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Abstract 

We examine how the introduction of a technology that automates research tasks influences the 

rate and type of researchers’ knowledge production. To do this, we leverage the unanticipated 

arrival of an automating motion-sensing research technology that occurred as the consequence of 

the introduction and subsequent hacking of the Microsoft Kinect system. To estimate whether this 

technology induces changes in the type of knowledge produced, we employ novel measures based 

on machine learning (topic modeling) techniques as well as traditional measures based on 

bibliometric indicators. Our analysis demonstrates that the shock associated with the introduction 

of Kinect increased the production of ideas and induced researchers to pursue ideas more diverse 

than and distant from their original trajectories. We find that this holds for both researchers who 

had published in motion-sensing research prior to the Kinect shock (within-area researchers) and 

those who did not (outside-area researchers), with the effects being stronger among outside-area 

researchers. 
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I. Introduction 

The automation of physical and mental tasks in the production of goods and services is among the most 

profound factors affecting the modern economy and the role of human capital in economic output (Mokyr, 

2002). Recent work on this topic documents that the extent to which automating technologies substitute for 

or complement human labor depends upon the extent to which such technologies substitute for the specific 

tasks associated with production (Deming, 2017; Brynjolfsson et al., 2018; Acemoglu and Restropo, 2018; 

Felten et al., 2018). However, to date, most of the work on this topic has focused on manufacturing or 

service industries, while relatively less research examines the impact of such automating technologies on 

the production of new-to-the-world knowledge (Ding et al., 2010; Cockburn et al., 2017). 

In this project, we contribute to investigating the impact of IT-based automating technology2 on the 

production of knowledge. This is important because of the central role knowledge production plays in 

economic growth and the unique features of the knowledge production environment that may provide 

insights into the role of automation in other sectors. The impact of automating technologies on knowledge 

production may differ in important ways from the impact of such technologies on goods and services 

production because of the variety of tasks associated with knowledge work and the extent of autonomy that 

knowledge workers possess in allocating time across such tasks. These features may enable knowledge 

workers to respond to automating technologies in ways that differ from those of sectors that face greater 

rigidity in task re-allocation and, potentially, a greater chance for displacement of tasks previously 

performed by humans (e.g., Acemoglu and Autor, 2011). Furthermore, in knowledge production, tasks are 

knowledge-based in the sense that the completion of a research task requires a certain type of research 

expertise. Hence, we anticipate that researchers’ response to automating technologies will be influenced by 

the overlap in knowledge that is being automated through the research technology (Murray et al., 2016; 

Zyontz and Thompson, 2017; Teodoridis, 2018). As a result, we distinguish between two types of 

researchers, those who had previously worked in the research area where the tasks affected by the 

 
2  Throughout the paper we use the terms ‘automating technology’, ‘IT-based technology’, ‘research technology’ and similar variants 

interchangeably to refer to IT-based devices (including both software and hardware) that are used in the process of research and that automate 

certain research tasks e.g., data collection tasks, data analysis tasks, etc. 
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automating research technology reside, whom we call “within-area researchers” and those who had not 

previously worked in the area, whom we describe as “outside-area researchers.” 

Estimating a relationship between the availability of automating research technology and the rate and 

type of knowledge output is difficult because numerous unobservable factors are likely associated with both 

research technology availability and researchers’ project choices. To generate causal insights, we exploit 

an unexpected arrival of research technology as an instrument that is correlated with research task 

automation but not with factors affecting researchers’ efforts, other than through its effect on automation. 

Building on Teodoridis (2018), we leverage the introduction of the Microsoft Kinect gaming system as an 

unexpected shock that suddenly and dramatically made available a technology that automates core motion-

sensing research tasks. Kinect was launched in November 2010 as an add-on for Microsoft’s Xbox 360 

gaming console. Soon after its launch, hackers developed and released through the open-source community 

a driver that enabled devices other than the Xbox to interact with Kinect, thus making it possible for scholars 

in electrical engineering, computer science, and electronics to harness Kinect’s motion-sensing output for 

use in research applications. 

Kinect automates several key tasks required to track, collect and analyze real-time complex 3D motion 

data.  Prior to Kinect, in order to complete these tasks, researchers had to rely on developing complex 

custom algorithms for collecting, analyzing and attempting to augment the output of 2D and 3D cameras. 

It is important to note that full automation of motion-sensing research tasks implies a system that can 

recognize and understand any 3D motion scene. While such a system is still to be developed, Kinect helped 

move a large step closer towards it (Han et al., 2013). In our email exchanges with Kinect researchers, one 

individual noted that, “[With Kinect], researchers can get [motion] data without worrying about how it is 

obtained in the most of indoor scenes. Now, the research topics have been moving from how to get to shape 

and motion to how to use that information for applications such as robots and artificial intelligence.” 

We utilize the Kinect shock in difference-in-differences estimations to ascertain the impact of its 

introduction on measures of researcher-level project choice in the domains of computer science and 

electrical and electronics engineering research. To measure researchers’ rate and type of knowledge output, 

we rely on bibliometric indicators. Counts of academic publications and citations are established (though 
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imperfect) measures of research output. We utilize these to evaluate the impact of Kinect on researchers’ 

rate of knowledge output (i.e., productivity).  Estimating changes in the type of knowledge output presents 

a greater challenge, as it requires tracking research trajectories in an ever-evolving, multidimensional space 

of ideas. We focus on two characteristics of the type of knowledge output: changes in the diversity of 

research projects and changes in the trajectory of research. 3  We propose novel measures of units of 

knowledge in idea space based on topic modeling analysis, using unassisted machine learning techniques 

that capture the latent categorization of academic publications without relying on an ex-ante, pre-imposed, 

structure (such as author-defined keywords or institutionally defined research fields). Our analysis also 

considers more traditional measures of research diversity and trajectories based on observable 

characteristics of academic publications. Each measure involves advantages and disadvantages that we 

discuss in our analysis. Although each measure captures somewhat different attributes of research behavior, 

we believe that, taken together, they provide an informative window into the effects of automating research 

technology on researchers’ type of knowledge output. 

Contrary to concerns that automation displaces human labor and consistent with the idea that 

knowledge workers face substantial latitude for shifting across tasks, we find that the automation of key 

research tasks leads both within-area researchers and outside-area researchers to experience (a) an increase 

in research output, (b) an increase in the diversity of their research, and (c) a shift in their research 

trajectories. The outside-area researchers experience the largest impact, while within-area researchers 

experience a more modest effect. Interestingly, outside-area researchers achieve a boost both in their work 

on motion-sensing research and in the set of their projects that do not directly engage with motion-sensing. 

For example, an outside-area researcher in our sample who, prior to Kinect, focused on research involving 

sound waves, extended his research to the study of infant seizures by developing detection techniques 

combining audio and video inputs. Among the group of within-area researchers, those whose research was 

most focused on motion-sensing before Kinect experience the highest benefits. This suggests that the 

automating research technology allows within-area researchers to work more efficiently and to engage in 

 
3 We consider ‘diversification’ to be the breadth of researcher’s publication portfolio at each point in time t and ‘trajectory’ as the distance in 

knowledge space between researcher’s portfolio of projects at times t-1 and t. 

Electronic copy available at: https://ssrn.com/abstract=3285286



 
 

5 

 

new types of projects. For example, after Kinect, a within-area researcher in our sample engaged in adapting 

computer vision detection and visualization algorithms to developing malaria diagnostic and tumor 

identification techniques, while another researcher pushed forward her motion-sensing agenda to include 

studies of virtual reality. Although these results are consistent with our hypotheses, they are not obvious ex 

ante. Automating technologies often increase returns for incumbents relative to entrants and do not 

necessarily enable organizational diversification. 

Our analysis underscores the significant role played by research technology in knowledge production 

and sheds light on the processes by which the presence of technologies that automate certain research tasks 

influences knowledge workers’ behavior. Understanding these processes is thus important for the study of 

the strategic management of science-based organizations (Murray and O’Mahony, 2007; Nelson, 2016) 

including research-oriented private firms competing for profits and research institutions competing for 

reputation and opportunities for knowledge creation. Furthermore, our study suggests that firms’ decisions 

to engage in technology development and their technology commercialization strategy might influence 

knowledge flows and hence subsequent innovation efforts.  

II. Automating Technology and Knowledge Production 

2.1 Automating technology in knowledge production vs. other economic sectors  

While relatively little scholarly work has examined the impact of automating technology on knowledge 

production, a substantial amount of work has been devoted to understanding the impact of such 

technological progress on the production of physical goods and, more recently, services. Since the earliest 

days of the Industrial Revolution, concerns about the impact of automating technology on labor and society 

have been a recurrent feature of public and academic debate (Mokyr et al., 2015). Over the past few decades, 

research in management and economics has examined the impact of technology on multiple outcomes, 

including firm-level outcomes such as productivity (Pinsonneault and Kraemer, 2002; Brynjolfsson and 

Hitt, 2003), competitive performance (Dos Santos and Peffer, 1995; Bloom et al., 2012), organizational 

change (Dean et al. 1992; Argyres, 1999; Volkoff et al., 2007), and firm boundaries (Forman and 

McElheran, 2012). More recently, scholars have begun to study the economic impact of machine learning 

on individuals, firms, and society (Agrawal et al., 2018; Choudhury et al., 2018). 
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A persistent question in this literature regards whether automating technologies constitute substitutes 

or complements for human labor. Most recently, the literature has shifted its focus from approaching this 

question with a view of whether technology and labor are substitutes overall and towards the recognition 

that the impact of automation on labor depends on the extent to which technology substitutes for specific 

tasks and affects the allocation of human effort across tasks within a personnel function (Deming, 2017; 

Brynjolfsson et al., 2018; Acemoglu and Restropo, 2018; Felten et al., 2018). The question is important for 

macro-level issues, such as the share of labor in the economy (Karabarbounis and Neiman, 2014), and for 

micro-level issues, such as the organization of work and the level of firm productivity (Bresnahan, et al., 

2002; Bloom, et al., 2012).    

An important underlying assumption in tackling this question is that automation is a process that 

reduces the cost of performing certain tasks. It is this cost reduction that creates incentives for economic 

actors to substitute automating technology for human labor (Acemoglu and Autor, 2011; Nordhaus, 2007).  

Thus, when automating technology improves the productivity of a task, individuals and organizations shift 

human labor away from that task and, under certain conditions, into other tasks.4   

In knowledge production, we expect similar forces at play but in a context where workers have 

substantial autonomy in choosing their tasks and a broad array of tasks to choose from. As Smith (1776) 

observed in his pin factory visits, manufacturing jobs can often involve substantial task specialization. In 

addition, manufacturing jobs characterized by task specialization are often embedded in relatively rigid 

hierarchies that provide relatively little worker autonomy. By contrast, the job of knowledge production, 

particularly for academic researchers, involves both a broad array of potential tasks and substantial 

autonomy (Aghion et al., 2008; Cohen et al., 2018). The tasks of a researcher are often extremely varied 

and can include project conception, choice of project partners and co-authors, grant writing, choice of 

technical and support staff and project execution on a variety of dimensions (e.g., preparation of research 

materials, conduct of specific analyses, project presentations, conference attendance, collaboration with 

 
4 In one illustrative and compelling example, Bessen (2015) describes the impact of ATM machines on bank tellers and bank branches between 

the 1980s and 2000s. He notes that, on one hand, ATM machines constituted a cheaper, strict substitute for the tasks provided by bank tellers and 

thus enabled the closing of some locations and a reduction in the number of tellers per branch. On the other hand, however, the diffusion of ATM 
machines induced net gains in bank teller employment by enabling bank branches to be opened in new locations and by enabling tellers to focus 

on tasks in which ATMs were poor substitutes, such as relationship banking. 
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industry, etc.). Further, research autonomy, including the freedom to choose research topics and to choose 

how to allocate time across a variety of research tasks, is the hallmark of scientific scholarship (Merton, 

1938). While many service professions also involve a wide breadth of tasks and enable some autonomy 

(e.g., graphic design, civil engineering, legal practice, investment banking, financial consulting), others 

have a lesser degree of both (e.g., bank tellers, hair styling, fast food preparation, financial accounting). In 

other words, we consider knowledge production to be an area in which task variety and autonomy are 

particularly great and thus a sector worthy of attention, especially considering the impactful role of 

knowledge production in the economy. 

2.2.  Research technology automation and research expertise  

We hypothesize that technology automation will differently affect researchers with substantial expertise in 

the research area into which the automating technology becomes available, i.e., within-area researchers, 

from those who do not have specialized human capital in that area, i.e., outside-area researchers. The case 

of statistical analysis packages provides an illustrative example. The availability of statistical software such 

as SAS, Stata, and R automates tasks that would otherwise require substantial human capital investments, 

including merging data, computing test statistics, inverting matrices, and composing graphics. Researchers 

could complete these tasks if they made sufficient investments in their human capital. Alternatively, 

researchers could collaborate with individuals who have made such human capital investments. The ready 

availability of off-the-shelf software, however, automates each of these tasks, and, via revealed preference, 

appears to enable researchers to complete their work more efficiently than would be possible in the absence 

of such software. In addition, the software packages may enable researchers to shift the time made available 

by the automation of statistical analysis to other research activities including undertaking new and different 

projects. While these effects likely hold for all researchers who conduct quantitative analysis, they likely 

differ in their impact and nature for experts in statistical analysis, e.g., econometricians, relative to other 

researchers. Econometricians might be displaced from their core research tasks and that could lead to exit 

or to additional time to be spent on other projects such as advancing the field of statistical analysis. For 

other researchers, the availability of the technology could enable them to employ the technology as a 

substitute for performing the task using specialized human capital.   
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As this example suggests, the automation of some core research tasks could affect the knowledge 

production function in several ways and may do so differently for researchers who have developed 

specialized human capital related to the now automated tasks and for those who have not. We formalize 

these thoughts in a set of hypotheses below.   

2.2.a.  Research technology automation and within-area researchers 

We begin by focusing on those researchers with historical expertise in the domain affected by the 

automation. The automation of core research tasks can have multiple effects for these individuals. If a 

researcher’s entire efforts are focused on the area in which the automation occurs, it is possible that the 

automation will substitute for her efforts and her productivity will decline or that she will exit the domain 

of research or the conduct of research entirely. This would be consistent with Autor et al. (1998), who 

highlight the prospect that technology substitutes for related human capital. If, however, the automated 

tasks constitute a consequential fraction of her tasks but not the full set of her tasks, she may reallocate her 

time to these other tasks.  Thus, as the productivity of the automated tasks rise while the cost of the other 

tasks remains constant, we expect the productivity of such researchers to improve.5 Considering the variety 

of tasks associated with research and the extensive autonomy of most researchers, we anticipate a positive 

net effect of automating technology for within-area researchers.   

