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ABSTRACT 

The SARS-CoV-2 pandemic has infected millions of people globally and continues to 

spread rapidly in many countries. As global vaccine access remains limited, SARS-CoV-

2 transmission can be reduced through non-pharmaceutical interventions (NPIs), such as 

social distancing and lockdown measures that limiting human contact by restricting 

human mobility, and diagnostic testing strategies that rapidly identify and isolate 

infectious individuals. In this dissertation, I conducted three studies that inform SARS-

CoV-2 surveillance and control policies in low- and middle-income countries (LMICs). 

The first study focuses in South Africa, where there have been multiple lockdowns and 

COVID-19 resurgences since the start of the pandemic.1 I assessed the association 

between mobility, as measured by smartphone data, and SARS-CoV-2 case positivity in 

South African provinces and districts at the ecological-level using regression, cross-

correlation and interrupted time series analysis. I found that increases in mobility were 

positively associated with future COVID-19 incidence aggregated at both the province 

and district-level, and the association of mobility and COVID-19 incidence remained 

even when adjusted for district-level confounders. 
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The second and third studies focus on rapid antigen testing (Ag-RDTs) in general LMIC 

settings. The main outcomes for these two studies include impact, defined as the 

percentage of infections averted compared to the base case scenario for each use case, 

and efficiency, defined as the number of tests needed to avert one infection compared to 

the base case scenario across use cases.  In the second study, I quantified impact and 

efficiency of Ag-RDTs for population-level community testing using a compartmental 

model in a general population of 10 million people. This study adds to the literature that 

Ag-RDTs can be a valuable tool for population-level SARS-CoV-2 surveillance and case 

detection when testing is frequent and widespread, and diagnosis must be accompanied 

by corresponding reduction in post-diagnosis contacts in order for testing to be effective. 

I also identified that community testing is most useful when an epidemic is waning or 

before an epidemic wave, which is when SARS-CoV-2 prevalence and Rt are low. 

Finally, the third study assessed efficiency and impact of SARS-CoV-2 Ag-RDT testing 

strategies by comparing eight mathematical models across several scenarios, hereafter 

referred to as “use cases”. There was a clear trade-off between impact and efficiency; 

increasing test frequency (and/or more widespread testing of a community) increased 

impact, but consequently decreased efficiency. Additionally, testing strategies across 

most scenarios had the greatest impact when Rt and/or infection prevalence were low, but 

were least efficient. 

The findings from this dissertation provide further evidence of the importance of public 

health mitigation and control measures that reduce SARS-CoV-2 spread, such as NPIs 

and diagnostic testing, particularly in LMICs that have limited access to COVID-19 
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vaccines. The evidence generated from these studies can be used for future SARS-CoV-2 

resurgences, whether  from currently circulating variants, emergence of new SARS-CoV-

2 variant strains or adaptation for use in future infectious disease outbreaks. 
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1 INTRODUCTION 

The SARS-CoV-2 pandemic has infected millions of people globally, and continues 

to spread rapidly in many countries.  As vaccination remains limited in many low- and 

middle-income countries (LMICs), strong public health surveillance and mitigation 

measures such as non-pharmaceutical interventions (NPIs) and diagnostic testing remain 

vital for reducing further SARS-CoV-2 transmission globally.  Public health surveillance 

for infectious diseases is essential to identify positive cases, isolate, and interrupt 

transmission. However, current surveillance methods for COVID-19 rely on substandard 

methods and technologies, and complementary sources of information, such as mobility 

data, can provide insights into local spread of disease essential for robust case 

surveillance. Previous work has demonstrated that mobility data is associated with 

disease burden,2-5 which can be used to trigger rapid response measures, and can 

complement other surveillance approaches. Moreover, disease transmission can be 

reduced through limiting human contact and restricting human mobility through social 

distancing and lockdown measures.2-5 

Another valuable strategy to limit disease spread without imposing widespread 

lockdowns is rapidly identifying and isolating infectious individuals through diagnostic 

testing. Reverse transcriptase polymerase chain reaction (RT-PCR) remains the current 

gold standard for diagnosing and screening COVID-19; however, in many LMICs access 

to PCR testing has been difficult and are plagued by delays.6,7 The early reliance on RT-

PCR testing severely limited the impact that diagnostic testing could have, particularly in 

LMICs where RT-PCR capacity is largely confined to tertiary medical facilities. Antigen-



 

2 

detecting rapid diagnostic tests (Ag-RDTs) may expand access to testing and decrease 

delays in COVID-19 diagnosis,8 and most recently implemented community-testing 

strategies globally now primarily depend on Ag-RDTs.9-11 Given limited resources, there 

is a need to assess SARS-CoV-2 diagnostic testing strategies across settings to identify 

scenarios where Ag-RDTs can best be utilized to create the largest reductions in onward 

transmission.  

Findings from these studies would inform optimal and effective control and 

mitigation measures that can prevent COVID-19 morbidity and mortality, specifically in 

limited resource settings. My results provide a stronger evidence base to inform resource 

allocation and decision making for the current SARS-CoV-2 pandemic, plan for future 

SARS-CoV-2 resurgences from currently circulating variants or emergence of new 

variants, or prepare for future infectious disease outbreaks and pandemics.  
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2 THE EFFECT OF POPULATION MOBILITY ON COVID-19 INCIDENCE 

IN SOUTH AFRICAN DISTRICTS AND PROVINCES: A LONGITUDINAL 

ECOLOGICAL STUDY WITH MOBILE PHONE LOCATION DATA 

 

2.1 Introduction 

SARS-CoV-2 has infected millions of people globally during the pandemic and continues 

to spread rapidly in many countries. During the initial COVID-19 outbreaks in March 

2020, South Africa was able to prevent large waves of infections with the early 

implementation of containment measures; however, since then cases in South Africa have 

steadily increased even with the scale up of national and provincial responses, such as 

numerous alert levels with associated lockdowns and restrictions.12 Vaccination is 

increasingly used to mitigate the impact of the SARS-CoV-2 pandemic in high income 

settings. However, in low-and-middle-income countries (LMICs) with limited vaccines, 

such as South Africa, diagnostic testing and non-pharmaceutical interventions (NPIs) 

remain vital for reducing SARS-CoV-2 transmission. One fundamental element of NPI’s 

ability to reduce disease transmission is limiting human contact by restricting movement 

through social distancing and lockdown measures. 

Several studies have shown that human movement is a vital component of COVID-19 

transmission and disease burden,2-5 and mobility has the potential to predict geographic 

disease incidence which can then be used to trigger rapid response measures. Human 

movement may facilitate transmission because it reflects greater opportunity for close 

contacts, and contact networks formed by individuals support chains of sustained disease 
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transmission.13-16 If surveillance systems could incorporate non-traditional sources of 

information, such as mobility data, they could provide predictions of  local spread of 

disease.  

However, evidence of an association between population mobility and COVID-19 

incidence in LMICs is lacking, and to date no research has been done on the relationship 

between mobility and SARS-CoV-2 incidence in South Africa. This study aims to 

estimate the association between mobility as measured by smartphone data, and SARS-

CoV-2 incidence in South African districts and provinces, as well as to examine the 

effect of government-mandated lockdowns on population mobility. I hypothesize that 

increases in mobility will be positively associated with COVID-19 incidence.  

 

2.2 Methods 

Data source and study population 

2.2.1.1 Mobility data 

I obtained mobility data from persons who owned a smartphone in South Africa, 

activated the location on their devices, and used the Moya app17 between August 30, 

2020 and January 3, 2021. The Moya app is a free messaging system paid for by 

advertising.17 As of 2021, there were approximately 5 million active users in South 

Africa (8% of total population), of which 2 million (3% of total population) are daily 

users.18  Province-level and district-level smartphone data between August 30, 2020 to 

January 3, 2021 were used to determine mobility. The mobility data can pinpoint 

locations transmitted from devices, and were aggregated at the weekly level and stratified 
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by province. Since the data are aggregated and not obtained at the individual level, I were 

unable to link device unique IDs and infer sociodemographic characteristics of the users. 

 

2.2.1.2 COVID-19 data 

At the district-level, I used the Coronavirus COVID-19 Data Repository for South Africa, 

which collates COVID-19 reporting data from the South African National Institute of 

Communicable Diseases (NICD) and Department of Health (DoH).19 I extracted the 

incidence of reported province-level COVID-19 cases from the weekly reports of the 

South African NICD between August 30, 2020 and January 3, 2021.20 The study period 

occurs after SARS-CoV-2 scale up of testing in South Africa, and thus any potential 

biases due to differential testing across time and geographic areas are limited. The data 

sets were compiled using data from state and local governments and health departments, 

ensuring its accuracy. 

 

Exposure 

The main exposure was weekly mobility, which was measured using smartphone data 

from Strive, aggregated at the weekly level and stratified by province and district. 

Weekly mobility was a continuous variable normalized to the minimum and maximum 

number of mobility movements within each province (for province-level analysis) and 

each district (for district-level analysis). Normalizing mobility by area accounts for the 

baseline number of mobility movements for the area, and allows me to compare relative 
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changes in mobility in each area.21 

A mobility movement for an individual was recorded when there was >10km movement, 

which was a predetermined movement threshold that represented substantial mobility 

essential for disease transmission. The number of weekly mobility movements was 

defined as the number of unique visits per week; regardless of the number of visits made, 

multiple trips per week for one individual between the same two provinces were counted 

as one unique mobility movement. Unique visits may be a more conservative estimate 

(underestimate) of human movement; however, since a mobility point is not recorded 

when a phone or location is turned off, using unique visits aggregated at the weekly level 

may mitigate any potential biases due to differential percentage of phones being turned 

off daily.  

Weekly mobility 

=  
# 𝑜𝑓 𝑤𝑒𝑒𝑘𝑙𝑦 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡  −  𝑚𝑖𝑛 # 𝑜𝑓 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑓𝑜𝑟 𝑎𝑟𝑒𝑎 

𝑚𝑎𝑥 # 𝑜𝑓 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑓𝑜𝑟 𝑎𝑟𝑒𝑎 −  𝑚𝑖𝑛 # 𝑜𝑓 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑓𝑜𝑟 𝑎𝑟𝑒𝑎
  

 

Outcome 

The main outcome was weekly SARS-CoV-2 incidence, defined as the weekly number of 

COVID-19 incident cases divided by the population in the area of interest (province or 

district). The National DoH defined a COVID-19 case as laboratory confirmation of 

COVID-19 disease by RT-PCR or a rapid antigen test. Confirmed COVID-19 case counts 

were reported from all provinces and districts in South Africa on a weekly basis.  
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Statistical analysis 

2.2.1.3 Province-level analysis 

I conducted descriptive analyses to examine the change over time in weekly mobility and 

SARS-CoV-2 incidence provincially, and whether weekly mobility changed when the 

country was placed on alert with mandated lockdowns. I then conducted a time series 

cross-correlation analysis in order to assess the unadjusted time-varying association 

between weekly mobility and current or future SARS-CoV-2 incidence. A time series 

cross-correlation quantifies the synchrony, defined as how strongly two time series at 

various points in time are associated with each other.22 When two time series demonstrate 

synchrony, the observations rise or fall simultaneously or with a measurable shift in time 

called a lag time. I also assessed potential lag times between mobility and COVID-19 

incidence, to assess the lag at which the maximum cross-correlation occurs (i.e., mobility 

is associated with SARS-CoV-2 incidence after x weeks). The cross-correlation 

coefficient was used to quantify the level of cross-correlation, which ranges from -1 

(negative correlation) to +1 (positive correlation). A value of 0 would indicate no cross-

correlation.23 

The cross-correlation coefficient ρx,y(h) of time series Xt and Yt with lag time h is 

ρXY(h)  =   
γXY(h)

√γXX(0) ∗ γYY(0)
, h = 0, ±1, ±2.. 

Where γXX(0) and γYY(0) are variances of Xt and Yt, respectively. 
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Next, I conducted an interrupted time series analysis, a method that has been previously 

used to evaluate the impact of population-level changes, such as a public health 

interventions or policy changes, at any defined point in time using segmented 

regression.24,25  Segmented regressions assessed whether there was any “mobility 

breakpoint”,2 defined as an abrupt longitudinal change in mobility, and at what date; 

when there is a significant mobility breakpoint, I also assessed whether there was any 

change in COVID-19 incidence, or “COVID-19 breakpoint”, before and after the 

mobility breakpoint. I also examined whether mobility breakpoints corresponded with 

changes in lockdown alerts, and I hypothesize that mobility breakpoints would occur 

during government-mandated lockdowns. 

(1) Mobilityt = β0 + β1𝑡𝑖𝑚𝑒 + β2𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡t +   β3𝑡𝑖𝑚𝑒 · 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡t 

(2)          COVIDt = β0 + β1𝑡𝑖𝑚𝑒 + β2𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡t +  β3𝑡𝑖𝑚𝑒 · 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡t 

where time is in weeks, and 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦𝑏𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡 is a dummy variable indicating 

whether the current time is before or after the mobility breakpoint. For (1) the outcome is 

Weekly mobility at time t, and for (2) the outcome 𝑖𝑠 COVIDt is COVID incidence at 

time t. β3 indicates the slope change in the outcome following the mobility breakpoint. 

The effect size indicates whether there was a change in slope before and after the 

mobility breakpoint. For large β3 slope would suggest that COVID incidence changed 

substantially during the COVID-19 pandemic due to a change in mobility. Data analysis 

was conducted in R version 4.0.2.26 
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2.2.1.4 District-level analysis 

I first conducted descriptive analyses to examine weekly mobility and SARS-CoV-2 

incidence stratified by district. Then, I used mixed-effects negative binomial regression 

for a time-series analysis, to examine longitudinal associations between weekly mobility 

and subsequent COVID-19 incidence in South African districts. I used random intercepts 

for districts and provinces, with district area population as an offset. Coefficients and 

95% confidence intervals (Cis) from the negative binomial model were exponentiated 

and are interpretable as incidence rate ratios (IRRs). The lag at which the maximum 

cross-correlation occurs at the province-level was used in the district area regressions.  

I adjusted for additional independent variables of time-invariant ecological-level TB 

incidence, HIV prevalence, population density (all at the district level) and province, as 

potential confounders. Relevant covariates were a priori selected as confounders based 

on existing knowledge of the association between exposure and outcome. Population 

density was calculated from data from Statistics South Africa mid-year population 

estimates,27 calculated as the population divided by total square kilometer per geographic 

area district. HIV prevalence and TB incidence were calculated using most recent 2016 

estimates collated by the African COVID-19 vulnerability index.28 

I report univariable associations between each independent variable (excluding province) 

and the outcome (COVID-19 incidence) and full results from the adjusted model. All 

analyses were done in R version 4.0.226 and modelling was done with the glmmTMB 

package. 
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Ethical approval 

Since the study uses de-identified ecological data, institutional review board ethical 

approval was not needed. 

 

2.3 Results 

Descriptive analysis 

Between August 30, 2020, and January 3, 2021, the total COVID-19 incidence in South 

Africa was 1070.4 cases per 100,000 population (Table 2.1). Among the nine South 

African provinces, Western Cape had the highest COVID-19 incidence (1931.4 cases per 

100,000 people), as well as the highest mean weekly mobility at 0.608 (Table 2.2). 

Correspondingly, Limpopo had the lowest reported COVID-19 incidence (380.7 cases 

per 100,000 people) and the lowest mean weekly mobility at 0.517 (Table 2.2). Figure 

2.1 shows weekly mobility and COVID-19 incidence per 100k population for each of the 

nine districts.  

In the districts, tertiles of COVID-19 incidence corresponded to an increase in weekly 

mobility; the tertile with the lowest COVID-19 incidence had a mean weekly mobility of 

0.461, the tertile with the middle COVID-19 incidence had a mean weekly mobility of 

0.468, and the tertile with the highest COVID-19 incidence had a mean weekly mobility 

of 0.501 (Table 2.1). Table 2.1 outlines the district area characteristics and stratified by 

cumulative COVID-19 incidence tertiles.  
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Time series cross-correlation among provinces 

The lag time with the maximum cross-correlation between the longitudinal time series of 

weekly mobility and current/future COVID-19 incidence was 2 weeks (ρ = 0.423), 

indicating that mobility most greatly affects subsequent COVID-19 incidence after two 

weeks. The cross-correlation coefficient of weekly mobility and COVID-19 incidence on 

the same week (lag = 0) was 0.398, and the cross-correlation with lag=1 was 0.401. 

In a post-hoc analysis assessing the time series cross-correlation of COVID-19 incidence 

and future mobility, I assessed whether SARS-CoV-2 incidence was also associated with 

subsequent mobility, as suggested by the interrupted time series analysis in Section 1.3.3. 

There was no cross-correlation with COVID-19 incidence and weekly mobility after 1 (ρ 

= 0.086) and 2 weeks (ρ = -0.086), but there was negative cross-correlation with a lag 

time of 3 weeks (ρ = -0.213). This result is consistent with the interrupted time series 

analysis that suggests that not only is greater mobility associated with greater future 

SARS-CoV-2 incidence, but subsequently greater SARS-CoV-2 incidence is associated 

with future lower human movement. 

 

Interrupted time series analysis among provinces 

Eastern Cape, Free State, KwaZulu-Natal, Mpumalanga, Northern Cape, and the Western 

had mobility breakpoints (Table 2.3) Overall, mobility breakpoints mostly occurred 

between December 10, 2020 to December 20, 2020, approximately 1 to 2 weeks before 

the December 29, 2020 alert level 3. The only exception was the November 24, 2020 
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mobility breakpoint in the Western Cape.  

Of these provinces with statistically significant mobility breakpoints, Gauteng, KwaZulu 

Natal, Mpumalanga, and Northern Cape also had significant COVID-19 breakpoints 

(Table 2.3). Aside from Mpumalanga where the mobility and COVID-19 breakpoint 

occurred on the same day (12/17/2020), mobility breakpoints generally occurred after 

COVID-19 breakpoints (mean: 8 days, 95% CI: 8 to 9 days). The slope for COVID-19 

after the COVID-19 breakpoint were all positive (indicating a sharp increase in COVID 

cases), while the slope for mobility after the mobility endpoint were all negative 

(indicating a subsequent sharp reduction in human movement) or close to null (Table 

2.3). This demonstrates that in addition to the mobility associated with future COVID-19 

incidence (as evidenced in the time series cross-correlation in Section 1.3.2), there is also 

an inverse association with SARS-CoV-2 incidence and subsequent mobility (i.e. sharp 

decreases in mobility occur two weeks after an uptick in COVID-19 incidence).  

