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Calvin: Wow it really snowed last night! Isn’t it wonderful?
Hobbes: Everything familiar has disappeared! The world looks brand-new!
Calvin: A new year. . . A fresh clean start!
Hobbes: It’s like having a big white sheet of paper to draw on!
Calvin: A day full of possibilities!
Calvin: It’s a magical world Hobbes ol’ buddy. . .
Calvin: . . . Lets go exploring!

– Bill Watterson (1995)
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ABSTRACT

Machine Learning (ML) has gained prominence in recent years and is currently being used

in a wide range of applications. Researchers have achieved impressive results at or beyond

human levels in image processing, voice recognition, and natural language processing ap-

plications. Over the past several years, there has been a lot of work in the area of designing

efficient hardware for ML applications. Realizing the power of ML over the years, lately,

researchers are exploring the use of ML for designing computing systems. In this thesis, we

propose two ML-based design and management approaches - in the first approach, we pro-

pose to use ML algorithms to improve hardware prefetching in processors. In the second

approach, we leverage Reinforcement Learning (RL)-based algorithms to automatically

insert nanoantennas into standard cell libraries to secure them against Hardware Trojans

(HTs).

In the first approach, we propose using ML to manage prefetchers and in turn improve

processor performance. Classically, prefetcher improvements have been focused on either

adding new prefetchers to the existing hybrid prefetching system (a system made out of

one or more prefetchers) or increasing the complexity of the existing prefetchers. Both

approaches increase the number of prefetcher system configurations (PSCs). Here, a PSC
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is a given setting for each prefetcher such as whether it is ON or OFF or in the case of

more complex prefetchers settings such as the aggressiveness level of the prefetcher. While

the choice of PSC of the hybrid prefetching system can be statically optimized for the

average case, there are still opportunities to improve the performance at runtime. To this

end, we propose a prefetcher manager called Puppeteer to enable dynamic configuration

of existing prefetchers. Puppeteer uses a suite of decision trees to adapt PSCs at runtime.

We extensively test Puppeteer using a cycle-accurate simulator across 232 traces. We show

up to 46.0% instructions-per-cycle (IPC) improvement over no prefetching in 1C, 25.8%

in 4C, and 11.9% over 8C. We design Puppeteer using pruning methods to reduce the

hardware overhead and ensure feasibility by reducing the overhead to only a few KB for

storage.

In the second approach, we propose SecRLCAD, an RL-based Computer-Aided-Design

(CAD) flow to secure standard cell libraries. The chip supply chain has become globalized.

This globalization has raised security concerns since each step in the chip design, fabrica-

tion and testing is now prone to attacks. Prior work has shown that a HT in the form of

a single capacitor with a couple of gates can be inserted during the fabrication step and

then later be utilized to gain privileged access to a processor. To combat this inserted HT,

nanoantennas can be inserted strategically in standard cells to create an optical signature

of the chip. However, inserting these nanoantennas is difficult and time-consuming. To aid

human designers in speeding up the design of secure standard cells, we design an RL-based

flow to insert nanoantennas into each standard cell in a library. We evaluate our flow using

Nangate FreePDK 45nm. We can secure and generate a clean library with an average area

increase of 56%.
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Chapter 1

Introduction

1.1 Motivation

The demand for computing is continuously increasing with no signs of slowing down.

High-performance computing, cloud computing, and end user computing demand markets

are all growing year-after-year. High-performance demand has pushed companies such as

Advanced Micro Devices (AMD), Hewlett Packard Enterprise (HPE), and Cray Computing

to develop Exascale computers (HPE, Cray, AMD, 2021). Reportedly, cloud computing

market has increased from a 313 billion dollar to 483 billion in just two years, from 2020

to 2022 (Forbes, 2021). The end user computing market is expected to keep growing each

year by 12.18% (Research Markets, 2022). With new application domains in computing

such as autonomous vehicles, virtual/augmented reality, and bitcoin, to name a few, the

computing industry has more challenges and questions than ever before. For example, on

the energy consumption side, buying something as simple as a latte using bitcoin consumes

up to 176 dollars in energy per transaction (Fortune, 2021). Adding all these transactions

up, the global energy consumption from only bitcoin accumulates to 110 Terawatts per hour

(HBR, 2021). More power efficient methods must be developed by computer scientists,

researchers, and companies alike in order to tackle these issues. Security is becoming more

prevalent as attacks have exposed hardware faults such as the Spectre (Kocher et al., 2019)

and Meltdown (Lipp et al., 2018) attacks in 2019, which exploited critical architectural

vulnerabilities in modern processors. These vulnerabilities were used in both Intel and

AMD processors to leak confidential information such as passwords and personal data.
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The computing research community must find reliable and effective methods to secure both

software and hardware against these types of attacks before they cause irreversible harm.

Finally, there are performance-critical safety issues, such as in the automotive industry

where autonomous driving applications have to make decisions in fractions of nanoseconds

with near-perfect accuracy. Companies like Tesla have designed chips such as the FSD that

have significant safety components like redundant cores to cross-check and validate self-

driving decisions (Drive Tesla Canada, 2021). Essentially as new domains have opened up,

questions related to performance, energy consumption, safety, and security have become

even more challenging. All of these challenges have been further exacerbated with the

impending demise of technology scaling (Moore, 2019). There is no longer a free lunch

with the periodic performance improvement stemming from technology scaling.

Research has instead shifted to using “More-than-Moore” approaches to sustain the

historical trend of performance improvement and keep up with the wide variety of new

computing domains. Exotic technology solutions such as 2.5D SoCs (Coskun et al., 2018;

Coskun et al., 2020; Ma et al., 2021; Eris et al., 2018), 3D die stacking (Black et al.,

2006; Naffziger et al., 2021), photonics, and optical enabled SoCs (Narayan et al., 2021;

Guo et al., 2019; Demirkiran et al., 2021), quantum computing (Jurcevic et al., 2021),

and many more. The architectural-level approaches include the design of domain-specific

architectures for various domains (Dally et al., 2020), including but not limited to low-

power sensing applications (Dong et al., 1997; Hempstead et al., 2005; Tekeste et al.,

2018; Silva et al., 2018), graphics applications (Jouppi et al., 2017; Aamodt et al., 2018;

Tran and Cambria, 2018), automotive applications (Talpes et al., 2020; Xu et al., 2021b;

Du et al., 2019), etc.

With increasingly complicated and diversified computing systems, it is exceedingly

difficult for human researchers to develop heuristic methodologies that work for all po-

tential cases. In recent years, we have begun to observe research in utilizing ML to help



3

researchers design and manage the hardware. The interest in this trend is increasing in

both academia and in industry utilizing ML for both design and management of hardware

(AnalyticsVidhya, 2021; Pan, 2021; Mirhoseini et al., 2021). Now by leveraging the power

of ML, we can come up with novel designs (Yu et al., 2018; Mirhoseini et al., 2021; Yu and

Zhou, 2020; Lin et al., 2020; Ustun et al., 2020; Ren and Fojtik, 2021; Ren et al., 2021)

and control policies for hardware (Dean et al., 2018; Dean, 2020; Jiménez and Teran, 2017;

Bhatia et al., 2019; Liao et al., 2009; Ipek et al., 2008; Tarsa et al., 2019; Ravi and Lipasti,

2017; Reza et al., 2018; Vengerov, 2009; Yin et al., 2020; Yigitbasi et al., 2013; Braun and

Litz, 2019), hence closing the loop of hardware-aided ML algorithms and ML-aided hard-

ware design. Here we go into two specific problems where ML can help human designers

in hardware design and optimization.

1.1.1 Controlling Prefetchers at Runtime to Increase Performance

The memory wall is a well-known problem in computer architecture (Wulf and McKee,

1995). The “memory wall” problem, points out that improvement of processor perfor-

mance far exceeds the improvement of memory speed. Nowadays, because of this trend,

the memory bottleneck has become the most important issue in modern computing. To

overcome the memory wall, among other approaches like Processing-in-Memory (PIM)

(Li et al., 2016b), branch predicting (Smith, 1998), Translation-Lookaside-Buffer (TLB)

(Black et al., 1989) Cache Replacement Policies (Al-Zoubi et al., 2004), silicon photonics

on chip (Joshi et al., 2009), computer architects have used various prefetching techniques

including, Stride (Vanderwiel and Lilja, 2000), Stream (Vanderwiel and Lilja, 2000), and

Spatial Memory Streaming (SMS) (Somogyi et al., 2006). Today’s processors typically

consist of multiple prefetchers. In these systems, there is a contract between the prefetch-

ers and the processor in the form of prefetcher priority, prefetcher throttling, etc., to regulate

the interactions between prefetchers. Generally, this contract is tuned in an offline manner

for the typical case where all prefetchers are left ON. This tuning can be done at design



4

time regardless of potential program memory access patterns or system conditions in both

AMD and Intel CPUs (Intel, 2017; (AMD), 2017). Only tuning the prefetchers for the

typical case can cause complex interactions between the prefetchers, which can lead to IPC

losses. In systems with multiple prefetchers, several challenges arise from the complex

interactions between prefetchers.

Overfitting

Each prefetcher is tuned for a specific type of traffic. For example, a stride prefetcher tracks

strided accesses that consist of a single stride and uses thresholds tuned for the average

strided sequences. For applications that don’t have strided accesses this tuning may be

suboptimal, leading to cache thrashing. In a processor with multiple prefetchers, this issue

is more pronounced because the architectural resources are shared among all prefetchers.

Duplicate Coverage

In a processor with multiple prefetchers, all prefetchers track the memory patterns. Given

all prefetchers train independently, multiple prefetchers may trigger prefetch requests for

the same memory patterns. This leads to wasted bandwidth and power consumption.

Faulty Synchronization

Since the prefetchers latch onto memory patterns at different speeds, a prefetcher’s behavior

over time can be affected by the traffic of the other prefetchers. Variations in the accuracy

of each prefetcher and faulty synchronization of the prefetchers with each other can lead to

a drop in IPC.

Essentially, prefetchers compete for resources and, at times, sabotage the performance

of each other. Instead of turning ON all prefetchers regardless of program phase, one could

turn ON only a subset of prefetchers by identifying which prefetchers are best for a given

program phase. Leveraging the power of ML to find non-intuitive correlations, we can use
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ML to identify when a certain prefetcher should be turned ON.

1.1.2 Securing Against Hardware Trojans Using Nanoantennas

At the heart of security lies the trust established in the underlying silicon that runs the soft-

ware. Many companies, such as Nvidia, and AMD, only design integrated circuits (ICs)

and trust other manufacturers with actually fabricating their products. These companies

either have to invest vast amounts of money to fabricate locally (Reuters, 2022; CNBC,

2021b) or they can fabricate their ICs overseas at a much lower cost (Tech, 2019). How-

ever, fabricating overseas creates additional attack opportunities for security risks at the

fabrication step. These attacks include HT insertion, IC overbuild, reverse-engineering of

the intellectual property (IP), side-channel leaks utilizing power and timing, and IC coun-

terfeiting (Karri et al., 2010; Lin et al., 2009; Yang et al., 2016; Jacob et al., 2014; Xiao

et al., 2016).

A specific attack gaining recent notoriety is using HTs. HTs are hardware blocks specif-

ically designed to perform attacks on trusted hardware. These attacks can be used to leak

information, sabotage or hinder the functions of chips or grant prohibited priority esca-

lation (Becker et al., 2013; Yang et al., 2016). In particular, HTs inserted during the

fabrication stage are not easy to detect using standard physical and functional detection

techniques (Yang et al., 2016; Zhou et al., 2020; Huang et al., 2020). These HTs have

negligible overheads in performance, power, and area, making them extremely difficult to

detect (Nowroz et al., 2014; Yang et al., 2016). HTs have even been placed into proces-

sors such as the OR1200 processor to gain priority access (Yang et al., 2016). Functional

testing is infeasible because these HTs can have uncommon activate sequences (Wei et al.,

2012). Current solutions are based on either monitoring the entire manufacturing process or

reverse engineering the IC to identify modifications made compared to a known golden de-

sign. Reverse engineering involves treating the IC as untrusted hardware and using imaging

methods such as Scanning Electron Microscope (SEM) or delayering techniques to detect
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HTs (Tehranipoor and Koushanfar, 2010; Karri et al., 2010). Unfortunately, these methods

are time-inefficient and have high costs.

Using nanoantennas (Adato et al., 2016; Adato et al., 2015; Zhou et al., 2015; Zhou

et al., 2020; Zaraee et al., 2020) to secure IC chips against these fabrication-side HT at-

tacks has been proposed as an alternative to these methods . Nanoantennas are grating pair

structures created from metal material that resonate at specific angles of reflectance and op-

tical wavelengths. By inserting nanoantennas into individual standard cells and effectively

into the IC chips, we have an optical signature for each IC chip. If the structures within the

IC chip are modified, we can observe a change in the optical signature.

While using nanoantennas for optical signature creation is a promising approach, the

insertion process of these nanoantennas into standard cells is a design-intensive task. Prior

art either made the design task easier by focusing on a few standard cells such as fill cells

(Zhou et al., 2020), or they used dual-gate pairs to increase the area to make it easier to

insert a nanoantenna (Zaraee et al., 2020). Both approaches are non-ideal. Using only

nanoantenna-inserted filler cells, the coverage of the design is not 100% and an attacker

could potentially replace the functional cells with a HT. With a dual-gate pair approach, the

designs are not readily CAD-flow compliant and require heavy modification of the CAD

tools to place gate pairs. Providing complete coverage of the standard cells by inserting

nanoantennas into each cell would provide better security guarantees. Additionally, these

standard cells would be compliant with existing tools. Therefore, they could easily be used

to secure IP readily.

1.2 Thesis Contributions

At a broader level, this thesis explores the idea of using ML to manage and design hard-

ware. By leveraging the power of ML, we find non-intuitive interactions in hardware and

optimize the design and management of hardware. We focus on two approaches of using



7

ML for hardware optimization and design. The thrusts we have presented in this thesis can

be extended far beyond the implications shown in this thesis. We envision a future where

extremely complicated hardware design choices and management decisions are automa-

tized and controlled by algorithms. In the first approach, we leverage low-overhead ML

algorithms to improve the performance of hardware prefetchers. In the second approach,

we utilize an RL-based CAD flow to automate the design of secure standard cell libraries.

The thesis statement as follows:

Using ML, we can design and manage hardware more efficiently than a human-

intuition-backed heuristic approach, leading to better performance and security benefits.

The main contributions of this Ph.D. research are as follows:

• Puppeteer: An RF-based Hardware Prefetcher Manager - In the first approach,

we propose a novel ML-based runtime hardware manager called Puppeteer to man-

age the various prefetchers across the memory hierarchy to improve processor perfor-

mance. Compared to prior work, Puppeteer is the only manager that targets all cache

levels in the memory hierarchy. At runtime, during an instruction window, we use a

set of invariant events (which can be tracked using hardware performance counters

(HPCs)) to count the number of occurrences of various hardware-level events in a

processor. At the end of the instruction window, we use these events as input to our

ML model, which predicts the prefetcher system configuration (PSC) with the high-

est IPC for the next instruction window. We use several novel ideas to increase the

performance of Puppeteer. First is the utilization of invariant events. Each invariant

event is largely independent from the prefetchers’ action. We can utilize the indepen-

dence of these events to prefetching to collect the features and train our model in an

offline manner. Next, we train Puppeteer to maximize processor performance instead

of the prefetch address prediction accuracy utilizing a regression scheme instead of

classification. Finally, we use only 10% of the data for training to prevent overfitting
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and design Puppeteer with a low hardware overhead (⇠10KB). In contrast, prior art

does not consider generalization issues and approaches this problem mainly from the

perspective of training accuracy. We make sure that Puppeteer is feasible to imple-

ment in hardware. Therefore, we co-optimize the hardware design and the ML model

of Puppeteer intending to maximize the overall application performance while min-

imizing the area overhead. For the 232 traces we evaluated, Puppeteer achieves an

average performance gain of 46.0% in 1 Core (1C), 25.8% in 4 Core (4C), and 11.9%

in 8 Core (8C) processors compared to a system with no prefetching. Moreover, we

ensure Puppeteer reduces negative outliers. When using Puppeteer, we observe an

89% reduction in the number of outliers, down to 8 outliers from 53, and a 20% re-

duction in the IPC loss of the worst-case outlier compared to the state-of-the-art prior

prefetcher managers.