H1a: The availability of research technology that automates core research tasks boosts the rate of 

research output of within-area researchers  

An additional first-order effect of research task automation regards its influence on researcher’s type of 

knowledge output. Aghion et al. (2008) suggest that research technology that affects the productivity of 

domain-specific knowledge may induce greater mobility across research trajectories. The idea is that the 

increase in productivity of the automated task allows these within-area researchers to spend the additional 

time on either experimenting with new topics or applying their expertise to projects in other domains. Thus, 

the availability of automating research technology may boost the opportunities set among within-area 

 
5 This requires the additional assumption that the standards for quality for publication in the domain of the automation do not change in response 

to the automation. We anticipate that shifting standards in the affected domain would be a second-order impact of research tool automation, though 

we hope that this issue will be examined more fully by further research. 
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researchers, facilitating tackling new research questions within their domain of expertise or branching out 

into other research trajectories.   

H1b: The availability of research technology that automates core research tasks changes the 

composition of research project types for within-area researchers. 

2.2.b.  Research technology automation and outside-area experts 

Researchers that have not invested in the specialized human capital associated with the tasks automated by 

the research technology can be affected by the automation in ways that differ from those of the within-area 

researchers. A core insight here is that an automating research technology that reduces the cost of 

performing certain research tasks compensates for the fixed-costs of research expertise within the 

knowledge area of the technology (Cohen and Klepper, 1992, 1996). This, in turn, reduces returns to that 

within-area knowledge and, hence, opens opportunities for outside-area researchers. For example, Furman 

and Stern (2011) and Murray et al. (2016) suggest that open access to research tools can exert a 

democratizing influence on other fields and may compensate for the fixed-costs of within-area expertise. 

In addition, outside-area researchers’ lack of specialized skills in the affected domain means that they are 

less likely to experience substitution in any of their research tasks. Thus, if these researchers adopt the 

automating technology, it will have a positive impact on their research productivity. Furthermore, the 

impact could be higher than that for within-area researchers who experience a boost in productivity through 

some degree of task substitution.  

H2a: The availability of research technology that automates core research tasks boosts the rate of 

research output of outside-area researchers on all topics on which they work. The effect is greater 

than for within-area researchers. 

In addition to affecting productivity, we anticipate that the automating technology will influence outside-

area researchers’ type of knowledge output. Teodoridis (2018) shows that a democratizing change in the 

availability of research technology alters team composition to include specialists from knowledge areas 

outside the domain of the research technology. To the extent that changes in collaboration reflect changes 

in researchers’ project choices, this suggests the possibility of a change in the project portfolio composition 

of outside-area researchers. Moreover, we expect that the automating research technology will influence 

the composition of research project types of outside-area researchers by creating opportunities for novel 
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idea recombinations (Uzzi et al., 2013) and, thereby, new lines of inquiry. Thus, we expect that outside-

area researchers can leverage the availability of automating research technology to explore ideas that 

incorporate the automated tasks either directly in the research domain of the technology or by broadening 

lines of inquiry in their areas of historical focus. As before, we expect the impact to be higher than that for 

within-area researchers who also experience a change in the opportunities they face but through some 

degree of task substitution.  

H2b: The availability of technology that automates core research tasks changes the composition of 

research project types of outside-area researchers. The effect will be greater than for within-area 

researchers.  

III. The Kinect shock & the automation of motion-sensing research 

The shock we examine in this paper is the launch of the Microsoft Kinect gaming system that suddenly and 

dramatically made available a research technology that automates certain motion-sensing research tasks.  

We exploit the unexpected availability of this technology as an instrument that is correlated with task 

automation in knowledge production but not with factors affecting researchers’ efforts, other than through 

its effect on automation. 

The setting appears unusual at first glance: It is the result of the unexpected impact of Microsoft’s 

successful launch of a controller-free video game system designed to compete with rival products launched 

by Nintendo and Sony. In the two months following Kinect’s launch on November 4, 2010, Microsoft sold 

more than 8 million units (>130,000 Kinect units/day), outpacing the iPhone and the iPad to become the 

Guinness World Records’ all-time fastest-selling consumer electronic device (Bilton, 2011). The surprise 

that makes Kinect valuable for our research context is not, however, its commercial success but its wide-

ranging and near-immediate impact on scholarship in some areas of computer science and engineering. 

III.1. Microsoft’s introduction of the Kinect system 

On November 4, 2010, Microsoft introduced the Kinect system for its Xbox video game console with the 

aim of competing with handheld gesture-recognition remotes introduced previously by Nintendo (Wii) and 

Sony (PlayStation). With the Kinect, Microsoft attempted to leapfrog its video console rivals by creating 
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the first hands-free controller for electronic devices, a game controller system that responded to the natural 

movements of the player.6  

In addition to being a treat for video gamers, Kinect also constituted a feast for hackers, who descended 

upon the system with the aim of accessing the vast data obtained by Kinect’s sensors and linking it to other 

devices, such as computers and robots. These efforts received a twofold infusion of interest on Kinect’s 

launch day. The first came from Adafruit Industries, a manufacturer of do-it-yourself electronics kits 

operated by alumni of MIT’s Media Lab, Limor Fried and Phillip Torrone, that offered a $1,000 prize for 

the first individual or organization to post an open-source Kinect driver to GitHub (Carmody, 2010a). The 

second spur of interest arose as a result of Microsoft’s actively (and quixotic) effort to thwart the hackers. 

In a same-day response to Adafruit’s prize offer, Microsoft released a statement to CNet: “Microsoft does 

not condone the modification of its products… [and will] …work closely with law enforcement and product-

safety groups to keep Kinect tamper-resistant” (Terdiman, 2010). Adafruit responded immediately by 

doubling its Kinect driver bounty to $2,000, further intensifying the race for the driver. 

The race was won on November 11, by a Spanish computer science undergraduate student, Héctor 

Martín, who did not own an Xbox but who had purchased a Kinect that morning when it went on sale in 

Europe (Giles, 2010). Within days of the driver’s release, researchers and hobbyists had adapted Kinect for 

numerous uses, including the creation of 3D computer holograms and a modified iRobot Roomba that could 

respond to human hand and voice commands and could create visual maps of the rooms it had visited 

(Wortham, 2010). 

During the week that hackers had raced to create an open-source driver to harvest Kinect’s data, 

consumers purchased nearly a million Kinect units. In the wake of its success, Microsoft initially continued 

to resist working with the hacker community and even refused to acknowledge that its system had been 

hacked. Within ten days of the release of Martín’s open-source driver, however, Microsoft, convinced of 

the value of embracing the experimentation of the hobbyist and scientific communities, pivoted entirely 

 
6 The Kinect system was composed of a color camera, a depth sensor, and a multi-array microphone. These physical features, along with artificial 

intelligence pattern recognition software, enabled Kinect to recognize in three dimensions and in real time the movements and facial expressions 
of multiple individuals and to acknowledge and distinguish their voice commands (Zhang, 2012). The Kinect system translated this motion-

sensing information into actions enabling players to control gameplay. 

Electronic copy available at: https://ssrn.com/abstract=3285286



 
 

12 

 

and announced that it would not pursue legal remedies against those who adapted the Kinect system for 

other purposes (Carmody, 2010b).  

III.2. Microsoft Kinect as an automating technology 

Motion-sensing research involves a series of topics in the broader research area of computer vision, an 

interdisciplinary field in computer science and electrical engineering with the principal goal of enabling 

machines to “see” as well as (or better than) humans. Achieving this goal requires the ability to scan 3D 

environments and recognize where objects appear in both static and dynamic environments and under 

various lighting conditions. While often taken for granted by humans, vision is an exceptionally complex 

task for machines. Humans use their eyes to observe 3D scenes and their brains to process the types of 

objects and movement in the scenes. Machines rely on cameras as their eyes and on human developed 

software and hardware as their brain.   

Prior to the introduction of Kinect, there were two main approaches to motion-sensing in computer 

vision. In a first generation, researchers employed 2D cameras and developed software as the sole method 

of inferring depth and movement based on the images captured by those cameras. This process was complex 

and time-consuming, as it required sophisticated mathematical calculations, such as those required to infer 

depth based on known object sizes and movement from serial images. Such custom-developed software 

was not particularly fast to run, and it was prone to errors because it relied heavily on factors such as the 

resolution of the images, the frequency of frames, and the ingenuity of the software developer in coding 

efficient calculations. The second generation of this work involved advances in images captured from 2D 

cameras to 3D cameras, such as time-of-flight cameras. These early 3D cameras operated with low 

resolution, were subject to especially high sensitivity to lighting conditions, and were not particularly 

accurate in tracking movements in all three dimensions. While the availability of such cameras lessened the 

need for some of the coding development tasks required to process the image output, a broad set of such 

tasks remained even after these cameras were introduced, including the needs to clean image data, 

accurately trace movement, speed up the processing of the image output, infer missing pieces in various 

unfavorable lighting conditions, and impute missing information resulting from low resolution images. 
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While some algorithms for working with these cameras and their output could be shared, the vast majority 

needed to be customized for the environment in which individual researchers were working. 

By offering a higher resolution 3D images and an embedded processing capability that more accurately 

traced movement under a variety of lighting conditions, the introduction of Kinect represented a significant 

technical advance that eliminated a substantial set of coding tasks that had previously fallen on motion-

sensing researchers. The advance enabled by Microsoft’s new tool was sufficiently great that it enabled a 

novice to extract and use Kinect’s output without the need for specialist coding to process the data to render 

it useful. As a result, Kinect automated many tasks that previously required specialized humans involved 

in developing software algorithms to process images captured by cameras with a goal of uncovering the 

same insights that a human would when observing a 3D scene in movement. Kinect did not fully resolve 

all challenges associated with computer vision, e.g., Kinect performed poorly in bright sunlight, but 

automated a substantial set of tasks that had previously required specialized human coding. 

The impact of Kinect was perceived by the computer vision research community to be wide-ranging.  

For example, a computer vision researcher told us that “Kinect had a game-changing effect on the research 

possibilities. We work in robotics perception, i.e., how can robots perceive and act in the environments. 

Since our world is 3D and Kinect gives 3D information, the data becomes extremely powerful. This has 

enabled significant advances in applications such as object detection, human activity recognition and 

anticipation for robots, as well as robotic grasping and path planning.” In addition to its impact in 

computer vision research, Kinect raised the interest of researchers from other domains. Richards-Riessetto 

et al. (2012) describe the value of Kinect for work in archaeology, and Rafibakhsh et al. (2012) describe its 

value for construction engineering and management. In our own discussions with motion-sensing 

researchers, a researcher noted that his group provided a Kinect-based algorithm developed in his lab to 

“ICT's Medical VR group which applied [it] to various motor rehabilitation applications. We've also 

researched the use of Kinect for human activity analysis (examining body language, fidgeting, etc.) to help 

therapists understand behavior of their patients […] Our lab's director and some of his students used the 

Kinect to create really interesting education game experiences. We have put together a number of other 

experiments, prototypes, and demonstrations involving the Kinect. It runs the gamut from wide area 
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tracking to virtual human puppeteering to 3D scanning, and more. I can't list them all.” More broadly, 

after the launch of Kinect, motion-sensing appears to have found its way into an increasing variety of 

research projects with applications in a wide set of domains, from artificial intelligence and virtual reality 

to education, healthcare, music, cinematography, market research, and advertising. For example, faculty 

and graduate students at MIT’s CSAIL laboratory have designed a motion-sensing system, called Emerald, 

which tracks individuals’ movements within their homes, can alert medical personnel in the event of a 

medical catastrophe or fall, and can even be used to predict fall events. 

In addition to reducing the need for specialized human capital investments, a secondary impact of 

Kinect is that it also reduced the monetary cost of capturing and leveraging data from 3D images. As we 

noted earlier, an important underlying aspect of automation that explains the incentives it generates for 

economic actors to substitute the technology for human labor is that automation is a process that reduces 

the cost of performing certain tasks with human labor (Acemoglu and Autor, 2011; Nordhaus, 2007). While 

Kinect indeed reduced the cost of executing certain research tasks with human labor, e.g., software coding, 

the monetary cost of Kinect was lower than that of the previous generation of 3D cameras: whereas the cost 

of time-of-flight cameras ranged from $10,000 to $20,000, Kinect cost $150 at launch. To sharply isolate 

the reduction in cost via automation, we would have needed for Kinect to be priced in the same range as 

the previous generation of motion-sensing technology (e.g., time-of-flight cameras). While this remains a 

limitation of our study, we believe the dominant effect is that of the reduction in cost through automation. 

The reason is that for researchers committed to computer vision research (within-area researchers), this 

change in monetary cost was likely not especially great relative to the overall cost of operating their 

laboratories. In other words, we argue that the Kinect impact would have been roughly the same even if 

Kinect was to be priced in the same range as the previous generation of motion-sensing technology. For 

outside-area researchers, however, the change in cost may have enabled experimentation that these 

researchers would not have considered if Kinect was priced in the same range as time-of-flight cameras. It 

may be, therefore, that changes in the monetary cost of motion-sensing research technology drive some of 

the effects we observe. We believe, however, that the more substantial change enabled by Kinect is not 

related to the price of the research technology but is more related to the fact that the advent of Kinect 
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obviated the need for specialized human capital and enabled researchers in other areas to appreciate the 

potential value of motion-sensing techniques to sets of problems related to their areas of interest. 

Overall, the launch of Microsoft Kinect appears to have changed the opportunity set for innovation in 

computer science and engineering. This development appears to be exogenous and to have been a surprise 

to the incumbent research community, the community of potential users that had been working outside 

traditional motion-sensing topics, and even to Microsoft itself.   

IV. Data and Empirical Strategy 

To examine the impact of Kinect on researchers’ productivity and portfolio of project types, we draw on 

the population of publications, early-access publications, and conference proceeding papers included in the 

IEEE Xplore database, which covers nearly 200 computer science and electrical engineering journals and 

more than 1,800 conference proceedings, between 2001 and 2014.7 We conduct our estimation on the subset 

of papers published in the four years before and four years after the launch of Kinect (2007-2014), and we 

use the remainder of the data to obtain better estimates of researchers’ pre-Kinect research behavior and 

trends.  

IV.1. Empirical Strategy 

We employ a differences-in-differences analysis to compare research productivity and type of knowledge 

output before and after the launch of Kinect. Formally, we estimate for researcher i and year t: 

𝐷𝑉𝑖𝑡 =  𝛽(𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟𝑖 ∗  𝐴𝑓𝑡𝑒𝑟𝐾𝑖𝑛𝑒𝑐𝑡𝑡) + 𝐴𝑔𝑒𝑖 +  𝐴𝑔𝑒𝑖
2 +  𝛿𝑖 + 𝛾𝑡 + 𝜖𝑖𝑡   (1) 

where 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟𝑖 is a dummy variable equal to 1 if research i is a treated unit, and 0 otherwise.  