 

Longitudinal associations between weekly mobility and subsequent COVID-19 incidence 

at the district-level 

I used 2 weeks as the lag time for the district-level analysis since the maximum cross-

correlation between weekly mobility and COVID-19 incidence among the provinces was 

two weeks apart. Unadjusted analysis demonstrated that weekly mobility, population 

density, and TB incidence were independently positively associated with weekly 

COVID-19 incidence, while HIV prevalence was negatively associated with COVID-19 



 

13 

incidence. A 10% increase in weekly mobility increases the COVID-19 incidence by 

22% (IRR=1.22, 95% CI: 1.19 to 1.25) (Table 2.4) while an increase of 1,000 population 

per km2 increases COVID-19 incidence rate by 52% (IRR=1.22, 95% CI: 1.19 to 1.25). 

An increase in TB incidence of one TB case per 100k results in a 3% increase in the rate 

of COVID-19 incidence (IRR=1.03, 95% CI: 1.01 to 1.04), but an increase in 1% of HIV 

prevalence decreases COVID-19 incidence by 8% (IRR=0.92, 95% CI: 0.89 to 0.97) 

(Table 2.4). Regression models adjusting for all independent variables did not change 

effect estimates; a 10% increase in weekly mobility adjusting for population density, HIV 

prevalence, and TB incidence, increases the incidence of COVID-19 by 21% (IRR=1.21, 

95% CI: 1.19 to 1.24) (Table 2.4). 

 

2.4 Discussion 

My findings demonstrate that increases in mobility were positively associated with future 

COVID-19 incidence aggregated at both the province and district-level, and the 

association of mobility and COVID-19 incidence remained even when adjusted for 

district-level confounders. My results also showed that not only is greater mobility 

associated with increased future SARS-CoV-2 incidence, but subsequently greater 

SARS-CoV-2 incidence is associated with future decreased human movement, albeit to a 

lesser extent. Human movement also started declining approximately a week or two 

before the alert level 3 lockdown was issued, suggesting that people socially distanced on 

their own accord in response to reports of greater SARS-CoV-2 transmission, which was 

consistent across all South African provinces. 
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This study is important for several reasons. First, there is a paucity of studies 

demonstrating the evidence of the association between population mobility and COVID-

19 in LMICs, particularly in South Africa. My findings are consistent with a number of 

other studies in various settings showing the positive association between human 

mobility and COVID-19 outcomes.2-5,29,30 These findings add to the body of evidence that 

restricting human movement is a valuable mitigation tool to the SARS-CoV-2 pandemic, 

as SARS-CoV-2 continues to spread and resurge and variants continue to emerge 

globally. Second, I note that mobility generally decreased prior to alert lockdowns, which 

these findings suggest are likely due to people’s response to increases in COVID-19 

incidence, and that lockdowns do not necessarily correspond to a subsequent change in 

population movement. Lastly, this work demonstrates the potential for digital health tools 

such as smartphones to provide a valuable source of mobility data. The use of mobility 

data in modelling infectious diseases such as COVID-19 and other future outbreaks is 

essential to capture disease transmission; however current sources of population-level 

mobility data in South Africa, such as Facebook and mobile phone data, have inherent 

biases.31 Smartphone mobile phone location data could potentially be more generally 

representative of the source population of interest, especially as smartphone use has been 

increasing through the years,32 and because the Moya app does not require data in order 

to be used and is not attached to a mobile phone carrier.  

This study has a number of limitations. This is an ecological study using population-level 

data, and group-level risk factors examined in this study must be interpreted carefully and 

as such these associations are not necessarily informative regarding the true mechanisms 
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of SARS-CoV-2 transmission at an individual level. Moreover, mobility data may have 

inherent biases due to differential access of people to smartphones. A recent report 

estimated that approximately a 23.3% of South African population had access to a 

smartphone in 2020.32 Previous research has shown that there is decreased mobility and 

lower COVID-19 outcomes in areas of greater SES.2 If areas with higher socioeconomic 

status have greater access to smartphones and use the Moya app, and the study population 

included in this study include areas with both decreased mobility and lower COVID-19 

outcomes than areas not included in this study, then the association between mobility and 

COVID-19 may be potentially biased upward and an overestimate. Even if the study 

population included in this study that use the free Moya app are areas with lower 

socioeconomic status, and have increased mobility and worse COVID-19 outcomes, the 

effect estimate would still be biased upward. However, the Moya app is a free messaging 

system that is paid for by advertising, and thus I expect that the study population would 

be representative of the source population. Since the data are aggregated and not obtained 

at the individual level, I am unable to link device unique IDs and infer sociodemographic 

characteristics of the individual users. However, given the paucity of data and research of 

mobility and COVID-19 in South Africa and other LMICs, these findings only give 

greater impetus to conduct research at the individual level to fully examine and 

disentangle these associations. Finally, the association could still potentially be 

confounded by other covariates that were not adjusted for in the regression analysis, due 

to lack of available data. I attempted to account for possible confounding from potential 

differential testing across provinces by including a random intercept term in the 
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regression to adjust for province-level effects. Differential testing by local governments 

within provinces are less likely to strongly impact these findings, as most funding for 

SARS-CoV-2 in South Africa is distributed at the province-level.33 Moreover, the study 

period occurred before the vaccination roll-out across South Africa, and thus the 

association was not confounded by vaccination rates. 

Our findings are consistent with previous research across geographic settings 

demonstrating that increases in mobility are positive associated with COVID-19 

outcomes.2-5,29,30 To my knowledge, this is one of the first studies to systematically assess 

the interrelationship among mobility, COVID-19, and subsequent mobility in South 

Africa aggregated at both the district and province-level. I show a 2-week lag time 

between human movement and COVID-19 incidence, and a 3-week lag time between the 

reduction in human movement after an increase in COVID-19 increase. Moreover, 

mobility also started declining approximately a week or two before the alert level 3 

lockdown was issued on December 29, 2020. Coronavirus disease  is still a health crisis; 

to effectively fight this pandemic, sociodemographic and health disparities must be 

addressed. As SARS-CoV-2 continues to resurge and new variants continue to emerge 

globally, restricting and monitoring human movement will be a valuable mitigation tool 

for reducing SARS-CoV-2 disease transmission. 
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2.5 Tables and Figures 

Table 2.1 District area characteristics overall and stratified by tertiles of cumulative 

COVID-19 incidence, August 30 2020 to Jan 3 2021 

 Total Tertiles of cumulative COVID-19 incidence, 

per 100,000 population 

District charactertistics   

(median, IQR) 

Lowest:  

0–718.1 

Middle:  

784.5–1521.1 

Highest:  

1698.0–4126.5 

Cumulative COVID-19 

incidence (per 100k 

population) 

1070.4                                    

(546.0, 1806.2) 

494.0                                    

(365.3, 546.0) 

1123.7                                    

(939.4, 1290.0) 

2414.9                                    

(1876.3, 3026.1) 

Weekly mobility 

movements per person 

540.5                                    

(378.3, 703.1) 

346.7                                    

(288.9, 472.6) 

543.3                                    

(400.4, 579.2) 

719.3                                    

(643.5, 809.4) 

Mean weekly mobility 
0.480               

(0.439, 0.526) 

0.461               

(0.432, 0.523) 

0.468                               

(0.434, 0.505) 

0.501               

(0.457, 0.553) 

Population density 

(population/km2)    

55.6                                    

(23.3, 118.0) 

60.8                                    

(38.6, 79.4) 

53.9                                    

(23.3, 117.4) 

40.1                                    

(16.5, 520.0) 

HIV prevalence (% of 

population ages 15 to 49) 

17.9                                    

(12.9, 21.6) 

21.1                                    

(17.6, 24.1) 

18.7                                    

(14.5, 21.6) 

13.7                                    

(10.2, 16.4) 

TB incidence (per 100k 

popu)   

26.5                                    

(13.8, 39.2) 

21.5                                    

(14.8, 30.8) 

24.0                                    

(9.0, 37.0) 

39.0                                    

(23.0, 45.0) 

Abbreviations: COVID-19 = Coronavirus disease 2019; HIV= human immunodeficiency virus; TB = 

tuberculosis. 
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Table 2.2 Weekly mobility per person and cumulative COVID-19 incidence, August 

30 2020 to Jan 3 2021 

Province 

Cumulative COVID-19 

incidence 

(per 100k persons) 

Weekly mobility 

movements per 

person 

Mean weekly 

mobility* 

Eastern Cape 1397.6 275.9 0.579 

Free State 1003.5 445.7 0.532 

Gauteng 789.4 503.9 0.570 

KwaZulu Natal 1199.0 351.2 0.585 

Limpopo 380.7 377.8 0.517 

Mpumalanga 454.5 377.1 0.546 

North West 516.3 365.3 0.531 

Northern Cape 1352.9 381.2 0.547 

Western Cape 1931.4 568.1 0.608 

Abbreviations: COVID-19 = Coronavirus disease 2019;  

*Normalizing mobility by accounting for the minimum and maximum number of mobility  

movements for each province. 
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Figure 2.1 Weekly mobility and COVID-19 incidence (per 100,000 population) of the nine South African provinces. 

 
Abbreviations: COVID-19 = Coronavirus disease 2019 

Red lines represent the weekly mobility (normalized within each province), and histograms denote the COVID-19 incidence (per 100,000 

population). Vertical lines indicate timing of alert level implemented in South Africa; the dotted line indicates change from alert level 2 to 

alert level 1 (in effect from 21 September to 28 December 2020), and dashed line represents change from alert level 1 to alert level 3 (in 

place from 29 December 2020 until 28 February 2021).34 Higher alert levels denote greater levels of non-pharmaceutical interventions. 
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Table 2.3 Weekly mobility breakpoints and COVID-19 breakpoints for the nine districts of South Africa. 

 Weekly mobility COVID-19 

Province Date of breakpoint 

Slope before 

breakpoint  

(95% CI) 

Slope after 

breakpoint  

(95% CI) 

Date of 

breakpoint 

Slope before 

breakpoint  

(95% CI) 

Slope after 

breakpoint  

(95% CI) 

Eastern Cape 
12/15/2020  

(12/14 to 12/16)* 

0.009                                              

(0.008 to 0.009) 

0.004                                              

(0.001 to 0.006) 

12/11/2020                                              

(12/10 to 12/13) 

1.745                                  

(1.335 to 2.155) 

-2.76                                  

(-5.826 to 0.306) 

Free State 
12/20/2020                                              

(12/19 to 12/20)* 

0.008                                              

(0.008 to 0.009) 

-0.004                                              

(-0.011 to 0.004) 

12/09/2020                                              

(12/7 to 12/10) 

-0.877                                  

(-1.154 to -0.601) 

3.411                                  

(1.342 to 5.479) 

Gauteng 
12/11/2020                                              

(12/10 to 12/11)* 

0.009                                              

(0.008 to 0.01) 

-0.006                                              

(-0.011 to 0) 

12/02/2020                                              

(12/1 to 12/2)* 

-0.063                                  

(-0.202 to 0.075)* 

6.158                                  

(5.496 to 6.82)* 

KwaZulu Natal 
12/10/2020                                              

(12/10 to 12/11)* 

0.009                                              

(0.009 to 0.01) 

-0.003                                              

(-0.006 to 0.001) 

11/27/2020                                              

(11/27 to 11/27)* 

-0.063                                  

(-0.231 to 0.106)* 

8.929                                  

(8.384 to 9.474)* 

Limpopo 
10/17/2020                                              

(10/10 to 10/25) 

0.008                                              

(0.008 to 0.009) 

-0.001                                              

(-0.015 to 0.013) 

12/16/2020                                              

(12/16 to 12/17)* 

-0.028                                  

(-0.122 to 0.065)* 

8.051                                  

(6.833 to 9.268)* 

Mpumalanga 
12/17/2020                                              

(12/17 to 12/18)* 

0.009                                              

(0.008 to 0.009) 

-0.005                                              

(-0.012 to 0.002) 

12/17/2020                                              

(12/16 to 12/17)* 

-0.066                                  

(-0.147 to 0.016)* 

7.748                                  

(6.681 to 8.814)* 

Northern Cape 
12/19/2020                                              

(12/18 to 12/20)* 

0.009                                              

(0.008 to 0.009) 

-0.006                                              

(-0.013 to 0.002) 

12/10/2020                                              

(12/9 to 12/10)* 

-0.204                                  

(-0.301 to -0.108)* 

4.358                                  

(3.638 to 5.079)* 

North West 
12/15/2020                                              

(12/13 to 12/17) 

0.008                                              

(0.008 to 0.009) 

0.001                                              

(-0.007 to 0.01) 

12/08/2020                                              

(12/7 to 12/9) 

-1.281                                  

(-1.586 to -0.975) 

4.449                                  

(2.163 to 6.735) 

Western Cape 
11/24/2020                                              

(11/23 to 11/26)* 

0.009                                              

(0.008 to 0.01) 

0.002                                              

(-0.001 to 0.005) 

11/10/2020                                              

(11/9 to 11/11) 

0.185                                  

(-0.493 to 0.864) 

6.38                                  

(5.281 to 7.478) 

Abbreviations: COVID-19 = Coronavirus disease 2019 

* Significant 
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Table 2.4 Associations between weekly mobility, district weekly COVID-19 

incidence, and district area characteristics from mixed-effects negative binomial 

models 

 Unadjusted* Adjusted† 

 IRR  95% CI IRR 95% CI 

Weekly mobility (10% 

increase) 
1.22 1.19 to 1.25 1.21 1.19 to 1.24 

Population density (1,000 

population/km2)     
1.52 1.12 to 2.08 1.38 1.04 to 1.82 

HIV prevalence (% of 

population ages 15 to 49) 
0.92 0.89 to 0.97 0.93 0.89 to 0.99 

TB incidence (per 100k 

population) 
1.03 1.01 to 1.04 1.02 1.01 to 1.04 

Abbreviations: COVID-19 = Coronavirus disease 2019; IRR=incidence rate ratio.  

*Unadjusted models include weekly COVID-19 incidence (outcome) and each single variable 

(exposure)  

†Adjusted models include weekly COVID-19 incidence (outcome), weekly mobility (primary 

exposure), population density, HIV prevalence, TB incidence (all at the district level), and province. 
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3 REDUCING SARS-COV-2 TRANSMISSION THROUGH ROUTINE 

COMMUNITY TESTING: A MODELLING ANALYSIS 

3.1 Introduction 

While vaccination is increasingly used to mitigate the impact of the COVID-19 

pandemic, the use of diagnostic testing remains vital for case identification and reducing 

SARS-CoV-2 transmission, particularly as new variants arise that partially escape 

immunity induced by prior infections and vaccination. In the first year of the pandemic, 

diagnostic testing for COVID-19 primarily relied on reverse transcriptase polymerase 

chain reaction (RT-PCR) testing.35,36 RT-PCR remains the gold standard for diagnosing 

and screening COVID-19, is highly sensitive and specific, and has been the most widely 

used method to diagnose COVID-19 infections throughout the pandemic.35 However, 

RT-PCR testing is expensive, can have long turnaround times,7 and is limited by a global 

shortage of test kits and the availability of instruments.6 For routine community-based 

testing, the speed, frequency, and feasibility of testing using rapid antigen diagnostic tests 

(Ag-RDTs) may potentially outweigh the benefits of higher test sensitivity and specificity 

provided by RT-PCR. Importantly, the use of Ag-RDTs may enable broader public-

health testing campaigns targeted at mitigating the COVID-19 pandemic, particularly in 

countries with limited or strained PCR capacity. Ag-RDTs, when accompanied by 

isolation following a positive result, have the potential to be of substantial utility for the 

control and mitigation of the COVID-19 pandemic. With the greater testing capacity that 

Ag-RDTs provide, most recently implemented community-testing strategies depend on 

Ag-RDTs.9-11 



 

23 

Despite the potential utility of Ag-RDTs, questions remain as to how effective 

community-based testing campaigns – defined as random mass testing of the population, 

which include screening at healthcare facilities or home self-testing – for SARS-CoV-2 

have been to date, what factors (such as frequency, proportion tested, and epidemic 

parameters) have driven their relative success, and how their effectiveness can be 

improved moving forward. Countries such as the United Kingdom (UK), Slovakia, and 

Denmark have complemented their broad symptomatic testing programs with widespread 

community-level testing to varying levels of success.9-11,37 With the rise of the Omicron 

variant,38 the COVID-19 response in the United States (US) has now shifted to providing 

expanded and more accessible at-home Ag-RDTs.31 Since limited financial and human 

resources need to be dedicated to community-based testing, understanding when and 

where testing can be most impactful is paramount.  

To that end, I developed a mathematical model to quantify the impact and efficiency of 

Ag-RDTs for population-level community testing, and to identify the testing and 

epidemic parameters where use of Ag-RDTs would be expected to result in the largest 

reduction in SARS-CoV-2 transmission. 

 

3.2 Methods 

Overview of the compartmental model 

The National COVID-19 Epidemiology Model (NCEM) is a stochastic compartmental 

transmission model initially developed to reflect the SARS-CoV-2 pandemic in South 
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Africa. I then modified this model to quantify the likely impact of different SARS-CoV-2 

Ag-RDT strategies on population-level disease transmission in a general population of 10 

million people. The compartmental model has a Susceptible-Exposed-Infectious-

Recovered (SEIR) structure, that accounts for varying levels of infection and disease 

severity (asymptomatic, mild, severe, and critical cases) and includes several treatment 

pathways (outpatient severe cases, non-intensive care unit (ICU) hospitalizations, and 

ICU beds). The original model structure, parameters, and assumptions have been 

previously described in greater detail,39  and relevant key assumptions for this model are 

outlined below. 

