research and clinical 

assessment tools.  

My dissertation results demonstrate benefits of sensor-based digital mobility 

outcomes derived in the at-home environment compared to in-clinic assessment. 

Specifically, in Chapter 3, I demonstrate that the ability to distinguish younger and older 

cohorts requires gait speed to be derived in the at-home environment. In contrast, gait 

speed derived from in-clinic assessment does not show significant differences between 
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age groups. My results, consistent with other studies (Del Din, Godfrey, Galna, et al., 

2016), suggest at-home measurements of gait may be more sensitive to subtle differences, 

in this case between younger and older cohorts. By extension, free-living measurements 

may be more sensitive to disease state and treatment effects.  

One reason for heightened sensitivity in the at-home environment may be due to 

reduced bias from the Hawthorne effect (McCambridge et al., 2014), defined as alteration 

in behavior by subjects of a study due to their awareness of being observed. Potential 

evidence for the presence of a Hawthorne effect in-clinic is presented in Chapter 3, in 

which I find in-clinic gait speed is higher than at-home gait speed across both younger 

and older healthy participants (Figure 3.4). Participants overperforming while being 

observed, and thus increasing their gait speed in-clinic, is consistent with the expected 

outcome of a Hawthorne effect. Assuming patient gait speed is uniformly increased in-

clinic due to a Hawthorne effect, it would be reasonable to assume a stronger correlation 

would exist between in-clinic gait speed and at-home 95th percentile gait speed, an 

estimation of maximum effort. However, interestingly, I find weak correlation exists 

between at-home 95th percentile gait speed and in-clinic gait speed (Figure 3.4). 

Therefore, despite patients likely exerting extra effort in-clinic due to awareness of being 

observed, the degree of extra effort may vary by patient. Variable extra effort given by 

patients may lead to increased variability of gait measures in-clinic and provides a 

potential explanation for enhanced sensitivity in the at-home environment, where long 

periods of passive monitoring reduce likelihood that participants will change their 

behavior.  
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However, differences between at-home and in-clinic gait is likely multifold. For 

example, factors including daily cognitive distractions, fatigue, mood may also be 

implicated (Giannouli et al., 2018). Additionally, technical limitations from lack of 

thorough at-home validation of the gait algorithm I developed and used in this 

dissertation may also be a source of discrepancy between at-home and in-clinic gait 

speed. Additional technical validation as well as measuring the effect of cognitive 

distraction, fatigue, and mood on free-living gait warrant further investigation.  

Considerations for At-Home Measurement 

Results of my dissertation demonstrate several considerations exist for deriving 

reliable and repeatable results from at-home digital outcome studies. For example, 

consistent with other studies (Cheng et al., 2017; Del Din, Godfrey, Galna, et al., 2016; 

Storm et al., 2018), I find bout length has a significant impact on at-home gait features 

(Supplementary Figure A.2b). Specifically, I find gait speed increases with increasing 

bout length. Thus, controlling for bout length of interest is an important statistical design 

consideration in order to generate consistent results across studies. This is especially the 

case considering recent evidence that gait performance depends on bout length (Del Din, 

Godfrey, Galna, et al., 2016). Specifically, Del Din et al. found that group differences 

between patients with PD and healthy controls disappear when looking solely at short at-

home bouts of gait. This is in contrast with other reports suggesting that short bouts of 

gait indeed do provide reliable symptom related measures in MS patients (Motti Ader et 

al., 2020). However, by extension, the very definition of bout length must be taken into 

consideration, as changes to maximum resting period between consecutive ambulatory 
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bouts results in changes in gait volume, variability, and pattern (Barry et al., 2015). 

Future work, in specific patient populations, providing insight into the effect of bout 

length and measurement sensitivity are needed. Though, it is clear that bout length is an 

important consideration in the statistical analysis of free-living data.  

Additionally, day of the week impacts gait speed significantly. In Chapter 3, I find 

that both young and older cohorts walked slower during weekends compared to 

weekdays, likely a reflection of weekly scheduled activities, such as employment or 

hobbies. Furthermore, significant differences in gait speed between younger and older 

cohorts is driven by weekdays, not weekends (Supplementary Figure A.2a). These results 

may indicate that differences in daily activities may influence the sensitivity of at-home 

measurements to disease or treatment related effects.  

Another factor influencing the reliability and sensitivity of at-home gait 

measurements is amount of data collected. In Chapter 3, I demonstrate that approximately 

3 days of data is required to reliably estimate gait speed (Figure 3.5). This result is 

comparable with other studies measuring gait and physical activity in the home 

environment (Hart et al., 2011; Mueller et al., 2019; Van Schooten et al., 2015). 