We define treated researchers as individuals who were publishing in motion-sensing before the launch of 

Kinect or individuals who started to publish in motion-sensing only after the launch of Kinect. To identify 

motion-sensing publications, we search the full text and metadata of publications in the IEEE Xplore 

database using carefully identified keywords, through interviews with subject matter experts and cross-

referenced with IEEE’s taxonomy.8 𝐴𝑓𝑡𝑒𝑟𝐾𝑖𝑛𝑒𝑐𝑡𝑡 is a dummy variable equal to 1 if the observation year 

is between 2011 and 2014, namely after Kinect’s launch, and 0 otherwise. We also control for a quadratic 

 
7 The data were collected during late 2014. Hence, there is a truncation in the 2014 data coverage, which is evident in Figures 1-4 as a decrement 

in estimated effects in the year 2014. All results are robust to dropping the 2014 data.   
8 These terms are available upon request and are described in greater detail in Teodoridis (2018).  
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effect of individuals’ (research) age, calculated as the number of years since the occurrence of the first 

publication in our large dataset, starting in 2001. The term 𝛿𝑖 represents individual fixed effects and controls 

for time-invariant individual attributes. The term 𝛾𝑡 captures year-specific fixed effects that account for 

changes in publication trends over time. As a consequence of including individual and time fixed effects, 

the terms 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟𝑖 and 𝐴𝑓𝑡𝑒𝑟𝐾𝑖𝑛𝑒𝑐𝑡𝑡 drop out of the estimating equation.  

We exploit three categories of dependent variables of interest 𝐷𝑉𝑖𝑡 . First, we estimate changes in 

researchers’ productivity by employing two measures of output: (a) 𝑃𝑢𝑏𝐶𝑜𝑢𝑛𝑡𝑖𝑡 captures the number of 

academic publications of researcher i at time t, and (b) 𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑃𝑢𝑏𝐶𝑜𝑢𝑛𝑡𝑖𝑡  captures the 

number of academic publications of researcher i at time t weighted by the number of cumulative citations 

received until 2014. Second, we distinguish between two concepts capturing changes in researches’ 

portfolio of project types: (a) the extent to which a researcher’s i portfolio is concentrated or diverse at time 

t  (𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑡) and (b) the extent to which a researcher’s i portfolio involves topics that are closer 

or further from each other in ideas space at time t-1 vs. t  (𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦𝑖𝑡). We do this because a researcher’s 

work could be concentrated in a small number of domains, but these could, theoretically, be quite distant 

from one another. For example, a researcher whose work includes topics in only labor economics and 

materials science would have a high research concentration, though her projects would be quite distant in 

ideas space. We provide details on the construction of these measures in the next section.   

Our main coefficient of interest is 𝛽. We interpret a positive value of 𝛽 as indicating a higher increase 

in productivity, diversification or trajectory shift, respectively, at the individual level for treated researchers 

after the launch of Kinect, when compared with the change of matched researchers from before to after the 

launch of Kinect. In other words, a positive value of 𝛽 indicates a positive effect of the research technology 

on researchers’ rate of knowledge output, or their propensity to diversify their research projects or to shift 

their research trajectories. 

We construct a plausible counterfactual using coarsened exact matching (CEM; Iacus et al., 2011, 2012) 

based on individual researcher characteristics in the before period (2007-2010). Specifically, we match on 

(1) yearly productivity in each of the four years before Kinect’s launch, (2) the number of co-authors in 

each of the four years before Kinect’s launch, (3) a measure of diversification across knowledge topics 

Electronic copy available at: https://ssrn.com/abstract=3285286



 
 

17 

 

between 2007 and 2010, and (4) distance in knowledge space to the motion-sensing domain of knowledge 

before the launch of Kinect. We measure yearly productivity as a count of publications weighted by 

citations, and diversification as 1 minus the Euclidean distance in the space of IEEE-defined research 

categories.9 We define distance in knowledge space to motion-sensing based on the network of authorship 

with within-area researchers. Specifically, we label within-area researchers as being the closest to the 

motion-sensing domain of knowledge (distance one), followed by individuals who coauthored with within-

area researchers on other, non-motion-sensing, projects (distance two), and followed by coauthors of 

coauthors of such researchers (distance three). All other researchers are categorized as being the furthest 

away in knowledge space from motion-sensing, to a total of a four-level distance categorization. We 

conduct two matching procedures, one for each of our two sets of researchers: within-area researchers and 

outside-area researchers. We include our measure of distance in knowledge space to motion-sensing only 

in the latter matching procedure since, by construction, all researchers with an assigned distance of one are 

labeled as treated in the former sample. We employ CEM with weights rather than one-on-one matching to 

use as much of the available data as possible. 

We match on productivity in the before period to ensure that our results on changes in productivity, 

diversity and trajectory shift at the individual level are not confounded by researchers at the right tail of the 

productivity distribution. We match on the number of co-authors in the before period to ensure that our 

results are not driven by researchers’ abilities or preferences for collaborating more intensely or more 

broadly. This matters for the analysis, since higher levels of collaboration could be correlated with more 

diverse output or with changes in research trajectory as each new collaborator increases the potential pool 

of expertise and perspectives. We also match on the level of diversification in the pre-Kinect period to 

ensure that the results are not driven by individuals with a taste for exploring new avenues that may manifest 

regardless of research technology availability. Finally, we match on distance to motion-sensing to ensure 

 
9 IEEE assigns each publication to one of the 51 main categories listed in its taxonomy. We calculate the Euclidean distance based on the percentage 

of keywords from each category that a researcher collects in her publication portfolio between 2007 and 2010. Formally, we calculate:  

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥𝑖 = 1 − √∑ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑖𝑘
2

51

𝑘=1
     (2) 

where i is the individual researcher and 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑖𝑘
2  represents the squared percentage of keywords assigned to researcher i's 

publications in each of the k main 51 categories of the IEEE taxonomy. Note that, by construction, the measure is less than or equal to 1 and never 

0, and it increases with higher levels of keywords spread across IEEE categories.  
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that our results are not driven by proximity to the motion-sensing field that would influence researchers’ 

project choices regardless of the availability of motion-sensing technology. Our results remain robust to 

using the full set of researchers in fixed-effects estimations, under the assumption that all researchers 

publishing in IEEE outlets are at risk of engaging with new technological developments in their research 

(Appendix A). Furthermore, raw data trends displayed in Appendix A indicate the presence of parallel pre-

trends ensuring that our CEM procedure does not impose this structure to a phenomenon that follows a 

different pattern.  

IV.2. Measuring changes in the portfolio of project types 

We attempt to distinguish between diversification and changes in research trajectories because the two 

concepts capture research behavior that reflects distinct features of a researcher’s portfolio of project types. 

We define diversification as the breadth of researcher’s portfolio of projects at one point in time t. We 

define trajectory as the distance in knowledge space between a researcher’s portfolio of projects at times t-

1 and t. The measurement challenge is that estimating such changes requires delineating the boundaries of 

research trajectories. This involves a paradox, however, as the boundaries of research trajectories are part 

of the core unknown to be estimated. Unlike physical space, which consists of a well-known number of 

dimensions and distances between locations, ideas space consists of an unknown number of dimensions, 

the distances between which cannot be uniquely measured, and which evolve over time in ways that cannot 

be anticipated until they are realized (Doran, 2017). 

Aghion, Dewatripont, and Stein (2008) model the development of ideas along research trajectories. In 

some cases, such as in mathematics, fields are relatively well defined, and stable field distinctions can form 

the basis for inquiry about location and movement in ideas space (Borjas and Doran, 2012, 2015; Agrawal 

et al., 2016). In most fields, however, it is difficult to measure such trajectories or to identify where they 

branch. To overcome these challenges, scholars often focus on measures of research breadth (Grupp, 1990; 

Rafols and Meyer, 2010) or other measures of topic overlap to reflect whether researchers are roughly in 

the same domain (Boudreau et al., 2017), or consider the development of ideas based on references to 

papers in a stream of research (e.g., Furman et al., 2012), or rely on a professionally-curated tools like the 

PubMed Related Article Algorithm (Azoulay et al., 2015; Myers, 2018).  
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These analyses, however, typically rely on observable indicators of innovation output, such as 

keywords, taxonomies, or citation maps. While helpful in providing some evidence of the evolution of 

research trajectories, these approaches face many of the challenges described above. For example, research 

that categorizes trajectories based on curated taxonomies has the advantage of consistency but faces the 

trade-off of either being stable and therefore comparable over time, though at the cost of inflexibility, or 

being dynamic and therefore evolving with the changing research landscape, though at the cost of 

consistency and classification standardization. Author-assigned keywords, or any other set of keywords not 

extracted from a defined vocabulary, fare better in capturing new knowledge trajectories but lack structure 

and may be more subject to gaming. This also limits the interpretability of hierarchical connections between 

keywords and changes in such relationships over time. Similarly, while the citation revolution, as a method 

for tracing knowledge linkages (Griliches, 1990), significantly helped advance our understanding of factors 

influencing the process of knowledge creation, it is subject to the same concerns, since measuring diversity 

in citation maps requires some form of categorization. Like author-assigned keywords, the selection of 

backwards and forwards citations is subject to social processes and strategic behaviors that complicate their 

interpretation for understanding changes in research trajectories.10  

The research context we examine is not characterized by a relatively stable set of keywords and research 

topics. Indeed, the past two decades have seen the emergence of many new domains of research and 

associated new keywords enabled by ever-advancing computing power and methods within these fields. To 

measure research diversification and trajectory in these fields, we leverage advances in machine learning 

to develop measures that make use of more complete information in academic publications. We propose 

measures based on topic modeling algorithms, which we have adapted for inference in our context. Our 

empirical analysis also includes a set of more traditional measures of research diversification and trajectory 

based on observable characteristics of academic publications, including a measure of diversification based 

on the stable taxonomy maintained by the IEEE, a measure of research trajectory as a count of new authors, 

and a measure of research trajectory as a count of new publication outlets.  

 
10 Alternatives to using bibliometric measures to capture movement in ideas space do exist. For example, Krieger, Li, and Papanikolaou (2018) use 

the Tanimoto distance, which reflects the similarity of chemical structures, to measure mobility in ideas space in the pharmaceutical industry.  
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The main advantage and, hence, contribution of measures based on machine learning analysis,11 is the 

ability to identify similarities between bodies of text without predefined assumptions about their structure.  

Note that the intended purpose of these algorithms is prediction, not inference. Their success rests with their 

ability to reveal the latent structure of a corpus of texts in order to predict with high accuracy where a new 

text would fit in the structure. We are interested in identifying the latent categorization of research 

publications in ways that (a) are less subject to the strategic behavior of researchers and (b) are sensitive to 

the fact that research fields evolve over time.  

In the service of these objectives, we employ Hierarchical Dirichlet Process (HDP) (Teh et al., 2006)12, 

which we adapt for our purposes. The algorithm falls into the topic modeling category of unassisted 

machine learning. HDP is a probabilistic model that employs a hierarchical Bayesian analysis of text (see, 

e.g., Hofmann, 1999; Teh et al., 2006; Buntine and Jakulin, 2004). The intuition is that of a generative 

process, in which the data are assumed to be characterized by a set of observed variables (words in the 

document or vocabulary) that develop from a set of hidden variables (the topic structure) (Teh et al., 2006). 

The algorithm generates collections of words (topics) that are found to appear together in the input text with 

a certain probability. In other words, the input text is ‘assigned’ to topics with a certain probability.  

We conduct our analysis using the abstract of the academic publications in our dataset as input text into 

HDP.13 We run the algorithm per year for the full set of publications available in our dataset. We modify 

the algorithm to output the set of words describing each topic14 and to list the publication IDs of each 

abstract used to identify those topics. Each publication ID is assigned a score, which can be thought of as a 

probability of ‘belonging’ to a topic. All scores add up to 100% probability per publication ID.  

The algorithm has advantages and limitations. First, HDP has the advantage of identifying the optimal 

number of topics per corpus of text analyzed. This differs from other topic modeling algorithms, such as 

 
11 Machine learning algorithms evolved from the study of pattern recognition in computer science but have increasingly found applications in a 

variety of fields, including genetics, medical imaging, computational biology and bioinformatics, image recognition, social network analysis, and 
economics and public policy (Athey and Imbens, 2015). Currently, there are a large number of algorithms customized for various tasks. While 

limitations remain, their complexity and accuracy are rapidly evolving. 
12 Hierarchical Dirichlet Process (HDP) is a more advanced version of the more well-known Latent Dirichlet Allocation (LDA).  
13 Despite substantial advances in computing power, each process is computationally intensive. Each run of HDP using our data requires days of 

computing time. As a result, we have run the current analysis allocating papers to topics using article abstracts but not full text. In addition, the 
large volume of data in our data-set prevents us from running the HDP or LDA algorithms on multiple years of data at once to e.g., compare the 

structure generated by these algorithms with the IEEE taxonomy that covers the entire corpus of publications across all years. 
14 We consulted with experts in computer science, electrical engineering, and electronics to ensure that the topics identified by the HDP algorithm 

reflect credible categorizations in this line of research. 
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Latent Dirichlet Allocation (LDA), that require the analyst to input the number of topics into which they 

would like the algorithm to group the text. We also run a sensitivity algorithm on multiple instances of 

LDA, consistent with state-of-the-art practices in computer science, to identify the number of optimal topics 

with the highest probability of accuracy.15 Second, both algorithms treat the input text as a one-time group 

for which the latent categorization needs to be revealed. In other words, the algorithms cannot automatically 

track the evolution of topics over time by updating the set of keywords in each category over time. We 

address this limitation by calculating a cosine vector similarity between the yearly topics generated by the 

HDP algorithm. Specifically, we employ a Term Frequency – Inverse Document Frequency (TFIDF) cosine 

similarity where the frequency of words is weighted by the HDP-generated score that captures the relevance 

of each word for each topic. In addition, we use the HDP output in a regression with time fixed effects; 

hence our results are not hindered by the fact that the algorithms are executed on a per-year basis and thus 

reveal the latent categorization of topics for each year in our dataset.16 

We calculate diversification as a yearly measure of spread across categories, as identified by the HDP 

algorithm. Specifically, we calculate an intensive measure of diversification equal to the sum of the number 

of topics where the focal researcher has their papers assigned by the HDP in the focal year. We also calculate 

an extensive measure of diversification equal to a count of unique topics where the focal researcher has 

their papers assigned by the HDP in the focal year. We also present results using more traditional measures 

of diversification, based on publication attributes. Specifically, we calculate a yearly reversed Euclidean 

distance in the space of fifty-one IEEE categories in computer science, electrical engineering, and 

electronics. To calculate this measure, we apply equation (2) to yearly publication data over the period of 

interest (2007-2014), four years before and four years after the launch of Kinect. 