• SecRLCAD: An RL-based CAD flow to Secure Standard Cells - In the second

approach, we propose an RL-based CAD flow to insert nanoantennas into all standard

cells in a given standard cell library instead of just non-functional filler cells or dual-

gate pairs. In our novel insertion flow, we begin by leveraging a graph-insertion

algorithm to insert nanoantennas into existing standard cells as a first pass. We use

this as a starting point for a Deep-Q-Network (DQN) RL neural network (NN) to

fix DRC issues in the standard cells due to the insertion stage. We automate the

flow end-to-end to take an existing standard cell library as input, insert an optical

nanoantenna in each cell of the library, and generate a secure standard cell library

as output. Our flow is the first of its nature that focuses on the security aspect of a

standard cell library. We build the flow to be as generic as possible and to be capable

of inserting new nanoantenna designs in the standard cell library of any technology

node. We automate the generation of all the standard cell library files such as .lef,

.lib, and the .gds files end-to-end with only a few path changes to be compatible with
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the standard CAD flows. Utilizing SecRLCAD, we can secure FreePDK 45nm at an

average area increase of only 56%. Furthermore, for GF22FDX (GlobalFoundries,

2006), we designed secure standard cells for seven min-size standard cell gates and

taped out a chip to test our idea of inserting nanoantennas into the functional standard

cells. Based on our tape out experience, we can reduce the design time of securing

the 100 standard cell gates from 28.5 months to only a couple of hours.

1.3 Organization

The remainder of this thesis is organized as follows. We review the background and state of

the art on ML-based prefetching, ML-based hardware management, Hardware IP security,

ML-based chip layout algorithms, and optical nanoantenna design in Chapter 2. Chapter 3

presents our work on designing and implementing our low-overhead hardware prefetcher

manager called Puppeteer. Chapter 4, introduces our RL-based CAD flow called SecRL-

CAD for automatic insertion of optical nanoantennas into standard cell libraries. Finally,

in Chapter 5, we discuss the future directions and conclude this thesis.
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Chapter 2

Background and Related Work

In this chapter, we provide a brief background on essential areas to Puppeteer and SecRL-

CAD. We then provide related work on prior art that is more closely related to this thesis.

2.1 Background

In this section, we provide a background on various topics relevant to the two thrusts we

have investigated. In the case of Puppeteer, prefetching and RF are critical topics to under-

stand. In the case of SecRLCAD, we briefly outline the relevant topics in hardware trojans

(HT), optical nanoantennas, and RL.

2.1.1 Puppeteer Background

Prefetching

The focus of our work is on a prefetcher manager that can work with any type of prefetcher

on any cache level. Our work is also able to manage multiple prefetchers on a single

cache level or across cache levels. Broadly, we can split prefetching techniques into sev-

eral categories. We can have regular-pattern-based, i.e., stride-based prefetchers (Kagi

et al., 1996; Wenisch et al., 2009), irregular-pattern-based, i.e., stream-based prefetchers

(Cantin et al., 2006; Somogyi et al., 2006), prefetchers that track both regular and irregular

patterns (Shevgoor et al., 2015; Kim et al., 2016), and region-based prefetchers (Ganusov

and Burtscher, 2005; Wang et al., 2003). An excellent comprehensive survey on prefetchers

can be found in Falsafi et al. (Falsafi and Wenisch, 2014).
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ML-based algorithms can predict the addresses of the instructions/data that should be

prefetched at each cache level in the memory hierarchy. The ML-based solutions include

table-based reinforcement learning (Peled et al., 2015; Bera et al., 2021), linear model-

based reinforcement learning (Zhang et al., 2018), perceptron-based neural networks (Peled

et al., 2019; Fedchenko et al., 2019), Markov chain model (Moreira et al., 2017) and

LSTM-based neural networks (Hashemi et al., 2018; Shi et al., 2021b; Zhang et al., 2020a;

Narayanan et al., 2018; Srivastava et al., 2019; Braun and Litz, 2019; Zeng and Guo, 2017;

Rogers, 2019) to predict memory access patterns. As ML algorithms get more powerful

and the techniques to compress these algorithms become more sophisticated, ML-based

prefetchers will become commonplace in processors.

Random Forests

RF is a supervised ML Algorithm widely popular in classification and regression problems

(Biau and Scornet, 2016). RF is made up of decision trees built on subsets of the training

data. The main advantage is since the samples are split up into subsets and used to try and

achieve the same outcome, namely minimizing prediction error, the individual decision

trees learn the underlying distribution of data from different data. This reduces overfitting

issues since a single decision tree with access to all the training data can more closely

fit the training distribution. Due to this property, RF has been proven to work quite well

with noisy data (Kulkarni and Sinha, 2012). Another advantage of RF is that RF has low

computational and area overhead compared to more powerful NN algorithms. A typical

NN needs many layers made up of a large number of nodes to achieve high accuracy on

noisy data. For the state-of-the-art, NNs can reach billions of nodes (Dai et al., 2021;

Riquelme et al., 2021; Brown et al., 2020).

An RF can be formulated as taking the average output of a set of decision trees in the

case of regression or taking the majority vote in the case of classification.

f 0 = 1
N ÂN

n=1 fn(x) where each fn is a single decision tree function, and N is the total number
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of decision trees.

2.1.2 SecRLCAD Background

Hardware Trojans

A HT is an intentionally malicious circuit built into an IC. A HT can be used to leak in-

formation, disrupt performance, or even destroy an IC given a specific trigger (Hu et al.,

2016). The type of a HT can be either functional or parametric. Functional HT are created

by adding or deleting any transistors or gates to the original chip design. Parametric HT are

created by making circuitry modifications on the original IC, such as changing wire thick-

ness or transistor strength. A HT masks its existence by typically triggering on a sporadic

event. A HT can even be inserted during the manufacturing phase and have extremely low

area, power, and performance overhead, making it extremely difficult to distinguish the in-

serted HT (Yang et al., 2016). The rarity of events and the HT’s sizing makes HT detection

difficult with both functional and physical methods such as scanning electron microscopy

(SEM) or physically destructive techniques such as slicing. SecRLCAD provides security

against functional HT and parametric HT that modify transistor sizing. SecRLCAD also

does not require sophisticated imaging or functional control techniques.

Optical Nanoantennas

Metal in IC chips strongly reflects near-infrared (IR) light while silicon is near-transparent

(Zhou et al., 2020). We can then use backside imaging to generate an optical image of

the metal layer of the IC (Ippolito et al., 2004; Köklü and Ünlü, 2010). We can construct

structures that will create known responses under specific wavelengths and optical angles

using this property. These structures are called optical nanoantennas. With nanoantennas,

Zaraee et al. have shown that we can generate an optical watermark at the standard cell

level (Zaraee et al., 2020). We can then compare a generated finite difference time do-

main (FDTD) simulation image, "a golden reference", with the actual backside images of



13

IC to detect mismatches (Zhou et al., 2020). Using nanoantennas to generate an optical

watermark is comparatively better compared to SEM imaging since it is faster and does not

require expensive machines. Additionally, it is not destructive such as slicing techniques.

Zhou et al. used these structures in fill cells to show modifications made to the empty

regions of the ICs (Zhou et al., 2020). While Zaraee et al. show that we can insert nanoan-

tennas into dual-gate pairs where two standard cells such as an OR gate and AND gate are

placed side by side. Zhou et al. do not provide adequate coverage in the active region of

the ICs, while Zaraee et al. do not have a readily available answer to how their dual-gate

pairs can be leveraged in existing CAD flows.

Reinforcement Learning

Reinforcement learning (RL) is an algorithmic approach consisting of an RL agent and an

environment/state (Sutton and Barto, 2018; Kaelbling et al., 1996; François-Lavet et al.,

2018). An RL agent learns how certain actions taken in a given state will affect a reward

function. The RL agent then learns to maximize this reward function. A typical RL ap-

proach is composed of four critical components:

• (i) The state vector (St) - The state vector records the current condition of the envi-

ronment that the RL agent is taking actions on.

• (ii) The action choice (At) - The RL agent can take several actions upon the state for

each time step.

• (iii) The reward function (Rt) - For each state, there is a recorded numerical output.

The actions taken upon the given state creates a difference in the numerical output.

This difference guides the RL agent towards better actions for state pairs.

• (iv) The stop condition - The RL agent needs to know when to stop and reset the

state vector.
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Figure 2·1: Typical RL Algorithm - We have an agent, the environment that it can take
actions on and the observed state and reward based on those actions.

This stop can be done on a set number of time steps or when a reward function goal is

reached. Figure 2·1, shows the typical interaction between the RL agent and the environ-

ment. The RL agent interacts with the state in discrete time steps. At each time step (t)

step, the RL agent observes the current state and takes action. Upon receiving the action,

the state transitions to a new state at time step (t + 1) and calculates the reward function,

which the RL agent records The reward scheme drives the RL agent towards taking optimal

actions.

2.2 Related Work

This section broadly describes the related works to Puppeteer and SecRLCAD. For Pup-

peteer, we divide the prior prefetcher managers into heuristic-based managers and ML-

based managers. For SecRLCAD, we give a more broad description of ML methods used

in hardware security as well as ML used for CAD since there is, to the best of our knowl-

edge, no directly related ML-based CAD for security prior work.
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Table 2.1: Overview of the Related Work on Prefetcher Managers - We use NA when
the paper lacks information about the respective metric. In the last column, ‘software’
indicates the software prefetcher. For IPC gains, we report average IPC gain in 1C. We
list the number of cache levels and prefetchers (shortened as Pf) the method manages.
We implement and compare against several of these works on our own system to provide
a fairer comparison (Liao et al., 2009; Jiménez et al., 2012; Bhatia et al., 2019).

Work # Pf
# Cache
Levels

Managed

IPC Gain Over
Baseline PSC

IPC Gain Over
No Prefetching

Heuristic or
ML Overhead

(Rogers, 2019) 1 1 Only reports accuracy Heuristic Software
(Kondguli and
Huang, 2018) 1 1 5% 41% Heuristic ⇠ 4.6KB

(Jiménez et al.,
2012) 1 1 7.8% (6% from 1

application) NA Heuristic Software
(Kang and Wong,

2013) 0 1 11% No Pf baseline Heuristic Software
(Liao et al.,

2009) 4 2 Only reports ML accuracy ML Software
(Rahman et al.,

2015) 1 2 Only reports ML accuracy ML Software
(Bhatia et al.,

2019) 1 1 Pf targets 2
levels 2.27% 15.24% ML ⇠ 39KB

(Hiebel et al.,
2019) 4 1 -1% to 3.6% -1% to 8.5% ML Software

(Maldikar, 2014) 1 1 -5% to 1% 23% ML Software
Puppeteer 7 All (4) 14.7% 46% ML ⇠ 10KB

2.2.1 Puppeteer Related Work

Heuristic-Based Prefetcher Managers

When a processor executes an application, there is a diverse set of interactions among a

computing system’s compute, memory, and communication components. These interac-

tions are dependent on the processor (micro)architecture and the application, thus effec-

tively making the processor a big finite state machine with a vast state space. This makes

it challenging to use deterministic techniques, which consider all possible states, for hard-

ware management. As a result, over the past 20-30 years, heuristic algorithms have been

used for hardware management, including for prefetcher management such as static pri-

ority queue-based approaches (Kondguli and Huang, 2018; Rogers, 2019) and rule-based

prefetcher throttling approaches (Ebrahimi et al., 2009a; Ebrahimi et al., 2009b; Ebrahimi

et al., 2010; Ebrahimi et al., 2011; Heirman et al., 2018; Hur and Lin, 2006; Srinath et al.,

2007; Liu et al., 2016). These algorithms have low memory/area overhead and improve

processor performance for the average case. However, heuristic algorithms are no longer
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effective with the ever-increasing complexity of processors and the diversity of applica-

tions. Heuristic algorithms are extremely dependent on the hardware/operating conditions

and cannot easily adapt to variations at runtime. But as processors have gotten more com-

plicated and the variety of applications has increased, these algorithms have had difficulty

scaling to modern environments and processor designs. They have become much more

difficult to design such that they work well with other heuristic algorithms present in the

processor.

In contrast, ML algorithms are more adaptable to changing environments and they do

not have to be reconstructed from scratch with minor changes in application use cases.

Furthermore, ML algorithms have higher versatility and generalization than heuristic algo-

rithms, making them a prime candidate for management decisions.

ML-based Prefetcher Managers

ML methods have been gaining traction in place of heuristic methods for achieving superior

prefetcher management performance (Bhatia et al., 2019; Liao et al., 2009; Jiménez et al.,

2012; Hiebel et al., 2019; Maldikar, 2014). ML algorithms can extract the non-intuitive

interactions between the different prefetchers. Prior methods on prefetcher management

configure or train the manager, which typically predicts which PSC to use for a given

application, using values of hardware events collected for a single fixed PSC (generally,

the default PSC) (Liao et al., 2009; Jiménez et al., 2012; Bhatia et al., 2019; Rahman et al.,

2015). Using an ML model trained using only a single fixed PSC would make sense if the

prefetcher system always uses that single fixed PSC at runtime. However, at runtime, the

PSC changes. If the values of the hardware events are highly dependent on which PSC is

being used, using a dataset generated using a fixed PSC for training leads to a low-accuracy

ML model for the prefetcher adaptation. To address this concern, we train our ML model

using PSC-invariant hardware events (i.e., events that are not dependent on the PSC, e.g.,

the number of branch instructions).
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We observe a wide variation in the complexity of the ML algorithms used in prior

work. We list the prior work in Table 2.1. Some of the algorithms are simple, and either

use small datasets, or use datasets that do not accurately portray the runtime environment

as they use PSC-variant events and only train data of one fixed PSC. As a result, these

algorithms cannot achieve good accuracy at runtime (Liao et al., 2009; Jiménez et al., 2012;

Rahman et al., 2015). Other algorithms, such as neural networks, are too complex and their

size increases prohibitively with the size of the dataset (Bhatia et al., 2019). Moreover,

some prior works focus on hardware adaptation only from the perspective of accuracy

without worrying about the hardware implementation (Liao et al., 2009; Jiménez et al.,

2012; Hiebel et al., 2019; Rahman et al., 2015).

Contrary to the prior work, we jointly account for the accuracy of the ML model and

hardware overhead when designing Puppeteer. Puppeteer is complex enough to provide

good accuracy on a wide variety of applications. At the same time, Puppeteer is not too

complex (as demonstrated in Section 3.2.4) to be implemented in hardware and scales

well with the size/complexity of the dataset. Furthermore, Puppeteer is agnostic of the

underlying internal mechanics of the prefetchers and can be easily retrained for a new

prefetcher that is introduced in a new system. Additionally, to the best of our knowledge,

Puppeteer is the only manager that targets all cache levels in the memory hierarchy.

ML-based Managers for Other Hardware Components

Systems for ML has been an active area of research for the past two decades. It is only

recently that ML for systems has started to gain a significant amount of traffic (Maas, 2020;

Wu and Xie, 2022; Jiménez and Teran, 2017; Shi et al., 2019; Bhatia et al., 2019; Braun

and Litz, 2019; Ipek et al., 2008; Mukundan and Martinez, 2012; Calder et al., 1997; Tarsa

et al., 2019; Reza et al., 2018; Yin et al., 2020; Cochran et al., 2011; Gomez et al., 2001;

Tesauro, 2007; Jain et al., 2016; Cummins et al., 2017). ML has been utilized in a wide

variety of hardware components and policies that require runtime decision making and
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management. ML has been used for cache replacement policies (Jiménez and Teran, 2017;

Shi et al., 2019), prefetching (Bhatia et al., 2019; Braun and Litz, 2019), memory controller

scheduling policy (Ipek et al., 2008; Mukundan and Martinez, 2012), branch prediction

(Calder et al., 1997; Tarsa et al., 2019), link management in NoCs (Reza et al., 2018), NoC

arbitration policies (Yin et al., 2020), DVFS and thread management (Cochran et al., 2011),

dynamic cache partitioning (Gomez et al., 2001; Jain et al., 2016), job scheduling (Tesauro,

2007), and code generation (Cummins et al., 2017).