However, more data was necessary in the younger cohort for reliable estimation of gait 

speed compared to the older cohort, implying greater day-to-day variability in the 

younger cohort. Therefore, day-to-day variability of at-home gait measures may vary 

between patient population and require additional data accordingly. Furthermore, 

additional data may be needed to detect a particularly small change related to a specific 

disease or treatment effect. Another factor complicating the amount of data actually 
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acquired from continuous recording days is wear time. A device that is assigned but not 

worn throughout the day may result in minimal or no analyzable gait data. Regrettably, 

significant algorithmic limitations exist for determining device wear/non-wear periods 

using solely IMU data currently. Specifically, wear-time detection algorithms exist, 

though they are generally unreliable at high resolution time scales, especially positioned 

at the lower back (Knaier et al., 2019). Another factor that affects amount of gait data 

collected is low levels of patient activity. Patients that seldom walk or cannot walk for 

any reason, such may be the case with certain late stage disease complications, will likely 

be challenging to analyze due to lack of data and are likely not ideal candidates for gait 

monitoring technologies, unless the intention of an intervention is to facilitate the ability 

to walk. Indeed, number of days wearing a device, gait variability, wear time, and patient 

activity levels are all factors that may influence reliability and sensitivity of at-home 

digital mobility outcomes.  

In addition to data and statistical procedures, clinical studies with at-home digital 

outcomes must take into account specific disease patient phenotypes and needs. Hospitals 

and rehabilitation clinics have traditionally focused on assessing gait in the context of an 

in-clinic, facility setting, such as a hospital hallway. To this end, gait speed and 

endurance are typically considered strong indicators of functional ability (Middleton & 

Fritz, 2013). Indeed, sensor-based measurements of typical spatiotemporal features of 

gait can indeed provide an accurate estimation of gait impairment and treatment effect 

(Figures 4.2,3). However, considering the start-stop nature of free-living gait, 

predominantly consisting of small numbers of steps over short bout lengths during typical 
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activities, it may be that gait features related to initiation, modulation, and termination are 

better indicators of functional mobility (Orendurff et al., 2008). Therefore, it is worth 

considering the types and features of gait that pose the most challenge to the patient 

achieving functional mobility when evaluating the effects of interventions.  

Barriers to Digitization of Clinical Trials 

Traditional clinical trials have been the standard by which new medications and 

treatments are evaluated for safety and efficacy in the modern era. However, various 

inefficiencies related to patient identification, recruitment, data acquisition, and follow-up 

raise costs and increase burden for patients (Inan et al., 2020). In contrast, decentralized, 

digital trials facilitate the ability to conduct clinical trials remotely, electronically, and 

independent of participant proximity and the requirement to travel to a research site 

(Steinhubl et al., 2017). Thus, the concept of the digitized trial has emerged as a 

promising strategy to overcome limitations of traditional clinical trial approaches. Indeed, 

regulatory agencies have promoted the adoption of digital tools and encouraged 

investigators to minimize specialized study infrastructure, minimize in-clinic visits, and 

employ novel, low-cost methods to obtain informed consent and monitor study conduct 

(Lauer & Bonds, 2014). In fact, digital mobility outcomes are being qualified as 

endpoints in pivotal clinical trials. For example, 95th percentile gait speed was approved 

in 2019 as an acceptable secondary endpoint in clinical trials for Duchenne muscular 

dystrophy (Committee for Medicinal Products for Human Use (CHMP), 2019). The 

promotion of digitized trials is not surprising given the potential benefits to patient 

outcomes, including enhanced access to treatments for geographically or mobility 
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challenged participants and reduced clinical trial failure rate due to higher recruitment 

and retention rates.  

Despite promise, significant hurdles remain for digitized trials becoming common 

practice. Thorough validation and regulatory qualification for technical feasibility, 

relevance to patients, clinical meaningfulness, and cost effectiveness is necessary, though 

fragmented in the literature and lacking overall (Polhemus et al., 2021). Thus, calls for 

collaborative approaches between regulators, industry, academics, and precompetitive 

consortia to speed up validation of digital outcomes have been made (Rochester et al., 

2020; Stephenson et al., 2020).  

Toward the goal of collaborative validation approaches, standardization of 

devices, algorithms, protocols, data requirements, and statistical methods is vital. 