To generate measures that capture changes in research trajectory, we use the yearly topics generated by 

the HDP and the cosine similarity index between such topics. Specifically, we first calculate the distance 

between topics in consecutive years as one minus the similarity index between all such topic pairs. Next, 

 
15 All our results remain robust to using an LDA algorithm with 40, 60 and 90 topics. We chose the number of topics based on the optimal number 

of topics identified by the HDP algorithm, crossed checked against a sensitivity algorithm on multiple instances of LDA. We do not include these 

results because of space limitations but are happy to provide them upon request.  
16 Computer scientists are working on a variety of extensions of these algorithms. We chose to use algorithms that are considered robust among 

computer scientists rather than current experimental ones aimed at advancing the frontier in topic modeling.  
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for each researcher, we sum the distance between all pairs of topics in year t-1 and t and then divide the 

sum to the number of unique topics covered in year t-1. The measure captures the average number of new 

topics for researcher i in year t relative to year t-1, weighted by the distance between the topics. One can 

think of this measure as capturing the yearly new areas of interest; the smaller the value, the less of a change 

in interests from one year to the next.   

In addition, we employ two other measures based on traditional publication output. The first such 

measure counts the number of new co-authors that the focal author has in the observation year relative to 

previous years. To count the number of new co-authors, we take advantage of our full dataset going back 

to 2001. We do so since, by definition, the count of new co-authors requires a few years of reference data 

to get closer to reflecting the true number of new co-authors and to not be upward-biased due to left-side 

data truncation. This measure indicates changes in research trajectories to the extent that collaboration 

patterns reflect changes in the bases of expertise associated with a researcher’s project choices. The second 

measure reflects the number of new publication outlets in which a researcher publishes each year, relative 

to each prior year, going back to 2001. This measure indicates changes in research trajectories to the extent 

that different journals address different audiences and cover different areas of ideas space. 

Each measure has its own limitations and merits. The HDP-based measures are more flexible in 

capturing changes in knowledge space over time. However, the HDP categorization lacks stability and 

trackability over time. The IEEE diversification measure fairs well on these dimensions, but its 

disadvantage stems from the same attributes that we discussed above. In particular, the fixed taxonomy 

fails to capture changes in the categorization structure over time that would otherwise indicate changes in 

research trajectories. Similarly, the measures based on counts of new co-authors and new publication 

outlets, while perhaps easier to grasp than interpreting the HDP measure, are focused on outcomes that 

indirectly reflect the content or intellectual focus of academic research. Specifically, it is possible to change 

co-authors and publication outlets while continuing to work on the same knowledge trajectory, and it is also 

possible to continue working with old co-authors and publish in the same journals while shifting one’s 

research focus.  
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As a result, we prefer our more novel measures, which we think are more likely to reflect changes in 

research diversification and trajectory because they are more tied to the content of researchers’ published 

works. At the same time, we believe the other measures complement the HDP measures and enrich the 

insights than can be drawn from our analysis. Each measure captures different attributes of diversification 

and trajectory. Taken together, we argue, they paint an informative picture of changes in researchers’ 

projects triggered by the availability of automating research technology. 

III.3. Sample construction and descriptive statistics 

We collect data on every publication, early-access publication, and conference proceeding paper available 

through IEEE Xplore between 2001 and 2014.  These data include 2,492,451 publications and 1,670,888 

unique author names in the fields of computer science, electrical engineering, and electronics. Because of 

the importance of publications in conference proceedings in computer science and related fields, the IEEE 

possesses advantages relative to other libraries of publications, including the Web of Science and Scopus. 

We focus our analysis on the four years leading up to and the four years following the launch of Kinect 

at the end of 2010, i.e., 2007-2010 and 2011-2014. We do so to ensure comparable timeframes and to allow 

for some publication data for controls and other measures that require a longer-run observation of 

publication trends, such as author age and changes in the number of yearly new co-authors and new 

publication outlets. The 2007-2014 dataset consists of 1,776,125 publications authored by 1,391,313 

individuals as identified by IEEE. Within this subset, we further distinguish between researchers active 

both before and after Kinect’s launch (430,779), only in the period before 2010 (442,395), and researchers 

who enter the sample after 2010 (518,139). We do so (1) to ensure that our main results are not driven by 

zeroes due to exits from or entry into our observation period and (2) to allow for an observable period before 

Kinect’s launch from which we can identify trends and construct plausible counterfactuals. We focus our 

main analysis on the first dataset and we further eliminate outliers, namely individuals with fewer than three 

and more than 50 publications before Kinect’s launch (2007-2010). We eliminate researchers with fewer 

than 3 publications since some of our measures rely on individuals’ breadth of publications and low 

productivity mechanically translates into low diversification. Note that this set of researchers also includes 

authors who occasionally publish in outlets tracked by IEEE. We eliminate authors with more than 50 
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publications in the before period to account for potential disambiguation effects in the IEEE algorithm 

assigning unique author identifiers. Such author IDs would appear as very productive and potentially 

diversified individuals, risking an upward bias to our diversification-based estimations. We identify a total 

of 3,200 researchers with over 50 publications in the four-year period before Kinect’s launch, less than 1% 

of our main sample.17 

Our final sample includes 12,549 within-area researchers, 9,590 outside-area researchers, and 160,845 

other researchers. We present descriptive statistics that show the balance in our CEM procedure for within-

area and outside-area researchers in Appendix B, Tables B1.a and B1.b. We show average values for all 

our covariates used in the matching procedure, in both the full sample (Columns 1-3) and the matched 

sample (Columns 4-6). Across all definitions, treated researchers are more productive.18 They have a higher 

number of co-authors and publish in more IEEE categories than the rest of the population. However, this 

fact results from a more skewed distribution in the full sample. The CEM procedure balances these 

observables for each of our two definitions of treated researchers. Our sample size is reduced by the 

matching procedure and by our eliminating outliers, as described above.  

In Tables 1.a-1.c, we present average values of all our dependent variable measures across the two 

groups of treated researchers: two measures of publication rate, three measures of diversification and three 

measures of research trajectory. The descriptive statistics foreshadow our main findings: (1) an increase in 

quality publication output for both within- and outside-area researchers, (2) a positive impact on 

diversification that is more pronounced for outside-area researchers than for within-area researchers, (3) a 

positive impact on the trajectory of research that is more pronounced for outside-area researchers than for 

within-area researchers.  Further, we observe differences across all our measures relative to baseline trends. 

Some of the effects come from mitigating the overall decrease in productivity, diversification or trajectory 

shift, while others come from an accentuated baseline trend of increasing productivity, diversification or 

trajectory shift respectively. Specifically, the increase in productivity measured by the count of academic 

 
17All core results are robust to altering these cutoff choices and to including the full set of data available to us. Specifically, the results remain 

robust (1) to considering the full dataset, 2001-2014; (2) to considering other cutoff points for the minimum and maximum number of publications; 

and (3) to eliminating cutoffs for the minimum and maximum number of publications and utilizing the full set of 2007-2014 authors.  
18 Our dataset is a balanced panel where the productivity in non-publishing years is taken into account as years with zero publications.  
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publications is absolute but also offsets an overall trend of a decrease in publication output. Our measure 

of productivity based on publication output weighted by citation count offsets an overall downward sloping 

trend that can be explained not only by the average decrease in academic publication, but also by the skewed 

nature of citation accumulation over time. Similarly, our Euclidean measure of diversification, which 

captures the information contained in IEEE’s taxonomy relative to changes in ideas space, shows an overall 

trend of decreasing diversification, with the research technology dampening that effect. The same trends 

can be observed in our measure of diversification based on counts of new publication outlets. This is 

important for at least two reasons. First, it underscores our point regarding the difficulty of crafting all-

encompassing measures of diversification and research trajectory. Second, it highlights the differences in 

the various aspects of the knowledge creation process captured by each measure. For example, the overall 

trend of decrease in diversification as captured by the Euclidean measure appears to contrast with the overall 

trend of increase in diversification captured by our topic modeling measures. This apparent inconsistency 

may, however, result from an increase in the fragmentation of research trajectories, an effect aligned with 

the “knowledge burden” effect (Jones 2009, 2010) that cannot be captured by a measure that relies on a 

fixed taxonomy. More broadly, the differences suggest a need for approaching studies on changes in 

research diversification and trajectories using empirical strategies that triangulate across multiple measures. 

V. Empirical Analysis 

V.1. Did the Kinect shock induce changes in researchers’ productivity? 

We begin our analysis by estimating the impact of Kinect on the researchers’ productivity. To do this, we 

estimate equation (1) using the annual count of academic publications at the individual level as the 

dependent variable as well as an annual count weighted by citations accumulated by 2014. We should note 

that we observe this effect in descriptive data, as the average number of publications for within-area 

researchers increases from 1.18 to 1.25, while in the matched control group the average number of 

publications changes from 1.21 to 1.15.  In the group of outside-area researchers, the average number of 

publications changes from 1.07 to 1.68, while in the control group it changes from 1.09 to 1.02.   

We show the results of our main difference-in-differences estimation in Table 2.a. In Column 3, we 

estimate the effect on the productivity of within-area researchers. We find evidence of a 9% increase in 

publication count for within-area researchers when compared to matched controls, or one additional paper 
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for every ten, in line with hypothesis H1a. Column 2 shows results for outside-area researchers, and Column 

3 shows results for the same group of outside-area researchers when excluding their motion-sensing 

publications. In both cases, we find evidence of an increase in the productivity of such researchers, when 

compared with the group of control researchers, as identified through our CEM procedures, in line with 

hypotheses H2a. Treated outside-area researchers increase their number of publications 65% more than the 

control group, an effect that corresponds to an increase of three additional papers for every two.19 In Column 

3, we show evidence that the increase in publication output is not driven by publications in motion-sensing. 

This is important because it suggests that the effect of research technology does not lead mechanically to 

increases in productivity via direct engagement with the technology, but rather the access to the research 

technology impacts the productivity of outside-area researchers on all topics on which they work, in line 

with our hypothesis H2a. Specifically, outside-area researchers experience a disproportionate increase of 

36%, approximately one additional paper for every three publications, in their publications on topics outside 

of motion-sensing. Furthermore, the magnitude of the effects is higher for outside-area researchers than for 

within-area researchers,20 in line with hypothesis H2a. All these trends persist when focusing on a measure 

of publication output weighted by citations (Table 2.b), suggesting that the increase in productivity does 

not arise as a result of a jump in studies of lesser quality. 

Next, we examine the timing of this effect in order to ensure that our estimates of the boost in 

productivity are not driven by secular trends towards increased publication or changes in productivity that 

occur later during our after period, and which could therefore be attributed to events other than the launch 

of Kinect. To do this, we replace 𝐴𝑓𝑡𝑒𝑟𝐾𝑖𝑛𝑒𝑐𝑡𝑡 with a set of year-specific dummy variables. We plot the 

estimated value of the interaction between these year dummies with our treated dummy in Figures 1.a and 

1.b. All estimates consider 2010 as our baseline year (Kinect was launched on Nov 4, 2010). Each point on 

the graphs represents the estimated difference between the number of publications of treated vs. control 

 
19 The publication boost is consistent with those of other work that examines shocks to the availability of research tools.  For example, Furman and 

Stern (2011) find that making life science research materials available through public resource collections, biological resource centers (BRCs), 
induces between 50% and 125% increase in research referencing these materials. Similarly, Murray et al. (2011) find that open access to certain 

types of research mice yields a 22% to 43% boost in research citing the use of such mice. 
20 In addition to observing these differences across estimations, we conduct a CEM procedure on our main sample that includes both within-area 

and outside-area researchers. We add both interaction terms in the same estimations to better compare the magnitude of the effects and observe 

that indeed the impact on within-area researchers was smaller in magnitude than the impact on outside-area researchers (Appendix C, Table C1). 
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researchers, for each year, relative to the same difference in 2010. In each graph, the difference is small and 

close to zero before the launch of Kinect, as expected given our CEM procedure, and increases immediately 

thereafter, consistent with the conclusion that the availability of motion-sensing technology triggered an 

increase in researchers’ productivity. In line with the discussion of coefficient magnitudes in Tables 3.a and 

3.b, the effect is higher for outside-area researchers than for within-area researchers.  

V.2. Did the Kinect shock induce research diversification? 

Our first evidence comes from descriptive statistics on entry into motion-sensing research. Our estimation 

strategy precludes including authors who published only in the post-Kinect period, i.e., we do not observe 

a before period in order to identify an appropriate counterfactual. In Table 3, we report the number of new 

unique authors (based on IEEE database author identifiers) that appear in the dataset over the eight-year 

course of our sample. We distinguish between researchers entering our sample with at least one motion-

sensing publication in their first year (Column 1) and researchers entering with other types of publications 

(Column 2). Column 3 reports the ratio of new entries in motion-sensing research. These data suggest 

diversification via entry into motion-sensing research. Prior to the Kinect launch, approximately 1% of 

entry into the IEEE dataset occurs via publications in motion-sensing, but this percentage increases by 31% 

immediately following the Kinect launch and continues to increase, up to 2.5 times in 2014, relative to the 

period before Kinect.  

To investigate this question in a more formal way, we return to our main difference-in-differences 

estimation from equation (1). First, we focus on the impact on within-area researchers in Tables 4.a and 

4.b.  Table 4.a presents estimates using a dummy variable for treated individuals, while Table 4.b shows 

estimates using a continuous measure of involvement in motion-sensing before Kinect. Specifically, we 

replace 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟𝑖  in equation (1) with a variable capturing the level of specialization in 

motion-sensing before Kinect, calculated as the sum of motion-sensing publications over the period before 

the launch of Kinect (2007- 2010) and divided by the total publication output of researcher i over the same 

period. In both tables, we present estimates using our three different diversification measures, the intensive 

and extensive HDP topic counts and the Euclidean diversification measure based on the IEEE taxonomy. 
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 Table 4.a, Columns 1 and 2 show evidence of an 8% increase in the number of HDP topics covered 

yearly and a 5% increase in the number of unique HDP topics covered yearly, relative to the control group, 

consistent with hypothesis H1b. This amounts to a modest increase of 0.33 topics (and 0.16 respectively) 

out of approximately 50 topics covering the complete set of research in computer science and engineering. 