To adapt the NCEM, additional transitions between compartments were added, where 

COVID-19-tested individuals can isolate upon a positive test result, thus reducing disease 

transmission in the general population. Specifically, when tested positive, groups in each 

infected health state transition to a mirrored diagnosed composite health state (e.g. from 

asymptomatically, pre-symptomatically or mildly infected to a “non-severe COVID and 

diagnosed” health state). The diagnosed health states then have a variable reduction in 

their contact rate set within each scenario.  

Figure 3.1 shows the structure of the adapted NCEM, where the additional compartments 

and transitions for diagnosed non-severe infections, severe infections, and 

hospitalizations are in blue. The simulation was run for 365 days to assess the medium-

term relative impact of testing strategies on the epidemic. Appendix 6.1 outlines the 

differential equations used in the adapted compartmental model, and the original 

equations have been outlined previously.39,40 
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Outcomes 

I assessed the total number of SARS-CoV-2 tests conducted, and the cumulative number 

of COVID-19 infections for each scenario in 365 days, where COVID-19 infections are 

defined as all asymptomatic, pre-symptomatic, mild, and severe infections, as well as 

hospitalized cases. I focused the analyses on two model outcomes relative to the status 

quo base case scenario:  

(a) Impact - the percentage of infections averted,  

=
𝐼𝑏𝑐 −  𝐼𝑠

𝐼𝑏𝑐
 

(b) Efficiency - the number of tests required to avert one infection 

=
𝑇𝑠

𝐼𝑏𝑐 −  𝐼𝑠
 

Where 𝐼𝑏𝑐 is the cumulative number of COVID-19 infections in the base case scenario, 

 𝐼𝑠 is the cumulative number of COVID-19 infections in the scenario of interest, and 𝑇𝑆 is 

the total number of Ag-RDT tests conducted in scenario of interest. 

 

I also assessed two secondary outcomes, total infections averted and total infections in 

the population.  
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Model analysis 

3.2.1.1 Model parameters and assumptions 

The model was calibrated to empirical COVID-19 data from various sources, including 

transition parameters, and proportion of cases that are mild, moderate, or severe. All 

parameter inputs and corresponding sources are outlined in Appendix 6.2. Parameters 

were randomly drawn from a triangular distribution defined by the lower, upper, and 

mode values, and simulations were run 50 times for each parameter set. I ran the 

simulation probabilistically to construct stable 95% simulation intervals (SI) to account 

for the stochasticity of the model and incorporate uncertainty in the final estimates. The 

sensitivity of the diagnostic tests for COVID-19 cases was assumed to be 85% (80% to 

90%).8,41 Individuals only test positive once they leave the exposed compartment and are 

in the presymptomatic phase, which is approximately the 2 days before symptom onset. 

The relative transmissibility of asymptomatic and presymptomatic cases compared to 

symptomatic cases was assumed to be 0.75 (0.70 to 0.80).42 I also assumed that 

individuals not tested do not change their behavior, those who have false negatives will 

also not change their behavior. 

 

3.2.1.2 Ag-RDT testing scenarios  

The impact of Ag-RDT testing scenarios were quantified to assess the utility of Ag-RDT 

across different epidemic conditions for all use cases. Table 3.2 outlines the parameters 

varied for each use case testing scenario. The parameters that were varied were use-case 
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dependent, but most often the frequency of testing for asymptomatic infections (testing in 

the community, K-12 schools, and universities) was varied. Select use cases varied the 

proportion tested (community testing), isolation effectiveness (community testing), 

duration and timing of testing (mass gathering), groups tested (K-12), and days delay to 

contact tracing, quarantine, exit testing, and number of days (exit quarantine). All testing 

scenarios were compared to a counterfactual base case scenario with the same epidemic 

parameters as the base case (Table 3.1).  

 

3.2.1.3 Threshold analysis under different epidemic conditions 

I conducted threshold analysis of the Ag-RDT testing scenarios under different 

combinations of SARS-CoV-2 epidemic parameters (Table 3.1). Threshold analysis is 

used to understand the drivers of variability in the impact and efficiency outcomes, as 

defined in section 3.2.2.43 In these analyses, I assessed how changes to the effective 

reproductive number (Rt) and SARS-CoV-2 prevalence can affect the utility of testing, 

and whether results are robust to alternative assumptions about the epidemic 

characteristics. Rt is defined as the number of secondary infections one infectious case 

will infect in the case’s lifetime in a population with both susceptible and immune 

people, and is a time-varying parameter that reflects the changing levels of immunity in 

the population and the impact of control measures to limit transmission. I modelled 

different Rt values to account for differing vaccination rates, nonpharmaceutical 

intervention (NPI) implementation, and/or general phase of the pandemic in a country at 

a given time. Daily SARS-CoV-2 external importation prevalence at the start of the 



 

28 

epidemic was set to either 0.1% or 1.0% to correspond to low or high prevalence periods. 

To calculate the number of daily imported infections entering the population with 

infections acquired elsewhere, the total population was multiplied by the prevalence 

(0.1% and 1.0%) and divided by the average infectious period of SARS-CoV-2.21  

Computational work reported was performed on the Shared Computing Cluster which is 

administered by Boston University’s Research Computing Services 

(www.bu.edu/tech/support/research). All analyses of model output were conducted in R 

version 4.0.0.26  

 

3.3 Results 

Impact 

Impact was defined as the percentage of infections averted compared to the base case 

scenario for each use case. As expected, a greater proportion of infections averted 

(greater impact) was generally associated with higher proportion tested and increased 

frequency of Ag-RDT testing for most scenarios (Figure 3.2A). In the epidemic scenario 

with high disease transmission (Rt=2) and high COVID-19 prevalence (1%), when the 

population was tested once every two weeks and test positive individuals isolated at 50% 

effectiveness, the percent infections averted increased from 11.29% (95% SI: 5.41% to 

18.62%) when 2.5% of the population was tested to 49.34% (95% SI: 41.09% to 51.1%) 

when 20% of the population was tested, and to 90.26% (95% SI: 84.62% to 92.6%) when 

90% of the population was tested. Similarly, increased frequency of testing increased the 

impact of Ag-RDT testing. Keeping everything else constant, when 20% of the 

http://www.bu.edu/tech/support/research
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population was tested, increasing frequency of testing from once every 2 weeks to once a 

week and twice a week increased impact from 49.34% to 63.53% (95% SI: 54.7% to 

66.5%) and 73.39% (95% SI: 63.76% to 76.74%) respectively. A greater percent of 

infections were averted and fewer tests per averted infection were needed when there was 

greater isolation effectiveness (defined as a reduction in number of contacts when 

diagnosed positive) (Figure 3.2). Even with frequent and widespread testing, there would 

be a limited percentage of infections averted when there was no reduction in the number 

of contacts post-diagnosis (Figure 3.2A).  

 

Efficiency 

Efficiency was defined as the number of tests needed to avert one infection compared to 

the base case scenario across use cases. In contrast, these greater-frequency and higher-

proportion tested scenarios required more tests per averted infection - thus less efficient 

per test used (Figure 3.2B). In the previous epidemic scenario with high disease 

transmission and high COVID-19 prevalence, and 2.5% of the population was tested once 

every two weeks and isolated at 50% effectiveness, efficiency was 7.31 (95% SI: 7.00 to 

10.08) tests per averted infection. The number of tests per averted infection increased 

(less efficient) to 12.81 (95% SI: 8.54 to 26.51) and to 31.51 (95% SI: 21.20 to 57.93) 

when 20% and 90% of the population was tested, respectively. Similarly, more frequent 

testing decreased efficiency; when 20% of the population was tested, increasing 

frequency to once a week increased the number of tests per averted infection to 9.23 
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(95% SI: 9.22 to 12.45), and testing twice a week increased efficiency to 15.21 (95% SI: 

13.35 to 20.76) tests per averted infection.  

Threshold analysis of Rt and COVID-19 prevalence 

When transmission and prevalence of COVID-19 is high and 20% of the population were 

tested once a week, the percent infections averted was only 20.78% (95% SI: 12.55% to 

22.96%) when isolation effectiveness was low (20%), 63.53% (95% SI: 54.70% to 

66.5%) when isolation effectiveness was 50%, and 96.51% (95% SI: 94.79% to 97.20%) 

in the best case scenario (isolation effectiveness=80%). There was also increased 

efficiency with greater isolation effectiveness. In the same scenario, the number of tests 

per averted infection is 60.85 (95% SI: 38.00 to 173.54) if diagnosed individuals isolate 

20% of the time with similar testing (20% of the population once a week). This decreased 

to 19.90 (95% SI: 13.12 to 39.83) when isolation effectiveness was 50%, and 13.10 (95% 

SI: 8.98 to 22.98) when isolation effectiveness was 80% (Figure 3.2B). Moreover, there 

was a greater percentage of infections averted (greater impact) and more tests required 

per averted infection (less efficient) when the effective reproductive number and 

prevalence were low. 

Secondary outcomes 

The number of infections averted followed the same trend as percentage infections 

averted (Appendix 6.3), where greater proportion of infection averted was generally 

associated with more widespread and greater frequency of Ag-RDT testing, and greater 

isolation effectiveness substantially increasing the total infections averted. The base case 
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total number of infections (if I only tested 15% of symptomatic infections, 50% of severe 

cases, and all hospitalized cases) ranged from 1.1 to 8.2 million, or 11% to 82% of the 

population depending on the epidemic parameters. Appendix 6.4 shows the total 

infections in millions for each scenario, as well as the base case scenarios, where we see 

widespread, frequent, and effective testing to be related to a lower number of total 

infections across all levels of Rt and prevalence. Overall, confidence intervals to account 

for the stochasticity of the model demonstrated that my main findings were consistent 

across scenarios and outcomes and did not vary greatly due to stochasticity (Figure 3.3 

and Appendix 6.5). The number of tests per 100,000 population/month is illustrated in 

Appendix 6.5.  

3.4 Discussion 

A greater percentage of infections were averted with more frequent and widespread 

community-wide Ag-RDT COVID-19 testing across all epidemic scenarios. However, 

the extent of infections averted in all scenarios strongly depends on the reduction in post-

diagnosis contacts – diagnosis must be accompanied by changes in behavior for any 

testing strategy to be effective. Additionally, my findings suggest that community-wide 

testing has a small impact when disease transmission is high and is most useful when an 

epidemic is waning or before an epidemic wave (low Rt). 

Health systems in limited resource settings are unlikely to be able to scale up COVID-19 

testing to a large percentage of the population. For example, when disease transmission 

and COVID-19 prevalence is high (Rt=2 and prevalence=1%), even in the most modest 
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scenario considered in Appendix 6.5 – community testing 2.5% of a population once 

every two weeks – would require 5,000 Ag-RDT tests per 100,000 population per month 

and would yield only small reductions in infections (11% reduction in infections when 

assuming 50% reduction in contacts following a positive test). This level of testing would 

require 160% of the current testing procurement target for LMICs of 3,000 tests per 

100,000 population/month,44 and would require that all tests be performed in addition to 

tests allocated for symptomatic testing. For substantial impact of a community testing 

strategy, more widespread and frequent testing is needed; for example, to achieve an 88% 

reduction in infections, holding epidemic and other testing parameters constant, when 

50% of the population are tested once a week, this would require 200,000 tests per 

100,000 population per month (66x the current testing procurement target). As Omicron 

becomes the main SARS-CoV-2 variant globally, the US is providing increased support 

for access to testing, including a commitment to providing 500 million at-home Ag-

RDTs, in addition to current facility testing capabilities.45  

Other countries have implemented population-wide community-level SARS-CoV-2 

testing to varying levels of success, and my results shed light on the relative success or 

failure of each national-level testing effort for epidemic mitigation. The UK is an 

example of having recently implemented an Ag-RDT mass screening program since 

April 2021 that offers access to tests twice a week. Testing data in the UK as of 

November 2021 for both PCR and Ag-RDT showed that approximately 41,375 tests per 

100,000 population per month were conducted in November 2021,10 which according to 

my findings is likely not enough to substantially reduce infections. A study also found 
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that only 20% of individuals complied with isolation measures.46 The inadequate levels 

of testing and isolation effectiveness in the UK likely contributed to the ineffectiveness of 

the initiative, which corresponds with my study findings that demonstrate that in order for 

mass testing to be effective, widespread frequent testing and high isolation adherence is 

imperative. 

Denmark also focused on a voluntary mass testing approach. Even though approximately 

90% of the Danish population was tested at least once since the start of the pandemic, 

there may have been large differences in the frequency of testing of each individual given 

that the program was voluntary.11 Further, research has shown that the contact number 

was only reduced by 25%,11 which is likely to not have a large effect since my study 

demonstrated that high levels of frequent and widespread testing are needed to reduce a 

marked number of infections at a population-level. In contrast, Slovakia reported to have 

reduced COVID-19 infection prevalence in counties by 80% after two rounds of mass 

Ag-RDT testing.9,47 Slovakia’s success may be due to the high proportion tested in the 

population (83% and 84% in each round, respectively) in a short time frame, as well as 

the timing of testing (October and November 2020), which was early on in the country’s 

outbreak, before an epidemic wave, with low Rt.12 This is consistent with my finding that 

testing is more impactful before an epidemic wave. When Slovakia implemented mass 

testing, arrivals from some regions were being quarantined, reducing prevalence, which is 

consistent with my observation that testing is more impactful in low prevalence settings. 

Moreover, my findings are consistent with two modeling studies in France48 and the 

Netherlands49, which both concluded routine community-level testing with isolation of 
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infectious individuals only has a substantial impact on disease transmission with very 

widespread frequent testing, similar to the levels demonstrated in this study.  

Differences in the effect of mass testing on COVID-19 outcomes in Denmark, Slovakia, 

and the UK is likely to be associated with the different NPIs in place as mass testing 

occurred, but even so, results from mass testing programs in various countries and my 

findings provide additional evidence to suggest that the epidemic trajectory in a given 

geographic region is as important as the screening program itself. While my findings 

suggest that mass asymptomatic community testing accompanied by viable mechanisms 

of isolation can facilitate disease control, the number of tests needed likely make it 

feasible only in small, defined settings in limited resource settings. Additional modeling, 

operational, and cost-effectiveness studies extending these findings need to be conducted 

to identify key candidate settings for asymptomatic community testing. 

There are some limitations to this study. The model used several simplifying assumptions 

as a tradeoff between complexity and parsimony, which introduced several limitations in 

the interpretation of the findings. For example, the model was unconstrained by the total 

number of tests and healthcare workers, for my goal was to quantify the impact of Ag-

RDT without considering resource limitations. Additionally, the model did not assume a 

contact tracing infrastructure, as these findings were meant to be generalizable across all 

countries. Contact tracing may not be feasible in many LMICs given the substantial 

human resource burden. However, the implementation of contact tracing in addition to 

widespread community testing would only further improve the effectiveness of routine 

community testing if human resources were available and trained to conduct this type of 
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large-scale public health program. I also did not incorporate age structure into my model, 

as the focus of the model was random mass testing of the population, which was assumed 

to be age-agnostic. Additionally, I assessed the number of infections, rather than deaths, 

which have not been shown to be age-dependent.18,50,51 Finally, in order to evaluate the 

value of Ag-RDT at various stages of the epidemic trajectory, I had to make non-dynamic 

assumptions about each scenario (e.g. artificially setting Rt and prevalence) at the 

beginning of the model runs. In reality, these processes are dynamic, and a dynamic 

evaluation of each strategy across varying epidemic trajectories will be required in future 

research.  

Overall, speed and frequency of testing to provide real-time SARS-CoV-2 case data 

make Ag-RDTs a valuable tool for case detection, outbreak investigation and contact 

tracing.8 However, I found that in order for random routine community testing to be 

impactful, testing would need to be frequent and widespread, requiring a likely infeasible 

increase in required resources. Countries that have implemented or are rolling out 

expanded access to testing have not been reaching the number of diagnostic tests required 

to substantially reduce the percentage of infections by testing alone. However, testing in 

conjunction with other non-pharmaceutical interventions could have a substantial impact. 
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3.5 Tables and Figures 

Figure 3.1 Adapted NCEM model. Additional compartments and transitions for 

diagnosed mild infections, severe infections, and hospitalizations are in blue. Dotted 

arrows are imported cases at the start of the epidemic. 

 

Compartments: S – Susceptibles, E – Exposed Ia- Asymptomatic infections, Ip – 

Presymptomatic infections, Im – Mild infections, Is – Severe infections, H1 – non-ICU 

hospitalizations, H2 – ICU hospitalizations, ICU1 – ICU deaths, ICU2 – ICU recovereds, H3 – 

post-ICU hospitalizations, R – recovered, D – deaths, I+ - Asymptomatic/presymptomatic/mild 

infections diagnosed, IS+ - Severe infections diagnosed, H+ - Hospitalizations diagnosed 

  



 

37 

Table 3.1 Testing scenario parameters varied under different epidemic conditions 

Parameters Values 

Ag-RDT testing scenario  

Proportion of community tested 2.5%, 5%, 20%, 50%, 90% 

Frequency of community testing Once/two weeks, once/week, twice/week 

Isolation effectiveness 20%, 50%, 80% 

Epidemic conditions  

Effective reproductive number 0.8, 1.2, 2.0 

Prevalence of SARS-CoV-2 0.1%, 1% 
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Figure 3.2 (A) Percent of infections averted (impact) and (B) test per averted 

infection (efficiency) with varying frequency of testing, effective reproductive 

number (Rt), COVID-19 prevalence, and isolation effectiveness (reduction in the 

force of infection when diagnosed) for a community testing strategy at various 

proportions of the community tested. 
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Figure 3.3 Estimates and 95% simulation intervals (SIs) for the (A) impact and (B) 

efficiency outcomes 
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4 RAPID ANTIGEN DIAGNOSTICS FOR SARS-CoV-2 MITIGATION: A 

COMPARISON OF EIGHT MATHEMATICAL MODELS 

 

4.1 Introduction 

Diagnostic testing for SARS-CoV-2 remains an effective pandemic response tool by 

allowing for the timely detection and isolation of infectious cases, particularly during the 

emergence of the Omicron variant. Early research demonstrates that the Omicron variant, 

which is now the most dominant strain globally, may evade vaccine-induced immunity, 

particularly without the booster shot.52,53 Thus, other mitigation measures such as non-

pharmaceutical interventions (NPIs) and diagnostic testing remain vital for reducing 

further SARS-CoV-2 transmission globally. Real-time reverse transcription polymerase 

chain reaction (RT-PCR) tests and antigen-detecting rapid diagnostic tests (Ag-RDT) are 

the two key diagnostic modalities in the ‘test, trace, isolate and treat’ strategy of 

pandemic response. RT-PCR tests remain the gold standard for COVID-19 diagnostic 

testing, with higher test sensitivity and specificity than Ag-RDTs, making it the 

diagnostic most widely used to confirm COVID-19 infection. However, they require 

laboratory infrastructure, sample transport, skilled personnel, and can be plagued by long 

turnaround times. 