2.2.2 SecRLCAD Related Work

ML for Hardware Security

The advent of ML has also brought many benefits to the area of hardware security. ML has

been used in networks to detect intrusions and anomalies (Rieck et al., 2011). The prior art

has also used ML to evaluate of ciphers against side-channel leaks (Hospodar et al., 2011).

Jin et al. detect when a HT has been activated using ML (Jin et al., 2012). Li et al. detect

HT using power consumption traces and ML detection techniques for pattern finding in

normal and malicious behavior (Li et al., 2016a). Hasegawa et al. use NN to conduct static

netlist analysis to detect HT insertion using RF (Hasegawa et al., 2017). Asadizanjani et al.

use ML to detect changes in the backside images of ICs (Asadizanjani et al., 2017). Demme

et al. have used HPCs to evaluate if a certain application is malicious (Demme et al., 2013).

Zhou et al. have interjected that this may not be possible because of the unreliability of the

training methods used in some of these works (Zhou et al., 2018). An excellent taxonomy

on imaging and ML-based techniques using SEM-based reverse engineering methods can

be found in (Botero et al., 2021).

ML for CAD

The area of CAD has been developed over the past four to five decades to push the bound-

aries of computing. With transistors at the nanometer-scale and the most recent IC designs,
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such as the Apple M1 Max chip, containing 57 billion transistors (Pugsley et al., 2020a),

IC design has become dominated by how fast and effective algorithms can converge to so-

lutions that are both feasible, low-cost, and high-performance. Decades of research have

pushed applied mathematics and developed meticulous incremental improvements on al-

gorithms such as simulated annealing. This has primarily been disrupted very recently by a

seminal paper by Google (Mirhoseini et al., 2021). n this paper, Mirhoseni et al. show that

their RL-based algorithm can achieve chip layouts at the level of the state-of-the-art algo-

rithms that take several days or even weeks amazingly in under six hours. Their algorithm

comes up with non-intuitive solutions that an architect could not reasonably come up with.

Many CAD companies and research groups have become intensively focused on finding

ML solutions for CAD problems with this innovative paper.

Ren et al. use a genetic algorithm with an RL-based DRC fixer to design standard cells

from scratch (Ren and Fojtik, 2021; Ren et al., 2021). Ustun et al. use a Graph Neural

Network (GNN) algorithm, GraphSage to perform logic synthesis in FPGAs (Ustun et al.,

2020). Zhang et al. use a Graph Convolutional Network (GCN) for IC verification and sign-

off (Zhang et al., 2020b). Want et al. use a GNN and RL-based flow to more effectively

place devices (Wang et al., 2022). Xu et al. use a GCN with an RL agent to perform the

first stage of the floorplanning problem as a Markov decision process (Xu et al., 2021a).

Jiang et al. improve upon the prior work of Mirhoseni et al. by replacing the initial force-

directed placement with DreamPlace (Jiang et al., 2021). Cheng et al. (Cheng and Yan,

2021) show that by combining both Convolutional Neural Networks (CNNs) and GNNs,

they can achieve better results for chip placement. Finally, Shi et al. (Shi et al., 2021a)

configure an RL agent for a multi-task scenario to perform analog placement.



20

Chapter 3

Puppeteer: RF-based Low-overhead Hardware
Prefetcher Manager

3.1 Introduction

Instruction and data prefetching (Falsafi and Wenisch, 2014) are commonly used in to-

day’s processors to overcome the memory wall problem (Wulf and McKee, 1995). The key

idea behind prefetching is identifying the current memory access pattern and predicting

addresses to proactively fetch instructions and data into the cache to avoid cache misses.

Prefetching hides the large memory access latency, and in turn, improves processor per-

formance. As a result, modern processors employ multiple prefetchers to cover a wide

range of applications. Consequently, existing prefetchers do not improve the performance

of all applications; in some cases they hurt application performance by prefetching the

wrong memory addresses (Lee et al., 2012). These incorrect prefetches use up the precious

memory bandwidth and the limited space in the cache hierarchy. This increases data and

instruction access latency, which hurts application performance.

To evaluate a prefetcher’s performance, we can use scope and accuracy as the met-

rics (Bhatia et al., 2019; Kondguli and Huang, 2018). A prefetcher with high prefetching

accuracy usually has limited scope, i.e., it is very good at identifying a limited number

of memory access patterns and can accurately prefetch data/instructions if those specific

memory access patterns exist. However, such a prefetcher fails to identify other mem-

ory access patterns. Conversely, a prefetcher with broad scope caters to a wide variety of
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memory access patterns, but it has low accuracy.

Effectively, we need to find a balance between the accuracy and scope of the prefetcher.

One way to balance scope and accuracy is to use multiple high accuracy prefetchers at

each level of the memory hierarchy, as is the case in AMD and Intel processors (Intel,

2017; (AMD), 2017; Bios., 2010; Intel, 2011). Each prefetcher is customized to identify

a specific type of memory access pattern and make a prefetching prediction. However,

having multiple prefetchers operating at each level in the memory hierarchy can lead to the

following issues:

• Given that each prefetcher is trained independently to track a specific type of traf-

fic and simultaneously share microarchitectural resources, prefetchers can sabotage

each other during runtime. A prefetcher may trigger prefetch requests that evict

cache lines that another prefetcher has accurately prefetched. This behavior leads

to a loss in performance, wasted memory access bandwidth, and increased power

consumption.

• Different prefetchers (either at the same level or across levels in the memory hi-

erarchy) latch onto memory access patterns at different speeds. So a prefetcher’s

prediction can be influenced by the traffic generated by other prefetchers. These dif-

ferences in temporal behavior can cause faulty synchronization among prefetchers

and lead to a drop in application performance.

Essentially, prefetchers compete for resources, and at times, sabotage each other. To

validate our argument, we use traces1 generated from SPEC2017, SPEC2006, and Cloud

benchmark suites and run these traces on an OoO processor that uses a different prefetcher

at each level of the memory hierarchy (details of the particular evaluation methodology
1A trace is a group of instructions that represent a specific behavior. One or more traces can be used to

represent the behavior of a benchmark. For example, a benchmark with consistent looping behavior can be
represented by one trace corresponding to a single iteration of the loop. One or more unique representative
traces are generated from each benchmark (Perelman et al., 2003).
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Figure 3·1: Motivational Example - Performance of a processor when using IPCP and
EIP prefetchers. Here we show the 20 traces with the highest difference in performance
out of 232 traces that we evaluated.

in Section 3.3.1). We execute these traces using two state-of-the-art prefetcher solutions

– IPCP (Pakalapati and Panda, 2020) and EIP (Ros and Jimborean, 2020), who were the

winners of prior prefetching competitions (Pugsley et al., 2020c; Pugsley et al., 2019; Pugs-

ley et al., 2020b). These prefetcher solutions use different prefetchers at each level of the

memory hierarchy, i.e., different prefetcher system configurations (PSC)2. Both prefetcher

solutions improve performance compared to the no prefetching case. However, IPCP (no-

ipcp-ipcp-nl) (further details on the types of prefetchers are given in Table 3.4) shows better

performance over EIP in 100 out of 232 traces with the largest performance gain of 56%

in 602.gcc_s-2226B. EIP (EIP-nl-spp-no) shows better performance over IPCP in the re-

maining 132 traces and has the largest performance gain of 89% in server_036.

In Figure 3·1, we show a subset of traces that have a significant difference in their IPC

when using IPCP and EIP prefetcher solutions. The standard methodology would have

us select EIP because it has on average 7.8% performance gain over IPCP, but that would

come at the cost of having a performance loss for 100 out of the 232 traces.

One way to address this problem is to have multiple different prefetchers at each cache

level and switch ON a prefetcher based on the current program phase. For example, one
2A PSC specifies which prefetcher is switched ON at each level of the

memory in the system. We denote a PSC using the following format
<prefetcher-in-L1I$>-<prefetcher-in-L1D$>-<prefetcher-in-L2$>-<prefetcher-in-LLC$>.
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prior work that has attempted to leverage multiple prefetchers in the same level of the

memory hierarchy is by Kondugli et al. (Kondguli and Huang, 2018). The authors propose

a ‘composite prefetcher’, which uses a priority queue as the control algorithm to select a

prefetcher at a single level in the memory hierarchy. While this approach provides benefits,

the ‘composite prefetcher’ priority queue is designed offline for a given set of applications.

For previously unseen applications, we will not necessarily see any performance improve-

ment. Furthermore, the control algorithm will not scale well as we increase the number of

prefetchers in the system and target different levels in the memory hierarchy.

What is really needed is a manager that can successfully manage multiple prefetchers

at each level in the memory hierarchy and has a low overhead. This manager will choose

the PSC that is suitable for the current phase of an application. The chosen PSC should

have prefetchers that complement each other for the current phase, reduce memory access

overhead, and in turn improve application performance. Given that multiple prefetchers are

available at each level in the memory hierarchy, this ‘manager’ will effectively determine

which prefetcher should be ON/OFF at each level in the memory hierarchy, both across

different phases of an application and across applications. In this chapter we propose

a machine learning (ML)-based hardware manager called Puppeteer that selects the

PSC at runtime. Contrary to the prior work (Liao et al., 2009; Zeng and Guo, 2017;

Rahman et al., 2015) that focuses on training the ML model to improve the prefetch address

prediction accuracy of the ML model, we train the ML model of Puppeteer to increase the

overall system performance (quantified as IPC). Using our unique training strategy, we are

able to specifically target training for application phases where the swing in IPC is much

higher than in other regions. Thereby, we tailor Puppeteer for these phases and achieve high

targeted-application-phase accuracy instead of just high overall model prediction accuracy.

To manage the prefetchers across multiple cache levels at runtime, we propose a multi-

regression ML-based approach. We use the observed IPC of the various PSCs for different
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phases of each application to train our ML model. We train a unique random forest re-

gressor per PSC (in our case, we have 5 different PSCs, which we pruned down from the

300 possible PSCs – more details about this in Section 3.3.1), to create a suite of random

forests regressors. For features used in the ML model, we use events that can be tracked

using hardware performance counters and whose behavior does not change with the choice

of PSC, i.e., PSC-invariant events. An example of such an event is the number of branch in-

structions in an application. The branch instruction count does not change with the choice

of PSC. Using only PSC-invariant events, we can limit the number of executions per trace

we must account for during training, making it easier to train the ML model in Puppeteer

(more details about the training approach are in in Section 3.2.3). In summary, the contri-

butions of our work are as follows:

• We propose a novel ML-based runtime hardware manager called Puppeteer to man-

age the various prefetchers across the memory hierarchy to improve processor per-

formance.

• We design Puppeteer to use a set of PSC-invariant events (which can be tracked using

hardware performance counters) as inputs and predict the PSC for the next instruction

window3. We co-optimize the hardware design and the ML model of Puppeteer with

the goal of maximizing the overall application performance while minimizing the

area overhead. At runtime, at the end of an instruction window, Puppeteer predicts

the IPC for each PSC and selects the PSC with the highest predicted IPC for the

succeeding instruction window.

• We train Puppeteer to maximize processor performance instead of the prefetch ad-

dress prediction accuracy. We use only 10% of the data for training to prevent overfit-

ting and design Puppeteer with a low hardware overhead (⇠10KB). For the 232 traces
3An instruction window is group of instructions that are executed sequentially at runtime. We experi-

mented with different instruction window sizes and did not see a large change in the performance of Pup-
peteer. We set the size to 100,000 instructions.
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we experiment with, Puppeteer achieves an average performance gain of 46.0% in 1

Core (1C), 25.8% in 4 Core (4C), and 11.9% in 8 Core (8C) processors on average

compared to a system with no prefetching. Moreover, we ensure Puppeteer reduces

negative outliers. When using Puppeteer, we observe an 89% reduction in the num-

ber of outliers, down to 8 outliers from 53, and a 20% reduction in the IPC loss of

the worst-case outlier compared to the state-of-the-art prior prefetcher managers.

• Finally, to the best of our knowledge, Puppeteer is the only manager that targets all

cache levels in the memory hierarchy.

3.2 Puppeteer: Design

3.2.1 Puppeteer System-Level Overview

In Figure 3·2, we show the system-level design of an example prefetcher system that uses

Puppeteer. The prefetcher system consists of eight different prefetchers (Pf1 to Pf8), which

is typical in modern high performance processors such as Intel i9 (Intel, 2017) and AMD

Ryzen7 ((AMD), 2017). These eight prefetchers track different memory access patterns

and prefetch data from main memory to last-level cache (LLC), from LLC to L2$, and from

L2$ to L1$. Pf1 and Pf2 target instruction lines to bring into L1I$, Pf3 and Pf4 prefetch

data into L1D$, Pf5 and Pf6 prefetch data into L2$, while Pf7 and Pf8 target data to bring

into LLC. These prefetchers compete among them for cache and memory resources. Even

across memory levels, a wrong prefetch request from lower levels of memory can harm the

performance of prefetchers at higher levels of memory. These prefetchers can sometimes

act overly aggressive, and can adversely affect each other, in turn leading to loss of ap-

plication performance. There are many heuristics-based algorithms that use simple inputs

such as accuracy4 of the prefetchers or memory bandwidth utilization to throttle prefetch-
4Here accuracy of a prefetcher is quantified as the fraction of the total prefetches that were actually useful,

and is calculated as #prefetches referenced by the program divided by total #prefetches. Note, this prefetcher
accuracy is not the same as the ML model accuracy. Scope is calculated as total #misses eliminated by the
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ers in such adverse scenarios (Ebrahimi et al., 2009a; Ebrahimi et al., 2009b; Ebrahimi

et al., 2010; Ebrahimi et al., 2011; Heirman et al., 2018; Hur and Lin, 2006; Srinath et al.,

2007). These heuristic algorithms are designed to have low overhead, and hence are highly

optimized for the prefetchers in a given prefetcher system.

Puppeteer works as a manager of all prefetchers and complements the heuristic algo-

rithms used in the given prefetcher system. At runtime, Puppeteer periodically updates the

PSC, i.e., it sets which prefetcher should be ON and which should be OFF at each level

in the memory hierarchy. To update the PSC, Puppeteer uses an ML model with the PSC-

invariant hardware events, collected from hardware performance counters (HPCs) as inputs.

While low-overhead heuristic algorithms are still required to make extremely low latency

decisions at the cycle level, Puppeteer provides additional adaptability by leveraging the

power of ML and thereby increasing the performance. Effectively, heuristic algorithms

such as throttling are used in the system to constantly regulate the short-term behavior

of the prefetchers, while Puppeteer controls the longer-term system-level behavior (across

hundreds of thousands of cycles).

3.2.2 Puppeteer Algorithm

For the ML-based Puppeteer algorithm we considered a classification-based approach and a

regression-based approach. The classification-based approach has been used by prior works

because it is relatively easy to train offline and has lower hardware overhead compared

to regression. The regression-based approach has potential for higher performance and

has better tolerance to variability compared to classification during runtime when trained

offline.

Classification vs. Regression: To train Puppeteer, as a classification problem we created a

dataset using thresholding method similar to prior works (Liao et al., 2009; Jiménez et al.,

2012; Bhatia et al., 2019; Maldikar, 2014). Here, a trace is run using all available PSCs. A

prefetcher divided by the total #misses when prefetching is disabled.
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Figure 3·2: Overview of a Puppeteer-based System - Here Pf = prefetcher. Acc = Ac-
curacy of the prefetchers. Pf1 and Pf2 target instructions to bring into L1I$, Pf3 and Pf4
prefetch data into L1D$, Pf5 and Pf6 prefetch data into L2$, while Pf7 and Pf8 target
data to prefetch into LLC. Heuristic-Based Dynamic Control block, is a heuristic algo-
rithm that controls the low-level cycle behavior of the prefetchers. Puppeteer controls
the longer-term behavior. HPC values are fed into Puppeteer as inputs at runtime.

PSC is given a label of “1” if the IPC when using that PSC is within some threshold (in the

case of the prior work the threshold is 0.5%) of the IPC when using the ideal PSC. Multiple

PSCs can pass the chosen threshold for a given program phase and we then end up using

the PSC that is predicted as “1” with the highest probability. Otherwise, the PSC receives

a label of “0”. Using such a classification approach leads to sub-optimal results.