These findings are consistent with those obtained using the traditional diversification measure (which 

indicates a 7% increase in the Euclidean-based diversification) but have the added benefit of ease of 

interpretation of magnitude relative to the number of additional topics. Table 4.b. shows that the increase 

in diversification is more pronounced for those who had previously focused their research in motion-

sensing, as opposed to researchers who also published in other domains. This suggests that rather than 

frustrating opportunities for within-area researchers, the automating technology facilitates exploration of 

ideas in their domains of expertise. 

As before, we test the timing of these effects by replacing the post-shock dummy, 𝐴𝑓𝑡𝑒𝑟𝐾𝑖𝑛𝑒𝑐𝑡𝑡, with 

a series of dummy variables reflecting each year of the analysis. We plot the estimated difference in yearly 

level of diversification between our treated and control researchers in Figure 2.a. All values are computed 

relative to 2010. In each case, we confirm the absence of pre-trends as constructed through our CEM 

procedure and find evidence of an increase in average researcher diversification that begins in the year after 

the Kinect launch and persists across time. 

Next, we turn our attention to the effect for outside-area researchers and show results in Tables 5.a and 

5.b. As before, Table 5.a presents estimates using our three different diversification measures, the intensive 

and extensive HDP topic counts and the Euclidean diversification measure based on the IEEE taxonomy, 

considering the motion-sensing publications produced by these researchers after the launch of Kinect. Table 

5.b eliminates the motion-sensing publications and focuses on the impact on diversification for all other 

projects of these researchers.   

Table 5.a, Columns 1 and 2 show evidence of a 65% increase in the number of HDP topics covered 

yearly and a 43% increase in the number of unique HDP topics covered yearly, relative to the control group, 

in line with hypothesis H2b. This amounts to an increase of 2.37 topics (and 1.18 respectively) out of 

approximately 50 topics. These findings are consistent with those obtained using the traditional 
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diversification measure, which indicates a 32% increase in Euclidean-based diversification, but with the 

added benefit of ease of interpretation of magnitude relative to number of additional topics. Additionally, 

we observe that the effect on outside-area researchers is larger than that on within-area researchers, in line 

with hypothesis H2b. As before, we include more formal estimates of the difference in magnitude in 

Appendix C, Table C2.  

Table 5.b. demonstrates that this boost in diversification persists when we exclude motion-sensing 

publications. Specifically, the automation of motion-sensing technology facilitates a 36% increase in the 

number of HDP topics covered yearly by all other, non-motion-sensing publications produced by these 

researchers, relative to the matched control group. Similarly, Column 2 indicates a 21% increase in the 

number of unique HDP topics covered yearly by all other, non-motion-sensing publications produced by 

these researchers, relative to the control group. The change in diversification amounts to an increase of 1.31 

topics (and 0.58 respectively). 

As before, we test the timing of these effects by replacing 𝐴𝑓𝑡𝑒𝑟𝐾𝑖𝑛𝑒𝑐𝑡𝑡 with a set of dummy variables 

for each sample year. We plot the estimated difference in yearly level of diversification between our treated 

and control researchers in Figures 3.a and 3.b. All values are computed relative to 2010. In each case, we 

confirm the absence of pre-trends as constructed through our CEM procedure and find evidence of an 

increase in average researcher diversification following the launch of Kinect that begins immediately after 

the launch and persists across time. 

V.3. Did the Kinect shock induce changes in researches’ trajectories? 

To turn to the question of whether the Kinect shock induced changes in researchers’ trajectory of inquiry, 

we apply the same estimation strategy as in the previous section but replace the diversification variables 

with three alternative measures designed to reflect differences in the distance in knowledge space between 

researchers’ portfolio of projects at times t-1 and t. In Tables 6.a and 6.b, we present the results of changes 

in trajectory for within-area researchers. Table 6.a presents estimates using a dummy variable for treated 

individuals, while Table 6.b shows estimates using a continuous measure of involvement in motion-sensing 

before Kinect. Column 1 of Table 6.a estimates that within-area researchers experience a 7% increase in 

new topics, equivalent to a modest shift of 0.24 topics.  Column 2 of the same table estimates a 5% increase 
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in the number of new coauthors (1 in 10 new coauthors), while Column 3 estimates an 8% increase in the 

number of new publication outlets (1 in 15 new publication outlets). The advantage of the HDP measure is 

that it allows us to estimate the number of additional topics the researcher undertakes; an increase in the 

number of authors and publication outlets does not necessarily imply an increase in the number of topics 

since researchers can work with new coauthors and publish in different journals without changing their 

topics of interest, or, alternatively, by abandoning old topics and undertaking new ones. The effects are 

most pronounced for researchers who have a greater degree of involvement in motion-sensing research 

before Kinect (Table 6.b.). We test the timing of these effects and display the yearly estimated coefficients 

in Figure 2.b. We interpret the results as implying that Kinect induced within-area researchers to expand 

their research into areas in which they had not worked before, in line with our hypothesis H1b.   

Tables 7.a and 7.b suggest that the same holds – though to a larger degree21  – for outside-area 

researchers, in line with hypothesis H2b. As in prior analyses, Table 7.a presents estimates of the three 

trajectory measures, including motion-sensing publications produced by these researchers after the launch 

of Kinect. Table 7.b eliminates the motion-sensing publications and focuses on the impact on trajectory for 

all other projects of these researchers. Column 1 of Table 8.a indicates a 66% increase in new topics, 

equivalent to a shift in trajectory of 2 new topics. Column 2 of the same table estimates a 59% increase in 

the number of new coauthors (1.25 new coauthors), while Column 3 estimates a 57% increase in the number 

of new publication outlets (1 in 2 additional publication outlets). The effects persist when eliminating the 

set of motion-sensing publications from the portfolio of these researchers, suggesting that the effect is not 

mechanically driven by incorporating motion-sensing into the portfolio of projects (Table 7.b), in line with 

H2b. Specifically, outside-area researchers increase the number of yearly new topics by 22% (0.45 new 

topics out of approximately 50), the number of new-coauthors by 30% (more than 1 in 2 new coauthors) 

and the number of new publication outlets by 61% (1 in 2 new outlets). As before, we test the timing of 

these effects and display the yearly estimated coefficients in Figures 4.a and 4.b.  

 
21 As before, we include more formal estimates of the difference in magnitude in Appendix C, Table C3. 
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V.4. Complementary descriptive analyses based on Scopus data 

The results of our regression analyses suggest that the availability of this motion-sensing technology 

induces greater research diversity and a shift in the trajectory of researchers’ project portfolios. Ideally, we 

would also like to gain insight into the type of knowledge these individuals create as part of the identified 

effects. However, the difficulty of capturing changes in the type of knowledge produced also poses 

challenges to our ability to speak directly to the measured increase in diversification and shift in trajectory. 

To shed some light on this, in addition to the examples mentioned earlier, we provide some descriptive 

examples we collect through a different bibliographical database, Scopus, and its analyze function which 

allows user to select a group of papers and analyze their attributes in terms of e.g., spread across domains 

of knowledge, counts of authors affiliated with various institutions, spread across different publication 

outlets, etc. We observe two broad avenues through which researchers enhance the trajectory of their 

inquiry following Kinect: (1) an increase in the number of areas where they publish and (2) an increase in 

the percentage of their publications across knowledge areas in their portfolio. We include these data and 

additional information in Appendix D.   

Additionally, we utilize the Scopus analyze feature to provide a glimpse into the mechanism through 

which the benefits of the automating technology manifest, by attempting to identify the type of institutions 

that benefit most from the availability of Kinect as automating motion-sensing research technology.22 On 

the one hand, the benefit of Kinect as a technology that automates research tasks might manifest more for 

research institutions that are or aim to be leaders in research. The assumption is that these institutions are 

time constrained, rather than financially constrained, and the automation would help propel their 

productivity forward. On the other hand, the benefit of Kinect as technology that reduces the costs of 

performing certain research tasks might manifest more for institutions that are financially constrained. It 

follows that a research technology that is automating by significantly reducing the cost of performing 

certain research tasks should benefit both types of institutions. It is important to remember that we cannot 

separate these effects from those resulting from the low monetary cost of Kinect. In addition to reducing 

the cost of executing certain research tasks via automation, Kinect’s low monetary cost (relative to the 

 
22 Data limitations prevent us from providing comprehensive evidence at the individual researcher level.   
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previous generation of motion-sensing technology) may have enabled experimentation that might not have 

been considered if Kinect was priced in the same range as the previous generation technology. It may be, 

therefore, that changes in the monetary cost of motion-sensing research technology drive some of the effects 

we observe. However, if these effects were dominant, then we would expect to see financially constrained 

institutions disproportionally benefiting from the Kinect phenomenon. In fact, when collecting author 

affiliations for the top 25% and top 10% most cited motion-sensing publications during the period before 

and after Kinect, we observe that the set of institutions experiencing the highest increase in the number of 

top cited publications is comprised of both highly ranked universities and private institutions with little 

financial constraints and lower ranked institutions with presumably higher financial constraints. This 

finding is aligned with the idea that the automating research technology reduces the cost of performing 

certain research tasks by substituting for human capital and thus benefiting both leading institutions racing 

to maintain their frontier position as well as more financially constraining institutions. We include these 

data and additional information in Appendix E. 

VI. Discussion and Conclusion 

Automating technologies are transforming the nature of work and competition across industries.  

Scholarship in management and economics has investigated the impact of such technologies on the 

manufacturing and service sectors and has documented the extent to which and the conditions under which 

these technologies substitute for or complement human labor.  Although research on innovation emphasizes 

the importance of research tools, less work investigates the role of such automating technologies in the 

production of knowledge. In this paper, we contribute to addressing this gap by examining the impact of an 

automating technology on the rate and type of knowledge production. 

Ideas production differs in key ways from the production of goods and services. We believe that a core 

contribution of the paper involves training a lens on the way in which automating technologies affect the 

organization of knowledge production. In contrast to some traditional manufacturing positions (e.g., 

assembly line work) and service positions (e.g., fast food preparation), knowledge work is characterized by 

a particularly wide range of tasks (e.g., problem selection, grant writing, data analysis, paper composition, 

and seminar presentation) and a substantial amount of autonomy for knowledge workers to select their 

tasks. This task variety and authority over their own work may enable knowledge workers to adapt to the 
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introduction of automating technologies in ways that vary from those of workers – and even managers – in 

manufacturing and service sectors. Our results suggest that this is the case. Researchers with prior 

involvement in motion-sensing are not negatively impacted by the availability of motion-sensing 

technology that automates core research tasks. Moreover, such researchers, on average, accelerate the pace 

of their work in response to automation, and spread their knowledge wider. 

A second area to which we believe this paper contributes is to the study of research technology as an 

input into knowledge production. In particular, we document that the availability of this motion-sensing 

research technology enables gains in production and movement in ideas space. Further, we demonstrate 

that the ability to leverage research technology varies across researcher types. While the Kinect shock 

supports some benefits among within-area researchers, its greatest impact is among researchers who have 

not previously engaged in motion-sensing research. Acemoglu (2002, 2012) and Bryan and Lemus (2017) 

worry that economic incentives lead to an underprovision of research diversity that is especially pronounced 

among for-profit firms and that can be alleviated by increasing research diversity among academics. This 

paper suggests that automating research technology can lessen this problem by enabling wider exploration 

of research ideas. 

A third contribution we seek to make in this paper involves the adaptation of machine learning tools to 

develop generalizable measures of type of knowledge production. In our main specifications, we employ 

Hierarchical Dirichlet Process (HDP), which we train on paper abstracts to parse fields of research into 

multiple categories. The approach has several advantages over bibliometric measures for capturing the 

diversity and trajectory of research output. Furthermore, unlike LDA, one of the most-often used topic 

modeling tools, HDP identifies the optimal number of topics within a body of text. While the technique 

cannot automatically track the evolution of topics over time, we address this limitation by augmenting it 

with a clustering technique, Term Frequency – Inverse Document Frequency (TFIDF) cosine similarity, to 

calculate a cosine vector similarity between the yearly topics generated by the HDP algorithm. We believe 

that this approach adds to similar early efforts of employing machine learning techniques in developing 

measures of type of knowledge output (Kaplan and Vakili, 2015), and, importantly, represents an advance 

in measuring changes in the type of knowledge output. 
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Lastly, a fourth contribution we hope to make is to expand the discussion of automation in literature in 

strategic management and organization studies.23 While a substantial and insightful literature on the impact 

of digital technologies exists, much of this appears in journals focused on information systems and 

economics and we hope that this work contributes to expanding attention to these topics in core strategy 

and management research. 

One of the advantages of our context is that the peculiar surprise associated with the Kinect technology 

supports a closer to causal analysis of its impact on the community of researchers in computer science and 

electrical engineering research. There are numerous analogs outside these areas in which specific research 

tasks have been automated, including the automation of statistical analysis via tools such as SAS, Stata, and 

R and the automation associated with combinatorial chemistry techniques. By focusing on a relatively 

narrow research area and an unanticipated increase in the availability of a key automating technology in 

that area, we are able to get closer to obtaining causal identification, albeit at the cost of some external 

validity. Our approach is also limited in disentangling the effects of automation from that of publicity of 

the technology; the launch of Kinect and subsequent hype were highly public. Moreover, Kinect is an 

automating technology that reduces the cost of executing the tasks it automates with minimal adjustments 

or co-invention costs. This differs from other technologies such as mainframes, servers or cloud computing 

(Jin and McElheran, 2018) where the automation effects might manifest in more complex ways. In addition, 

Kinect was offered a lower monetary cost than previous generations of motion-sensing technology. It is 

possible that the magnitude of the effects we observe are in part explained by these circumstances.  

Overall, our analysis underscores the important role of IT-based research technology for innovation. 

Understanding this relationship should be of central interest for research-oriented organizations focused on 

being ahead of competitors in knowledge production. Our study suggests that both access to research 

technology and the type of knowledge workers employed by these organizations matter. In addition to 

productivity benefits, automating research technologies may induce benefits of greater research diversity 

among innovation-focused firms. Whereas absorptive capacity has focused on the complementarity 

between internal R&D efforts and external knowledge, this paper highlights the fact that expertise can be 

 
23 We are grateful to an anonymous reviewer for proposing this point. 
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embedded in a research technology and suggests that externally-developed research technologies may have 

effects on productivity and idea mobility within firms. Furthermore, the magnitude of impact of research 

technology in knowledge production draws attention to the role of market power in technology development 

and retailing, as well as the complex implications of technology development and pricing strategies. For 

example, offers of discounted technologies could lead to indirect returns in the form of accelerated rates of 

innovations. Thus, while our analysis has been conducted at the level of individual researchers, we hope 

the paper invites continued work on the impact of automating technologies on innovating firms and sectors 

and lights a path towards such investigations.  
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Figure 1.a: Estimated changes in yearly publication counts 

 

   

Notes: We base this figure on our 2007-2014 dataset. Each point on the graph represents the coefficient value on the covariate TreatedResearcher x Year and thus describes the 

relative difference in publication counts between treated and control authors in that year. The bars surrounding each point represent the 95 percent confidence interval. All values are 

relative to the base year of 2010.  