However, significant methodological variability exists in the literature to date and often 

algorithms and data are not readily accessible to researchers, thus hindering progress. To 

this end, in Chapter 2, I develop and make publicly available a python-based 

computational package for deriving features of gait from a lower back accelerometer. 

Although accurate and reliable in my studies, feedback and use from the community in 

various datasets in diverse disease populations will, ideally, enable future iterations and 

improvement toward a more robust algorithm, and eventually a qualified digital outcome. 

In addition to the goal of qualification, it is my hope that, ultimately, publicly available 

methodologies will lower the bar to conduct digitized clinical trials to a point where they 

are not be limited to those with advanced analytical development capabilities. Lastly, the 
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importance of open, transparent algorithms for translation of clinical health information 

for use in evaluating treatment efficacy cannot be understated.  

Though not widespread, other efforts exist toward the goal of open-access digital 

algorithms. For example, GGIR is an open-source package for processing raw 

accelerometer data for measures related to physical activity and sleep (van Hees et al., 

2021). Hundreds of studies have been conducted in various disease populations using 

GGIR in the past few years, a feat that could not have been accomplished by a single 

organization (Gill, 2021). Additionally, my colleagues at Pfizer have developed and 

completed validation work for several computational open-source packages related to 

sleep, scratch, and sit-to-stand activities with additional packages in development 

(Adamowicz & Patel, 2020; Christakis et al., 2019; Mahadevan et al., 2021).  

Further collaboration, not only with digital algorithms, but with methodologies 

and data requirements are still needed. As mentioned previously, methods by which at-

home measurement of gait is summarized into single values has significant impact on 

analysis results. To maximize patient outcomes, safe and transparent multicomponent 

systems and analysis methods are vital for qualification and effective use of digital 

outcomes.  

Concluding Remarks 

 In this dissertation, I develop a sensor-based method for measuring gait and 

demonstrate evidence that continuous measurement in the at-home environment increases 

sensitivity to small cohort differences compared to the in-clinic environment. 

Furthermore, I demonstrate inherent differences between gait measures acquired from 
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each environment and hypothesize several sources for these differences, including 

Hawthorne effect, cognitive distractions, mood, and fatigue. Additionally, I demonstrate 

feasibility for a single accelerometer to estimate degree of gait impairment and detect 

treatment effect in PD patients. Lastly, I demonstrate STN-GPe synaptic connection 

strengths determine oscillatory power in the beta range and the ability to entrain to a wide 

range of frequencies.  

 The results of this dissertation shed light on important facets and considerations 

regarding digital patient monitoring and invite new avenues for future work. Specifically, 

this work explores the sensitivity of sensor-based gait measurement to estimate gait 

impairment and treatment effect in PD. However, measures of gait are clinically relevant 

in various neurodegenerative and movement disorders. Indeed, adapting and evaluating 

digital algorithms in diverse patient populations will be critical toward qualification and 

use for treatment efficacy in those patients. Moreover, developing novel algorithms to 

measure aspects of mobility outside of gait will provide a more complete picture of 

disease symptoms and functional capacity.  

 The work presented in this dissertation also generates questions to be investigated 

regarding data requirements and protocol optimization. I find that approximately 3 days 

of remote monitoring enables reliable measurement of gait. However, data requirements 

for older participants is reduced compared to younger participants. Thus, degree of data 

variability and thus data requirements for various patient populations is unknown and 

may be necessary to evaluate on a case by case basis. Furthermore, the method by which 

data requirement was determined in this work is in the context of free-living conditions. 
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In contrast, remote digital assessments, akin to hospital tasks, though accomplished in an 

at-home environment, may consist of completely different data requirements. It is yet to 

be determined the amount of data needed, nor the tradeoffs between free-living versus 

periodic at-home digital assessments. Thus, questions regarding optimal at-home data 

collection and assessment procedures remain unanswered and may be an interesting 

target for future studies.  
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APPENDIX 

Chapter 3 Supplementary Information 

 
Supplementary Figure A.1: Effect of sex and age group interaction in in-lab measurements. 