As an example, consider we have four different traces. Let us say we classify the

first three out of the four traces correctly and the fourth one incorrectly – i.e. we are

able to identify the correct PSC for the first three traces, but not the fourth trace. So, our

classification accuracy is 75%. This means that the first three traces will have performance

that is within 0.5% of their ‘ideal’ performance. However, the performance of the fourth

trace could be 100% worse or just 0.51% worse than the ‘ideal’ performance. This variation

in the performance is not accounted in the classification-based model. Furthermore, this
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Figure 3·3: Puppeteer Algorithm Options - A decision tree for a singular classifier, a
random forest for singular regressor, a suite of decision trees for a suite of classifiers,
and a suite of random forest regressors for a suite of regressors, i.e. Puppeteer.
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problem is not unique to the given example. Any classification-based method would have

a similar issue because all labeling methods used to create the dataset for the classification

algorithm will certainly lose some amount of information.

In contrast, a regression-based approach accounts for the value of IPC gain/loss and not

just if there is IPC gain/loss, when deciding the PSC. Given that the regression algorithm

is trained on the IPC values directly, the quantitative information of IPC gain/loss is not

lost, and the regression algorithm can learn the magnitude of a good or bad prediction. In

particular, the regression algorithm will be used to predict an IPC value for each PSC for a

given instruction window. Then, we choose the PSC with the highest predicted IPC value.

Suite of Regressors vs Single Regressor: When using regression algorithms, we have two

options: (i) use a single regressor, where all data collected from all the PSCs are used to

train that single regressor; or (ii) use a suite of regressors, where each PSC will have a

dedicated regressor. Using a suite of regressors leads to a more customized solution that

has higher accuracy as compared to using a single regressor. Conceptually, this is because

in a single regressor, we maximize the accuracy across all PSCs instead of maximizing

the accuracy of each PSC separately, whereas, in a suite of regressors we train a dedicated

regressor for each PSC. In this way, we indirectly jointly increase the scope and accuracy

of the overall prefetching system.

In our work, we use a suite of regressors where we implement each regressor using

random forest, i.e. one random forest trained per PSC, due to its simple implementation,

its robustness to noise in the dataset, its lower overhead (compared to other ML algorithms

such as neural networks), and its higher accuracy (compared to other ML algorithms such

as decision trees) (Kursa, 2014; Oshiro et al., 2012).

We have multiple trees per forest and we allow each tree to split at locations that are

unique to the PSC associated with the forest. The leaves of each tree in the forest specify

the predicted IPC value for the PSC. For each forest i.e. each PSC, we calculate the average
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of the predicted IPC values obtained from all the trees in the forest, and then choose the

PSC with the highest average predicted IPC. Given that each forest has multiple decision

trees, our method has higher tolerance to wrong decisions by the trees, where even if some

of the trees give wrong decisions, other trees can compensate.

In Figure 3·3, we conceptually show the differences between the four different options

discussed above: (a) single classifier, (b) single regressor (c) a suite of classifiers, and (d)

a suite of regressors. Respectively, the leaf nodes in (a) contain the PSC choice directly,

(b) have the predicted highest IPC among all the PSCs, (c) the probability value of a given

instruction window belonging to the given PSC (of which we choose the highest one), and

(d) the predicted IPC value for a given PSC which will be averaged per tree in a given RF

and compared with the other averaged predicted PSC values from the other RFs (of which

we will choose the highest). For (a) and (b) the PSCs are traversed simultaneously, since

the PSCs share a single algorithm, while for (c) and (d) each PSC has a unique algorithm

we traverse.

3.2.3 Puppeteer Training

To train Puppeteer we need to generate a representative dataset. Consider the case where

we have a single prefetcher, P f , at only one level in the memory hierarchy. Here the

number of PSCs (Npsc) = 2, i.e., P f =OFF and P f =ON. For two consecutive instruction

windows, we will have N2
psc = 4 possible scenarios: (i) P f =OFF ! P f =OFF, (ii) P f =ON

! P f =OFF, (iii) P f =OFF ! P f =ON, and (iv) P f =ON ! P f =ON. With N number of in-

struction windows and Ntrace number of traces, the number of different possible scenarios

will then be Ntrace ⇥NN
psc. When N increases, the number of different scenarios will in-

crease exponentially, hence including each unique scenario in the dataset for training is not

feasible. To handle this problem, we propose to use only PSC-invariant events as our fea-

tures. An example of a PSC-invariant event is the number of conditional branches, which is

not affected by the choice of PSC. We check the variance of each hardware event value (for
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180 total hardware events that we can track) for each PSC. We identify 59 events whose

values vary by less than ±10% from their mean value across all PSCs. We further reduce

the number of events by eliminating the redundant events that track similar behavior and

have high correlation with each other. Table 3.1 shows the final 6 events we choose to track

trace behavior. After we have identified our PSC-invariant events that will be the features

and the PSCs that will be the choices of our ML model, we collect an IPC value per PSC

for each instruction window as our ground truth.

Using the features and IPC values we have collected, we then form our suite of random

forest regressors wherein we train a separate forest for each PSC using CART (classification

and regression trees) (Steinberg, 2009). CART is a greedy recursive search algorithm that

maximizes information by splitting the data at each node using one feature. Each child

node is split recursively until there is no information gain from splitting a child node. We

limit the total number of decision nodes in Puppeteer to keep the size of Puppeteer smaller

than L1$. With this limitation in mind, we conduct a hyper-parameter search and determine

that the number of estimators (trees per random forest) should be 5 and the number of max

nodes should be 100 per tree.

3.2.4 Puppeteer Microarchitecture Design

Figure 3·4 shows the microarchitecture details of Puppeteer. We use a single port SRAM

array called Node MEM to store information about the nodes that form the trees of each

random forest in Puppeteer. We load the random forest-based Puppeteer model into the

Node MEM at startup using firmware. Each entry of Node MEM corresponds to one node

in one of the random forests and it consists of the following fields: (i) A 3-bit HPC ID

field that specifies which PSC-invariant event, i.e. which hardware performance counter

(HPC), is used by that node to make a decision. The 3-bit encoding enables the node

to use one of 6 different PSC-invariant events (see Table 3.1). (ii) A 16-bit Threshold

field (threshold value is determined during training), which is employed by the node to
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Figure 3·4: Puppeteer Hardware Design - Puppeteer is made up of a Node MEM -
SRAM array, a max logic unit, and several register files.

decide if the decision path should branch left or right. In our problem 16 bits provide

enough precision for the ML model weight values. (iii) A 12-bit (for 2250 node addresses)

Left Node Value(LNV) field, and (iv) a 12-bit Right Node Value(RNV) field. These

LNV and RNV fields represent child node indices for internal nodes of a tree. For the leaf

nodes of a tree, we use these LNV and RNV fields to indicate the predicted IPC value of a

PSC. We differentiate between child node index and predicted IPC using (v) a 1-bit Type

field. We use a separate 1-bit Type field for LNV and RNV.

At the end of every instruction window, Puppeteer calculates the predicted IPC for each

PSC in the next instruction window by traversing the trees of the associated forest and

using the PSC-invariant event values for the current window as inputs. For each forest,

the controller in Puppeteer reads the Node MEM index of the root node for the first tree

from Root Index Table (RIT) and loads the Node MEM entry for the root node using a Load

Unit into a register. Next, the HPC ID in the loaded Node MEM entry is used to load the

corresponding PSC-invariant event value into a second register. Then the Threshold value,

stored in the first register, and PSC-invariant event value stored in the second register are

compared using the Comparator. Based on the Comparator output, we choose to traverse

down to the left child or the right child. The Controller then uses the corresponding index
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value from LNV or RNV to find the next node in Node MEM. The Controller continues

traversing the tree until it loads a predicted IPC value corresponding to a leaf from the

Node MEM. The above steps are repeated for the remaining trees in the forest, and then we

calculate the average of the predicted IPC values obtained from all the trees in that forest.

The Best PSC Unit in the Controller stores the ID of the PSC with the highest predicted

IPC value. Every time the Controller finishes traversing a forest, the predicted IPC value

of that forest, i.e. PSC, is compared with the predicted IPC value stored in the Best PSC

Unit using the Comparator. If the new predicted IPC value is higher than the current value,

the Best PSC Unit updates the predicted IPC value and the ID of the PSC. Once all forests

have been traversed i.e., all PSCs have been evaluated, Puppeteer chooses the entry stored

in the Best PSC Unit as the PSC for the next instruction window.

We determined that a maximum depth of 10 per tree is more than sufficient to accurately

determine the best PSC. In our evaluation we use a prefetcher system with Npsc=5 (given in

Table 3.5 and discussed in detail in Section 3.3.1). We need a total of 2250 nodes to design

the trees in Puppeteer, and these nodes require a 10.75 KB-sized Node MEM (compared to

a typical L1$ of 32 KB). Other than Node MEM, we require a 5⇥Npsc-entry RIT where each

entry is 13-bit wide (12 bits for the root node index and 1 valid bit), a 12-bit comparator

containing comparison logic and two registers, a load unit, and a register to store the best

PSC information in the Controller. We discuss the hardware overhead in more detail in

Section 3.3.2.

3.3 Evaluation Framework

3.3.1 Evaluation Methodology

We use ChampSim (Pugsley et al., 2020b) for our analysis, where we model one core (1C),

four core (4C), and eight core (8C) processors to have multiple prefetchers at each level

of the cache – private L1I$, L1D$, private L2$ and shared LLC (more details provided
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Table 3.1: Simulated System Parameters

Component Simulated Parameters
Core One to four cores, 4GHz, 4-wide, 256-entry ROB
TLBs 64 entries ITLB, 64 entries DTLB, 1536 entry shared L2 TLB
L1I$ 32KB, 8-way, 3 cycles, PQ: 8, MSHR: 8, 4 ports
L1D$ 48KB, 12-way, 5 cycles, PQ: 8, MSHR: 16, 2 ports
L2$ 512KB, 8-way, 10 cycles, PQ: 16, MSHR: 32, 2 ports
LLC 2MB/core, 16-way, 20 cycles, PQ: 32×cores, MSHR: 64×cores

DRAM 4GB 1 channel/1-core, 8GB 2 channels/multi-core, 1600 MT/sec

Hardware Event Properties
L1I_PAGES_READ_LOAD L1I$ Pages Read on Load.
L1D_PAGES_READ_LOAD L1D$ Pages Read on Load.
L1D_RFO_ACCESS L1D$ Store Accesses.
BRANCH_RETURN Branch Returns.
NOT _BRANCH Not Branches.
BRANCH_CONDIT IONAL Conditional branches.

Table 3.2: Static PSCs and Managers Evaluated - We list the static PSCs from the prior
prefetching competitions, the manager algorithms from prior work, and the different
flavors of Puppeteer.

Algorithm
Notation Explanation Static PSC or

Manager
Training
Dataset

NO No prefetching is used. PSC = no-no-no-no Static PSC Not trained
IPCP Winner of DPC3 (Pugsley et al., 2019). PSC = no-ipcp-ipcp-nl. Static PSC Not trained
EIP Winner of IPC1 (Pugsley et al., 2020c). PSC = EIP-nl-spp-no. Static PSC Not trained
PY RL-based algorithm named Pythia (Bera et al., 2021) ML-based

Prefetcher Online

J3 Heuristic-based algorithm by Jimenez et al. (Jiménez et al., 2012) Manager Not trained
NN Multi-layer-perceptron similar to Bhatia et al. (Bhatia et al., 2019) Manager 1C
B1C Decision tree algorithm by Liao et al. (Liao et al., 2009) Manager 1C

B4CS Decision tree algorithm by Liao et al. (Liao et al., 2009) Manager 4CS
B4CM Decision tree algorithm by Liao et al. (Liao et al., 2009) Manager 4CM

P1C Puppeteer Manager 1C
P4CS Puppeteer Manager 4CS
P4CM Puppeteer Manager 4CM
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in Table 3.1). We train Puppeteer using data collected from a 1C and 4C OoO processor

and then evaluate it on 1C, 4C, and 8C OoO processors. In the 4C and 8C processors,

we have a private Puppeteer per core. Each private Puppeteer utilizes the 6 PSC-invariant

events per core and makes independent decisions. For our evaluation we use a diverse

set of 232 traces generated from SPEC2017 (Corporation, 2017), SPEC2006 (Corporation,

2006), and Cloud (Pugsley et al., 2020c) benchmarks.

In Table 3.2 we list the notations used for all the static PSCs and the runtime managers

(that change PSC at runtime) that we have evaluated. In our evaluation, we normalize all

IPC values to the same state-of-the-art baseline as PPF (Bhatia et al., 2019), i.e., SPP (Kim

et al., 2016) (no-no-spp-no). We compare Puppeteer against the best static PSCs from

competitions, i.e., IPCP (no-ipcp-ipcp-nl) and EIP (EIP-nl-spp-no; as well as managers

such as the final version of the algorithm developed by Jimenez et al. that uses trial periods

to latch onto the PSC (Jiménez et al., 2012) (J3), Pythia that is an RL-based algorithm

developed by Bera et al. (Bera et al., 2021) (PY)5, a multi-layer-perceptron similar to

Bhatia et al. (Bhatia et al., 2019) (NN), and a binary-tree (BT) based algorithm (Liao et al.,

2009) - where Liao et al. tried several different ML methods (such as decision trees and

NN) and concluded that decision trees are the best choice.

Training Approaches for ML-based Prefetcher Managers

When evaluating any new idea, a widely used approach in the industry is to use all available

evaluation data. We are using a ML-based approach and are cognizant of the fact that we do

not want to overfit our model using all available data for training the ML model. So here,

we compare three different approaches for constructing the training dataset for Puppeteer.

For training, we have 232 traces⇥10,000 instruction windows per trace = 2,320,000 instruc-
5Note that Bera et al. used SHiP (Wu et al., 2011) for their cache replacement policy and perceptron as

their branch predictor. We tested with their settings as well as with using Pythia with hashed-perceptron and
LRU, and observed on average that Pythia with hashed-perceptron with LRU has 12% higher IPC. Hence, we
use hashed-perceptron and LRU similar to all the other comparison points in this paper.
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tions windows. For each approach, we limit the training data in different ways. Note that

we are still training at the instruction window-level and performing 10-fold cross-validation

on the training set for all approaches. We give the percentage of data used to construct each

training dataset in Table 3.3.

In the first approach, we severely limit the data and randomly select 10% of the in-

struction windows at random time intervals to form the training dataset, i.e., 90% of the

instruction windows are not seen during training. The idea behind this approach is that

we are training the algorithm to recognize low-level memory access behavior. This ap-

proach does not overfit the model because the behavior of the benchmarks when collecting

the training data would be different from the behavior of the benchmarks when we use

the trained Puppeteer. This difference is because when collecting training data we do not

change the PSC, while when using Puppeteer the PSC can potentially change for each in-

struction window. In the second approach, we generate the dataset by leaving 20% of

the traces out of the training dataset and using 60% of the instruction windows from the

remaining 80% traces for training. We use a 60-40 split of the instruction windows to avoid

overfitting the model to the 80% of traces in the training set. Given traces are constructed

to represent unique behaviors in each application, our training set will not have information

on all the unique behaviors of a given benchmark. This means that some of the traces from

other benchmarks are assumed to be from the same distribution of these missing traces or

else there will be no way for the algorithm to train for these regions. In the third approach,

we generate the dataset by leaving 20% of the benchmarks out of the training dataset and

using a 60-40 split of the instruction windows belonging to the remaining 80% benchmarks

for training. In this approach, whole benchmarks are not considered during training. Here

too, we choose a 60-40 split of the instruction windows to avoid overfitting the model to

the 80% of benchmarks in the training set. Similar to the second approach it is assumed

that some of the other benchmarks will be similar in behavior to the missing benchmarks
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and cover their memory access behavior.