 

Figure 1.b: Estimated changes in yearly publication counts weighted by citations 

 

    

Notes: We base this figure on our 2007-2014 dataset. Each point on the graph represents the coefficient value on the covariate TreatedResearcher x Year and thus describes the 

relative difference in citation weighted publication counts between treated and control authors in that year. The bars surrounding each point represent the 95 percent confidence 

interval. All values are relative to the base year of 2010.  
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Figure 2.a: Estimated changes in the level of diversification of within-area researchers 

 

   

Notes: We base this figure on our 2007-2014 dataset. Each point on the graph represents the coefficient value on the covariate TreatedResearcher x Year and thus describes the 

relative difference in diversification between treated and control authors in that year. The bars surrounding each point represent the 95 percent confidence interval. All values are 

relative to the base year of 2010.  

 

Figure 2.b: Estimated changes in the type of knowledge output of within-area researchers

 

   

Notes: We base this figure on our 2007-2014 dataset. Each point on the graph represents the coefficient value on the covariate TreatedResearcher x Year and thus describes the 

relative difference in our direction measures between treated and control authors in that year. The bars surrounding each point represent the 95 percent confidence interval. All values 

are relative to the base year of 2010.  
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Figure 3.a: Estimated changes in the level of diversification of outside-area researchers 

 

   

Notes: We base this figure on our 2007-2014 dataset. Each point on the graph represents the coefficient value on the covariate TreatedResearcher x Year and thus describes the 

relative difference in diversification between treated and control authors in that year. The bars surrounding each point represent the 95 percent confidence interval. All values are 

relative to the base year of 2010.  

 

Figure 3.b: Estimated changes in the level of diversification of outside-area researchers, when excluding their motion-sensing publications

 

  

Notes: We base this figure on our 2007-2014 dataset. Each point on the graph represents the coefficient value on the covariate TreatedResearcher x Year and thus describes the 

relative difference in diversification between treated and control authors in that year. The bars surrounding each point represent the 95 percent confidence interval. All values are 

relative to the base year of 2010.  
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Figure 4.a: Estimated changes in the type of knowledge output of outside-area researchers 

 

   

Notes: We base this figure on our 2007-2014 dataset. Each point on the graph represents the coefficient value on the covariate TreatedResearcher x Year and thus describes the 

relative difference in our direction measures between treated and control authors in that year. The bars surrounding each point represent the 95 percent confidence interval. All values 

are relative to the base year of 2010.  

 

Figure 4.b: Estimated changes in the type of knowledge output of outside-area researchers, when excluding their motion-sensing publications

 

  

Notes: We base this figure on our 2007-2014 dataset. Each point on the graph represents the coefficient value on the covariate TreatedResearcher x Year and thus describes the 

relative difference in our direction measures between treated and control authors in that year. The bars surrounding each point represent the 95 percent confidence interval. All values 

are relative to the base year of 2010.  
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Table 1.a: Changes in researchers’ productivity for our matched samples – Descriptive statistics 

Descriptive statistics – Rate (Mean (St. Dev)) 

Treated as:  Publication count Publication count weighted by citations 

  Treated Controls Treated Controls 

Within-area 

researchers 

Before 1.182 (1.241) 1.214 (1.295) 2.291 (3.346) 2.256 (3.327) 

After 1.249 (1.669) 1.153 (1.600) 1.767 (3.034) 1.585 (2.941) 

Observations  13,168 111,936 13,168 111,936 

Outside-area 

researchers 

Before 1.068 (1.199) 1.086 (1.240) 1.900 (3.048) 1.891 (3.058) 

After 1.676 (1.994) 1.022 (1.469) 2.408 (3.740) 1.404 (2.672) 

Observations Before 11,936 79,008 11,936 79,008 

Table 1.b: Changes in diversification for our matched samples – Descriptive statistics 

Descriptive statistics – Diversification (Mean (St. Dev)) 

Treated as:  HDP topic count - intensive HDP topic count - extensive Euclidean diversification using IEEE taxonomy 

  Treated Controls Treated Controls Treated Controls 

Within-area 

researchers 

Before 4.106 (4.634) 4.098 (4.654) 3.091 (2.951) 3.017 (2.890) 0.360 (0.296) 0.358 (0.294) 

After 4.899 (6.858) 4.455 (6.489) 3.189 (3.356) 2.919 (3.216) 0.313 (0.288) 0.283 (0.285) 

Observations  13,168 111,936 13,168 111,936 13,168 111,936 

Outside-area 

researchers 

Before 3.642 (4.432) 3.662 (4.537) 2.751 (2.872) 2.709 (2.867) 0.325 (0.296) 0.323 (0.297) 

After 6.530 (8.198) 3.934 (5.991) 3.913 (3.583) 2.665 (3.102) 0.372 (0.286) 0.262 (0.281) 

Observations  11,936 79,008 11,936 79,008 11,936 79,008 

Table 1.c: Changes in the type of knowledge output of research for our matched samples – Descriptive statistics 

Descriptive statistics – Direction (Mean (St. Dev)) 

Treated as:  Yearly new HDP topics by distance  Yearly new coauthors Year new publication outlets 

  Treated Controls Treated Controls Treated Controls 

Within-area 

researchers 

Before 3.466 (5.599) 3.114 (5.163) 2.242 (3.086) 2.258 (3.074) 0.839 (0.964) 0.883 (1.014) 

After 4.415 (7.133) 3.970 (6.525) 2.565 (4.555) 2.359 (4.387) 0.789 (1.111) 0.739 (1.055) 

Observations  13,168 111,936 13,168 111,936 13,168 111,936 

Outside-area 

researchers 

Before 2.957 (5.156) 2.707 (5.085) 2.061 (3.428) 2.048 (3.367) 0.783 (0.951) 0.806 (0.973) 

After 5.613 (8.208) 3.554 (6.105) 3.512 (5.574) 2.126 (4.195) 1.063 (1.298) 0.674 (0.991) 

Observations  11,936 79,008 11,936 79,008 11,936 79,008 
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Table 2.a: Estimated changes in publication count 

Controls determined through Coarsened Exact Matching (CEM) 

 Count of publications 

 Within-area researchers Outside-area researchers Outside-area researchers 

(exclude motion-sensing papers) 

Treated x AfterKinect 0.083*** 

(0.017) 

0.497*** 

(0.017) 

0.305*** 

 (0.019) 

Quadratic age Yes Yes Yes 

Individual and year FE Yes Yes Yes 

LL -270,358.60 -187,776.56 -186,346.70 

Observations 231,666 166,212 166,212 

Notes: The data is a panel at the author level based on publication data between 2007 and 2014. All models are Poisson with robust 

standard errors clustered at the individual level. *significant at 10%, **significant at 5%, ***significant at 1% 

Table 2.b: Estimated changes in citation weighted publication count 

Controls determined through Coarsened Exact Matching (CEM) 

 Count of publications weighted by citations 

 Within-area researchers Outside-area researchers Outside-area researchers 

(exclude motion-sensing papers) 

Treated x AfterKinect 0.083*** 

(0.023) 

0.537*** 

(0.024) 

0.330*** 

(0.027) 

Quadratic age Yes Yes Yes 

Individual and year FE Yes Yes Yes 

LL -424,738.03 -285,514.28 -283,379.44 

Observations 231,666 166,212 166,212 

Notes: The data is a panel at the author level based on publication data between 2007 and 2014. All models are Poisson with robust 

standard errors clustered at the individual level. *significant at 10%, **significant at 5%, ***significant at 1% 

Table 3: New researcher entries in electrical engineering, computer science, and electronics, per year, as 

observed through publications logged in the IEEE Xplore database (2007-2014) 

Number of authors entering IEEE Xplore academic publication 

 Number of authors entering with at 

least one motion-sensing publication 

Number of authors entering with 

publications in other areas 

Percentage of motion-sensing 

entry 

2007 1,103 122,322 0.90% 

2008 1,307 124,670 1.04% 

2009 1,188 120,554 0.99% 

2010 1,502 152,237 0.99% 

2011 1,794 137,233 1.31% 

2012 2,449 135,514 1.81% 

2013 2,805 116,184 2.41% 

2014 2,985 119,265 2.50% 
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Table 4.a: Estimated changes in the level of diversification of within-area researchers 

Treated as within-area researchers. Controls determined through Coarsened Exact Matching (CEM) 

Diversification HDP topic count  

(intensive) 

HDP topic count 

(extensive) 

Euclidean diversification 

using IEEE taxonomy 

Treated x AfterKinect 0.075*** 

(0.018) 

0.052*** 

(0.013) 

0.025*** 

 (0.004) 

Quadratic age Yes Yes Yes 

Individual and year FE Yes Yes Yes 

LL / R-sq -765,976.57 -527,561.97 0.045 

Observations 231,263 231,263 231,263 
Notes: The data is a panel at the author level based on publication data between 2007 and 2014. All models have robust standard errors clustered at the 

individual level. Columns 1 and 2 estimate a Poisson model. Column 3 estimates a linear regression model (OLS). *significant at 10%, ** at 5%, *** at 1% 

Table 4.b: Specialists in motion-sensing experience a higher level of change in diversification after Kinect 

Treated as within-area researchers. Controls determined through Coarsened Exact Matching (CEM) 

Diversification HDP topic count 

(intensive) 

HDP topic count 

(extensive) 

Euclidean diversification 

using IEEE taxonomy 

Fraction of MS pubs 

before x AfterKinect 

0.195*** 

(0.042) 

0.146*** 

(0.030) 

0.064*** 

 (0.009) 

Quadratic age Yes Yes Yes 

Individual and year FE Yes Yes Yes 

LL / R-sq -765,971.96 -527,554.55 0.045 

Observations 231,263 231,263 231,263 
Notes: The data is a panel at the author level based on publication data between 2007 and 2014. All models have robust standard errors clustered at the 

individual level. Columns 1 and 2 estimate a Poisson model. Column 3 estimates a linear regression model (OLS). *significant at 10%, ** at 5%, *** at 1% 

Table 5.a: Estimated changes in the level of diversification of outside-area researchers 

Treated as outside-area researchers. Controls determined through Coarsened Exact Matching (CEM) 

Diversification HDP topic count 

(intensive) 

HDP topic count 

(extensive) 

Euclidean diversification 

using IEEE taxonomy 

Treated x AfterKinect 0.500*** 

(0.019) 

0.358*** 

(0.013) 

0.103*** 

 (0.004) 

Quadratic age Yes Yes Yes 

Individual and year FE Yes Yes Yes 

LL / R-sq -537,282.06 -373,937.94 0.048 

Observations 165,868 165,868 166,212 
Notes: The data is a panel at the author level based on publication data between 2007 and 2014. All models have robust standard errors clustered at the 

individual level. Columns 1 and 2 estimate a Poisson model. Column 3 estimates a linear regression model (OLS). *significant at 10%, ** at 5%, *** at 1% 

Table 5.b: The change in diversification of outside-area researchers persists outside the set of newly added 

motion-sensing publications  

Treated as outside-area researchers. Controls determined through Coarsened Exact Matching (CEM) 

Diversification HDP topic count 

(intensive) 

HDP topic count 

(extensive) 

Euclidean diversification 

using IEEE taxonomy 

Treated x AfterKinect 0.310*** 

(0.021) 

0.191*** 

(0.015) 

0.048*** 

 (0.005) 

Quadratic age Yes Yes Yes 

Individual and year FE Yes Yes Yes 

LL / R-sq -534,765.16 -372,990.12 0.046 

Observations 165,844 165,844 166,212 
Notes: The data is a panel at the author level based on publication data between 2007 and 2014. All models have robust standard errors clustered at the 

individual level. Columns 1 and 2 estimate a Poisson model. Column 3 estimates a linear regression model (OLS). *significant at 10%, ** at 5%, *** at 1% 
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Table 6.a: Estimated changes in the trajectory of research of within-area researchers 

Treated as within-area researchers. Controls determined through Coarsened Exact Matching (CEM) 

Trajectory Yearly new  

HDP topics by distance  

Yearly new 

coauthors 

Year new 

Publication outlets 

Treated x AfterKinect 0.241** 

(0.096) 

0.051** 

(0.020) 

0.074*** 

 (0.017) 

Quadratic age Yes Yes Yes 

Individual and year FE Yes Yes Yes 

R-sq / LL 0.028 -527,103.78 -208,371.97 

Observations 231,266 230,770 231,026 
Notes: The data is a panel at the author level based on publication data between 2007 and 2014. All models have robust standard errors clustered at the 

individual level. Column 1 estimates a linear regression model (OLS). Columns 2 and 3 estimate a Poisson model. *significant at 10%, ** at 5%, *** at 1% 

Table 6.b: Specialists in motion-sensing experience a higher level of shift in their trajectory of research  

Treated as within-area researchers. Controls determined through Coarsened Exact Matching (CEM) 

Trajectory Yearly new  

HDP topics by distance 

Yearly new 

coauthors 

Year new 

Publication outlets 

Fraction of MS pubs 

before x AfterKinect 

0.859*** 

(0.196) 

0.170*** 

(0.051) 

0.228*** 

 (0.039) 

Quadratic age Yes Yes Yes 

Individual and year FE Yes Yes Yes 

R-sq / LL 0.028 -527,090.78 -208,366.32 

Observations 231,266 230,770 231,026 
Notes: The data is a panel at the author level based on publication data between 2007 and 2014. All models have robust standard errors clustered at the 

individual level. Column 1 estimates a linear regression model (OLS). Columns 2 and 3 estimate a Poisson model. *significant at 10%, ** at 5%, *** at 1% 

Table 7.a: Estimated changes in the trajectory of research of outside-area researchers 

Treated as outside-area researchers. Controls determined through Coarsened Exact Matching (CEM) 

Trajectory Yearly new  

HDP topics by distance 

Yearly new 

coauthors 

Year new 

Publication outlets 

Treated x AfterKinect 1.962*** 

(0.110) 

0.461*** 

(0.022) 

0.448*** 

 (0.016) 

Quadratic age Yes Yes Yes 

Individual and year FE Yes Yes Yes 

R-sq / LL 0.035 -372,894.72 -145,186.49 

Observations 166,212 165,547 165,876 
Notes: The data is a panel at the author level based on publication data between 2007 and 2014. All models have robust standard errors clustered at the 

individual level. Column 1 estimates a linear regression model (OLS). Columns 2 and 3 estimate a Poisson model. *significant at 10%, ** at 5%, *** at 1% 

Table 7.b: The shift in the trajectory of outside-area researchers persists outside the set of newly added motion-

sensing publications 

Treated as outside-area researchers. Controls determined through Coarsened Exact Matching (CEM) 

Trajectory Yearly new  

HDP topics by distance 

Yearly new 

coauthors 

Year new 

Publication outlets 

Treated x AfterKinect 0.451*** 

(0.052) 

0.261*** 

(0.024) 

0.474*** 

 (0.016) 

Quadratic age Yes Yes Yes 

Individual and year FE Yes Yes Yes 

R-sq / LL 0.028 -370,110.33 -145,752.72 

Observations 166,212 165,515 165,876 
Notes: The data is a panel at the author level based on publication data between 2007 and 2014. All models have robust standard errors clustered at the 

individual level. Column 1 estimates a linear regression model (OLS). Columns 2 and 3 estimate a Poisson model. *significant at 10%, ** at 5%, *** at 1%
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APPENDIX A 

Robustness to estimating using our main sample without employing CEM 

 

All tables and figures based on regression estimates match the order of the CEM regression estimates included in the main text.  