As a surveillance and epidemic control strategy, reducing population-level spread 

requires greater accessibility and faster result turnaround time to identify cases while they 

are still infectious. Ag-RDTs are low-cost (less than $2.50 per test)54 and can be utilized 
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for the scale-up of diagnostic testing in limited resource settings such as low- and middle-

income countries (LMICs) − where RT-PCR testing capacity is limited − and to support 

surveillance or response efforts where RT-PCR testing is readily accessible. While Ag-

RDTs have lower test sensitivity (>80% in symptomatic individuals in the first 5-7 days 

of illness) than PCR tests, they can be performed at point of care and provide results 

within 10–30 minutes. Most importantly, Ag-RDTs perform very well when an 

individual has high SARS-CoV-2 viral load, where the most sensitive tests can detect 

97% of infectious cases, and thus are able to detect COVID-19 cases when they are most 

infectious.55  

Different diagnostic testing strategies are likely required in different settings to most 

efficiently reduce transmission. In limited resource settings, identifying the scenarios 

where Ag-RDTs can best be utilized to create the largest reductions in onward 

transmission is important for decision making and resource allocation efforts, particularly 

during heightened demand such as when epidemic transmission is high. This study aims 

to quantify the impact of SARS-CoV-2 Ag-RDT testing strategies on COVID-19 

outcomes in LMICs, by comparing outcome measures in several scenarios from multiple 

mathematical models. In doing so, I seek to provide an evidence base for the use of Ag-

RDTs in various LMIC settings, quantify the impact and efficiency of expanded access to 

Ag-RDTs, and identify scenarios where use of tests can be optimized. 
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4.2 Methods 

Overview and use cases 

I conducted a multi-model comparison across six different scenarios, hereafter referred to 

as “use cases”. Use cases are defined as the subnational settings and scenarios where I 

assess the impact of Ag-RDTs. In this study, the use cases were (a) in the general 

community, (b) at mass gatherings, (c) at K-12 schools (kindergarten to 12th grade/high 

school, or primary and secondary education), (d) at universities, (e) at border crossings, 

and (f) to exit quarantine. These use cases were identified by the Access to COVID-19 

Tools-Accelerator (ACT-A) modelling consortium members56 as high priority use cases, 

where Ag-RDTs are under consideration as a primary diagnostic tool. The ACT-A 

modelling consortium was established in conjunction with the World Health Organization 

(WHO) and Foundation for Innovative Diagnostics (FIND), with the goal of investigating 

the public health impact of Ag-RDTs to inform policy. 

 

Outcomes 

I calculated two outcomes relative to the base case scenario (counterfactual base case 

scenario with the same epidemic parameters, outlined in Table 4.1) in each use case: 

(1) Impact – depending on the use case: the percent and number of infections averted, 

percent of infectious days averted, or the number of infectious imports averted per 

100,000 travelers, and 
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2) Efficiency - the number of tests required to either: avert one infection, avert one 

infectious day, or infectious import per 100,000 travelers. 

To calculate these outcomes, I determined the number of Ag-RDT COVID-19 tests that 

would need to be conducted, and the number of COVID-19 infections for each scenario. 

COVID-19 infections were defined as all diagnosed and undiagnosed asymptomatic, pre-

symptomatic, mild, and severe (including hospitalized) COVID-19 infections. The exiting 

quarantine use case used a modified version of these outcomes (infection days instead of 

infections). I was interested in assessing the short- and medium-term relative impact of 

testing strategies, and depending on the use case the model trajectories were between 90 

and 365 days. 95% simulation intervals were extracted from all models. 

 

Multi-model comparison 

A multi-model comparison is a formal process by which outcomes of two or more 

mathematical models of interventions are compared to provide evidence for decision 

making. In this study, I compared several use cases across different models. Guidelines 

on best practices for comparisons among different mechanistic disease models are 

outlined elsewhere, requested by the WHO Immunization and Vaccines-related 

Implementation Research Advisory Committee (IVIR-AC), and I followed that 

framework in this paper.43 This comparison framework using multiple models has been 

used in multiple infectious disease studies in the past,57-59 and multiple model approaches 

that predict the trajectory of the COVID-19 pandemic have previously been 
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published;60,61 however, to date there have been no comparative studies that examine 

different Ag-RDT use cases. In the case of Ag-RDT recommendations, where evidence is 

scarce, the comparison of model results across various use case settings would put all 

findings in context within one overarching document, providing accessible guidance for 

decision makers.  

 

4.2.1.1 Models 

My study included eight mathematical models from different modeling groups to assess 

the potential impact of Ag-RDT testing for SARS-CoV-2 infection in different use cases. 

Most of the models included in the study were already created to model LMICs, but 

others were repurposed to represent the population structure, including age distribution 

and contact network, if applicable. All collaborators agreed to provide output from their 

models and make adjustments where relevant or required. All but one (border crossings) 

showed the results from a single modeling group. Table 4.1 outlines the mathematical 

models included in the analysis and a brief description. Models were a combination of 

compartmental, agent-based, algebraic, and statistical models. Additional background and 

methodological approach on all models are explained in detail in Appendix 6.6. 

 

4.2.1.2 Model parameters and assumptions 

Each modeling group was asked to run a set of scenarios. In order to have a unifying set 

of variables such that the models could be compared to each other, consortium members 
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modified their models to incorporate any missing parameters where appropriate. 

Moreover, modelling consortium members were given an acceptable range to use for test 

sensitivity for Ag-RDTs and base case scenarios across use cases, to preserve 

comparability across use case models.  Across use cases, mean sensitivity ranged from 

80% to 85%, or was conditional on intra-host viral load dynamics. Differences in model 

or parameter specification between models were systematically recorded in Appendix 

6.7. 

4.2.1.3 Ag-RDT testing scenarios 

The impact of Ag-RDT testing scenarios were quantified to assess the utility of Ag-RDT 

across different conditions for all use cases. Table 4.2 outlines the parameters varied for 

each use case testing scenario. The parameters that were varied were use-case dependent, 

but most often the frequency of testing for asymptomatic infections (testing in the 

community, K-12 schools, and universities) was varied. Select use cases varied the 

proportion tested (community testing), isolation effectiveness (community testing), 

duration and timing of testing (mass gathering), groups tested (K-12), and days delay to 

contact tracing, quarantine, exit testing, and number of days (exit quarantine). All testing 

scenarios were compared to a counterfactual base case scenario with the same epidemic 

parameters as the base case (Table 4.1).  

4.2.1.4 Threshold analysis under different epidemic conditions 

I conducted threshold analysis of the Ag-RDT testing scenarios under different 

combinations of SARS-CoV-2 epidemic parameters (Table 4.1). Threshold analysis is 
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used to understand the drivers of variability in the impact and efficiency outcomes, as 

defined in section 4.2.2.43 In these analyses, I assessed how changes to the effective 

reproductive number (Rt) and SARS-CoV-2 prevalence can affect the utility of a testing 

strategy, and whether results are robust to alternative assumptions about the epidemic 

characteristics. Initial Rt and prevalence were varied to assess the impact and efficiency 

of testing depending on the specific local stage of the epidemic; for example, high initial 

Rt and low prevalence would suggest the start of a new epidemic wave. I modelled 

different initial Rt values to account for differing vaccination rates nonpharmaceutical 

intervention (NPI) implementation. SARS-CoV-2 prevalence was set to either 0.1% or 

1.0%. 95% simulation intervals (SI) were constructed for each model to account for the 

stochasticity of the model and incorporate uncertainty in the final estimates. All analyses 

of model output were conducted in R version 4.0.0.26  

 

4.3 Results 

Different use case settings require varying testing strategies to most efficiently and 

impactfully reduce infections across a range of epidemic conditions, with some global 

trends (Table 4.3). Overall, there were tradeoffs between impact (percent infections 

averted) and efficiency (number of tests to avert one infection). Across use cases, 

increasing test frequency (and/or more testing) was associated with greater percentage of 

infections averted (Figure 4.1). In contrast, lower testing frequency was generally more 

efficient. In community testing and university use case, testing was most effective and 

efficient when Rt and/or infection prevalence was low. In contrast, testing was most 
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effective and efficient when Rt and/or infection prevalence were high in defined settings 

such as border crossings (Table 4.3).  

 

Impact 

Impact was defined as the percentage of infections averted compared to the base case 

scenario for each use case. Across use cases, a higher frequency of testing (or more 

widespread testing) was associated with a greater impact in terms percentage of 

infections averted (Figure 4.1). In the community testing use case, across all the epidemic 

scenarios, a greater percentage of infections are averted with more frequent and more 

widespread community-wide Ag-RDT testing, as long as positive cases comply with 

isolation (Figure 4.1a). With higher disease transmission (Rt=2) and high COVID-19 

prevalence (1%), when the population was tested once every two weeks and test positive 

individuals isolated at 50% effectiveness, the percent infections averted increased from 

11.3% (95% SI: 5.4% to 18.6%) when 2.5% of the population was tested to 90.3% (95% 

SI: 84.6% to 92.6%) when 90% were tested. Similarly, increased frequency of testing 

increased the impact of Ag-RDT testing. With a similar epidemic scenario and testing 

20% of the population, increasing frequency of testing from once every 2 weeks to twice 

a week increased impact from 49.3% to 73.4% (95% SI: 63.8% to 76.7%).  However, 

there is a plateau in the impact of Ag-RDT testing, after which more tests do not identify 

a higher percentage of infections. 

Similarly, for the K–12 use case, an increased frequency of testing also resulted in a 
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larger proportion of infections averted. More widespread testing—testing all students 

plus all teachers—was the most effective scenario in reducing the percentage of new 

infections (Figure 4.1c). With testing twice weekly when disease transmission was high 

(Rt=2) and COVID-19 prevalence was high (1%), the percent of infections averted 

increased from 48.0% (95% SI: 47.9% to 48.0%) when all teachers and 13- to 18-year 

olds were tested to 73.0% (95% SI: 72.9% to 73.1%) when all teachers and students were 

tested. An Ag-RDT strategy in a university setting was most effective and prevented the 

largest percentage of infections under any scenario when testing was conducted twice 

weekly (Figure 4.1d). When testing was conducted once every two weeks and both 

disease transmission and prevalence were high (Rt=2; 1%), percent infections averted 

increased from 15.0% (95% SI: 13.0% to 17.0%) when testing was done once every two 

weeks to 42.4% (95% SI: 40.5% to 44.4%) with twice weekly testing. 

In the case of mass gatherings, the timing, rather than the frequency of the test was most 

important. Using Ag-RDT tests to screen mass gathering attendees the day before or the 

day of an event offered the greatest reduction in infectious individuals at mass gatherings 

(Figure 4.1b). When COVID prevalence was 1% and an event was 3 hours long, testing 

the same day as an event averted 98.8% of infections (95% SI: 96.4% to 99.7%), 

compared to 56.4% of infections averted (95% SI: 56.4% to 65.9%) when testing was 

done 3 days prior.  

In the case of immigrant/traveler screening, an additional negative COVID-19 RT-PCR 

test result prior to Ag-RDT screening at the border offered a greater reduction in the 
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number of undetected infections entering a country (Figure 4.1e). In the LSHTM model, 

with 1% SAR-CoV-2 prevalence, percent infections averted increased from 48.4% (95% 

SI: 29.6% to 66.7%) with only Ag-RDT testing to 78.4% (70.8% to 83.1%) with an 

additional negative COVID-19 RT-PCR test result prior to Ag-RDT screening at the 

border.   

When testing to exit quarantine, high frequency testing (daily testing without the need to 

quarantine for at least 5 days) averted the most infectious person-days, compared to a test 

to release strategy (individuals with positive tests will quarantine, and allows individuals 

to exit quarantine or isolation early with a negative test). Test to release strategies were 

very effective at reducing the percent of infectious days if testing induced individuals to 

adhere better than they would to a longer 14-day quarantine or 10-day isolation period 

(Figure 4.1f). 

 

Efficiency 

Efficiency was defined as the number of tests needed to avert one infection compared to 

the base case scenario across use cases. In general, lower frequency testing strategies are 

more efficient (fewer tests needed) (Figure 4.2). In terms of the community testing, 

lowering the frequency of testing in the community consequently increased the number of 

infections averted per test (Figure 4.2a). In the K-12 use case, the greater the frequency of 

testing, the greater the number of tests required to prevent one infection and subsequently 

reducing efficiency of the strategy. Testing all teachers and all students ages 13-18 was 
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the most efficient strategy in terms of the number of tests required to prevent a new 

infection across most epidemic conditions and testing frequencies (Figure 4.2c). The 

trade-off between impact and efficiency was less stark in the university setting when the 

Rt was low, and bi-monthly testing of students, faculty, and staff required the least 

number of Ag-RDT tests to prevent one infection while preventing a comparable number 

of infections to weekly or twice weekly testing. However, as the Rt increases, more 

frequent testing averts a larger percentage of infections while requiring more tests and 

reducing efficiency of each test (Figure 4.2d).  

In the mass gathering use case, testing the day of the event detects the greatest number of 

infectious individuals while utilizing the same number of tests as compared to testing in 

the days prior to the event, as attendees are more likely to become infectious the longer 

the time between testing and the event (Figure 4.2b). For border crossings, Ag-RDT 

screening only was the most efficient strategy for all three models (Figure 4.2e).  When 

testing to exit quarantine, test to release strategies (individuals with positive tests will 

quarantine, and allows individuals to exit quarantine or isolation early with a negative 

test) were generally more efficient and utilized fewer Ag-RDT tests compared to a daily 

testing strategy (without the need for quarantine for at least 5 days) (Figure 4.2d). 

However, this efficiency comes at the expense of a smaller reduction in the percentage of 

infectious days averted.  
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Threshold analysis of Rt and COVID-19 prevalence 

In general, testing strategies across most use cases were most impactful when Rt and/or 

prevalence was low and most efficient when Rt and/or prevalence was high, with some 

exceptions (Table 4.3). Testing strategies with more impact (greater percentage of 

infections averted) do not necessarily correspond to a greater number of infections 

averted (Appendix 6.8). Under widespread community testing, a high Rt and high 

prevalence necessitated a larger proportion of individuals be tested more frequently to 

minimize transmission (Figure 4.1a). Similarly, in mass gatherings, more testing 

strategies also require more tests to avert infections when Rt and/or prevalence are high 

(Figure 4.2e), but prevalence does not necessarily affect impact. The effect of COVID-19 

prevalence on Ag-RDT screening at border crossings is less apparent but consistent with 

most of the other use cases; as COVID-19 prevalence increases, more infectious imports 

are averted and enter undetected (higher impact), but is also more efficient. 

K-12 schools and universities had contrasting results. While both models predicted that a 

greater proportion of infections could be prevented under low COVID-19 prevalence, 

they presented opposite results in the context of Rt. K-12 schools saw a greater reduction 

in cases under a high Rt, while universities saw a greater reduction in cases when the Rt 

was low (Figure 4.1c and Figure 4.1d). Additionally, in the university setting, when the 

Rt is low, testing once weekly or bi-monthly would be sufficient at preventing a 

comparable percentage of infections to a higher frequency of testing (Figure 4.2d). When 

the Rt and prevalence are high, twice weekly testing prevented the greatest number of 
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infections, but required significantly more tests per averted infection. These differences 

are reflective of both the transmission dynamics within networks among the use cases 

and the way Rt was represented in the model. For example, the university model 

expressed Rt within the university community (a closed community) and was not 

reflective of the broader community, indicating that testing works best in concert with 

other interventions that bring Rt below 1. 

 

Uncertainty across models 

To compare uncertainty estimates (95% SIs) across use cases, scenarios which had 

similar parameters (Figure 4.3) were plotted.  Some use cases do not model certain 

epidemic parameters (see Table 4.1 for the parameters each use case varies); thus, instead 

of excluding these use cases from the figure, I collapsed parameters of use cases with use 

cases without a parameter; i.e. I collapsed use cases with Rt 0.8 and use cases that did not 

model Rt; use cases with testing frequency 1x/week and use cases where frequency was 

not modeled. The outcomes for percent infections averted ranged from 15% [95% SI: 

13% to 17%] (universities; Rt=1.2, prevalence=1%, frequency=1x/2 weeks) to 99.93% 

[95% SI: 99.89 to 99.95] (community testing; Rt=1.2, prevalence=0.1%; frequency=2x a 

week), and the simulation intervals varied slightly (Figure 4.3a). The test per averted 

infection ranged from 2 tests [95% SI: 1 - 3] (exiting quarantine; exposure 

prevalence=50%; frequency=1x to release) to 2049 tests [95% SI: 1319 - 4674] (Mass 

gathering; prevalence=0.1%) (Figure 4.3b).   
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4.4 Discussion 

My results demonstrate that Ag-RDT can  reduce SARS-CoV-2 infections across various 

use cases, and different testing strategies are needed to be most impactful (greater 

percentage of infections averted) and efficient (lesser number of tests per averted 

infection) across a range of epidemic conditions. Across use cases, increasing test 

frequency (and/or more widespread testing of a community) was associated with a greater 

percentage of infections averted. There was also a trade-off between impact (percentage 

of infections averted) and efficiency (number of tests per averted infection), where 

greater frequency and more widespread testing required more tests to avert one infection.  