(a) GAITRite and APDM showed a significant age group by sex interaction in in-lab 

measurements, in which younger males were slower than younger females whereas older 

males walked faster than older females. (b) Similar trend was observed with 

uninstrumented measurements as well. The uninstrumented gait speed was computed by 

dividing the walking distance; i.e., 4 meters, by the average time to walk 4 meters measured 

by stop watch as part of standard clinic assessment; i.e., SPPB.  
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Supplementary Figure A.2: Effect of day type and bout length on median gait speed. (a) 

Both age groups walked slower during weekends compared to weekdays, however, the age 

group differences were driven by weekdays, not weekends. (b) Gait speed significantly 

differed and increased with increasing bout lengths (effect of bout length: χ2 = 557, p < 

10−16). Moreover, we observed significant or trending age group differences in all bout 

lengths (effect of age group: χ2 = 6.62, p =.02) with decreasing effect size; i.e., normalized 

χ2, with increasing bout length.  
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Supplementary Figure A.3: Quantity of data needed to estimate at-home gait speed reliably 

is different between younger and older cohorts. (a) Younger participants require at least 

two days of data to reliably estimate at-home gait speed, whereas (b) older participants 

require at least 1 day of data.  
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Supplementary Figure A.4: Number of monitoring days required for various criteria. 

Varying the minimum threshold for steps per day to be considered for analysis between (a) 

10, (b) 250, and (c) 1,000 does not impact the quantity of data needed to estimate at-home 

gait speed reliably but does reduce the participants available for analysis.  
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Supplementary Figure A.5: Reliability of gait speed for weekends vs weekdays. Including 

one weekend day, but not two, out of three total days only slightly enhances reliability of 

estimated at-home (a) median and (b) 95th percentile gait speed. Random subsets of data 

that included three, two, and one weekdays out of three total days were compared to the full 

data set.  
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Supplementary Table A.1: In-Clinic Gait Metrics Derived From Instrumented Mat 

(GAITRite), APDM 6-Sensor Set, and GaitPy Algorithm Using One Lumbar Mounted 

Sensor. The common gait metrics were summarized for each visit and age group. The 

repeated mixed model regression showed that there is a significant effect of device on all 

gait metrics (Device: p< 10−16). Posthoc analyses showed no age group differences in any of 

the gait metrics for any device (the p-values were not corrected for multiple comparisons 

for this analysis).  

a Mean ± sd  
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Supplementary Table A.2: The Regression Analysis of All Gait Metrics Derived From the 

At-Home Monitoring Data. There were age group differences for almost all gait metrics 

except single support time. There was also a difference between the gait observed in the 

weekdays compared to the weekend. There was no effect of sex or muscle mass or height 

(except step length). There were no interaction effects between any of the variables. All the 

p-values were corrected for multiple comparisons using FDR.   

a Mean ± sd WD: Weekdays, WE: Weekend, M.Mass: Muscle Mass  
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Chapter 4 Supplementary Information 

 
Supplementary Figure A.6. Participants instrumented with six wearable devices (Opal, 

APDM, Inc) located bilaterally on the wrist and foot, and at the lumbar (approximately at 

the L5 vertebra) and sternum. *(A) Adapted with permission from APDM Wearable 

Technologies. 
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Gait features 
1 Device 

(lumbar) 

3 Devices 

(lumbar and 

both feet) 

6 Devices (lumbar, 

both feet, both wrists, 

and sternum) 

Lower Limb Features 

Stride Time (s) ✔ ✔ ✔ 

Cadence (steps/min) ✔ ✔ ✔ 

Step Time (s) ✔ ✔ ✔ 

Stance Time (s) ✔ ✔ ✔ 

Swing Time (s) ✔ ✔ ✔ 

Initial Double Support (s) ✔ ✔ ✔ 

Terminal Double Support (s) ✔ ✔ ✔ 

Double Support (s) ✔ ✔ ✔ 

Single Limb Support (s) ✔ ✔ ✔ 

Step Length (m) ✔ * * 

Stride Length (m) ✔ ✔ ✔ 

Gait Speed (m/s) ✔ ✔ ✔ 

Elevation at Mid Swing (cm)  ✔ ✔ 

Lateral Step Deviation (cm)  ✔ ✔ 

Lateral Swing Max (cm)  ✔ ✔ 

Initial + Mid Swing Time (s)  ✔ ✔ 

Maximum Pitch (degrees)  ✔ ✔ 

Pitch at Initial Contact (degrees)  ✔ ✔ 

Pitch at Mid Swing (degrees)  ✔ ✔ 

Pitch at Tow Off (degrees)  ✔ ✔ 

Terminal Swing Time (s)  ✔ ✔ 

Toe Out Angle (degrees)  ✔ ✔ 

Toe Out Angle Max (degrees)  ✔ ✔ 

Toe Out Angle Min (degrees)  ✔ ✔ 

Lumbar Range of Motion 

Coronal Range of Motion 

(degrees) 
 ✔ ✔ 

Sagittal Range of Motion (degrees)  ✔ ✔ 
Transverse Range of Motion 

(degrees) 
 ✔ ✔ 

Trunk Range of Motion 
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Supplementary Table A.3. Gait Features Derived Using GaitPy With a Single Lumbar-

Mounted Device, APDM Mobility Lab With 3 Devices, and APDM Mobility Lab With 6 

Devices. *Step length is not calculated by APDM Mobility Lab. 