 

Figure A1. Change in publication counts, raw data, no CEM 

  
 

Figure A2. Change in the level of diversification, raw data, no CEM
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Figure A3. Change in the trajectory of research, raw data, no CEM 
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Figure A4.a: Estimated changes in yearly publication counts (original sample without CEM) 

 

  

Notes: We base this figure on our 2007-2014 dataset. Each point on the graph represents the coefficient value on the covariate TreatedResearcher x Year and thus describes the 

relative difference in publication counts between treated and control authors in that year. The bars surrounding each point represent the 95 percent confidence interval. All values are 

relative to the base year of 2010.  

 

Figure A4.b: Estimated changes in yearly publication counts weighted by citations (original sample without CEM)

 

   

Notes: We base this figure on our 2007-2014 dataset. Each point on the graph represents the coefficient value on the covariate TreatedResearcher x Year and thus describes the 

relative difference in citation weighted publication counts between treated and control authors in that year. The bars surrounding each point represent the 95 percent confidence 

interval. All values are relative to the base year of 2010.  
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Figure A5.a: Estimated changes in the level of diversification of within-area researchers (original sample without CEM) 

 

   

Notes: We base this figure on our 2007-2014 dataset. Each point on the graph represents the coefficient value on the covariate TreatedResearcher x Year and thus describes the 

relative difference in diversification between treated and control authors in that year. The bars surrounding each point represent the 95 percent confidence interval. All values are 

relative to the base year of 2010.  

 

Figure A5.b: Estimated changes in the direction of within-area researchers (original sample without CEM)

 

   

Notes: We base this figure on our 2007-2014 dataset. Each point on the graph represents the coefficient value on the covariate TreatedResearcher x Year and thus describes the 

relative difference in our direction measures between treated and control authors in that year. The bars surrounding each point represent the 95 percent confidence interval. All values 

are relative to the base year of 2010.  
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Figure A6.a: Estimated changes in the level of diversification of outside-area researchers (original sample without CEM) 

 

   

Notes: We base this figure on our 2007-2014 dataset. Each point on the graph represents the coefficient value on the covariate TreatedResearcher x Year and thus describes the 

relative difference in diversification between treated and control authors in that year. The bars surrounding each point represent the 95 percent confidence interval. All values are 

relative to the base year of 2010.  

 

Figure A6.b: Estimated changes in the level of diversification of outside-area researchers, when excluding their motion-sensing publications 

(original sample without CEM)

 

   

Notes: We base this figure on our 2007-2014 dataset. Each point on the graph represents the coefficient value on the covariate TreatedResearcher x Year and thus describes the 

relative difference in diversification between treated and control authors in that year. The bars surrounding each point represent the 95 percent confidence interval. All values are 

relative to the base year of 2010.  
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Figure A7.a: Estimated changes in the direction of outside-area researchers (original sample without CEM) 

 

   

Notes: We base this figure on our 2007-2014 dataset. Each point on the graph represents the coefficient value on the covariate TreatedResearcher x Year and thus describes the 

relative difference in our direction measures between treated and control authors in that year. The bars surrounding each point represent the 95 percent confidence interval. All values 

are relative to the base year of 2010.  

 

Figure A7.b: Estimated changes in the direction of outside-area researchers, when excluding their motion-sensing publications (original sample 

without CEM)

 

  

Notes: We base this figure on our 2007-2014 dataset. Each point on the graph represents the coefficient value on the covariate TreatedResearcher x Year and thus describes the 

relative difference in our direction measures between treated and control authors in that year. The bars surrounding each point represent the 95 percent confidence interval. All values 

are relative to the base year of 2010.  
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Table A1.a: Estimated changes in publication count 

No CEM 

 Count of publications 

 Within-area researchers Outside-area researchers Outside-area researchers 

(exclude motion-sensing papers) 

Treated x AfterKinect 0.170*** 

(0.006) 

0.544*** 

 (0.016) 

0.356*** 

 (0.019) 

Quadratic age Yes Yes Yes 

Individual and year FE Yes Yes Yes 

LL -1,922,713.80 -1,691,515.20 -1,690,117.20 

Observations 1,386,630 1,258,131 1,258,131 

Notes: The data is a panel at the author level based on publication data between 2007 and 2014. All models are Poisson with 

robust standard errors clustered at the individual level. *significant at 10%, **significant at 5%, ***significant at 1% 

Table A1.b: Estimated changes in citation weighted publication count 

No CEM 

 Count of publications weighted by citations 

 Within-area researchers Outside-area researchers Outside-area researchers 

(exclude motion-sensing papers) 

Treated x AfterKinect 0.134*** 

(0.010) 

0.953*** 

(0.023) 

0.749*** 

(0.026) 

Quadratic age Yes Yes Yes 

Individual and year FE Yes Yes Yes 

LL -4,048,539.40 -3,480,732.90 -3,478,684.10 

Observations 1,386,630 1,258,131 1,258,131 

Notes: The data is a panel at the author level based on publication data between 2007 and 2014. All models are Poisson with 

robust standard errors clustered at the individual level. *significant at 10%, **significant at 5%, ***significant at 1% 
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Table A2.a: Estimated changes in the level of diversification of within-area researchers 

Treated as within-area researchers. No CEM 

Diversification HDP topic count  

(intensive) 

HDP topic count 

(extensive) 

Euclidean diversification 

using IEEE taxonomy 

Treated x AfterKinect 0.166*** 

(0.006) 

0.087*** 

(0.004) 

0.027*** 

 (0.001) 

Quadratic age Yes Yes Yes 

Individual and year FE Yes Yes Yes 

LL / R-sq -5,240,308.20 -3,177,377.70 0.003 

Observations 1,328,462 1,328,462 1,386,630 
Notes: The data is a panel at the author level based on publication data between 2007 and 2014. All models have robust standard errors clustered at the 

individual level. Columns 1 and 2 estimate a Poisson model. Column 3 estimates a linear regression model (OLS). *significant at 10%, ** at 5%, *** at 1% 

Table A2.b: Specialists in motion-sensing experience a higher level of change in diversification after 

Kinect 

Treated as within-area researchers. No CEM 

Diversification HDP topic count 

(intensive) 

HDP topic count 

(extensive) 

Euclidean diversification 

using IEEE taxonomy 

Fraction of MS pubs 

before x AfterKinect 

0.122*** 

(0.028) 

0.048** 

(0.019) 

0.010* 

 (0.006) 

Quadratic age Yes Yes Yes 

Individual and year FE Yes Yes Yes 

LL / R-sq -4,977,579.90 -3,040,236.60 0.003 

Observations 1,328,462 1,328,462 1,386,630 
Notes: The data is a panel at the author level based on publication data between 2007 and 2014. All models have robust standard errors clustered at the 

individual level. Columns 1 and 2 estimate a Poisson model. Column 3 estimates a linear regression model (OLS). *significant at 10%, ** at 5%, *** at 1% 

Table A3.a: Estimated changes in the level of diversification of outside-area researchers 

Treated as outside-area researchers. No CEM 

Diversification HDP topic count 

(intensive) 

HDP topic count 

(extensive) 

Euclidean diversification 

using IEEE taxonomy 

Treated x AfterKinect 0.549*** 

(0.018) 

0.402*** 

(0.013) 

0.104*** 

 (0.004) 

Quadratic age Yes Yes Yes 

Individual and year FE Yes Yes Yes 

LL / R-sq -4,649,391.30 -2,867,265.20 0.005 

Observations 1,256,557 1,256,557 1,258,131 
Notes: The data is a panel at the author level based on publication data between 2007 and 2014. All models have robust standard errors clustered at the 

individual level. Columns 1 and 2 estimate a Poisson model. Column 3 estimates a linear regression model (OLS). *significant at 10%, ** at 5%, *** at 1% 

Table A3.b: The change in diversification of outside-area researchers persists outside the set of newly 

added motion-sensing publications  

Treated as outside-area researchers. No CEM 

Diversification HDP topic count 

(intensive) 

HDP topic count 

(extensive) 

Euclidean diversification 

using IEEE taxonomy 

Treated x AfterKinect 0.362*** 

(0.020) 

0.239*** 

(0.015) 

0.049*** 

 (0.004) 

Quadratic age Yes Yes Yes 

Individual and year FE Yes Yes Yes 

LL / R-sq -4,647,004.50 -2,866,404.40 0.005 

Observations 1,256,557 1,256,557 1,258,131 
Notes: The data is a panel at the author level based on publication data between 2007 and 2014. All models have robust standard errors clustered at the 

individual level. Columns 1 and 2 estimate a Poisson model. Column 3 estimates a linear regression model (OLS). *significant at 10%, ** at 5%, *** at 1% 
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Table A4.a: Estimated changes in the trajectory of research of within-area researchers 

Treated as within-area researchers. No CEM 

Trajectory Yearly new  

HDP topics by distance  

Yearly new 

coauthors 

Year new 

Publication outlets 

Treated x AfterKinect 0.396*** 

(0.046) 

0.182*** 

(0.007) 

0.146*** 

 (0.006) 

Quadratic age Yes Yes Yes 

Individual and year FE Yes Yes Yes 

R-sq / LL 0.002 -4,064,300.50 -1,371,907.90 

Observations 1,386,630 1,384,102 1,380,358 
Notes: The data is a panel at the author level based on publication data between 2007 and 2014. All models have robust standard errors clustered at the 

individual level. Column 1 estimates a linear regression model (OLS). Columns 2 and 3 estimate a Poisson model. *significant at 10%, ** at 5%, *** at 1% 

Table A4.b: Specialists in motion-sensing experience a higher level of shift in their trajectory of research  

Treated as within-area researchers. No CEM 

Trajectory Yearly new  

HDP topics by distance 

Yearly new 

coauthors 

Year new 

Publication outlets 

Fraction of MS pubs 

before x AfterKinect 

0.593*** 

(0.145) 

0.277*** 

(0.035) 

0.189*** 

 (0.027) 

Quadratic age Yes Yes Yes 

Individual and year FE Yes Yes Yes 

R-sq / LL 0.001 -3,848,520.50 -1,295,488.30 

Observations 1,386,630 1,384,102 1,380,358 
Notes: The data is a panel at the author level based on publication data between 2007 and 2014. All models have robust standard errors clustered at the 

individual level. Column 1 estimates a linear regression model (OLS). Columns 2 and 3 estimate a Poisson model. *significant at 10%, ** at 5%, *** at 1% 

Table A5.a: Estimated changes in the trajectory of research of outside-area researchers 

Treated as outside-area researchers. No CEM 

Trajectory Yearly new  

HDP topics by distance 

Yearly new 

coauthors 

Year new 

Publication outlets 

Treated x AfterKinect 2.376*** 

(0.093) 

0.637*** 

(0.021) 

0.521*** 

 (0.015) 

Quadratic age Yes Yes Yes 

Individual and year FE Yes Yes Yes 

R-sq / LL 0.001 -3,585,172.90 -1,205,082.80 

Observations 1,258,131 1,255,701 1,252,043 
Notes: The data is a panel at the author level based on publication data between 2007 and 2014. All models have robust standard errors clustered at the 

individual level. Column 1 estimates a linear regression model (OLS). Columns 2 and 3 estimate a Poisson model. *significant at 10%, ** at 5%, *** at 1% 

Table A5.b: The shift in the trajectory of outside-area researchers persists outside the set of newly added 

motion-sensing publications 

Treated as outside-area researchers. No CEM 

Trajectory Yearly new  

HDP topics by distance 

Yearly new 

coauthors 

Year new 

Publication outlets 

Treated x AfterKinect 0.688*** 

(0.044) 

0.443*** 

(0.024) 

0.549*** 

 (0.016) 

Quadratic age Yes Yes Yes 

Individual and year FE Yes Yes Yes 

R-sq / LL 0.001 -3,582,461.10 -1,205,873.40 

Observations 1,258,131 1,255,669 1,252,043 
Notes: The data is a panel at the author level based on publication data between 2007 and 2014. All models have robust standard errors clustered at 
the individual level. Column 1 estimates a linear regression model (OLS). Columns 2 and 3 estimate a Poisson model. *significant at 10%, ** at 5%, 

*** at 1% 
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APPENDIX B 

CEM Balance 

 

Table B1.a: CEM balance, where treated researchers are defined as scientists who published in motion-sensing before Kinect (within-area 

researchers) 

CEM balance 

 Full Sample Matched Sample (CEM) 

 Treated Controls t-stat Treated Controls t-stat 

Citation-weighted publication count 2007 15.868 7.397 87.83 2.323 2.300 0.61 

Citation-weighted publication count 2008 14.609 7.802 75.44 2.664 2.615 1.36 

Citation-weighted publication count 2009 8.687 4.729 91.31 1.957 1.918 1.73 

Citation-weighted publication count 2010 7.287 4.301 87.20 2.220 2.190 1.32 

Author count 2007 15.212 9.052 70.02 3.609 3.575 0.73 

Author count 2008 15.253 9.890 70.80 4.318 4.329 0.24 

Author count 2009 15.290 9.517 89.36 4.585 4.602 0.37 

Author count 2010 16.362 10.528 85.91 6.028 5.989 0.67 

Diversification index 2007-2010 0.687 0.640 137.17 0.661 0.661 0.42 

Observations 100,392 1,286,760  26,336 223,872  

 