Moreover, the effective reproductive number (Rt) of SARS-CoV-2 and the prevalence of 

COVID-19 within the community are two influential factors in the success of a testing 

strategy, which suggests that testing strategies should be modified over time as Rt and 

SARS-CoV-2 prevalence changes. Similar to test frequency and proportion tested, there 

was also a trade-off between impact and efficiency in Rt and prevalence, where most 

testing strategies require more tests to avert infections when Rt and/or prevalence are low, 

and tests are more efficient when Rt and/or prevalence are high. Testing strategies across 

most use cases had the greatest impact when Rt and/or infection prevalence were low, 

because testing and isolation help to keep the number of cases below Rt of 1, since an 

outbreak of SARS-CoV-2 would more likely occur when Rt is above 1. The reduced 

efficiency when Rt and/or prevalence are high are due to the low probability of any 

individual testing positive when prevalence is low, and an Ag-RDT testing strategy for 

low COVID-19 prevalence captures fewer infectious days in the community for the same 



 

54 

number of tests, relative to a high prevalence setting.  

These findings provide guidance to assist in determining how to allocate and optimize 

Ag-RDTs to reduce COVID-19 transmission and re-open societies safely: determining 

when schools and universities can re-open, determining when sporting events, concerts 

and places of worship can resume activity, reducing quarantine periods, halting outbreaks 

and resuming travel. Ag-RDTs, when accompanied by isolation following a positive test, 

have strong potential to play an important role in the control and mitigation of the 

COVID-19 pandemic. This is particularly beneficial in settings where access to RT-PCR 

testing is limited, and in cases where the turnaround time of available tests is not rapid 

enough to allow timely response. When resources are limited, allocation of diagnostic 

testing capabilities depend on whether the goal is to maximize impact or efficiency, or a 

combination of both. To maximize impact of Ag-RDTs, widespread and frequent testing, 

same-day testing, negative RT-PCR test result prior to Ag-RDT screening at the border, 

high adherence to quarantine, and daily frequency testing strategies should be prioritized. 

In contrast, more focused testing of higher risk groups, same-day testing, requiring only 

one Ag-RDT for border crossing, and test-to-release strategies are more valuable when 

maximizing efficiency. In limited resource settings where efficiency may be prioritized, 

testing resources may be best allocated to more defined use case settings where frequent 

and widespread testing can be implemented to maximize the utility of each test. 

Alternatively, rather than spend resources on random mass testing of the population with 

community testing, tests may be better spent when symptomatic or in close contact with a 

case. This is particularly the case if symptomatic testing demand is not yet saturated.  
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There has previously been limited guidance on the use of Ag-RDTs, as current WHO 

guidance focuses on symptomatic testing of individuals meeting COVID-19 case 

definition.62 My findings provide greater support for the growing body of evidence that 

Ag-RDTs can significantly reduce transmission and are valuable in low prevalence 

settings.63-66 There has previously been hesitance over using Ag-RDTs in low prevalence 

populations, due to the greater risk of false positive results (lower positive predictive 

value [PPV]) when prevalence is low.67 Even so, at the population level, the feasibility of 

using Ag-RDTs to provide real-time SARS-CoV-2 case data outweigh the benefit of 

higher test sensitivity, making Ag-RDTs a valuable tool for case detection, outbreak 

investigation and contact tracing.55,64  

This study has a number of limitations. Since I compared multiple models with different 

structures, definite direct conclusions cannot be drawn from this study. The results of 

each use case cannot be fully and directly compared with one another because of 

differences in the underlying modelling frameworks and the lack of explicit consideration 

of the proportion of any population that might be captured within any particular use case. 

Additionally, the models for the different use cases utilize various simplifying 

assumptions in order to reduce complexity, outlined in Appendix 6.6, which introduces 

several limitations in the interpretation of my findings. I have modeled the scenarios that 

would be most likely to provide insight into interventions that would facilitate epidemic 

control. As a balance between complexity and parsimony of the models, I could not 

model all possible testing scenarios, and only the ones I deemed most valuable. 

Additionally, the results presented only quantify the effectiveness of testing strategies 
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within each use case, and do not offer any information on the impact of each use case on 

the broader community or the effects these testing strategies could have on onward 

community transmission. 

The results from this multi-model comparison provide an evidence base for the use of 

Ag-RDTs in various settings and provide an estimate of the impact of expanding access 

to Ag-RDTs. These findings emphasize the value of widespread, high frequency Ag-RDT 

COVID-19 testing across different settings, which are effective in reducing SARS-CoV-2 

infections. In LMICs with limited resources that might have difficulty scaling up testing, 

efforts must be made to maximize the utility of each test by deciding who and where to 

focus testing effort, to optimize both impact and efficiency. The findings from this study 

provide an understanding of when and in what settings Ag-RDTs can best be utilized to 

most effectively reduce onward transmission, and such understanding is critical for global 

decision making and resource allocation.
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4.5 Tables and Figures 

Table 4.1 Details on the use case mathematical models included in the multi-model comparison. 

Use case 

Modelling 

group Model type Age structure 

Network 

structure 

Spatial 

structure 

Sensitivity 

(95% CI) Base case scenario 

Community 

testing 

Boston 

University 

Compartmental 

model 

N/A N/A N/A 85% 

(80%-90%) 

No asymptomatic testing, 

15% of symptomatic 

mild cases, 50% of 

severe cases, and 100% 

of hospitalized cases 

Mass 

gathering 

Harvard T.H. 

Chan School of 

Public Health 

Bayesian 

statistical model 

N/A N/A N/A Conditional on 

intra-host viral 

load dynamics 

No testing 

K-12 New York 

University 

Agent-based Yes, divided 

into teachers, 

5-12 yo pupils, 

and 13-18 yo 

pupils 

N/A N/A 85% No asymptomatic testing, 

symptomatic testing for 

teachers and pupils 

University Boston 

University 

Agent-based Yes, 

continuous 

variable in the 

model 

Yes, to 

conduct 

contact 

tracing 

N/A 85% No testing 
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Border 

crossings 

Agency for 

Science, 

Technology and 

Research 

Agent-based N/A N/A N/A 80% No testing 

Boston 

University 

Algebraic 

algorithm 

N/A N/A N/A 85% 

London School 

of Hygiene and 

Tropical 

Medicine 

Stochastic, 

Agent-based 

N/A N/A Country-

level 

85% 

Exiting 

quarantine 

London School 

of Hygiene and 

Tropical 

Medicine 

 

Stochastic, 

Agent-based 

N/A N/A N/A Depends on Ct 

value at the time 

of testing, and is 

drawn from their 

individual Ct 

trajectory 

No testing 
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Table 4.2 Parameters varied for each use case. 

Use case Parameter Values 

Community 

testing 

Effective reproductive number (Rt) 0.8, 1.2, 2.0 

Prevalence of COVID-19 0.1%, 1% 

Proportion of community tested 2.5%, 5%, 20%, 50%, 90% 

Test frequency Once/two weeks, once/week, 

twice/week 

Isolation effectiveness- reduction in 

number of contacts post positive test 

20%, 50%, 80% 

Mass 

gathering 

Prevalence of COVID-19 0.1%, 1% 

Duration of event 1hrs, 3hrs, 5hrs 

Timing of test 3, 2, or 1 day prior to event, day 

of event 

K-12 Effective reproductive number (Rt) 0.8; 1.2; 2.0 

Prevalence of COVID-19  0.1%; 1% 

Groups tested Testing only teachers; testing 

teachers and 5-12 year olds; 

testing teachers and 13-18 year 

olds; testing all teachers and all 

pupils 

Testing frequency Once/two weeks; once/week; 

twice/week 

University Effective reproductive number (Rt) 0.8; 1.2; 2.0 

Prevalence of COVID-19  0.1% or 1% 

Test frequency Once/two weeks; once/week; 

twice/week 

Border 

crossings 

Prevalence of COVID-19  0.1%, 0.5%, 1.0%, 2.0% 

Test frequency Ag-RDT on arrival alone; Ag-

RDT on arrival plus a negative 

PCR test within 72 hours of 

travel 

Exiting 

quarantine 

Exposed prevalence of COVID-19 1%, 10%, 50% 

Delay to contact tracing (days) 0, 3 days 

Quarantine? Yes, No 

Days in quarantine 0, 3, 5, 7, 10, 14 days 
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Quarantine exit testing Test to release, Daily, None 

Daily testing in quarantine (days) 1, 3, 5, 7, 10 days 

Days in isolation 1, 3, 5, 7, 10 days 

Isolation exit testing Test to release, none 
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Table 4.3 Summary of the most impactful and most efficient scenarios for each Ag-RDT use case. 

Use case Most impactful (effective) scenarios Most efficient scenarios 

Rt Prevalence Test 

frequency 

Other 

parameter 

Other 

parameter 

Rt Prevalence Test 

frequency 

Other 

parameter 

Other 

parameter 

Community 

testing 

Low 

(0.8) 

Low 

(0.1%) 

High (2x a 

week) 

Test 

effectiveness – 

high (80%) 

Proportion 

tested – high 

(90%) 

High 

(2.0) 

Similar for 

all 

Low (1x every 

2 weeks) 

Test 

effectiveness – 

high (80%) 

Proportion 

tested – low 

(2.5%) 

Mass 

gathering 

 Similar for 

all 

 Duration of 

event – short (1 

hour) 

Timing of test 

– day of event 

 High (1%)  Duration of 

event – 

moderate (3 

hours) 

Timing of 

test – day of 

event 

K-12 High 

(2) 

Low 

(0.1%) 

High (2x a 

week) 

Groups tested – 

testing all 

teachers and all 

pupils 

 High 

(2) 

High (1%) Low (1x every 

2 weeks) 

Groups tested 

– testing all 

pupils aged 

13-18 

 

University Low 

(0.8) 

Low 

(0.1%) 

High (2x a 

week) 

  Low 

(0.8) 

Low 

(0.1%) 

Low (1x every 

2 weeks) 

  

Border 

crossings 

(ASTAR, 

BUSPH, 

LSHTM) 

 High (2%) Negative 

PCR + 

Ag-RDT 

at border 

   High (2%) Ag-RDT at the 

border only 

  

Exiting 

quarantine 

 Exposed 

prevalence 

– similar 

for all 

Daily 

testing 

strategy 

Days with 

daily 

testing – 

high (10 

days) 

Delay to contact 

tracing – low (0 

days) 

Days in 

quarantine – 

high (10 days) 

Days in 

isolation – low 

(3 days) 

 Exposed 

prevalence 

– similar 

for all 

Test to release 

testing strategy 

Days with 

daily testing - 

low (3 days) 

Delay to 

contact tracing 

– low (0 days)  

Days in 

quarantine – 

moderate (5 

days) 

Days in 

isolation – 

low (3 days) 
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Figure 4.1 Percent of infections averted (impact) with varying testing and epidemic 

parameters for use case (A) community testing (B) mass gathering (C) K–12 (D) 

university (E) border crossing (F) Exiting quarantine – test to release.a 

 

a shown for a 10% prevalence. There was a < 1% difference with a 1% and 50% prevalence. 
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Figure 4.2 Test per averted infection (efficiency) with varying testing and epidemic 

parameters for use case (A) community testing (B) mass gathering (C) K-12 (D) 

university (E) border crossing (F) Exiting quarantine – test to release.a 

 

a shown for a 10% prevalence. There was a < 1% difference with a 1% and 50% prevalence. 
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Figure 4.3 Estimates and 95% simulation intervals for (A) Percent of infections 

averted (impact) and (B) test per averted infection (efficiency) for all use casesa 

 
a Community testing – proportion tested: 20%, effectiveness: 50%; K12 – group tested: all teachers 

and students; mass gathering – time of test: 3 days before, and event duration: 5 hours; border crossing 

– testing strategy: only Ag-RDTs, group was LSHTM; exit quarantine - test to release, no delay in 

contact tracing, days in quarantine: 3, days in isolation: 3. 
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5 CONCLUSION 

In this dissertation, I conducted three studies that inform SARS-CoV-2 surveillance, 

mitigation, and control policies in low and middle income countries (LMICs). In the first 

study, I assessed the association between mobility, as measured by smartphone data, and 

SARS-CoV-2 case positivity in South African provinces and districts at the ecological-

level using regression, cross-correlation and interrupted time series analysis. I found that 

increases in mobility were positively associated with future COVID-19 incidence at both 

the province and district-level, and the association of mobility and COVID-19 incidence 

remained even when adjusted for district-level confounders. Additionally, greater SARS-

CoV-2 incidence is negatively associated with future human movement. My study 

reiterates previous studies in several settings demonstrating the relationship between 

human mobility and COVID-19 outcomes. 2-5,29,30 However, to my knowledge, this is the 

first study to assess this association in South Africa, which implemented numerous 

lockdowns to limit human mobility, with the goal of reducing SARS-CoV-2 transmission 

through chains of contact. My findings add to the body of evidence that restricting human 

movement continues to be a valuable mitigation and control measure during the 

pandemic, and digital smartphone data can be leveraged as a measure of human mobility 

in LMICs. 

The second and third study focused on the impact and efficiency of rapid antigen testing 

(Ag-RDTs) in general LMIC settings. Impact was defined as the percentage of infections 

averted compared to the base case scenario, and efficiency was defined as the number of 

tests needed to avert one infection compared to the base case scenario.  In study two, I 
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quantified impact and efficiency of population-level community testing using Ag-RDTs. 

I demonstrate that frequent and widespread Ag-RDT SARS-CoV-2 testing averts a 

substantial percentage of infections, corresponding to high impact, but the diagnosis must 

be accompanied by changes in behavior, such as quarantine. A reduction in the number of 

contacts after diagnosis is imperative for any testing strategy to be effective. However, 

the number of tests needed to substantially reduce infections likely make population-wide 

community testing feasible only in small, defined settings, particularly in limited resource 

settings. Testing in conjunction with other non-pharmaceutical interventions is likely 

more feasible, and could have more of a substantial impact.  

The third study quantified the impact of SARS-CoV-2 Ag-RDT testing strategies on 

COVID-19 impact and efficiency in LMICs by comparing eight mathematical models 

from different modeling groups. Overall, there were trade-offs in impact and efficiency; 

increasing test frequency (and/or more widespread testing of a community) increased 

impact, but decreased efficiency. Furthermore, most testing strategies require more tests 

to avert infections when Rt and/or prevalence are low, and tests are more efficient when 

Rt and/or prevalence are high. These findings provide guidance in determining how to 

allocate and optimize Ag-RDTs to reduce COVID-19 transmission and re-open societies 

safely. Allocation of diagnostic testing capabilities depend on whether the goal is to 

maximize impact or efficiency, or a combination of both. In limited resource settings 

where efficiency is prioritized, testing resources may be best allocated to more defined 

use case settings where frequent and widespread testing can be implemented to maximize 

the utility of each test.  
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The second and third study adds to the body of evidence that Ag-RDTs can significantly 

reduce transmission and are valuable in low prevalence settings.63-66 These results 

emphasize the value of widespread, high frequency Ag-RDT COVID-19 testing across 

different settings, which are effective in reducing SARS-CoV-2 infections. In LMICs that 

might have difficulty scaling up testing, efforts must be made to maximize the utility of 

each test by deciding on whether the goal is to maximize impact or efficiency. When 

efficiency is prioritized, testing resources may be best focused to more defined use case 

settings where frequent and widespread testing can be implemented to maximize the 

utility of each test, rather than population-wide community testing which would require a 

large amount of resources. 

In conclusion, it is imperative to continue implementing mitigation and control measures 

that reduce SARS-CoV-2 transmission, such as NPIs and diagnostic testing strategies. 