In a 1C processor, when using Puppeteer on unseen benchmarks, for the first, second,

and third approaches, we observe an average IPC gain of 11.3%, 9.8%, and 6.6%, re-

spectively, over SPP. In the second and third approaches, we see that Puppeteer has lower

performance gain than the first approach. Despite having 3% more instruction windows

for training in the third approach compared to the second approach there is a 3.2% drop in

performance. Furthermore, in the first approach we use only 10% of the total number of

instruction windows for training (5 ⇥ less instruction windows than the other approaches),

yet this approach performs 1.5% and 4.7% better than the other two approaches. This

implies that the second and third datasets is trained on an insufficient number of unique

memory accesses patterns, leading to low performance observed during runtime execution.

Therefore for the rest of our evaluation we train all ML-based prefetcher managers using

the first approach. As mentioned earlier, Puppeteer can always be retrained and updated

via firmware.

1C, 4C and 8C Workload Formulation

We run 1C and 4C experiments using a 200M instruction warmup phase and 1B instruction

detailed simulation phase, while for 8C we use 200M instruction warmup phase and 250M

instruction detailed simulation phase. We generate a total of 232 traces from SPEC2017,

SPEC2006, and Cloud benchmarks. We create two flavors of trace sets for the 4C and 8C

experiments: a single-type trace set where each core runs the same trace, and a mixed-type

trace set where each core runs a unique trace. Therefore we have 5 data suites in total:

1C, 4C single-type trace set (4C STS), 4C mixed-type trace set (4C MTS), 8C single-type

trace set (8C STS), and 8C mixed-type trace set (8C MTS). We use hashed-perceptron for

branch predictor and least-recently used (LRU) policy for cache replacement policy pro-

vided by ChampSim. To construct our mixed-type trace sets, we first split the 232 traces

into 6 groups based on ascending execution latency. Then we randomly select a trace from
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a given group per core and construct a mixed-type trace group. We cover all permutations

of the various latency groups. This way we have diversity in the traces running on the

cores. For example, in a 4C processor, we can assign a trace from group 2 to core0, a trace

from group 3 to core1, a trace from group 4 to core3, and a trace from group 5 to core3.

This can be represented as 2�3�4�5. Therefore we have 360 experiments (6 options for

core0 ⇥ 5 options for core1 ⇥ 4 options for core2 ⇥ 3 options for core3) in 4C MTS for 6

latency groups and 4 selected traces (1 for each core). For 8C MTS, since the number of

experiments increases and the experiments take quite long, we replicate the same latency

group for 4 of the cores. For example, we can use 1�1�1�1�4�4�4�4 for an 8C

experiment. However, instead of 6 groups as in the 4C system, we use 10 groups for the

8C system, to cover a more granular variety of behavior and instead of permutations we

use combinations with replacement. Therefore, we have 55 (2 traces selected from 10 la-

tency groups with replacement, i.e., CR(10,2)) experiments for 10 groups and 2 selections.

Note that, even if the latency group is the same, since we choose a trace randomly from a

latency group, the trace can still be different for each core. After we have our experiments

constructed, we run each trace on its assigned core until completion. If a trace finishes

before all traces have finished, we rerun it from the start. Therefore, each trace will have

run at least one time until completion. Compared to the prior work our MTS construction

methodology covers a wider variety of behavior. The prior work takes two different ap-

proaches to multi-core evaluations. Either they evaluate using only STS workloads (Liao

et al., 2009; Bera et al., 2021) or they construct completely random MTS workloads that

do not guarantee a wide variety of memory behavior (Bhatia et al., 2019; Jiménez et al.,

2012).

Generating ML Models and PSC Pruning

To generate the 1C dataset (PSC and associated IPC values), we run the 1C experiments

using all possible PSCs generated from the prefetcher options that are available in the
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Table 3.3: Dataset Training Approaches - Here % Benchmarks indicates the percentage
of benchmarks were used during training, % Traces indicates the percentage of traces
from the available benchmarks were used during training, and % Inst. Win. indicates
the percentage of instructions windows from the the available traces were used during
training. The last columns indicates overall the percentage of instruction windows were
using during training.

Approach %Benchmarks %Traces %Inst. Win. Total % of all Inst. Win. for training
# 1 ALL ALL 10% 10%
# 2 ALL 80% 60% 48%
# 3 80% ALL 60% 51%

Table 3.4: Initial Prefetcher Options - We show the regular and irregular prefetcher
options we used at each cache level to construct our set of 300 PSCs. We reduce the
number of PSCs down to 5 PSCs before training.

L1I$ L1D$ L2$ LLC
No Prefetcher No Prefetcher No Prefetcher No Prefetcher

Next-line (Falsafi and
Wenisch, 2014) Next-line Next-line Next-line

FNL+MMA (Seznec,
2020)

IPCP (Pakalapati and Panda,
2020) IPCP

DJOLT (Nakamura et al.,
2020)

MLOP (Shakerinava et al.,
2019) SPP (Kim et al., 2016)

EIP (Ros and Jimborean,
2020)

Bingo (Bakhshalipour et al.,
2019) KPCP (Kim et al., 2017)

Ip-Stride (Falsafi and
Wenisch, 2014)
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Table 3.5: PSCs and Their Prefetching Options used at each $ Level - Note, these PSCs
are used by all the manager algorithms not just Puppeteer.

Final PSCs Used L1I$ L1D$ L2$ LLC

djolt-bingo-nl-nl DJOLT (Nakamura
et al., 2020)

Bingo (Bakhshalipour
et al., 2019)

Next-line (Falsafi and
Wenisch, 2014) Next-line

djolt-bingo-no-no DJOLT Bingo No Prefetcher No
Prefetcher

fnl-bingo-spp-nl FNL+MMA (Seznec,
2020) Bingo SPP (Kim et al., 2016) Next-line

fnl-bingo-spp-no FNL+MMA Bingo SPP No
Prefetcher

no-nl-spp-no No Prefetcher Next-line SPP No
Prefetcher

Overhead 221KB 48.06KB 6KB 0.6KB

ChampSim repository, the 1st place (IPCP (Pakalapati and Panda, 2020)), 2nd place (Bingo

(Bakhshalipour et al., 2019)), and 3rd place (MLOP (Shakerinava et al., 2019)) winners

of the 3rd data prefetching competition (DPC3) (Pugsley et al., 2019), and the 1st place

(EIP (Ros and Jimborean, 2020)), 2nd place (FNL+MMA (Seznec, 2020)), and 3rd place

(DJOLT (Nakamura et al., 2020)) winners of the 1st instruction prefetching competition

(IPC1) (Pugsley et al., 2020c). To reduce the hardware overhead of Puppeteer, we avoid

including multiple PSCs that cover the same traces. To this end, we initially ran 20 traces

for 20M instructions with all possible PSCs (5 prefetching options in L1I$ ⇥ 5 prefetching

options in L1D$ ⇥ 6 prefetching options in L2$ ⇥ 2 prefetching options in LLC = 300

PSCs). We summarize the different prefetchers that we evaluated in Table 3.4.

For each trace, we sort the PSCs based on the corresponding IPC values in descending

order. We generate a new table for each trace, where the table contains the top 10 PSC

entries for the trace and combine these tables to form a super-table that contains the top 10

PSCs for all traces. Note that a PSC may be in the top 10 for more than one trace. We sort

the PSCs in descending order based on the number of traces for which the PSC is in the top

10. Starting from the top, we select just enough PSCs to improve performance of all the 20

traces. We picked the PSCs that have the best performance with minimal coverage overlap

while reducing the number of unique prefetchers (to reduce the hardware overhead). In
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Table 3.5 we show the final 5 PSCs that we selected. These PSCs give good performance

for the maximum number of traces. We show the prefetcher used at each cache level. It is

interesting to note that the best Prefetchers from DPC3 and IPC1 – IPCP and EIP – are not

used in the top 5 choices for PSCs. This shows that the state-of-the-art prefetchers designed

in isolation may not be the best choice of prefetchers when used with other prefetchers.

We collect the 4C STS and 4C MTS datasets, in the same way as the 1C dataset – the

only difference is that the data is collected per core. We then train BT and Puppeteer using

datasets collected from 1C, 4C STS, and 4C MTS. We denote the different flavors of the

two algorithms as P1C, P4CS, and P4CM for Puppeteer; and B1C, B4CS, and B4CM for

BT.

Secondary Metrics for Evaluation

In this work our primary metric is IPC. Contrary to the prior work, Puppeteer is not trained

to increase the ML model accuracy but to directly maximize the IPC. We do have a number

of secondary metrics we track to understand the underlying phenomena that is causing

the IPC increase. For the prefetchers, we track prefetching accuracy and scope of the

prefetchers. The relationship between prefetching accuracy and scope; and IPC is more

nuanced than a linear correlation. This is because the temporal effects of a small number

of prefetches might have a larger impact compared to a large number of prefetches. Take

for example a single memory line that if prefetched in a timely manner, prevents a whole

network from being deadlocked and flushed. Hence, these metrics give us some insight

into the average behavior of the prefetchers but do not provide a complete picture. Hence,

the reason why IPC is a more direct metric into the impact of Puppeteer on the prefetchers.

Our evaluation for prefetching accuracy and scope can be found in Section 3.3.2.

Next, we investigate a variety of trade-offs to get a more complete picture of the solu-

tions space. We investigate the impact of hardware area overhead and power by changing

the size of the ML models and retraining Puppeteer and NN. We try to evaluate the impact
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of the hardware size as realistically as possible by designing the hardware components us-

ing a commercial process (GF22FDX). Thereby, we calculate realistic power, delay, and

area overhead values. The evaluation for area and delay can be found in Section 3.3.2

and the evaluation for power can be found in Section 3.3.2. Finally, we also wish to test

the generalizability of Puppeteer. Although this is hard to quantify we can test for this by

changing the underlying hardware or dataset that is used to train Puppeteer. To test for the

generalizability, we vary the size of the caches to stress-test the adaptation capabilities of

Puppeteer. This study can be found in Section 3.3.2. We also change the dataset used to

train Puppeteer and BT and show these results all throughout Section 3.3.2.

3.3.2 Evaluation Results

Puppeteer in a 1C Processor

In this section, we present the processor performance analysis when using Puppeteer in 1C,

4C and 8C processors, a sensitivity analysis of how Puppeteer’s performance varies with

cache size, and we explore the trade-off between performance improvement and hardware

overhead when using Puppeteer. We evaluate Puppeteer using scope, accuracy, and power

metrics. For the analysis presented in Sections 3.3.2, 3.3.2, 3.3.2, and 3.3.2, we assume a

total hardware overhead budget of 10KB for storing the Puppeteer model, and due to its

simplicity (as explained in Section 3·2), we assume negligible evaluation overhead for the

computing logic.

In Figure 3·5, we show the IPC distribution for various static PSCs and prefetcher man-

agers that change the PSC at runtime. We begin our discussion with P1C which is Pup-

peteer trained using the 1C data suite. Broadly, compared to a processor with no prefetch-

ers, P1C provides an average performance gain of 46.0% (peak value of 613%). The true

benefit of Puppeteer is observed when we look closer into the performance loss in Figure

3·6. We observe that when using B1C, 53 traces lose performance and 6 out of those 53

traces lose more than 10% performance. This performance loss would make this solution
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Figure 3·5: Normalized Performance of 1C Processor - Performance distribution of
Puppeteer and prior work normalized to SPP (Kim et al., 2016). See Table 3.2 for the
notations used along the X-axis.

Figure 3·6: Bottom Ten Performance Outliers of 1C - Performance normalized to SPP.
Each group shows the worst performing traces for NN, B1C, J3, and PY, P1C ordered
10th-worst (right-most) to 1st-worst (left-most).
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non-acceptable. Puppeteer has a worst-case loss of only 5% and only 8 traces in total have

lower performance than SPP. This clearly illustrates that Puppeteer provides a win-win sit-

uation, whereby we not only see a better average performance gain but also see a reduction

in the maximum performance loss and the number of traces that have performance loss.

For the other prior works, we observe that P1C provides 4.65%, 5.8%, 12.2%, 15.3%, and

5.1% average IPC gain over IPCP, EIP, NN, PY, and J3, respectively.

We also trained two more flavors for Puppeteer and BT using 4C STS and 4C MTS

datasets. P4CS and P4CM achieve 0.5% lower average performance gain than P1C. This

is because Puppeteer trained using 1C data is better suited for a 1C processor. However,

the performance improvement when using Puppeteer, which is trained with 4C data, is still

quite large at 45% (average of P4CS and P4CM) compared to a system with no prefetching.

This means that Puppeteer generalizes quite well and has learned the underlying architec-

tural phenomena. Compared to B1C for B4CS and B4CM, we observe 1% and 2% lower

average performance, respectively. Furthermore, the performance loss for the worst case

outlier increases to 30%. Finally, one thing to note about J3 is that its average IPC gain

is 2.1% lower than B1C, yet the negative outliers are less in both quantity and magnitude.

This is because J3 makes more conservative changes compared to BT since the algorithm

cycles through the PSCs as part of a constantly ongoing trial phase. This means that, in a

production capable system, J3 might have been more viable compared to BT. This is be-

cause processors have to ensure all applications retain or increase their performance across

new processor generations.

Puppeteer in a 4C Processor

Here we discuss the use of Puppeteer trained using 1C, 4C STS and 4C MTS datasets, in

a 4C processor. These cases are represented by P1C, P4CS and P4CM, respectively. In

Figure 3·7, we show the IPC distribution of Puppeteer, and the various prior works in a 4C

system while running 4C STS data suite. We observe that the average IPC gain of P1C
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Figure 3·7: Normalized Performance of 4C Processor Running STS - Performance dis-
tribution of Puppeteer and prior work normalized to SPP. Here the reported performance
is average performance across all the cores. See Table 3.2 for the notations used along
the X-axis.

over the no-prefetcher case is 25.8%. Compared to B1C, IPCP, EIP, NN, PY, and J3, our

P1C achieves 4.2%, 10.8%, 4.8%, 8.7%, and 6.8%, 3.7% average IPC gain, respectively. In

Figure 3·8, we show the outliers for 4C STS. The number of traces that lose performance

is 61 for B1C, 53 for J3, while P1C has just 24 traces that lose performance. J3 has a better

worst-case performance compared to Puppeteer because it is taking a much more conser-

vative approach and missing most of the large positive performance gains. The worst-case

performance loss in B1C has gone up to 45%, while the worst-case loss of P1C is at only

19%. One key observation here is that although P1C has only been trained on 1C data, it

is still applicable to the 4C case and provides a clear advantage over prior work. This is im-

portant given that as the number of cores increases, the number of unique combinations of

different traces that we will need to run in the multi-core processor increases exponentially

(for a 4C processor we need to cover 2324 = 2.89 billion trace combinations). Therefore,

generalization using only 1C data is an important aspect to consider when comparing ML-

based algorithms. To further test Puppeteer and BT, we train both algorithms with 4C STS

and 4C MTS data suites. For Puppeteer we observe that P4CS has 1.2% and P4CM has
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Figure 3·8: Bottom Ten Performance Outliers of 4C STS - Performance normalized to
SPP. Each group shows the worst performing traces for NN, B1C, J3, and PY, P1C or-
dered 10th-worst (right-most) to 1st-worst (left-most).

2.2% better performance compared to P1C (see Figure 3·7). While for BT, B4CS has 4.0%

and B4CM has 2.9% better performance compared to B1C.

This means that Puppeteer is better at learning the underlying (micro)architectural be-

havior with a variety of traces running concurrently compared to the same trace running

on all the cores. In contrast BT requires data collected specifically from the same set of

experiments to achieve better performance.

In Figure 3·9 we show the IPC distribution of Puppeteer and the various prior work

when running 4C MTS. P1C achieves 23% average performance gain over no prefetching.

P1C’s average performance gain is also very close (<0.6% difference) to the average per-

formance gain of P4CS and P4CM. Once again, we observe that Puppeteer is superior to

BT in this regard with B1C achieving 5% lower performance gain than P1C. B1C’s perfor-

mance gain is also 4% lower than B4CS and 4.5% lower than B4CM. In Figure 3·10, we

show the negative outliers for 4C MTS. B1C has 23 outliers, J3 has 2, while P1C has 3.

This means that for the bottom 10 performance cases in P1C, seven of them are actually

positive performance gains. In the worst case outlier in B1C has 7% performance loss,

J3 has 2% loss, P1C has only 0.4% loss. With high average performance gain and very

few outliers, P1C is showing more reliable performance in the complicated MTS bencham-
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Figure 3·9: Normalized Performance of 4C Processor Running MTS - Performance
distribution of Puppeteer and prior work normalized to SPP. Here the reported perfor-
mance is average performance across all the cores. See Table 3.2 for the notations used
along the X-axis.