Table B1.b: CEM balance, where treated researchers are defined as scientists who published in motion-sensing after Kinect (outside-area 

researchers) 

CEM balance 

 Full Sample Matched Sample (CEM) 

 Treated Controls t-stat Treated Controls t-stat 

Citation-weighted publication count 2007 11.683 7.397 41.18 1.917 1.888 0.79 

Citation-weighted publication count 2008 11.784 7.802 39.81 1.999 2.012 0.39 

Citation-weighted publication count 2009 7.252 4.729 52.70 1.630 1.626 0.19 

Citation-weighted publication count 2010 6.712 4.301 62.89 2.053 2.038 0.58 

Author count 2007 12.314 9.052 32.99 3.419 3.342 0.83 

Author count 2008 13.035 9.890 36.89 3.649 3.721 1.36 

Author count 2009 13.445 9.517 54.08 4.123 4.122 0.02 

Author count 2010 15.150 10.528 60.50 5.601 5.620 0.31 

Diversification index 2007-2010 0.677 0.640 94.98 0.650 0.650 0.31 

MS Distance 2.651 2.955 76.72 3.068 3.068 0.00 

Observations 76,720 1,286,760  23,872 158,016  
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APPENDIX C 

Difference in magnitude of effects for within-area and outside-area researchers  

 

Tables C1: Estimated changes in publication count and citation weighted publication count 

Controls determined through Coarsened Exact Matching (CEM) 

 Productivity of within-area and outside-area researchers 

 Count of publications Count of publications 

Within-area x AfterKinect 0.182*** 

(0.017) 

0.166*** 

 (0.022) 

Outside-area x AfterKinect 0.299*** 

(0.023) 

0.415*** 

(0.031) 

Quadratic age Yes Yes 

Individual and year FE Yes Yes 

LL -396,598.41 -625,301.33 

Observations 342,223 342,223 

Notes: The data is a panel at the author level based on publication data between 2007 and 2014. All models are Poisson with 

robust standard errors clustered at the individual level. *significant at 10%, **significant at 5%, ***significant at 1% 

Tables C2:  Estimated changes in the level of diversification  

Controls determined through Coarsened Exact Matching (CEM) 

 Diversification 

 HDP topic count 

(intensive) 

HDP topic count 

(extensive) 

Euclidean diversification 

using IEEE taxonomy 

Within-area x AfterKinect 0.177*** 

(0.018) 

0.116*** 

(0.013) 

0.041*** 

 (0.004) 

Outside-area x AfterKinect 0.303*** 

(0.025) 

0.230*** 

(0.018) 

0.063*** 

(0.005) 

Quadratic age Yes Yes Yes 

Individual and year FE Yes Yes Yes 

LL / R-sq -1,129,953.00 -775,453.09 0.043 

Observations 341,600 341,600 342,223 
Notes: The data is a panel at the author level based on publication data between 2007 and 2014. All models have robust standard errors clustered 

at the individual level. Columns 1 and 2 estimate a Poisson model. Column 3 estimates a linear regression model (OLS). *significant at 10%, 

**significant at 5%, ***significant at 1% 

Tables C3: Estimated changes in the trajectory of research  

Controls determined through Coarsened Exact Matching (CEM) 

 Research trajectory 

 Yearly new  

HDP topics by distance 

Yearly new 

coauthors 

Year new 

Publication outlets 

Within-area x AfterKinect 0.518*** 

(0.092) 

0.133*** 

(0.020) 

0.155*** 

 (0.016) 

Outside-area x AfterKinect 1.427*** 

(0.125) 

0.326*** 

(0.028) 

0.299*** 

(0.022) 

Quadratic age Yes Yes Yes 

Individual and year FE Yes Yes Yes 

R-sq / LL 0.030 -769,345.22 -304,278.57 

Observations 342,223 341,045 341,351 
Notes: The data is a panel at the author level based on publication data between 2007 and 2014. All models have robust standard errors clustered 

at the individual level. Columns 1 and 2 estimate a Poisson model. Column 3 estimates a linear regression model (OLS). *significant at 10%, 

**significant at 5%, ***significant at 1% 
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APPENDIX D 

Examples of changes in publication portfolio distribution across research topics, as defined by 

Scopus 

(names not shown due to privacy concerns) 

 

In order to provide additional suggestive evidence on the change in research trajectories following 

the Kinect shock, we leverage data from Scopus. Specifically, we select a random group of researchers 

from our treated and control samples and look up their publication portfolio in Scopus, a comprehensive 

bibliographical database tracking academic publication across all areas of science.  We take advantage of a 

particular feature of this database, namely its “analyze” function. Scopus allows users to select a group of 

papers and to analyze its properties using a proprietary Scopus algorithm. The analysis displays, among 

other things, pie charts with the distribution of publications across knowledge areas, as defined by the 

Scopus taxonomy. Since the data in our main analysis derives from a different database (IEEE Xplore), 

which processes and classifies papers with no relation to Scopus, our analysis based on the Scopus analysis 

algorithm provides an additional piece of evidence to our findings. We include below examples of 

randomly-selected treated and control researchers and the pie-chart analysis of their pre- and post-Kinect 

publication portfolios. These charts suggest a change in the composition of project portfolios following the 

launch of Kinect that is consistent with our econometric analysis and that provide a glimpse into the type 

of knowledge these researchers create. 
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Example of within-area researcher changes in diversification and trajectory, relative to weighted CEM controls 

 2007-2010 2011-2014 
Within-area researcher 

  
Control for above within-area 

researcher (weighted CEM) 

  

Control for above within-area 

researcher (weighted CEM) 
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Example of outside-area researcher changes in diversification and trajectory, relative to CEM matched controls 

 2007-2010 2011-2014 
Outside-area researcher 

  
Control for above outside-area 

researcher (weighted CEM) 

 
 

Control for above outside-area 

researcher (weighted CEM) 
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APPENDIX E 

Institutions that benefited most from the Kinect phenomenon 

 

To investigate which institutions experience the greatest publication boost following the Kinect 

shock, we leverage the Analyze feature of the Scopus online database.  Specifically, we use the Scopus 

analyze feature to collect motion-sensing publication counts for the period before and after the launch of 

Kinect, by the affiliation institutions of the authors of these publications. We start by searching for motion-

sensing academic publications using the same set of keywords used to determine motion-sensing 

publications in our main IEEE dataset. Next, we split the search into two groups: the group of motion-

sensing papers published in the four years before the launch of Kinect (2007-2010) and that of such papers 

published in the four years after the launch (2011-2014). For the latter group, we further restrict the set of 

motion-sensing papers to publications in the top 25% and top 10%, respectively, of the most cited motion-

sensing papers during the pre-Kinect period. We do so to make sure we capture institutions that produced 

quality output in motion-sensing as a result of the Kinect phenomenon. The results do not change 

substantially when considering the full set of motion-sensing papers, regardless of citation ranking. Last, 

we extract the count of such motion-sensing publications per affiliation institution of motion-sensing 

authors in both periods. Scopus counts a publication multiple times, as many as the number of authors on 

each publication. Unfortunately, the Scopus feature does not facilitate options to also consider additional 

information when generating these counts, such as order of authors or the number of authors per publication.  

In the table below, we display the top 50 institutions that published in motion-sensing after Kinect, 

as per our citations criteria. In fact, the table lists 51 institutions, with Microsoft as the top institution that 

benefited most from the launch of Kinect. While this is reassuring, it does not provide generalizable insights 

to the type of institutions that would benefit most from availability of automating research technology. 

Thus, we chose to include Microsoft in addition to our list of top 50 institutions that benefited most from 

Kinect. Columns 4 to 7 list counts of motion-sensing papers in the top 25% and top 10% of most cited 

motion-sensing papers, before and after the launch of Kinect. We sort the list by the average change in 

number of publications in the two citations groups, however, other sort orders preserve the picture painted 

here. Columns 8 and 9 list two sets of rankings for the 50 institutions. In column 8, we follow the Times 

Higher Education university ranking from 2013-2014. In column 9, we present values from another 

internationally recognized ranking system, the QS World University Ranking, which has the advantage to 

offer a specialized ranking for universities in computer science and engineering. We utilize the 2015 

ranking; we could not locate an earlier ranking but believe the time difference does not carry substantial 

implications.  
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We observe that the list of institutions that benefited most from the Kinect phenomenon includes a 

mixture of top ranked universities and well-known private institutions, and less prestigious universities. 

This is important because, on the one hand, the benefit of Kinect as technology automating research tasks 

might manifest more for research institutions that are or aim to be leaders in research involving motion-

sensing topics. The assumption is that these institutions are time constrained, rather than financially 

constrained, and the automation would help propel their productivity forward. On the other hand, the benefit 

of Kinect as technology that reduces the costs of performing certain research tasks might manifest more for 

institutions that are financially constrained. It follows that a research technology that is automating by 

substituting for human capital and hence significantly reducing the cost of performing certain tasks should 

benefit both types of institutions, which is what we observe. 

 

 

 Institution 

Name 

Country Count 

publicatio

ns in top 

25% cited 

(2007-

2010) 

Count 

publicatio

ns in top 

25% cited 

(2011-

2014) 

Count 

publicatio

ns in top 

10% cited 

(2007-

2010) 

Count 

publicatio

ns in top 

10% cited 

(2011-

2014) 

Ranking 

Times 

Higher 

Educatio

n24 

Ranking 

QS World 

University 

for 

Computer 

Science 

and 

Engineerin

g25 

1 
Microsoft 

Research 
USA 9 117 4 84 

n/a n/a 

2 
Intel 

Corporation 
USA 2 23 1 21 

n/a n/a 

3 

University of 

Missouri-

Columbia 

USA 6 18 1 14 

301-350 Not ranked 

4 
Tsinghua 

University 
China 2 15 1 9 

50 11 

5 
Universitat 

Bonn 
Germany 2 20 2 12 

181 324 

6 

University of 

Washington, 

Seattle 

USA 6 38 4 29 

25 85 

7 

Technische 

Universitat 

Wien 

Austria 2 15 1 6 

226-250 93 

8 KU Leuven Belgium 2 10 1 8 61 74 

9 

Universitat 

Freiburg im 

Breisgau 

Germany 7 20 1 10 

152 293 

 
24 https://www.timeshighereducation.com/world-university-rankings/2014/world-

ranking#!/page/0/length/25/sort_by/scores_overall/sort_order/asc/cols/undefined 
25 https://www.topuniversities.com/university-rankings/world-university-rankings/2015 
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1

0 

South China 

University of 

Technology 

China 2 11 1 7 

Not 

ranked 

Not ranked 

1

1 

National 

University of 

Singapore 

Singapor

e 
10 25 2 19 

26 3 

1

2 

CNRS Centre 

National de la 

Recherche 

Scientifique 

France 5 25 2 13 

n/a n/a 

1

3 

Scuola 

Superiore 

Sant'Anna di 

Studi 

Universitari e 

di 

Perfezioname

nto 

Italy 2 13 1 5 

Not 

ranked 

Not ranked 

1

4 

Universita di 

Pisa 
Italy 2 11 1 6 

301-350 208 

1

5 

Zhejiang 

University 
China 11 24 1 9 

301-350 70 

1

6 

Cornell 

University 
USA 2 12 2 10 

19 34 

1

7 

Columbia 

University in 

the City of 

New York 

USA 2 10 1 6 

13 56 

1

8 

City 

University of 

Hong Kong 

China 2 14 1 3 

201-225 60 

1

9 
UCL UK 3 16 2 9 

21 50 

2

0 

University of 

Sheffield 
UK 4 11 1 7 

112 112 

2

1 

Imperial 

College 

London 

UK 16 22 2 16 

10 7 

2

2 

Korea 

Advanced 

Institute of 

Science & 

Technology 

South 

Korea 
2 10 1 4 

56 13 

2

3 

University of 

Texas at 

Arlington 

USA 9 12 1 7 

Not 

ranked 

Not ranked 

2

4 

University of 

Southern 

California 

USA 9 29 3 15 

70 128 

2

5 

University of 

California, 

Los Angeles 

USA 2 11 2 5 

12 23 

2

6 

Trinity 

College 

Dublin 

Ireland 5 10 1 6 

129 100 
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2

7 

Nanyang 

Technologica

l University 

Singapor

e 
7 25 3 13 

76 6 

2

8 

University of 

Science and 

Technology 

of China 

China 8 15 1 6 

201-225 93 

2

9 

Northwestern 

University 
USA 4 10 1 5 

22 61 

3

0 

Chinese 

Academy of 

Sciences 

China 11 31 4 18 

n/a n/a 

3

1 

University of 

Michigan, 

Ann Arbor 

USA 4 17 3 9 

18 36 

3

2 

Technical 

University of 

Munich 

Germany 13 34 5 21 

87 30 

3

3 

University of 

California, 

Berkeley 

USA 5 24 9 17 

8 8 

3

4 

Harvard 

University 
USA 3 12 3 8 

2 10 

3

5 

Istituto 

Italiano di 

Tecnologia 

Italy 2 13 1 0 

n/a n/a 

3

6 

Università 

degli Studi di 

Padova 

Italy 4 15 1 2 

301-350 199 

3

7 

University of 

Waterloo 
Canada 7 10 1 4 

226-250 74 

3

8 

Georgia 

Institute of 

Technology 

USA 7 22 7 11 

28 19 

3

9 

University of 

Illinois at 

Urbana-

Champaign 

USA 5 15 6 9 

29 30 

4

0 

Texas A and 

M University 
USA 8 12 3 9 

159 30 

4

1 

Karlsruhe 

Institute of 

Technology 

Germany 4 12 5 6 

154 62 

4

2 

The Walt 

Disney 

Company 

USA 8 14 3 6 

n/a n/a 

4

3 

Seoul 

National 

University 

South 

Korea 
6 12 4 7 

44 15 

4

4 

Stanford 

University 
USA 11 31 19 14 

4 2 

4

5 

The 

University of 

North 

USA 8 12 3 6 

47 224 
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Carolina at 

Chapel Hill 

4

6 

The Royal 

Institute of 

Technology 

KTH 

Sweden 4 10 3 3 

117 36 

4

7 

Massachusett

s Institute of 

Technology 

USA 24 40 21 29 

5 1 

4

8 
ETH Zurich 

Switzerla

nd 
28 37 14 21 

14 5 

4

9 

Friedrich-

Alexander-

Universität 

Erlangen-

Nürnberg 

Germany 7 10 5 6 

Not 

ranked 

214 

5

0 

Carnegie 

Mellon 

University  

USA 41 52 26 27 

24 29 

5

1 

Universität 

Bielefeld 
Germany 6 10 1 0 

301-350 Not ranked 
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