This is particularly valuable in LMICs that have limited access to COVID-19 vaccines, 

particularly as new variants emerge that may evade vaccine-induced immunity.52,53 The 

evidence generated from these studies provide further understanding critical for global 

pandemic decision making and resource allocation, which can be used for future SARS-

CoV-2 resurgences, or adapted for use in future infectious disease outbreaks or 

pandemics. 
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6 APPENDICES 

Appendix 6.1. Differential equations for the adapted compartmental model.┼ 

𝑑𝑆𝑥

𝑑𝑡
= −𝛷𝑥𝑆𝑥 

𝑑𝐸𝑥

𝑑𝑡
= 𝛷𝑥𝑆𝑥 − 𝛾1𝐸𝑥  

𝑑𝐼𝐴𝑥

𝑑𝑡
= 𝑝𝑎𝛾1𝐸𝑥 − [(1 − 𝑝𝑡𝑎)]𝑟1𝐼𝐴𝑥 

− 𝑝𝑡𝑎𝑠𝑒𝑖𝜑𝐼𝐴𝑥 
  

𝑑𝐼𝑃𝑥

𝑑𝑡
= (1 − 𝑝𝑎)𝛾1𝐸𝑥 − [(1 − 𝑝𝑡𝑎)] 𝛾2𝐼𝑃𝑥 − 𝑝𝑡𝑎𝑠𝑒𝑖𝜑𝐼𝑃𝑥

 

𝑑𝐼𝑀𝑥

𝑑𝑡
= [(1 − 𝑝𝑡𝑚) + (1 − 𝑠𝑒𝑖)(𝑝𝑡𝑚)]𝑝𝑚𝑥

𝛾2𝐼𝑃𝑥
− [(1 − 𝑝𝑡𝑚)(𝑝𝑡𝑚)]𝑟2𝐼𝑀𝑥

−  𝑝𝑡𝑚𝑠𝑒𝑖𝜑𝐼𝑀𝑥
 

𝑑𝐼+

𝑑𝑡
 =  𝑝𝑡𝑎𝑠𝑒𝑖𝜑𝐼𝐴𝑥 

+ 𝑝𝑡𝑎𝑠𝑒𝑖𝜑𝐼𝑃𝑥
 +  𝑝𝑡𝑚𝑠𝑒𝑖𝜑𝐼𝑀𝑥

  −  𝜚𝑖𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝐼+𝑥
 

𝑑𝐼𝑆𝑥

𝑑𝑡
= [(1 − 𝑝𝑡𝑎)](1 − 𝑝𝑚𝑥

)𝛾2𝐼𝑃𝑥
− [(1 − 𝑝𝑡𝑠)]𝜏𝑠𝐼𝑆𝑥

− 𝑝𝑡𝑠𝑠𝑒𝑠𝜑𝐼𝑆𝑥
 

𝑑𝐼𝑆+

𝑑𝑡
 =  𝑝𝑡𝑠𝑠𝑒𝑠𝜑𝐼𝑆𝑥

 −  𝜚𝑖𝜏𝑠𝐼𝑆+
   

𝑑𝐻1𝑥

𝑑𝑡
= [(1 − 𝑝𝑡𝑠) ] (1 −

𝑝𝑐𝑥

(1 − 𝑝𝑚𝑥
)

) 𝜏𝑠𝐼𝑆𝑥
+ 𝜚𝑖 (1 −

𝑝𝑐𝑥

(1 − 𝑝𝑚𝑥
)

) 𝜏𝑠𝐼𝑆+
− [(1 − 𝑝𝑡ℎ)]𝑟3𝐻1𝑥

− 𝑝𝑡ℎ𝑠𝑒ℎ𝜑𝐻1𝑥
 

𝑑𝐻2𝑥

𝑑𝑡
= [(1 − 𝑝𝑡𝑠)]

𝑝𝑐𝑥

(1 − 𝑝𝑚𝑥
)

𝜏𝑠𝐼𝑆𝑥
+ 𝜚𝑖 (

𝑝𝑐𝑥

(1 − 𝑝𝑚𝑥
)

) 𝜏𝑠𝐼𝑆+
− [(1 − 𝑝𝑡ℎ)]𝜏𝑝𝐻2𝑥

− 𝑝𝑡ℎ𝑠𝑒ℎ𝜑𝐻2𝑥
 

𝑑𝐻+𝑥

𝑑𝑡
= 𝑝𝑡ℎ𝑠𝑒ℎ𝜑[𝐻1𝑥

+ 𝐻2𝑥
] 

𝑑𝐶1𝑥

𝑑𝑡
= [(1 − 𝑝𝑡ℎ)]𝑑𝑐𝑥

𝜏𝑝𝐻2𝑥
− 𝜇𝐶1𝑥

 

𝑑𝐶2𝑥

𝑑𝑡
= [(1 − 𝑝𝑡ℎ)(𝑝𝑡ℎ)](1 − 𝑑𝑐𝑥

)𝜏𝑝𝐻2𝑥
− 𝑟4𝐶2𝑥

 

𝑑𝐻3𝑥

𝑑𝑡
= 𝑟4𝐶2𝑥

− 𝑟5𝐻3𝑥
 

𝑑𝑅𝑥

𝑑𝑡
= [(1 − 𝑝𝑡𝑖)]𝑟1𝐼𝐴 𝑥 

+  [(1 − 𝑝𝑡𝑖)]𝑟2𝐼𝑀 𝑥 
+ [(1 − 𝑝𝑡ℎ)](1 − 𝑑𝑠𝑥

)𝑟3𝐻1𝑥
+ 𝑟5𝐻3𝑥

  +  𝜚𝑖𝐼+𝑥
  

 

𝛷𝑥 ∗=
𝛽𝑥𝛿𝑥,𝑡(𝜁𝐼𝐴𝑥

+ 𝐼𝑃𝑥
+ 𝐼𝑀𝑥

+ 𝐼𝑆𝑥
+ Λ 𝐼+ + Λ 𝐼𝑆+

)

𝑁𝑥

 

┼ List of symbols and corresponding parameter details are outlined in supplementary appendix 2. 

*force of infection  
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Appendix 6.2. Model parameters. 

Constant parameters     

Symbol Details Mode 
Lower 

Bound 

Upper 

Bound 
Source 

𝛾1 1/incubation period (years-1) 91.25 60.83 182.5 39,40 

𝛾2 1/dur presymp infectious (years-1) 182.5 121.666667 365 39,40 

𝑟1 
1/dur infectiousness (asymptomatic) 

(years-1) 
52.143 45.625 60.83 39,40 

𝑟2 
1/dur infectiousness (mild untreated) 

(years-1) 
73.000 60.83 91.25 39,40 

𝜇 1/time to death (years-1) 73 60.83 91.25 39,40 

𝜏𝑠 1/trt seeking severe cases (years-1) 73 60.83 91.25 39,40 

𝑝𝑎 
proportion of cases that will be 

asymptomatic  
0.31 0.24 0.38 39,40 

𝑝𝑚 
proportion of symptomatic cases that 

are mild 
0.95 0.76 1.14 39,40 

𝑝𝑠 
proportion of symptomatic cases that 

are severe 
0.035 0.028 0.042 39,40 

𝑝𝑐 
proportion of symptomatic cases that 

will be critical 
0.015 0.012 0.018 39,40 

dcx proportion of critical cases that die 0.26 0.208 0.312 39,40 

𝜏𝑝 1/duration of progress to ICU (years-1) 91.25 73 182.5 39,40 

𝜁 relative infectiousness of asymptomatic 0.75 0.7 0.8 42 

𝑟3 1/dur stay in hosp (severe) (years-1) 30.42 26.07 45.625 39,40 

𝑟4 1/dur stay in hosp (critical) (years-1) 22.8125 20.28 26.07 39,40 
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𝑟5 
1/dur stay in hosp (post critical) (years-

1) 
121.67 91.25 182.5 39,40 

𝛽𝑥 effective contacts per year 176.3758389 169.8434 182.908277 39,40 

𝑠𝑒 sensitivity of Ag-RDT 0.85 0.80 0.90 41,68 

𝜚𝑖 
1/dur infectiousness (tested mild) 

(years-1) 

Calculated to equal the length of time 

undiagnosed mild cases are infective in 

the model 

 

 

Varied parameters     

Symbol Details Value 

𝑝𝑡𝑎 
probability of getting tested if mildly 

infected 

0.25, 0.05, 0.20, 0.50, or 0.90 (proportion of 

community tested parameter)  

𝑝𝑡𝑚 
probability of getting tested if mildly 

infected 

0.25, 0.05, 0.20, 0.50, or 0.90 (proportion of 

community tested parameter) + 0.15 (base 

case) 

𝑝𝑡𝑠 
probability of getting tested if severely 

infected 

0.25, 0.05, 0.20, 0.50, or 0.90 (proportion of 

community tested parameter) + 0.50 (base 

case) 

𝑝𝑡ℎ 

probability of getting tested if 

hospitalized (proportion of community 

tested) 

1 

Λ 
relative infectiousness of diagnosed 

infections (Isolation effectiveness) 
0.20, 0.50, or 0.80  

φ 
1/turn around time of Ag-RDT 

(frequency) 

104.29 (frequency 1x/ 2 weeks), 52.14 (1x/ 

week),  

or 26.07 (frequency 2x/week) 
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Appendix 6.3. Total infections averted with varying frequency of testing, effective 

reproductive number (Rt), COVID-19 prevalence, and isolation effectiveness 

(reduction in the force of infection when diagnosed) for a community testing strategy 

at various proportions of the community tested. 
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Appendix 6.4. Total infections with varying frequency of testing, effective 

reproductive number (Rt), COVID-19 prevalence, and isolation effectiveness 

(reduction in the force of infection when diagnosed) for a community testing strategy 

at various proportions of the community tested (total modeled population = 10 

million). 
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Appendix 6.5. Estimate and 95% simulation intervals (SIs) for the total cumulative 

number of infections at the end of 365 days across various intervention scenarios 

(total modeled population = 10 million). 
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Appendix 6.6.  Total tests per 100,000 population per month with varying frequency 

and proportion of testing. 
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Appendix 6.7. Background and approach of the different mathematical models for 

all use cases 

Community testing 

Background 

Community-level testing of COVID-19, defined as random mass testing of the 

population, has mostly relied on RT-PCR testing, which is expensive, time consuming 

and requires a robust laboratory infrastructure. In settings where testing capacity is 

limited, Ag-RDTs can be used to increase testing capacity. There has been incomplete 

guidance on the use of Ag-RDTs for widespread community testing in the general 

population, as current WHO guidance focuses on symptomatic testing of individuals 

meeting COVID-19 case definition,4 and Ag-RDTs in low prevalence populations have 

greater risk of giving false positive results. Even so, for routine surveillance purposes, the 

speed and frequency of Ag-RDT testing may still potentially outweigh the benefits of 

higher test sensitivity and specificity provided by RT-PCR.  

Approach 

The National COVID-19 Epi Model (NCEM), a stochastic compartmental transmission 

model of COVID-19 transmission dynamics  in nine provinces in South Africa, was 

modified to quantify the likely impact of different COVID-19 Ag-RDT strategies on 

disease transmission in the general population and communities. The model structure, 

parameters, and assumptions can be found in greater detail online.5  To adapt this model, 

additional transitions were added, defined as the flow between compartments, where 
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individuals can move when diagnosed with COVID-19 and subsequently isolated, 

reducing disease transmission in the general population. Appendix 6.7 Figure 1 shows the 

original NCEM versus the adapted NCEM. The model assumes that diagnosed COVID-

19 infections will be isolated with differential isolation adherence and a consequent 

reduction in number of contacts (isolation effectiveness). Additionally, the model 

assumes that all COVID-19 hospitalizations are isolated, and thus do not contribute to the 

force of infection. The total modeled population size of South Africa was 58.8 million, 

and the simulation was run for 365 days. More information on assumptions and 

parameters can be found in the Appendix. 
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Appendix 6.7.1. (A) The original NCEM model (B) Adapted NCEM model 

incorporating additional compartments for diagnosed mild infection, severe 

infection, and hospitalization.  

Compartments: S–Susceptibles, E–Exposed, IA–Asymptomatic infections, IP–

Presymptomatic infections, IM–Mild infections, IS–Severe infections, H1–non-ICU 

hospitalizations, H2–ICU hospitalizations, ICU1–ICU deaths, ICU2–ICU recovereds, H3–

post-ICU hospitalizations, R–recovered, D–deaths, I+–

Asymptomatic/presymptomatic/mild infections diagnosed, IS+–Severe infections 

diagnosed, H+–Hospitalizations diagnosed 

In this use case, I assume a base case Ag-RDT testing scenario in which there is no large-

scale asymptomatic community testing, and I only test 15% of symptomatic mild cases, 

50% of severe cases, and 100% of hospitalized cases. I assessed the effect of additional 

percentages of Ag-RDT testing in the whole population, on top of the base case testing 

proportions. I also varied several epidemic parameters and SARS-CoV-2 diagnostic 

testing factors to assess the utility of Ag-RDT in various epidemic scenarios. These 

include: frequency of testing, Rt, COVID-19 prevalence, and isolation effectiveness 

(reduction in the force of infection when diagnosed) (Table 2). To be realistic, the model 

does not assume a contact tracing infrastructure, given the substantial human resource 

burden. Additionally, I have assumed three different levels of adherence to isolation 

(isolation effectiveness) given the fact that it may be difficult for some people to isolate 

(20% reduction in community contacts, 50%, and 80%). The sensitivity of the diagnostic 

tests for both symptomatic and asymptomatic COVID-19 cases was assumed to be 85% 
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(80% to 90%), and the relative transmissibility of asymptomatic and pre-symptomatic 

cases compared to symptomatic cases was 0.75 (0.70 to 0.80) 

 

Mass gatherings 

Background 

WHO defines mass gatherings as any gatherings for which the number of people 

attending are enough to place additional strain on planning and response resources where 

these events take place. What constitutes a mass gathering is therefore context-specific. 

During the current pandemic, mass gatherings have been a contentious point in policies 

aimed at reducing the spread of COVID-19, with restrictions placed on the maximum 

number of people allowed to attend church services, funerals, concerts, sporting events, 

graduations, etc. Mass gatherings can either be one-time events (e.g. concerts) or 

recurring (church services) and targeting these events for Ag-RDT testing prior to entry 

may reduce the likelihood of super-spreader events while being more tolerable to event 

attendees than other testing strategies aimed at reducing the spread of COVID-19, such as 

mask-wearing or lockdowns. 

  

Approach 

The model for this use case was developed at the Harvard University T.H. Chan School 

of Public Health to estimate the number of individuals who would be expected to attend a 

mass gathering while infected. To estimate how an individual's detectability and 
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infectiousness change over time, the authors used prospective longitudinal SARS-CoV-2 

testing data collected among players, staff, and vendors participating in the US National 

Basketball Association's (NBA) occupational health programme.6 They used a Bayesian 

statistical model to estimate the peak Ct value, the time from first detectability to the peak 

Ct value, and the time from the peak Ct value to cessation of acute viral shedding for 

infected individuals. Using this information, they developed a probabilistic model to 

estimate how many infectious individuals would be missed by a test administered 

between 1 and 3 days prior to the mass gathering. The use case presented here made use 

of an online interactive version of the model created by the researchers. 

The analyses presented here focused on varying two key parameters: 1) the prevalence of 

COVID-19 in the community at the time of the event, and 2) the duration of the event 

(Table 2). Additional parameter assumptions are outlined in the Appendix. The duration 

of the event was a key consideration given that the initial rate of viral increase is so rapid 

that even for events of just a few hours long, a person infected with SARS-CoV-2 could 

become infectious during the event. Other non-varied parameters included variable 

“effective sensitivity” based on the time of testing prior to the event, with a 99% 

sensitivity assumption on Ag-RDT tests used when the infectiousness threshold was Ct 

value 30, which goes down to 76% when the test is administered 2 days prior to the 

event. 

To explore the relationship between prevalence, event duration and time of testing, we  

report all scenarios per 10,000 people attending a mass gathering, thereby accounting 

either for a singular event with 10,000 people or multiple smaller events that add up to 
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10,000 attendees in total. The model was not intended to estimate transmission events at 

the occasion itself, but rather the number of infectious individuals who would be 

successfully screened from attending the event.  We then estimated the number of 

infectious attendees detected prior to the event if attendees were asked to test 3 days 

prior, 2 days prior, 1 day prior or day of the event.  

 

K–12 schools 

Background 

Schools are important points of in-person gathering in most communities. Across the 

world, primary and secondary schools have been closed in response to the COVID-19 

pandemic. During the first wave of global infection, children were less likely to contract, 

transmit, or show symptoms of COVID-19.7 School districts that practiced COVID-19 

precautions such as mask-wearing, physical distancing, symptom screening, 

handwashing, and indoor air ventilation were observed to have SARS-CoV-2 prevalence 

no greater than their surrounding communities.8 However, more transmissible SARS-

CoV-2 variants have increased the likelihood of transmission in schools.9 COVID-19 

diagnostic testing could serve as an effective way to reopen schools while preventing 

SARS-CoV-2 outbreaks. Testing could be implemented with COVID-19 Ag-RDTs, 

which provide rapid results and are feasible to implement in a school-age population and 

do not require additional laboratory infrastructure. Here, an Ag-RDT screening strategy 

and its corresponding outcome was modeled for teachers with or without the inclusion of 

primary and secondary pupils, using 2019 school attendance data from Malawi.  
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Approach 

A mathematical model was originally developed by researchers at New York University 

Grossman School of Medicine to evaluate the impact that various mitigation measures, 

including testing, would have on the transmission of SARS-CoV-2 in New York City 

Schools. Information about the model was posted on medRxiv, and updated code 

(programmed in R) for the analysis of this use case has been posted on GitHub.10,11 This 

model is a simulation model of classroom dynamics and probability of onward SARS-

CoV-2 transmission, parameterized using number of children per classroom and ratio of 

pupils to teachers. The model was adapted for the purposes of this use case and re-

parameterized to reflect school settings in Malawi. The updated model simulations 

represent 299 individual schools (representing 1/5th the total number of schools in 

Malawi), using Malawian school population sizes and student-teacher ratios 

(Supplemental Appendix 1 Table 1). The entire set of 299 schools was run 50 times for 

each scenario. The mean and bootstrapped 95% confidence interval is reported below for 

each scenario.  
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Appendix 6.7.2. Total denominator population of each scenario (representative of 1/5th 

of all schools in Malawi)12–16 

Population Number per school 

Total in school 

simulations 

Primary schools (pupils age 5–12) 757 917,955 

Secondary schools (pupils age 13–18) 701 196,560 

Teachers 11 (Primary), 19 (Secondary) 18,685 

 

Given the nature of questions surrounding testing in schools specifically, multiple testing 

scenarios were evaluated: testing teachers only, testing teachers and secondary school 

pupils, testing teachers and primary school pupils, and testing teachers and all pupils. All 

scenarios included symptomatic testing of all teachers and pupils in addition to assigned 

routine testing. These testing scenarios were then further varied by different testing 

frequencies and under different epidemic conditions (Table 2). All scenarios were 

compared to counterfactual base cases with the same epidemic parameters and 

symptomatic testing for teachers and pupils. We also compared scenarios to a 

counterfactual base case with no testing in the event that symptomatic testing is not 

widely available. Further, there remain concerns at both national and local levels about 

the need to close a whole school or multiple classrooms following a positive test, causing 

hesitancy to implement testing within schools, as well as concerns about cost. We have 

therefore assumed no classroom or school quarantine following a positive test. Only the 

person who tested positive is assumed to stay home until no longer infectious.  
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In these simulations, primary school pupils were 43% as susceptible as adults and 63% as 

infectious as adults.17 No difference in susceptibility/infectiousness for secondary school 

pupils and adults was assumed. The sensitivity of the Ag-RDT was assumed to be 85%. 

 

Universities 

Background 

The COVID-19 pandemic led to the closure of schools and universities across the globe 

for in-person learning. University campuses are potential hotpots for COVID-19 

transmission, as students spend long periods of time in classrooms, may reside in 

dormitories or shared housing and maintain a range of social contacts.18 This puts both 

the university population and the surrounding community at greater risk of COVID-19 

infection. However, the closing of universities had negative consequences on both a 

student’s ability to learn and on universities' financial stability. In the Fall of 2020 in the 

United States, many universities attempted to reopen with regular COVID-19 reverse 

transcriptase PCR (RT-PCR) surveillance of students, faculty, and staff to mitigate on-

campus transmission.19 An RT-PCR testing strategy can be costly and therefore not 

feasible at universities with limited financial resources or lack of laboratory capacity, or 

be hindered by long turn-around-times in a setting where the timely identification of 

cases is important for success. Up to this point there has been little data or guidance on 

the use of COVID-19 rapid antigen diagnostic tests (Ag-RDTs) in the university setting. 