 

 
 
  

Coronal Range of Motion 

(degrees) 
  ✔ 

Sagittal Range of Motion (degrees)   ✔ 
Transverse Range of Motion 

(degrees) 
  ✔ 

Upper Limb Features 

Foot Phase Difference (degrees)   ✔ 

Maximum velocity (degrees/s)   ✔ 

Range of motion (degrees)   ✔ 

https://jmir.org/api/download?alt_name=rehab_v7i2e17986_app2.docx&filename=242eb5feaec3afc76883b900c5d6c23b.docx
https://jmir.org/api/download?alt_name=rehab_v7i2e17986_app2.docx&filename=242eb5feaec3afc76883b900c5d6c23b.docx


 

 

109 

 
Supplementary Figure A.7. Bland-Altman analysis comparing (A) stance time, (B) stride 

length. and (C) gait speed agreement between GaitPy and APDM Mobility Lab in healthy 

volunteers (HV) and patients with Parkinson disease (PD). 
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Gait feature PD 

 Kruskal-Wallis rank sum statistic p-value 

GaitPy (single device) 

Gait speed 41.66 < 0.001 

Stride length 34.94 < 0.001 

Step length 34.75 < 0.001 

Swing time 25.79 < 0.001 

Stride time 25.27 < 0.001 

Gait speed var 24.76 < 0.001 

Double support 24.32 < 0.001 

Step time 24.12 < 0.001 

Stance time 23.68 < 0.001 

Stance asymmetry 18.90 < 0.001 

Swing asymmetry 17.60 < 0.001 

Step time asymmetry 15.72 0.001 

Stance time var 14.46 0.002 

APDM Mobility Lab (3 or 6 devices) 

Gait speed 34.98 < 0.001 

Stride length 33.22 < 0.001 

Step time var 32.77 < 0.001 

Stride time var 32.55 < 0.001 

Pitch at initial contact 26.84 < 0.001 

Pitch at toe off 25.76 < 0.001 

Maximum pitch 25.17 < 0.001 

Double support var 25.13 < 0.001 

Initial mid swing var 25.08 < 0.001 

Trunk relative transverse range of 

motion 
24.51 < 0.001 

Stance time var 23.91 < 0.001 

Swing time var 23.91 < 0.001 

Terminal swing var 22.53 < 0.001 

Single limb support var 21.58 < 0.001 

Step time 21.02 < 0.001 

Step time asymmetry 20.71 < 0.001 

Stride time 20.38 < 0.001 

Cadence 20.38 < 0.001 

Maximum velocity 19.85 < 0.001 

Terminal swing asymmetry 18.55 < 0.001 

Lumbar coronal range of motion 17.07 0.001 

Initial double support var 16.51 0.001 

Upper limb range of motion 16.50 0.001 

Stance asymmetry 15.70 0.001 

Swing asymmetry 15.70 0.001 

Single limb support asymmetry 15.70 0.001 
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Supplementary Table A.4. Kruskal-Wallis Rank Sum Statistics and P Values for Sensor-

Derived Features of Gait in Participants With Parkinson disease That Varied Significantly 

(P≤.01) With MDS-UPDRS Gait Score in Order of Significance. 

 

  

Initial mid swing asymmetry 15.25 0.002 

Lumbar sagittal range of motion 13.85 0.003 

Initial mid swing time 13.77 0.003 

Trunk sagittal maximum angle 13.76 0.003 

Foot phase difference var 13.61 0.004 

Trunk sagittal average angle 13.56 0.0036 

Terminal double support 13.48 0.0037 

Trunk sagittal minimum angle 13.19 0.0042 
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Supplementary Figure A.8. A comparison between MDS-UPDRS gait scores and predicted 

score changes between (Off - ON) visits in patients with Parkinson disease. 
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Chapter 5 Supplementary Information 

 

Supplementary Figure A.9. STN-GPe network model validation. (A) As expected, based on 

previous work, population rate in the beta frequency range increases with increasing 

striatal input. (B) By extension, as previously shown, beta synchrony is quenched by 

reducing excitability of STN neurons, even in the presence of strong striatal input.   
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