Figure 3·10: Bottom Ten Performance Outliers of 4C MTS - Performance normalized
to SPP. Each group shows the worst performing traces for NN, B1C, J3, and PY, P1C or-
dered 10th-worst (right-most) to 1st-worst (left-most).
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rks compared to the prior work. Compared to IPCP, EIP, NN, and PY, J3, our P1C (and

also P4CS and P4CM) achieves 14.5%, 5%, 12.8%, and 11.9%, 4.4% average IPC gain,

respectively.

Puppeteer in an 8C Processor

Figure 3·11: Normalized Performance of 8C Processor Running STS - Performance
distribution of Puppeteer and prior work normalized to SPP. Here the reported perfor-
mance is average performance across all the cores. See Table 3.2 for the notations used
along the X-axis.

Here we discuss the use of Puppeteer trained using 1C, 4C STS and 4C MTS datasets,

in an 8C processor. These cases are represented by P1C, P4CS and P4CM, respectively. We

conduct this 8C processor analysis to test if Puppeteer scales to a larger number of cores.

For an 8C processor running STS, we observe several interesting trends (see Figure 3·11).

P1C has 11.9% average IPC gain over no prefetching, which is 4.8% higher than B1C. With

P4CS and P4CM our IPC gain is 12.7% and 12.9%, respectively, over the no prefetching

case. This means that to train Puppeteer for a multicore processor, we should have at least

some data corresponding to a multicore processor in our dataset. It should be noted that,

compared to the no prefetching case, P1C, P4CS and P4CM have lower IPC gain in the

8C processor than the 4C processor, which in turn has lower performance gain than the 1C



49

Figure 3·12: Bottom Ten Performance Outliers of 8C STS - Performance normalized to
SPP. Each group shows the worst performing traces for NN, B1C, J3, and PY, P1C or-
dered 10th-worst (right-most) to 1st-worst (left-most).

Figure 3·13: Normalized Performance of 8C Processor Running MTS - Performance
distribution of Puppeteer and prior work normalized to SPP. Here the reported perfor-
mance is average performance across all the cores. See Table 3.2 for the notations used
along the X-axis.
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Figure 3·14: Bottom Ten Performance Outliers of 8C MTS - Performance normalized
to SPP. Each group shows the worst performing traces for NN, B1C, J3, and PY, P1C or-
dered 10th-worst (right-most) to 1st-worst (left-most).

processor. This is because prefetching is much harder to do in multi-core processors. The

overall benefit of prefetching goes down in multi-core processors and Puppeteer has lower

possible peak performance. Comparatively, B1C has almost 0% performance gain over

SPP. Even a static PSC, namely EIP, has 5.5% higher average IPC compared to B1C. P1C

also gives comparable performance to B4CS and B4CM even though P1C was not trained

using any data from a multicore processor. Compared to IPCP, EIP, NN, PY, and J3, our

P1C achieves 5.9%, 0.2%, 6.5%, and 4.4%, 1.2% average IPC gain, respectively. In Figure

3·12, we show the outliers for 8C STS. B1C has 83 outliers with worst case performance

loss of 62%; J3 has 53 outliers with worst case performance loss of 53%; while, P1C has

47 outliers with worst case performance loss of 23%. In the case of P1C, when we get to

the 3rd worst case outlier the performance loss drops to only 5%. For the other managers,

even the 10th worst case performance loss is larger than 10%.

When using the 8C MTS (see Figure 3·13), we observe similar trends to when using

8C STS. P1C has 2% better average IPC than B1C and comparable performance to B4CS

and B4CM. P4CS and P4CM achieve 4% and 4.4% better average IPC compared to B1C.

Compared to IPCP, EIP, NN, and PY, J3, our P1C achieves 6.9%, 1.6%, 6.6%, 7.6%, and

3.1% average IPC gain, respectively. In Figure 3·14, we show the outliers for 8C MTS.

P1C has a worst case loss of 10% which is the worst loss among all the managers. This is
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made-up for though with the number of benchmarks that are gaining performance. Even

for the bottom 10 performance cases, in the 5th worst performance benchmark we begin to

observe 2.5% performance gain. This means that out of all the benchmarks only 5 have less

than 2.5% performance gain. In the other managers, this is not the case. These managers

are acting much more conservatively, therefore, they have better worst-case performance

but they also have very little performance gain.

Puppeteer Performance vs Different Cache Sizes

In this subsection we discuss how the performance of BT, SPP and Puppeteer varies with

cache size. We train both models only using data collected on a 1C processor with 32KB

L1I$, 48KB L1D$, 512KB L2$, and 2MB LLC. In Figure 3·15 we show the average IPC

values of BT (i.e. B1C), SPP, and Puppeteer (i.e. P1C) for 0.5⇥, 1⇥, 1.5⇥, and 2⇥ the

nominal L1$ and L2$ sizes. P1C is affected by L1$ size slightly more than L2$ size but

the difference is small (at most 0.4% more performance at 2⇥ L1$ compared to 2⇥ L2$).

At 0.5⇥ L1$ size P1C has 1.5% lower performance compared to the performance of P1C

at nominal cache size. At 2⇥ L1$ size P1C has 1.1% better performance compared to the

performance of P1C at nominal cache size. At all cache sizes, P1C performs at least 1%

better than B1C with the largest performance difference of 2.3% at nominal cache size.

SPP performance swings by 5.5% between the 2⇥ L1$ and the 0.5⇥ L1$, and by 3.7%

between the 2⇥ L2$ and the 0.5⇥ L1$. In contrast, P1C has only a 2.9% swing. This

means that with P1C we are already operating close to the possible peak performance and

so increasing the cache size does not have a significant effect on the performance.

Puppeteer Performance vs Different Hardware Overheads

In this subsection we study the performance of Puppeteer and NN when we have four

different hardware overhead budgets – 1KB, 5KB, 10KB, and 100KB. In Table 3.6 we

show the various logic and memory components that are required for Puppeteer and NN
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Figure 3·15: Cache Size Sensitivity Study - Average performance of B1C, SPP, and
P1C for 0.5⇥, 1⇥, 1.5⇥, and 2⇥ the nominal L1$ and L2$ sizes. For each bar we
change only the L1$ size or the L2$ size.

Figure 3·16: Model Size Scaling - Average IPC Improvement on 1C Data Suite of
Puppeteer and NN for Different Model Sizes.
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for the different models. We calculate the power, area, and delay values of the components

using Cadence Genus and SRAM array compiler for GF22FDX ® (Carter et al., 2016). We

show the number of each logic component and SRAM sizes required by each NN. Note that

the SRAM word length changes for the differently sized Puppeteer configurations because

we require additional bits to address a larger number of nodes. For the NN, the word length

is constant since we will traverse all the weights for each computation and do not need

addressing (except for a simple register to hold the number of weights in each layer which

is negligible)

Here we train a different Puppeteer model and a NN model for each hardware overhead

budget. In Table 3.7 we show the total area and power required for the NN and Pup-

peteer normalized to the 1KB Puppeteer size. All designs in Table 3.7 are such that they

need less than 1% of the instruction widow time to choose a PSC.

To select a PSC, Puppeteer just traverses through the random forest for each PSC. If

we evaluate all 5 forests in series, where we will require a maximum 250 comparison

operations (5 forests ⇥ 5 trees per forest ⇥ (10 comparisons for 1KB, 5KB, and 10KB;

20 comparisons for 100KB) = 250 or 500 comparisons), it will take less than 0.5% of the

total time required to execute the 100K instructions in the instruction window (assuming

each instruction takes on average a clock cycle). Thus, we end up using the chosen PSC for

99.5% of the instruction window for Puppeteer. In contrast, the NN will require a multiply

and addition operation for each weight, as well as a division and ReLu function at the end

of each layer to determine the PSC. Due to the heavy computation required, as the size of

the NN increases, to choose a PSC in less than 1% of the instruction window time, NN

will need to parallelize the operations, which will require additional logic and memory

components.

In Figure 3·16 we show the average IPC for 1C for the differently sized models. As

it is immediately apparent, Puppeteer provides good performance improvement even when
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Table 3.6: Components that Puppeteer and NN use, their area, power, and delay values
synthesized using Cadence Genus using GF22FDX® (Carter et al., 2016). We give the
number of each logic component required for each NN model size in the bottom table.
Puppeteer only requires a single MAX unit for all 4 model sizes. Note that values are
normalized due to proprietary reasons.

Logic Components Area (µm2) Power (mW) Delay (Cycles)
MAX 174 0.28 1
MUL 2358 0.18 1
ADD 559 0.81 1
DIV 10000 11.5 3

RELU 168 0.33 1

SRAM size, Model #Bits/ Word, #Words/
SRAM array

# SRAM arrays
Required Area Norm. Read Energy

Norm. Delay (Cycles)

1KB NN 32, 256 1 1⇥ 1⇥ 1
1KB Puppeteer 38, 256 1 1.3⇥ 1.2⇥ 1

5KB NN 32, 640 2 6.6⇥ 2⇥ 1
5KB Puppeteer 42, 1024 1 2.6⇥ 1.7⇥ 1

10KB NN 32, 864 3 8.6⇥ 1.7⇥ 1
10KB Puppeteer 44, 2048 1 5⇥ 1.9⇥ 1

100KB NN 32, 1024 27 56⇥ 1.4⇥ 1
100KB Puppeteer 50, 16384 1 38⇥ 4.6⇥ 1

# of Logic Component 1KB NN 5KB NN 10KB NN 100KB NN
MAX 1 1 1 1
MUL 1 2 3 27
ADD 1 2 3 27
DIV 1 1 1 10

RELU 1 1 1 10

using a small model that fits within 1KB, while NN does not provide any performance im-

provement until we use a model that requires 10KB. At 10KB model size, a 1C processor

with a NN manager has 11.8% lower average IPC as compared to a 1C-processor with

Puppeteer. The NN also has ⇠ 3⇥ larger area and 11⇥ larger power as compared to Pup-

peteer. If we compare 100KB NN to 1KB Puppeteer, then using Puppeteer provides 11.6%

performance improvement, while NN provides 9.7% performance improvement while the

area and power of 100KB NN is 76⇥ and 185⇥, respectively, that of Puppeteer. Therefore,

NN is not suitable for hardware prefetcher adaptation.



56

Table 3.7: Power and Area for various sizes of Puppeteer and NN - Here we use SRAM
compiler for designing Node MEM, and design the compute logic using RTL and then
synthesize it using Cadence Genus for GF22FDX® (Carter et al., 2016). Power is given
over one instruction window. Norm. values are w.r.t. to Puppeteer 1KB values.

Algorithm Area Norm. Power Norm.
Puppeteer 1KB 1⇥ 1⇥
Puppeteer 5KB 2⇥ 1.7⇥
Puppeteer 10KB 3.6⇥ 1.9⇥

Puppeteer 100KB 28⇥ 8.3⇥
NN 1KB 3.4⇥ 3⇥
NN 5KB 8⇥ 13.8⇥

NN 10KB 11⇥ 21⇥
NN 100KB 76⇥ 185⇥

Puppeteer Power Analysis

In Figure 3·17 we show the average power consumed in the caches for various static PSCs

and the prior managers compared to Puppeteer. Compared to the no prefetching case,

overall Puppeteer has 65% higher power consumption. Compared to BT (average of B1C,

B4CS, and B4CM), Puppeteer (average of P1C, P4CS, and P4CM) has 9% lower average

power. While NN and J3 have 6.3% and 2.2% lower average power than Puppeteer, as

we have discussed they also have significantly lower average IPC. For the static PSC, EIP

is extremely power hungry, with the highest average power that is 20.4% more than Pup-

peteer. IPCP and NO have lower power consumption than Puppeteer but they also have the

worst performance among all options we have considered.

Puppeteer’s Impact on Accuracy and Scope

In Figure 3·18 we compare the prefetching scope of the prior works and Puppeteer. Here

we determine scope as the number of total misses reduced by the prefetcher or prefetch-

ing system, divided by the total number of misses with prefetching disabled. We observe

very limited scope across the 4 levels of the memory hierarchy for NN and J3. This is

probably one of the reasons these options have lower performance than BT and Puppeteer.

Comparing BT (average of B1C, B4CS, and B4CM), Puppeteer (average of P1C, P4CS,
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and P4CM), in L1D$ and L2$ BT achieves a marginal difference with 0.5% broader scope

than Puppeteer. In L1I$ cache BT actually has 3.3% broader scope compared to Puppeteer.

However, Puppeteer has 4.8% broader scope compared to BT in LLC. Intuitively, since

LLC penalties are more important than L1I$, L1D$, and L2$ penalties, this is a better

outcome. Experimentally, our results also support this outcome since Puppeteer has better

performance than BT.

In Figure 3·19, we compare the prefetching accuracy of Puppeteer and the prior works.

Here accuracy of a prefetcher is measured as the number of misses that a prefetcher or

prefetcher system has reduced compared to the case when prefetching is disabled, divided

by the number of misses caused by the prefetcher. Puppeteer is better than the other options

in L1I$ and L1D$, but comparable in L2$. In LLC, J3 fairs better than the other options

with only 1.5% lower accuracy than Puppeteer. In case of BT and NN, Puppeteer achieves

21% better accuracy compared to BT and 28% better accuracy compared to NN. It is also

of note that since the accuracy of Puppeteer in L1I$ is 6.7% better compared to BT, this

better accuracy plays a role in compensating for the broader L1I$ scope of BT compared

to Puppeteer.

Puppeteer-based Temporal variations in PSC

In Figure 3·20 we show the temporal behavior of P1C, B1C, and J3 while running 429.mcf-

217B as an example. Figure 3·20a shows the percentage of time for which each PSC was

used by each manager algorithm when executing 1.2B instructions of 429.mcf-217B. In

Figure 3·20b we show the IPC values and the PSC used in each instruction window for

a small slice of the same trace. We would like to note three interesting observations: (i)

From Figure 3·20a, both B1C and P1C use fnl-bingo-spp-no for the 80% of the instruction

windows, yet the performance difference between the two is around 20% over the whole

trace. This means the PSC chosen in the remaining 20% of the instruction windows have

a larger influence on the overall performance. (ii) In the first 25 instruction windows after
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Figure 3·18: Average Scope of Puppeteer and the Prior Works in a 1C Processor - See
Table 3.2 for the notations used along the X-axis.

Figure 3·19: Average Prefetching Accuracy of Puppeteer and the Prior Works in a 1C
Processor - See Table 3.2 for the notations used along the X-axis.



59

(a) PSC Percentage (b) Runtime Behavior

Figure 3·20: Temporal Behavior of Puppeteer- (a) Percentage usage of each PSC for the
P1C, B1C, and J3; and (b) IPC gain when using P1C, B1C and J3 across 50 instruction
windows and running 429.mcf-217B. For each plot line, for an instruction window we
use color coding to indicate the PSC choice. The PSC descriptions are provided in Table
3.5.

the 5000th instruction window, there is a large variation in IPC gain when using B1C as

compared to P1C, while all three algorithms converge to the same performance and same

PSC during the last 25 instruction windows. This shows that P1C does a better job at

predicting the PSC in different regions of an application. (iii) J3 uses the same PSC as

P1C yet has lower performance in the first 25 instruction windows. This illustrates that

changing the PSC has a cumulative effect on IPC. The choice of PSC made by P1C in

prior instruction windows allowed P1C to gain more performance in the given instruction

windows compared to J3.