A successful Ag-RDT screening strategy could allow universities to safely resume in-
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person operations, especially in limited resource settings. An Ag-RDT screening strategy 

was modelled in a university setting under varying epidemic conditions by applying a 

previously developed agent-based network model to a sample university population. 

 

Approach 

The university model was originally developed by a team of researchers from Boston 

University to inform COVID-19 interventions necessary for their Fall 2020 reopening 

strategy.20 The model utilizes Covasim, a stochastic agent-based simulator developed by 

the Institute for Disease Modeling (IDM). The model used predefined classroom and 

household network structures from a sample university population of 3,681 faculty, staff, 

and students to project COVID-19 cases and outcomes within the population. The model 

was adapted for an Ag-RDT screening strategy by adjusting test sensitivity to 85% and 

turn-around-time for test results to 0 days. Several model parameters were varied to 

observe the performance of Ag-RDTs in the university setting under differing epidemic 

conditions and testing frequencies. Daily case incidence and tests used were model 

outputs of interest in this analysis.  

Model simulations were run using the variables shown in Table 2, representing a total of 

18 distinct scenarios. Daily imported infections represented the level of COVID-19 

community prevalence at either 0.1% or 1.0%. To calculate the number of daily imported 

infections the university population was multiplied by prevalence level and divided by 

the average infectious period of SARS-CoV-2.21 Effective reproductive numbers (Rt) 
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were reflected in the model by incorporating a series of intervention methods, 

including—classroom level interventions (masks, social distancing, and class cohorts), 

reduced housing density or contact tracing. Rapid antigen testing was implemented for 

every member of the population either twice weekly, once weekly or every other week. 

Simulations were run with Python 3.8.3 through the Boston University Shared 

Computing Cluster. Each simulation was run for 90 days, 1000 times. Means and 95% 

confidence intervals for daily incident infections and daily tests were computed using 

SAS 9.4.  

  

Border crossings 

Background 

Throughout the COVID-19 pandemic, countries have had varying success containing 

community transmission of SARS-CoV-2 within their borders.22 Containing community 

transmission and preventing the importation of new infectious cases of SARS-CoV-2 into 

a country remains crucial in areas without widespread access to vaccines, especially as 

more infectious variants of SARS-CoV-2 emerge. Effective travel related control 

measures are still needed to prevent the spread of these variants. Some countries have 

implemented entry requirements that international travelers provide proof of a negative 

COVID-19 reverse transcription polymerase chain reaction (RT-PCR) test within 72-

hours of arrival. While this is possible to implement in many high-income countries and 

for air travel, this is frequently not possible at land-border crossings, particularly in low- 
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and middle-income countries (LMICs), due to frequent cross-border travel and resource 

constraints. However, antigen rapid diagnostic tests (Ag-RDTs) are less costly than RT-

PCR tests, do not require laboratory-based infrastructure, can be performed on-site by 

appropriately trained non-laboratory staff, and provide results within minutes, enabling 

decentralization of diagnostic testing.23 This use case investigates the use of Ag-RDTs for 

screening at border crossings, with or without the need for a prior RT-PCR test.   

Approach 

Three different models were used to predict the effectiveness of an Ag-RDT screening 

strategy at border crossings with or without prior negative RT-PCR test results in a 

hypothetical daily travel population of 100,000 individuals. The Boston University 

School of Public Health (BUSPH) model is an algebraic algorithm with input derived 

from a compartmental transmission model, the Agency for Science Technology and 

Research (A*STAR) model is agent-based, while the London School of Hygiene and 

Tropical Medicine (LSHTM) model used an individual-based simulation. Model 

parameters used can be seen in Table 2, and further model details can be found in the 

appendix or related publications or pre-prints. For 72-hour pre-PCR test sensitivity, the 

A*STAR model used a sensitivity distribution based on day of symptom onset at time of 

testing. The LSHTM model used viral load trajectories and corresponding probabilities 

based on the day of SARS-CoV-2 exposure for both Ag-RDT sensitivity and 72-hour 

pre-PCR sensitivity. COVID-19 prevalence among cross-border travelers was varied 

from 0.1%–2.0%. Eight distinct scenarios were run with each model. The key model 

output was undetected daily infections crossing the border per 100,000 travelers, which 
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was used to compute the number of infectious imports averted per 100,000 travelers and 

the number of tests per infectious import averted. Scenarios that included a 72-hour pre-

PCR test were considered to use two tests per traveler. These outputs were in comparison 

to baseline scenarios without testing.  Daily travel volume was set at 100,000 individuals. 

The sensitivity for the BUSPH, ASTART, and LSHTM model were 85%, 80%, and 85% 

respectively. For the BUSPH model, the 72-hour pre-PCR sensitivity was assumed to be 

88%24, while the 72-hour pre-PCR sensitivity was based on viral load distribution in the 

other two models.  

  

Testing to exit quarantine and isolation following contact tracing  

Background 

Quarantine and isolation are non-pharmaceutical interventions that can reduce the 

transmission of SARS-CoV-2. Most jurisdictions recommend a 14-day quarantine period 

following exposure to a known test-positive case, or following (international) travel, and 

a 10-day isolation period following a positive test.26,27 However, quarantine and isolation 

can cause considerable economic and social costs at the individual and society level and 

recent evidence suggests that adherence to quarantine and isolation is poor, reducing its 

efficacy.28 Strategic testing, to allow for exit from quarantine or isolation early or daily 

testing in the absence of quarantine, can be used to reduce the economic and social costs 

as well as potentially improve quarantine and isolation adherence. Testing for this 

purpose using a RT-PCR testing strategy is costly and may not be a feasible option for 
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low resource settings. The increasing availability of Ag-RDTs opens up this strategy to 

low resource settings. There is little data or guidance on the use of Ag-RDTs to shorten 

quarantine and isolation. This use case seeks to determine the optimal use of Ag-RDT 

testing strategies to reduce the burden of long quarantine or isolation post the infectious 

period. 

Approach 

A quarantine and contact tracing model was originally developed by a team of 

researchers at the Centre of Mathematical Modelling of Infectious Diseases at the London 

School of Hygiene and Tropical Medicine. The model and all assumptions are published 

in a Lancet Public Health article.29 This model is an individual-based simulation of viral 

load trajectories. The probability of detection by Ag-RDT, as well as infectivity, is 

determined by the viral load at the time of testing. The model was adapted for the 

purposes of this use case to include (1) test-to-release from isolation n days after 

developing symptoms or a positive test and, (2) updated adherence values to account for 

assumed enhanced adherence for less time spent in quarantine or isolation due to testing. 

There are five main scenarios that differ depending on whether there was quarantine or 

no quarantine, no testing or test on release from quarantine or isolation, or, as an 

alternative to quarantine, daily testing on being traced as a contact (Appendix 6.6.1 Table 

2). A hypothetical cohort of 10,000 exposed contacts that should enter quarantine was 

modelled. Outputs included the number of infectious person days – total, spent in 

quarantine/isolation, or in the community, as well as the total number of Ag RDT tests 
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used. Based on these outputs, the number of Ag RDT tests required to avert an infectious 

person-day in the community was calculated relative to a status quo of 14 days in 

quarantine and 10 days in isolation. The number of tests used in daily testing was 

calculated as the number of tests used up to and including the first positive test, at which 

point an individual begins isolation and ceases testing if completing the full 10 days, or 

has a test to release from isolation. 
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Appendix 6.7.3 Table 2. Main scenarios 

Scenario Description 

1 Status quo quarantine (14 days) and 

isolation (10 days) 

2 Test to release quarantine, status quo 

isolation 

3 Test to release quarantine, test to release 

isolation 

4 Daily testing quarantine, status quo 

isolation 

5 Daily testing quarantine, test to release 

isolation 

Model outputs were informed by adherence parameters which vary depending on the 

duration of quarantine without symptoms or the duration of isolation following a positive 

test or symptom onset. Results were adjusted linearly by day to account for assumed 

enhanced adherence from a reduction in the quarantine/isolation requirement (Appendix 

6.6.4) 

  



 

 91 

Appendix 6.7.4 Table 3. Adherence adjustments 

Days 3 5 7 10 14 

Adherence in 

quarantine 

without 

symptoms 

50% 46% 41% 37% 28% 

Adherence in 

isolation 

following a 

positive test 

result 

100% 97% 93% 86% / 

Adherence in 

'isolation' 

following 

development 

of symptoms 

100% 93% 86% 71% / 

Notes: End points for adherence in quarantine without symptoms, and isolation following 

development of symptoms taken from Steens et al. 2020.30 Adherence end point for 

adherence following a positive test result from ONS 2021.31 Adherence at day 3 assumed 

and adherence at days between start and end point calculated linearly.32 

Model simulations were run in R using the parameters shown in Table 2, representing a 

total of 222 distinct scenarios. These sub-scenarios differ by the assumption on 

underlying ‘prevalence’ of the exposed contacts (1%, 10%, or 50%), the delay to contact 

tracing (0 or 3 days), the number of days spent in quarantine prior to an exit test (0, 3, 5, 

7 or 10 days), the number of days of daily Ag-RDT testing if no quarantine is required 

(for 3, 5, 7 or 10 days), and the number of days spent in isolation prior to an exit test (3, 

5, 7, or 10 days) or not. If the delay from an index case tracing exceeds or equals that of 



 

 92 

the quarantine duration, then quarantine does not occur, e.g. in the case of a 3-day delay 

and 3-day quarantine. Confidence intervals were calculated by bootstrapping for 10 

secondary cases per index case (500 index cases per scenario) then up-scaling to the 

assumed prevalence/attack rate for 10,000 contacts. 
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Appendix 6.8. Parameter and assumptions for all the models for all use cases 

    Use cases 

Parameter 

group Parameter 

Community 

testing 

Mass 

gathering K-12 University 

Border 

crossings 

(ASTAR) 

Border 

crossings 

(BUSPH) 

Border crossings 

(LSHTM) 

Exiting 

quarantine 

Infectious-

ness/ 

duration 

Time from point of 

infection to onset of 

symptoms (days) 

2 (1-3) 

Proliferation 

time 2.7 

(1.2, 3.8) 

5 days 

1.1 days  

(τsym ~ lognormal 

(1.1, 0.9) 

3-14 days N/A 
5.1 days (95%: 

2.3, 11.5 days) 

5.1 days (95%: 

2.3, 11.5 days) 

Duration of 

infectiousness for 

asymptomatic cases 

(days) 

7 (6-8) N/A N/A 

8 days 

τra ~ lognormal 

(8.0, 2.0) 

11-12 days N/A 

Duration of 

infectiousness for 

symptomatic cases 

N/A 

Duration of 

infectiousness for mild 

cases (days) 

5 (4-6) 

Clearance 

time 7.4 

(3.9, 9.6) 

N/A 

8 days 

τra ~ lognormal(8.0, 

2.0) 

Not 

differentiated 
N/A 

17 days (SD 0.94 

days) 

17 days (SD 0.94 

days) 

Duration of 

infectiousness for 

severe cases (days) 

5 (4-6) 

Clearance 

time 7.4 

(3.9, 9.6) 

N/A 

18.1 days 

τrs ~ lognormal 

(18.1, 6.3) 

Not 

differentiated 
N/A 

17 days (SD 0.94 

days) 

17 days (SD 0.94 

days) 

Duration of pre-

symptomatic 

infectiousness 4 (2-6) N/A 1-4 days 

1 day 

τsym ~ lognormal 

(1.1, 0.9) 

4 days before 

symptom 

onset 

N/A 

Individual 

infectivity 

conditional upon 

culture probability 

given viral load 

Individual 

infectivity 

conditional upon 

culture probability 

given viral load 

Relative infectiousness 

of asymptomatic & pre-

symptomatic cases 

compared to 

symptomatic cases 

0.75 (0.7-0.8) N/A N/A 1 0.5 N/A 60% 60% 

Severity Proportion of cases that 

are asymptomatic 
0.75  

(0.7-0.8) 
N/A 26 - 39% Dependent on age 0.5 N/A 31% (24-38%) 31% (24-38%) 

Proportion of cases that 

are mild 
0.2375  

(0.23-0.24) 
N/A N/A Dependent on age N/A N/A N/A N/A 

Proportion of cases that 

are severe 
0.0125  

(0.01-0.07) 
N/A N/A Dependent on age N/A N/A N/A N/A 

Treatment  Proportion of mild 

cases that seek 

treatment (outpatient) 

N/A N/A N/A 0 N/A N/A N/A N/A 
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Proportion of severe 

cases that seek 

treatment (hospitalised) 

0.6 (0.4-0.7) N/A N/A Dependent on age N/A N/A N/A N/A 

Average days from 

symptom onset to 

treatment seeking for 

mild cases 

N/A N/A N/A N/A N/A N/A N/A N/A 

Average days from 

symptom onset to 

hospitalisation for 

severe cases 

5 (4-6) N/A N/A 

6.6 days  

(τsev ~ lognormal 

(6.6, 4.9)) 

N/A N/A N/A N/A 

Interven-

tion 

assumption Are there any 

interventions in place in 

the community (i.e. 

lockdown, social 

distancing, masks, 

vaccinations)? 

Isolation with 

COVID-19 

positive 

diagnosis 

No 

Masks, 6-

foot social 

distancing, 

ventila-

tion, hand-

hygiene, 

class 

rotation, 

symptom 

screening 

We can specify Unspecified 

Lock-

downs, 

social 

distancing, 

mask-use 

N/A N/A 

How are you 

representing these 

interventions (reduction 

in Rt, reduced 

proportion of 

susceptible, reduction 

in network 

connectivity?) 

Reduction in 

force of 

infection 

through 

reduction in 

effective 

number of 

contacts 

N/A 

Reduced 

secondary 

attack rate 

(SAR) 

Reduction in beta, 

or reduction in 

network 

connectivity 

Reduction in 

Rt 

Reduction 

in Rt 

N/A 

  

N/A 

  

Are there any 

interventions in place in 

the use case (i.e. 

lockdown, social 

distancing, masks, 

vaccinations)? 

Use case is 

same as the 

community 

No N/A We can specify Unspecified N/A 

(1) Pre-flight 

testing: no testing, 

PCR test, Lateral 

flow test (LFT) 

test. (2) 

Quarantine and/or 

testing on arrival.. 

(1) Test to release 

from quarantine: 

(2)  Daily testing 

in lieu of 

quarantine 

(3) Self-isolation 

How are you 

representing these 

interventions (reduction 

in Rt, reduced 

proportion of 

Use case is 

same as the 

community 

N/A N/A 

Reduction in beta, 

or reduction in 

network 

connectivity 

Reduction in 

Rt 
N/A 

Reduction in R of 

infectious arrivals 

Effectiveness 

determined by the 

proportion of 

infectious 

distribution (from 
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susceptible, reduction 

in network 

connectivity?) 

culture) spent in 

quarantine or 

isolation 

Contact 

rates 
Average daily contact 

0.483  

(0.465-0.501) 
N/A 9 to 13 N/A N/A N/A N/A N/A 

Probability of infection 

given an infectious 

contact 

N/A N/A 18.10% N/A N/A N/A N/A N/A 

Transmission rate 

(beta) 

Rt/average 

daily contact 
N/A 

𝑓(𝑡) = (1/ 

Γ(𝑘)𝜃𝑘) * 

𝑡𝑘−1𝑒−𝑡⁄𝜃 
0.16 N/A N/A N/A N/A 

Testing Time from test to result 

(minutes/hours/days/ or 

assumed 'immediate') 

Immediate N/A 1 day N/A 1 to 12 hours Immediate 
Assumed 

immediate 

Assumed 

immediate 

Proportion of people in 

the use case that get 

tested 

1%, 5%, 20%, 

50%, and 90% 
N/A 

10, 20% / 

10%, 20%, 

100% 

N/A N/A 0% – 100% 0-100% 100% 

Frequency of testing 

1x/week, 

2x/week, and 

1x/2 weeks 

N/A 
Monthly / 

Weekly 
N/A 

every 24 

hours and 

above 

Once at 

border 

Zero-Multiple, 

depending on 

scenario. Pre-

arrival test 

(LFT/PCR); post-

arrival tests: once 

on quarantine exit 

(PCR/LFT), or 

daily for 3,5,7,10 

days (LFT) 

Scenario 

dependent 

Criteria for accessing a 

test (e.g. in widespread 

community testing, is it 

age targeted, or 

symptomatic only?) 

Widespread 

community 

testing 

N/A 

Randomly 

allocated 

surveillanc

e testing 

N/A N/A 

Randomly 

allocated to 

border 

crossers 

Air-travel and 

quarantine 

Scenario 

dependent. Upon 

symptom onset, or 

exit from 

quarantine, or 

daily in lieu of 

quarantine 

Time to return to 

testing pool after 

testing positive 

Immunity 

assumed for 

the rest of the 

time period 

N/A 2 weeks 

None, after testing 

positive they go on 

to recover 

N/A N/A N/A N/A 



 

96 

Appendix 6.9. Number of infections averted with varying testing and epidemic 

parameters for use case (A) community testing (B) mass gathering (C) K–12 (D) 

university (E) border crossing (F) Exiting quarantine – test to release.a 

 

a shown for a 10% prevalence. There was a < 1% difference with a 1% and 50% prevalence. 

  



 

97 

7 REFERENCES 

1. COVID-19 modelling update: Considerations for a potential third wave 2021; 

https://www.nicd.ac.za/wp-content/uploads/2021/05/SACMC-Third-wave-report-

290421.pdf. Accessed 2021, May 16. 

2. Sy KTL, Martinez ME, Rader B, White LF. Socioeconomic Disparities in Subway 

Use and COVID-19 Outcomes in New York City. American Journal of 

Epidemiology. 2021;190(7):1234–1242. https://doi.org/10.1093/aje/kwaa277 

3. Yechezkel M, Weiss A, Rejwan I, Shahmoon E, Ben-Gal S, Yamin D. Human 

mobility and poverty as key drivers of COVID-19 transmission and control. BMC 

Public Health. 2021;21(1):596. 

4. Nouvellet P, Bhatia S, Cori A, et al. Reduction in mobility and COVID-19 

transmission. Nature Communications. 2021;12(1):1090. 

5. Kissler SM, Kishore N, Prabhu M, et al. Reductions in commuting mobility predict 

geographic differences in SARSCoV-2 prevalence in New York City. 2020. 

http://nrs.harvard.edu/urn-3:HUL.InstRepos:42665370 

6. Guglielmi G. The explosion of new coronavirus tests that could help to end the 

pandemic. Nature 2020;583:506–509 https://www.nature.com/articles/d41586-

020-02140-8. Accessed November 30, 2021. 

7. Vandenberg O, Martiny D, Rochas O, van Belkum A, Kozlakidis Z. Considerations 

for diagnostic COVID-19 tests. Nature Reviews. Microbiology. 2021;19(3):171-

183. 

https://www.nicd.ac.za/wp-content/uploads/2021/05/SACMC-Third-wave-report-290421.pdf
https://www.nicd.ac.za/wp-content/uploads/2021/05/SACMC-Third-wave-report-290421.pdf
https://www.nature.com/articles/d41586-020-02140-8
https://www.nature.com/articles/d41586-020-02140-8


 

98 

8. World Health Organization. Antigen-detection in the diagnosis of SARS-CoV-2 

infection using rapid immunoassays. 2020; 

https://www.who.int/publications/i/item/antigen-detection-in-the-diagnosis-of-

sars-cov-2infection-using-rapid-immunoassays. Accessed May 17, 2021. 

9. Pavelka M, Van-Zandvoort K, Abbott S, et al. The impact of population-wide rapid 

antigen testing on SARS-CoV-2 prevalence in Slovakia. Science. 2021;372(6542): 

635–641. 

10. Testing in England. Virus tests conducted. 2021; 

https://coronavirus.data.gov.uk/details/testing?areaType=nation&areaName=Engl

and. 

11. Busk PK, Kristiansen TB, Engsig-Karup A. Assessment of the National Test 

Strategy on the Development of the COVID-19 Pandemic in Denmark. 

Epidemiologia. 2021;2(4). 

12. Center for Systems Science and Engineering at Johns Hopkins University. COVID-

19 Dashboard.  https://coronavirus.jhu.edu/map.html. 

13. Miller JC. Spread of infectious disease through clustered populations. Journal of 

The Royal Society. Interface. 2009;6(41):1121–1134. 

14. Mei S, Chen B, Zhu Y, Lees MH, Boukhanovsky AV, Sloot PMA. Simulating city-

level airborne infectious diseases. Computers, Environment and Urban Systems. 

2015;51:97–105. 

https://www.who.int/publications/i/item/antigen-detection-in-the-diagnosis-of-sars-cov-2infection-using-rapid-immunoassays
https://www.who.int/publications/i/item/antigen-detection-in-the-diagnosis-of-sars-cov-2infection-using-rapid-immunoassays
https://coronavirus.data.gov.uk/details/testing?areaType=nation&areaName=England
https://coronavirus.data.gov.uk/details/testing?areaType=nation&areaName=England
https://coronavirus.jhu.edu/map.html


 

99 

15. Smieszek T, Fiebig L, Scholz RW. Models of epidemics: when contact repetition 

and clustering should be included. Theoretical Biology and Medical Modelling. 

2009;6(1):11. 

16. Delamater P, Street E, Leslie T, Yang YT, Jacobsen K. Complexity of the Basic 

Reproduction Number (R0). Emerging Infectious Diseases. 2019;25(1):1–4. 

https://dx.doi.org/10.3201%2Feid2501.171901 

17. Moya Application [computer program]. 

18. Bajema KL, Wiegand RE, Cuffe K, et al. Estimated SARS-CoV-2 Seroprevalence 

in the US as of September 2020. JAMA Internal Medicine. 2021;181(4):450–460. 

19. Data Science for Social Impact research group. Coronavirus COVID-19 (2019-

nCoV) Data Repository for South Africa. 2022; 

https://github.com/dsfsi/covid19za. 

20. National Institute for Communicable Diseases. COVID-19 Testing Summary. 

2020. nicd.ac.za. Accessed October 27, 2020. 

21. Zeng C, Zhang J, Li Z, et al. Spatial-Temporal Relationship Between Population 

Mobility and COVID-19 Outbreaks in South Carolina: Time Series Forecasting 

Analysis. Journal of Medical Internet Research. 2021;23(4):e27045. 

22. Liebhold A, Koenig WD, Bjørnstad ON. Spatial Synchrony in Population 

Dynamics. Annual Review of Ecology, Evolution, and Systematics. 2004;35(1): 

467–490. 

23. Brockwell PJ, Davis RA. Time Series: Theory and Methods, second edition. New 

York, Inc.: Springer-Verlag; 1991. 

https://github.com/dsfsi/covid19za


 

100 

24. Bernal JL, Cummins S, Gasparrini A. Interrupted time series regression for the 

evaluation of public health interventions: a tutorial. International Journal of 

Epidemiology. 2017;46(1):348–355. 

25. Bernal JL, Cummins S, Gasparrini A. Interrupted time series regression for the 

evaluation of public health interventions: a tutorial. International Journal of 

Epidemiology. 2016;46(1):348–355. 

26. R Core Team. R: A language and environment for statistical computing. R 

Foundation for Statistical Computing [computer program]. Vienna, Austria 2017  

27. Statistics South Africa. Mid-year population estimates 2019. 

https://www.statssa.gov.za/publications/P0302/P03022019.pdf. 

28. Code for Africa. African Covid-19 Vulnerability Index (ACVI). 2022; 

https://africaopendata.org/dataset/africa-covid-19-vulnerability-index. 

29. Nagata S, Nakaya T, Adachi Y, et al. Mobility Change and COVID-19 in Japan: 

Mobile Data Analysis of Locations of Infection. Journal of Epidemiology. 2021; 

31(6):387–391. 

30. Nouvellet P, Bhatia S, Cori A, et al. Reduction in mobility and COVID-19 

transmission. Nature Communications. 2021;12(1):1090. 

31. Potgieter A, Fabris-Rotelli IN, Kimmie Z, et al. Modelling Representative 

Population Mobility for COVID-19 Spatial Transmission in South Africa. 

Frontiers in Big Data. 2021;4:718351. 

https://www.statssa.gov.za/publications/P0302/P03022019.pdf
https://africaopendata.org/dataset/africa-covid-19-vulnerability-index


 

101 

32. Number of smartphone users in South Africa from 2014 to 2023 (in millions). 2021; 

https://www.statista.com/statistics/488376/forecast-of-smartphone-users-in-south-

africa/. Accessed May 16, 2021. 

33. Health Budget Brief South Africa. 2018/2019. 

https://www.unicef.org/esa/sites/unicef.org.esa/files/2019-03/UNICEF-South-

Africa-2018-Health-Budget-Brief.pdf. 

34. Government SA. COVID-19 / Novel Coronavirus. 2021; 

https://www.gov.za/Coronavirus. 

35. America IDSo. Nucleic Acid Amplification Testing (e.g. RT-PCR). 2021; 

https://www.idsociety.org/covid-19-real-time-learning-network/diagnostics/RT-

pcr-testing/. Accessed November 30, 2021. 

36. Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-

nCoV) by real-time RT-PCR. Eurosurveillance. 2020;25(3):2000045. 

37. Gill M, Gray M. Mass testing for covid-19 in the UK. BMJ: British Medical 

Journal. 2020;371:m4436. 

38. Viana R, Moyo S, Amoako DG, et al. Rapid epidemic expansion of the SARS-

CoV-2 Omicron variant in southern Africa. Nature. 2022. 

https://doi.org.10.1038/s41586-022-04411-y 

39. South African COVID-19 Modelling Consortium. National COVID Epidemiology 

Model (NCEM). 2020; https://sacovid19mc.github.io/supplementaryInformation. 

https://www.statista.com/statistics/488376/forecast-of-smartphone-users-in-south-africa/
https://www.statista.com/statistics/488376/forecast-of-smartphone-users-in-south-africa/
https://www.unicef.org/esa/sites/unicef.org.esa/files/2019-03/UNICEF-South-Africa-2018-Health-Budget-Brief.pdf
https://www.unicef.org/esa/sites/unicef.org.esa/files/2019-03/UNICEF-South-Africa-2018-Health-Budget-Brief.pdf
https://www.gov.za/Coronavirus
https://www.idsociety.org/covid-19-real-time-learning-network/diagnostics/RT-pcr-testing/
https://www.idsociety.org/covid-19-real-time-learning-network/diagnostics/RT-pcr-testing/
https://sacovid19mc.github.io/supplementaryInformation


 

102 

40. National Institute of Communicable Disease. South African COVID-19 Modelling 

Consortium. NCEM Provincial Model Code Guide. South African COVID-19 

Modelling Consortium; 2021. 

41. Foundation for Innovative Diagnostics (FIND). FIND Evaluation of SD Biosensor, 

Inc. STANDARD Q COVID-19 Ag Test: External Report. FIND. 2020. 

https://www.finddx.org/wp-content/uploads/2020/12/SDQ-Ag-Public-

Report_20201210-v2-1.pdf. 

42. Buitrago-Garcia D, Egli-Gany D, Counotte MJ, et al. Occurrence and transmission 

potential of asymptomatic and presymptomatic SARS-CoV-2 infections: A living 

systematic review and meta-analysis. PLoS Medicine. 2020;17(9):e1003346. 

43. den Boon S, Jit M, Brisson M, et al. Guidelines for multi-model comparisons of the 

impact of infectious disease interventions. BMC Medicine. 2019;17(1):163. 

44. The ACT-Accelerator. The ACT-Accelerator Strategic Plan & Budget, October 

2021 to September 2022. 2021. 

45. The White House. FACT SHEET: President Biden Announces New Actions to 

Protect Americans and Help Communities and Hospitals Battle Omicron. 2021; 

https://www.whitehouse.gov/briefing-room/statements-releases/2021/12/21/fact-

sheet-president-biden-announces-new-actions-to-protect-americans-and-help-

communities-and-hospitals-battle-omicron/. 

46. Smith LE, Potts HWW, Amlôt R, Fear NT, Michie S, Rubin GJ. Adherence to the 

test, trace, and isolate system in the UK: results from 37 nationally representative 

surveys. BMJ: British Medical Journal. 2021;372:n608. 

https://www.finddx.org/wp-content/uploads/2020/12/SDQ-Ag-Public-Report_20201210-v2-1.pdf
https://www.finddx.org/wp-content/uploads/2020/12/SDQ-Ag-Public-Report_20201210-v2-1.pdf
https://www.whitehouse.gov/briefing-room/statements-releases/2021/12/21/fact-sheet-president-biden-announces-new-actions-to-protect-americans-and-help-communities-and-hospitals-battle-omicron/
https://www.whitehouse.gov/briefing-room/statements-releases/2021/12/21/fact-sheet-president-biden-announces-new-actions-to-protect-americans-and-help-communities-and-hospitals-battle-omicron/
https://www.whitehouse.gov/briefing-room/statements-releases/2021/12/21/fact-sheet-president-biden-announces-new-actions-to-protect-americans-and-help-communities-and-hospitals-battle-omicron/


 

103 

47. Mahase E. Covid-19: Mass testing in Slovakia may have helped cut infections. 

BMJ: British Medical Journal. 2020;371:m4761. 

48. Bosetti P, Kiem CT, Yazdanpanah Y, et al. Impact of mass testing during an 

epidemic rebound of SARS-CoV-2: a modelling study using the example of France. 

Eurosurveillance. 2021;26(1):2001978. 

49. Bootsma M, Kretzschmar M, Rozhnova G, Heesterbeek J, Kluytmans J, Bonten M. 

Regular universal screening for SARS-CoV-2 infection may not allow reopening 

of society after controlling a pandemic wave. medRxiv. 

https://doi.org/10.1101/2020.11.18.20233122  

50. Fontanet A, Tondeur L, Grant R, et al. SARS-CoV-2 infection in schools in a 

northern French city: a retrospective serological cohort study in an area of high 

transmission, France, January to April 2020. Eurosurveillance. 2021;26(15): 

2001695. 

51. Madewell ZJ, Yang Y, Longini IM, Jr, Halloran ME, Dean NE. Household 

Transmission of SARS-CoV-2: A Systematic Review and Meta-analysis. JAMA 

Network Open. 2020;3(12):e2031756-e2031756. 

52. Cele S, Jackson L, Khan K, et al. SARS-CoV-2 Omicron has extensive but 

incomplete escape of Pfizer BNT162b2 elicited neutralization and requires ACE2 

for infection. medRxiv. 2021. https://doi.org/10.1101/2021.12.08.21267417 

53. Pfizer and BioNTech Provide Update on Omicron Variant. 2021; 

https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-

biontech-provide-update-omicron-variant. 

https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-provide-update-omicron-variant
https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-provide-update-omicron-variant


 

104 

54. Unitaid. Cost of rapid COVID-19 tests halved as global investment ensures 

availability of high volumes for low- and middle-income countries. 2022; 

https://unitaid.org/news-blog/cost-of-rapid-covid-19-tests-halved-as-global-

investment-ensures-availability-of-high-volumes-for-low-and-middle-income-

countries/#en. 

55. Mina MJ, Parker R, Larremore DB. Rethinking Covid-19 Test Sensitivity — A 

Strategy for Containment. New England Journal of Medicine. 2020;383(22):e120. 

56. Foundation for Innovative Diagnostics (FIND). ACT-Accelerator Access to 

COVID-19 Tools. 2020; https://www.finddx.org/covid-19/act-accelerator. 

57. Menzies NA, Gomez GB, Bozzani F, et al. Cost-effectiveness and resource 

implications of aggressive action on tuberculosis in China, India, and South Africa: 

a combined analysis of nine models. The Lancet. Global Health. 2016;4(11):e816–

e826. 

58. Eaton J, Menzies N, Stover J, et al. How should HIV programmes respond to 

evidence for the benefits of earlier treatment initiation? A combined analysis of 

twelve mathematical models. 2013. World Health Organization. 

https://apps.who.int/iris/handle/10665/93524 

59. Keebler D, Revill P, Braithwaite S, et al. Cost-effectiveness of different strategies 

to monitor adults on antiretroviral treatment: a combined analysis of three 

mathematical models. The Lancet. Global Health. 2014;2(1):e35–e43. 

60. Borchering RK, Viboud C, Howerton E, et al. Modeling of Future COVID-19 

Cases, Hospitalizations, and Deaths, by Vaccination Rates and Nonpharmaceutical 

https://unitaid.org/news-blog/cost-of-rapid-covid-19-tests-halved-as-global-investment-ensures-availability-of-high-volumes-for-low-and-middle-income-countries/#en
https://unitaid.org/news-blog/cost-of-rapid-covid-19-tests-halved-as-global-investment-ensures-availability-of-high-volumes-for-low-and-middle-income-countries/#en
https://unitaid.org/news-blog/cost-of-rapid-covid-19-tests-halved-as-global-investment-ensures-availability-of-high-volumes-for-low-and-middle-income-countries/#en
https://www.finddx.org/covid-19/act-accelerator


 

105 

Intervention Scenarios - United States, April-September 2021. MMWR: Morbidity 

and Mortality Weekly Report. 2021;70(19):719–724. 

61. Shea K, Runge MC, Pannell D, et al. Harnessing multiple models for outbreak 

management. Science. 2020;368(6491):577–579. 

62. World Health Organization. Recommendations for national SARS-CoV-2 testing 

strategies and diagnostic capacities. Interim Guidance. 2021. 

https://apps.who.int/iris/bitstream/handle/10665/342002/WHO-2019-nCoV-lab-

testing-2021.1-eng.pdf?sequence=1&isAllowed=y. 

63. Peeling RW, Olliaro PL, Boeras DI, Fongwen N. Scaling up COVID-19 rapid 

antigen tests: promises and challenges. The Lancet. Infectious Diseases. 2021; 

21(9):e290–e295. 

64. Larremore DB, Wilder B, Lester E, et al. Test sensitivity is secondary to frequency 

and turnaround time for COVID-19 surveillance. medRxiv. 

https://dx.doi.org/10.1101%2F2020.06.22.20136309  

65. Korenkov M, Poopalasingam N, Madler M, et al. Evaluation of a Rapid Antigen 

Test To Detect SARS-CoV-2 Infection and Identify Potentially Infectious 

Individuals. Journal of Clinical Microbiology. 2021;59(9):e0089621. 

66. Regev-Yochay G, Kriger O, Beni S, et al. Real World Performance of SARS-CoV-

2 Antigen Rapid Diagnostic Tests in Various Clinical Settings. medRxiv. 

https://doi.org/10.1101/2021.03.02.21252400 

https://apps.who.int/iris/bitstream/handle/10665/342002/WHO-2019-nCoV-lab-testing-2021.1-eng.pdf?sequence=1&isAllowed=y
https://apps.who.int/iris/bitstream/handle/10665/342002/WHO-2019-nCoV-lab-testing-2021.1-eng.pdf?sequence=1&isAllowed=y


 

106 

67. Rashid A, Sy KTL, Cabrejas JM, Nichols BE, Bhadelia N, Murray EJ. A clinician's 

primer on epidemiology for COVID-19. Med (New York ,N Y). 2021;2(4):384–394. 

https://doi.org/10.1016/j.medj.2021.02.007 

68. Foundation for Innovative Diagnostics (FIND). FIND Evaluation of Abbott Panbio 

COVID-19 Ag Rapid Test Device (NASAL): External Report. FIND. 2021. 

https://www.finddx.org/wp-content/uploads/2021/06/Panbio_Nasal_Ag-Public-

Report_20210211v1.pdf 

  



 

107 

8 CURRICULUM VITAE 



 

108 



 

109 



 

110 



 

111 