3.4 Summary

In this chapter, we have presented Puppeteer, a novel ML-based prefetcher manager de-

signed using custom tailored random forests. We train a dedicated random forest for each

PSC, which allows the random forest to retain more information in a smaller amount of
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hardware. For the 232 traces that we evaluated, Puppeteer achieves an average perfor-

mance gain of 46.0% in 1C, 25.8% in 4C, and 11.9% in 8C compared to a system with

no prefetching. Puppeteer also reduces the number of negative outliers by 89%. As future

work, we will explore a unified design of a ML-based manager that selects from an array of

ML-based prefetchers. In addition, we will also consider online training to further improve

the performance of Puppeteer.
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Chapter 4

SecRLCAD: Securing Standard Cell Libraries
Using a RL-based CAD Flow

4.1 Introduction

The immense investment required to continue the state-of-the-art fabrication nearing 20

Billion dollars (Bloomberg, 2020; Inquirer, 2017) has consolidated the number of semicon-

ductors companies doing fabrication or design. On the design side, in only 2021, Nvidia

tried to buy ARM (AMD, 2021b), and AMD bought Xilinx (AMD, 2021a), further con-

solidating the design stack. On the fabrication side, GF recently announced that they are

sold up until 2023 and will no longer produce bleeding-edge tech nodes (GF, 2021). The

number of fabrication companies capable of the state-of-the-art <10nm nodes is down ef-

fectively to three (Alpha, 2021). Unfortunately, the complex requirements of customers

coupled with the consolidation of the supply chain have had negative security, supply, and

performance impacts on the semiconductor industry (CNBC, 2021a; TechHQ, 2021). The

highly fragmented nature of the supply chain for fabrication of IC gives an ample chance

for an attacker with knowledge of these companies to insert HT (Zhou et al., 2020).

HTs are malicious third-party circuitry inserted into ICs to compromise the IC chip.

There are different types of attacks that HTs can perform. HTs can be utilized as side

channels to leak private information from the IC which is a huge issue especially in gov-

ernmental facilities where HT attacks are increasing (Post, 2018). Destructive HT can

damage or even destroy the IC thereby causing performance issues. This can be done by
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Figure 4·1: Nanoantenna Structure

modifying the layout to reduce PPA, lengthen shortest paths, and insert short-circuits to

fry circuitry. Given that IC chips are used in almost every sector of life, from computers,

fridges, sensors, automobiles, planes, etc., we must ensure that the security of these chips

has not been compromised.

A common insertion technique for hardware trojans is during the fabrication phase

(Yang et al., 2016; Rostami et al., 2014; Xue et al., 2020; Dong et al., 2020). Insertion

can be done by inserting IP, modifying the design, or changing the layout. Some functional

checks can be done to secure against the first two, but it is difficult to functionally check for

modifications in the layout. This is especially difficult since attackers can insert tiny HT

made from a couple of gates and a capacitor without any functional changes (Yang et al.,

2016). Randomly testing for the activation sequence is also near impossible (Yang et al.,

2016). Therefore, the only way to check for layout modifications is to physically verify

if there have been modifications or not. Such techniques include delayering the chip and

SEM imaging to check for HTs. These methods are cumbersome, slow, and expensive.

Hence techniques were developed to insert nanoantennas into ICs to generate an optical

signature (Zhou et al., 2018; Zhou et al., 2020; Zaraee et al., 2020; Zhou et al., 2015).

We show an example of a nanoantenna in Figure 4·1. It consists of a plasmonic struc-

ture in the center and gratings on the two sides. The periodic structures in the nanoantenna

cause optical waves to resonate at a particular wavelength and angle of reflectance. With

this property, the nanoantenna reflects the optical signal with a powerful response at a
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certain wavelength, illuminating the structure much more than its surroundings and other

wavelengths. We can use backside imaging in Near-IR light to generate a backside image

of the IC. We can then compare this image to a known golden design from the IC and a sim-

ulated optical response from FDTD simulations. Modifications to the layout will show up

as shifting or changing optical signatures giving a reliable and efficient method of checking

for HT insertion. The prior art proposes two different methods to insert nanoantennas into

standard cells. Zhou et al. (Zhou et al., 2020) utilize high reflectance fill cells to gener-

ate optical signatures. This approach does not consider that functional cells could also be

modified or changed to generate space for a HT. Zaraee et al. (Zaraee et al., 2020) utilize

dual-gate pairs to insert nanoantennas into the IC. This approach requires specific gates to

be placed next to each other in the IC. Therefore, current CAD flows would not support the

direct insertion of these dual-gate pairs. Even if the CAD flows were modified heavily to

force gates next to each other, this would come at the cost of a considerable area overhead

in the IC. The current CAD algorithms would not be optimized for such a constraint.

We require a way to directly secure each standard cell from attackers. To accomplish

this goal, we propose to insert a nanoantenna into each standard cell directly. The issue

here is the manual insertion of a nanoantenna into a standard cell is a design-heavy task.

With fill cells or dual-gate pairs, there is ample space to easily insert the grating structures.

This is not the case for individual functional standard cells, especially in highly optimized

industrial standard cell libraries where the areas of the standard cells are kept at a minimum

to save on the total area of the IC. To verify this, we designed and inserted nanoantennas

into seven standard cells in GF22FDX (GlobalFoundries, 2006). The design process for a

single gate took around 8.5 days on average per gate to get a DRC clean and relatively low

area overhead design. In total, for seven min-sized gates, it took two months to proceed

onto the synthesis stage. This overhead is unacceptable for securing a modern standard cell

library with thousands of gates (GlobalFoundries, 2006).
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RL has achieved impressive results at the super-human level in many areas such as GO

(Silver et al., 2017), Robotics (Levine et al., 2016; Kober et al., 2013), traffic-light control

(Arel et al., 2010), web-traffic routing (Bu et al., 2009), optimizing chemical reactions

(Zhou et al., 2017), and more. RL promises good results for anything that can be structured

into a game-like problem. Following this trend, Ren et al. (Ren and Fojtik, 2021) have

shown that by using an RL-based algorithmic flow, they were able to generate DRC-clean

standard cells from scratch at or beyond the human-designer level for 92% of the gates.

In this work, we propose to use RL as part of a CAD flow to secure standard cell

libraries. Our flow, dubbed SecRLCAD, takes existing standard cells and leverages an

RL-based and a graph-cut algorithm to insert the required nanoantenna patterns into the

standard cell at a fraction of the time a human designer would take. SecRLCAD works

in several steps. First, our graph-cut algorithm searches for an appropriate location to

insert a nanoantenna structure by comparing the spacings between the existing vertical

metals in a layout. After the initial insertion, the layout is passed to the RL-agent stage,

which will iteratively play a game to fix the DRC issues caused during the insertion stage.

SecRLCAD is completely end-to-end. SecRLCAD takes a standard cell library as an input,

performs the insertion per gate, and outputs all the files of a standard cell library, including

the .lef, .gds, and .lib. Therefore, it is easy to directly use SecRLCAD to secure a standard

cell library and then use the newly secured library in IC designs with the existing CAD

tools.

Our main contributions are as follows:

• SecRLCAD is an end-to-end automatic insertion flow that is modular. SecRLCAD can

be easily modified to take a new nanoantenna design, tech node, or additional stan-

dard cell designs.

• SecRLCAD shortens the design-time speed from several months to a few minutes

compared to a human designer. SecRLCAD can insert the nanoantennas into many of
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Specification RTL Design Netlist Layout Fabrication Assembly

Figure 4·2: Steps for IC Fabrication - In order the chip design process is made up of (1)
specification, (2) RTL design, (3) netlist, (4) layout, (5) fabrication, and (6) assembly.

the gates in a few seconds compared to multiple days required by a human designer.

• Unlike the prior work, we secure all the functional cells of a standard cell library,

thereby providing complete coverage.

4.2 SecRLCAD: Design

4.2.1 Threat Model

In Figure 4·2, we show the steps for IC fabrication. For our attack model, we assume the

insertion of the HT can be done during the fabrication stage. The attacker can modify, shift

or replace any standard cell, including fill cells or functional cells, to accommodate the

malicious HT blocks. The attacker can get access to the GDSII files used for fabrication.

They can generate and insert HT into the IP blocks the victim is using.

4.2.2 Backside Imaging

In Figure 4·3, we show how the nanoantennas create an optical signature for an IC. In near-

IR light, the IC’s metal regions are reflective while the silicon regions are near transparent.

This property is used to design structures that will resonate and reflect the light at certain

wavelengths and angles of the light waves. As the designer, we have intimate knowledge of

what to expect from the illumination profile for different wavelengths and angles. There-

fore, we can secure the IC against modifications for high and low optical response regions

using this golden reference. Using backside optical imaging we can extract the full stan-
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High Reflectance

Low Reflectance

Figure 4·3: Backside Imaging of a Nanoantenna-Inserted IC - (left) The near-IR light
illuminates the backside of the IC. (right) Cells that have nanoantennas inserted have
high reflectance, the ones that do not have low reflectance. Figure adapted from (Zhou
et al., 2020).

dard cell layout. Any modifications made upon the standard cell layouts or movement of

the cells will result in a change in the image with high fidelity. Furthermore, we can image

a large number of the standard cells simultaneously. Leveraging this high-fidelity and scal-

able approach provides us a simple, rapid test to check for the tampering of the IC at the

fabrication stage.

4.2.3 Single-gate Insertion Compared to Prior Work

We compare the prior two approaches, dual-gate pair layout insertion (Zaraee et al., 2020)

and fill cell insertion (Zhou et al., 2020), to our current approach and why our method

makes more sense.

Nanoantennas Inserted into a Dual-gate Pair

In Figure 4·4, we provide an example of a dual-gate pair and single-gate layout with

nanoantennas inserted. The area is in two gates is naturally larger than a single gate, there-

fore, the dual-gate pair initially seems like a better idea. Consider in Figure 4·4, with a

single gate, we are adding additional metal structures, while in the dual-gate pair we do
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AND OR AND
Figure 4·4: Comparison of Dual-Gate Pair Insertion (left) and Single-Gate Insertion
(Right) - Newly inserted metals shown in green. Blue rectangle marks the location of
the nanoantenna structure.

not need to add any structures since we already have the seven required vertical metals.

Therefore, it initially seems like we have 0% overhead for two gates, and 60-70% overhead

for a single gate. The issue here is the dual-gate pairs have to be placed next to each other

for this to work. Fundamentally, while there might be instances where the gates we want to

be placed next to each other naturally get placed next to each other, for most of the cases,

without any constraint on the placement algorithm, this will not be possible. Therefore,

the overhead will be closer to having a redundant logic gate next to every gate. If we want

100% coverage, the overhead will be closer to 100% in dual-gate pairs.

Nanoantennas Inserted into a Fill Cells

In Figure 4·5, we show the illumination profile of an IC with nanoantenna-inserted fill

cells. Zhou et al. state that if a fill cell is replaced or shifted, the illumination profile will

change hence the HT can be detected. The problem here is that fundamentally we wish

to reduce the number of fill cells when designing IC. In modern IC, the fill cell to total

area percentage is less than 20% (Siemens, 2022b). As shown in Figure 4·5, the fill cell

percentage is less than 20% of the whole IC. Such a low coverage percentage gives ample

functional cells for the attackers to modify to insert HTs.

With SecRLCAD, both of these issues no longer exist. SecRLCAD modifies the layout

of each one of the functional standard cells and inserts a unique nanoantenna design to
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Figure 4·5: Illumination Profile Using Only Fill Cells - High-reflectance areas are
where the fill cells reside. Figure adapted from (Zhou et al., 2020).

achieve a secure standard cell library. Our flow secures each gate and is compatible with

the existing CAD flows, thereby, it is superior to the dual-gate pair method. Additionally,

since SecRLCAD secures the functional standard cells, we can use these functional cells to

achieve 100% coverage in the non-fill cells.

4.2.4 Manual Insertion Steps of a Nanoantenna into a Single Gate

To test our idea, we manually inserted nanoantennas into seven minimum-sized standard

cells designed by Invecas from the GF22FDX (GlobalFoundries, 2006) technolgy node.

While fairly simple to explain, the process is challenging to go through due to the intense

design labor that is required.

Based on human intuition and how much the current design resembles the nanoantenna

layout, we find a logical location to insert the nanoantenna and shift the metals around to

create room to insert the nanoantenna. Next, we check for DRC problems and shift metals

around to fix the DRC problems. The main reason for design-heavy work is fixing the
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(a) Zoomed in On a FIR Filter (b) Overview of IC Chip

Figure 4·6: Images of Our Tapeout Done in GF22FDX - (left) shows a zoomed in region
with an IC of interest. (right) shows the overall IC chip with IO.

DRC issues. Many DRC issues that do not even appear at the standard cell level pop up

when inserted into a larger design. This requires an iterative process for fixing the errors.

Once we have gotten all the standard cells DRC clean, we generate a .lef file from abstract

generator and a .lib file from liberate. Using the new standard cell library and files, we

push several IC designs through the ASIC flow to get the GDS. End-to-end, the whole

process took four months of extremely grueling design, with almost two months dedicated

to initially designing the standard cells. Figure 4·6 shows the final IC using our secure

standard cells.

The problem with this approach is the design-time overhead. Even with two design-

ers, the whole process was tediously long. We can encode the same "search for a similar

location to insert the nanoantenna, then fix the DRC issues that appear" logic into an algo-

rithmic form. Having an algorithmic approach will save us a lot of time, given that standard

cell libraries are typically made out of several hundreds to thousands of different cells.
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Figure 4·7: Nanoantenna Insertion and DRC Fix Flow.



71

Table 4.1: SecRLCAD Notations.

Notation Notation Meaning
N Number of metal polygons in the initial pre-insertion standard cell layout.
K Number of metal polygons inserted for the nanoantenna structure.

m Number of metal polygons we can use from the initial standard cell layout for the
nanoantenna structure.

xi j X-axis coordinates of a given metal polygon i.
yi j Y-axis coordinates of a given metal polygon i.
ycut Y-axis location that we select to insert the nanoantenna.

e Mathematical value for infinitesimal value.
Hi Height of metal polygon i.
Wi Width of metal polygon i.
Hg Height of grating structure.
Wg Width of grating structure.
Ha Height of center plasmonic structure.
Wa Width of center plasmonic structure.
Lm1 Minimum distance between two metal polygons as defined by the technology node.

c1,c2,andc3 Scaling coefficients to balance the three terms in the optimization function.
Darea Difference in area.
Dxi j Difference in xi j .
Dyi j Difference in yi j
s(t) State at a given time t.
a(t) Action taken at a given time t.

Q(s,a) Q-table entry for a given state and action pair.
Q(s0,a0) Q-table entry for the next s’ and a’ pair.

g Discount value for the learning function.
a Learning rate for the learning function.
r Reward value for a given action state pair.
q Weights of the DQN.
q0 Future weights of the DQN.

4.2.5 SecRLCAD Flow: Overview

We now explain our main contribution, designing an algorithmic flow capable of re-

designing an existing standard cell library to be secure. The logic is very similar to the

human-intuition-based approach. Broadly, SecRLCAD is made of two portions. The first

is to perform the initial insertion. The second is to fix any DRC issues that pop-up. While

performing these two tasks, SecRLCAD tries to make the area smaller.

In Figure 4·7, we show the primary flow of SecRLCAD and the blocks that insert the

nanoantenna, then fix DRC issues. In Table 4.1 we list the notations we use to describe

SecRLCAD.

We describe SecRLCAD at a high level as:

1) SecRLCAD begins with the existing standard cell library and starts from a single
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Algorithm 1 SecRLCAD Insertion and DRC Fix Flow.
1) Using Nanoantenna Inserter find ycut to insert the nanoantenna.
2) Using Nanoantenna Inserter modify the layout to insert the nanoantenna.
3) Send commands to GDS Modifier to modify the GDS file.
4) Using Contact Poly Fixer to fix contact and poly issues.
5) Check for DRC issues using DRC Checker and try to fix DRC issues with DRC Fixer.

Repeat step 5 until all DRC issues are fixed.

GDS file from this library.

2) Our GDS Reader transforms the GDS file into a python readable polygon coordinate

format.

3) These coordinates are fed into the Nanoantenna Inserter to find the location for

the nanoantenna insertion.

4) Nanoantenna Inserter issues commands to the GDS Modifier to insert the

nanoantenna design into the GDS layout. The GDS Modifier then uses the commands

and changes the GDS file while maintaining logical connections from the original design.

5) Contact Poly Fixer shifts the contacts and poly layer around to maintain logical

connections with the original metals that were already existing in the standard cell layout.

The Contact Poly Fixer fixes any DRC issues that occur related to the contact and poly

layer by using these shifts.

6) SecRLCAD begins a loop of checking for DRC issues using DRC Checker, fixing

metal DRC issues with DRC Fixer, then fixing contact and poly DRC issues with Contact

Poly Fixer. This loop is continued until we get a DRC clean design.

In Figure 4·8, we show the process of creating a standard cell library after securing the

standard cells. Once we have all gates inside a standard cell library secured, we automat-

ically generate .lib and .lef files using our secondary flow. At the output, SecRLCAD will

have created a secure standard cell library.

We will now describe each block of SecRLCAD in more detail.
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Figure 4·8: Standard Cell Library Creation Flow.

GDS Reader

GDS Reader is made up of two stages, a read-in stage using Gdspy library (Gdspy, 2022),

and a split-into-blocks stage to separate polygons into rectangles. For the DRC Fixer and

Nanoantenna Inserter blocks, the manipulation of the metal layer is difficult to accom-

plish with simple functions upon polygons. Therefore, splitting the metal polygons into

rectangles and applying modifications on the rectangles makes the command structure more

streamlined and easier to represent.

Nanoantenna Inserter

Nanoantenna Inserter is the first of the three algorthmic blocks (with the other two

algorithmic blocks being the Contact Poly Fixer and the DRC Fixer). Nanoantenna

Inserter is made of several stages. First, we search for the best insertion cut. Next, we

shift and modify the polygon shapes to satisfy the nanoantenna design we wish to reach.

In the first stage, given N metal polygons in the layout, the VDD and GND lines can

not be used as grating structures. There are in total N �2 metal polygons to choose from.

If we need to insert K metal gratings and assuming we can use m metal polygons from the

N � 2 original metal polygons, we need to insert K �m metal grating structures. In total

we have the following options:
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This combinatorial sum does not have a closed form. If K > (N � 2)/2 the algorithm

runs with O(2N) i.e., the runtime is exponential. But since K < (N � 2)/2 in most cases,

the brute force solution runs in polynomial time. In order to speed up our run time we come

up with a linear time algorithm. In the case that the algorithm can not find a good solution

we can return to the initial layout, prior to nanoantenna insertion, and start with another

point.

We can represent a polygon by its two corners. Let us denote the x-coordinates of this

polygon as {xi j} and the y-coordinates of this polygon as {yi j}, where i = 1,...,N polygons

and j = 1,2 for the bottom-left and top-right corners.

We want to pick a ycut where min(yi j)< ycut < max(yi j) and ycut 2 {yi j +e}[{yi j �e}

for all i, j. In the worst case, we have 2N number of cuts to try out which is linear solution

space. For a given ycut , we select from the set of possible cuts, ycut > yi1 and ycut < yi2

and Wi < Hi + e. Here Wi is the width of a polygon and is defined as xi2 � xi1 and Hi is the

height of a polygon and is defined as yi2 � yi1.

For each polygon that ycut goes through, we calculate the similarity between the poly-

gon and the required grating shape. We define the similarity as the overlap of the polygon

with the grating shape min((Wi �Wg) ⇤ (Hi �Hg)) where Wg is the required width of the

grating structure and Hg is required height of the grating structure.

We also add a second term for available free space around the polygons. The total free

space is the total length between the maximum and minimum xi j minus the length required

to fit the m nanoantenna grating structures, i.e., max(xi j)�min(xi j)�m⇤Lg where xi j is a

coordinate that is part of a polygon that ycut went through and Lg is the grating period.

Once we have a best ycut that provides the maximum number of polygon cuts, there are

three possibilities. The first possibility is when m > K. Since we need K polygons, we

can choose a subgroup from m�K + 1 different possible polygons. We choose the one
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that maximizes the similarity and free space. The second possibility is when m = K. We

directly choose these m polygons. The third possibility is when m < K. We add metals to

the free space between the polygons or on the sides until we reach m = K.

After choosing the K polygons we wish to reshape the spaces to match the shape of the

nanoantenna. To do so we design the second stage as follows, we want to minimize the

maximum horizontal length to decrease the area of the gate. We also wish to minimize the

movement of the polygons as much as possible from their original spot in the layout prior

to nanoantenna insertion. Finally, we want to minimize the area difference between the

grating structure of the nanoantenna and the original polygon.

The optimization algorithm is as follows:

min(c1(maxi, j{xi j +Dxi j}�mini, j{xi j +Dxi j})+ c2(ÂN
i=1(Â2

j=1 Dxi j +Â2
j=1 Dyi j))

+c3 Âi Dareai)

Subject to seven constraints:

(i) The original connections of the polygons must be sustained. If a polygon is moved

or extended the connecting polygon will also shift or extend accordingly to sustain the

connection. Mathematically, given two polygons n and l, if xn1  xli  xn2 and yn1  yli 

yn2, this property must be conserved for any two polygons after all actions are taken.

(ii) New connections must not be created. If a polygon is not touching another polygon

in the original layout, it shall not touch this polygon with any movement. Mathematically,

given two polygons n and l, if xli > xn1 and xli > xn2 and yli > yn1 and yli > yn2, this property

must be conserved for any two polygons after all actions are taken.

For constraints (i) and (ii), we track the polygon connections with a graph algorithm to

sustain connections.

(iii) The minimum distance between metals polygons, as defined by the technology

node, will be sustained. Mathematically, given Lm1 and two metal polygons m and n, we

will continue taking actions until xmi � xni > Lm1 and ymi � yni > Lm1.
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(iv) There is a known distance Lg between the grating structures, the final design must

have this distance between the grating structures. Mathematically, given two metal poly-

gons n and m that are part of the nanoantenna grating structure, we will continue taking

actions until for all n and m pairs, xm1 � xn2 > Lg.

(v) The grating pairs have a known Hg and Wg that they must have in the final design.

The algorithm will continue to modify the layout until these shapes are also met. There is ±

20% flexibility in height and width for this constraint. Mathematically, given a metal n that

is part of the grating structure, we will continue taking actions until 1.2⇤Wg >Wn > 0.8⇤Wg

and 1.2⇤Hg > (Hn)> 0.8⇤Hg.

(vi) The center nanoantenna structure has a known Ha and Wa, the algorithm will con-

tinue until the center has this shape. Mathematically, given a metal n that is the center

plasmonic structure, we will continue taking actions until Wn =Wa and Hn =Wg.

(vii) The distance between the VDD and GND distance must be sustained and can not

be changed. Mathematically, max(yi j)�min(yi j) will be kept constant.

Based on these constraints, we can move and extend the polygons until we reach the

nanoantenna design.

GDS Modifier

GDS Modifier has three main functions: (i) Extend, (ii) Move, and (iii) Add. With the Ex-

tend command SecRLCAD can extend polygons in the positive or negative direction, i.e.,

contract the shape by a given amount. With Move command SecRLCAD moves any poly-

gon to a given direction by a given amount. Finally, with Add command SecRLCAD can

add in new metal polygons to the layout in order to insert, if required, the extra gratings for

the nanoantenna structure.
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Contact Poly Fixer

Contact Poly Fixer is the simplest of the three algorithmic blocks (with the other two

algorithmic blocks being the Nanoantenna Inserter and the DRC Fixer). Essentially,

most poly/contact issues are related to the functions of the GDS Modifier are either mis-

matched overlap issues, i.e., the metal layer has shifted, or are related to the metal width

not leaving enough width at the sides of the contacts, i.e., shrinking metal widths. The first

issue is easy enough to fix. Contact Poly Fixer shifts the contacts by the same amount

as the metal that the contact was connected to. For the second issue, we define a minimum

metal thickness that the metals with contact connections should not go below. Using this as

a hard limit, we preemptively remove this issue from occurring. As discussed in Chapter

5, in the future, with flows that build the standard cells from scratch, this block will have to

be more intelligent.

DRC Checker

DRC Checker relies on external tools to check for DRC issues in the layout. The external

tool returns how many DRC issues exist in the layout. DRC Checker parses the DRC report

and separates the metal DRC issues and the other issues.

DRC Fixer

The DRC Fixer is the third of the three algorithmic blocks and the most complex. When

building the DRC Fixer block we need an algorithm that is capable of making sequen-

tial decisions on an environment. We begin by explaining Q-learning to explain the logic

behind the DRC Fixer block and then explain Deep-Q-Networks (DQN) which is the un-

derlying algorithm of the DRC Fixer block. In general, for Q-learning, we build a memory

table Q(s,a) to store Q-values for all possible combinations of state (s) and action (a). For a

given environment we can take certain actions upon this environment and we can maximize
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our reward by taking these actions in a certain order.

The algorithm for Q-learning is:

Algorithm 2 Q-Learning Algorithm
1) Initialize table Q(s,a) with random values.
2) Take a action (a) with epsilon — greedy policy and move to next state s’.
3) Update the Q value of a previous state by following the update equation: Q(s,a) =
Q(s,a)+a(r+ gmax(Q(s0,a0))�Q(s,a)).
4) Repeat M steps.

Here a is the learning rate, r is the reward, and g is the discount.

Here, epsilon — greedy means we move between taking a random action (exploration)

and taking an action based on Q-value (exploitation) based on the learning rate (a).

For our problem, the DRC Fixer must be capable of understanding and understanding

complex relational geometric properties in the layouts to figure out which polygon shapes

are allowed with relation to its’ surrounding polygon shapes. The number of stages that

the metal layout could observe is N > 101250 (Ren and Fojtik, 2021). Since this number is

larger than the size of the known universe, there has to be a learning methodology for this

stage to generalize to the possible cases. DQN comes into the picture when the number of

Q(s,a) are too large to memorize.

DeepMind developed DQN (Mnih et al., 2015) in 2015. The algorithm is inspired by

the deep networks used to achieve very high accuracy in image recognition, another field

where the number of unique states is incomprehensibly high. DQN is successful due to four

traits: (i) Experience Replay, (ii) Target Network, (iii) Clipping Rewards, and (iv) Skipping

Frames. Experience Replay uses state and reward storage to avoid overfitting, which is

a huge concern in RL-based methods. Target Network fixes the parameters of the target

network every several thousand steps to avoid unstable target functions. Clipping Reward

clips all rewards to between 1 and -1 to make training for different tasks stable. Skipping

Frames skips over frames of a game. Given humans also do not decide on actions for every
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single frame of a game, this makes logical sense.

The goal of DQN is to learn to approximate a complex, nonlinear function Q(s, a)

instead of memorization using a DNN. We can train the DNN with the following loss

function: Loss = (r+ gmaxa0Q(s0,a0;q0)�Q(s,a;q))2.

During the learning process we use two separate Q — networks to calculate the pre-

dicted value (weights q) and target value (weights q0). The target network is frozen for a

duration and then the target network weights are updated by copying the weights from the

actual Q network.

We can write the DQN algorithm as follows:

Algorithm 3 DQN Algorithm
1) Initialize the replay buffer with random actions and initialize Q(s,a).
2) Select an action (a) using the epsilon - greedy policy.
3) Store action output in the replay buffer as < s,a,r,s0 >.
4) Sample some random batches of transitions from the replay buffer and calculate the
loss.
5) Perform gradient descent with respect to actual network parameters in order to mini-
mize the loss.
6) After every k steps, copy our actual network weights q to the target network weights
q0.
7) Repeat for M steps

4.3 Evaluation

4.3.1 Methodology

To build SecRLCAD, we rely on several tools and frameworks. DRC Fixer uses the Ope-

nAI Gym (Brockman et al., 2016) and stablebaselines3 (Raffin et al., 2021) framework to

train the DQN. DRC Checker has been built to support KLayout (Klayout, 2022) and Cal-

ibre (Siemens, 2022a). DRC Reader and DRC Modifier rely on the Gdspy library (Gdspy,

2022) to read and modify the GDS files. To generate .lef files we use Cadence Abstract
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Table 4.2: FIR Filter Place and Route (PnR) Results

Standard Cell Library Area (µm2) Number of Gates
Invecas Cells 902.7 3012

Seven Secure Standard Cells 1339.4 4471

Generator (Cadence, 2022b). To generate .lib files we first need to generate .sp files. To

accomplish this, we use Calibre PEX (Siemens, 2022c). Once we have the .sp files, we can

use Cadence Liberate (Cadence, 2022a) to generate the .lib file.

For the technology node, we experiment with GF22FDX (GlobalFoundries, 2006) for

the initial tapeout. To test SecRLCAD more extensively, we use Nangate FreePDK 45nm

(Knudsen, 2008). We build the rest of our pipeline in python.

4.3.2 Results

Manual Implementation in GF22nm

In Table 4.2 we provide our preliminary analysis done in GF22FDX. In the manually de-

signed standard cell library we have AND2, OR2, INV, XOR2, XNOR2, NAND2, and

NOR2 gates. For more complex gates, such as gates with more than two inputs we use

more than a single gate. This results in the number of gates going up by ⇠ 50% in the FIR

filter. The area of the total design has also increased by ⇠ 48%. A large portion of this area

increase can be associated with the above problem of having access to fewer standard cell

types with only two inputs since designing using larger gates would mask the overhead of

the nanoantennas even better. Despite this, using a dual-gate insertion approach is worse

since this would result in a ⇠ 100% increase in area.

SecRLCAD Results

Figure 4·9 and Figure 4·10 show the insertion of the nanoantenna for seven gates: INV_X1,

AND2_X1, OR2_X1, NAND2_X1, NOR2_X1, XOR2_X1, and XNOR2_X1. Here we be-

gin with the initial layout, find the polygons to be used as grating structures, then follow the
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Table 4.3: Secured Standard Cells in Nangate FreePDK 45nm - Part 1 - Percentage
increase of the area of each standard cell compared to its non-secure version.

Gate Gate Sizing Percentage Increase
AND2 X1 135.86
AND2 X2 88.68
AND2 X4 23.54
AND3 X1 92.37
AND3 X2 57.24
AND3 X4 8.61
AND4 X1 57.24
AND4 X2 42.86
AND4 X4 13.36
AOI21 X1 138.49
AOI21 X2 35.15
AOI21 X4 17.61

AOI211 X1 91.32
AOI211 X2 27.34
AOI211 X4 19.02
AOI22 X1 87.37
AOI22 X2 21.64
AOI22 X4 2.32

AOI221 X1 58.33
AOI221 X2 29.78
AOI221 X4 10.53
AOI222 X1 30.43
AOI222 X2 0
AOI222 X4 0

BUF X1 214.91
BUF X2 153.95
BUF X4 41.35
BUF X8 0
BUF X16 0
BUF X32 35.55

CLKBUF X1 216.67
CLKBUF X2 154.61
CLKBUF X3 88.95

CLKGATE X8 7.49
CLKGATE X1 0
CLKGATE X2 14
CLKGATE X4 5.34

DFF X1 6.11
DFF X2 6.65

DFFR X1 4.08
DFFR X2 2.03

DFFRS X1 5.15
DFFRS X2 2.28
DFFS X1 6.51
DFFS X2 6.7
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Table 4.4: Secured Standard Cells in Nangate FreePDK 45nm - Part 2 - Percentage
increase of the area of each standard cell compared to its non-secure version.

Gate Gate Sizing Percentage Increase
DLH X1 33.68
DLH X2 25.12
DLL X1 26.71
DLL X2 28.83
FA X1 79.44
HA X1 33.42
INV X1 369.08
INV X2 212.28
INV X4 87.37
INV X8 23.39
INV X16 6.42
INV X32 0

MUX2 X1 34.77
MUX2 X2 43.71

NAND2 X1 216.67
NAND2 X2 87.37
NAND2 X4 17.84
NAND3 X1 135.86
NAND3 X2 36.47
NAND3 X4 164.98
NAND4 X1 90
NAND4 X2 21.49
NAND4 X4 2.63
NOR2 X1 216.67
NOR2 X2 88.95
NOR2 X4 22.81
NOR3 X1 135.2
NOR3 X2 34.77
NOR3 X4 12.97
NOR4 X1 90
NOR4 X2 14.77
NOR4 X4 12.43
OAI21 X1 137.5
OAI21 X2 40.41
OAI21 X4 24.7
OAI211 X1 87.37
OAI211 X2 19.44
OAI211 X4 0
OAI22 X1 90
OAI22 X2 22.08
OAI22 X4 100.08
OAI221 X1 58.33
OAI221 X2 17.22
OAI221 X4 7.89
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(a) INV Gate

(b) AND Gate

(c) OR Gate

Figure 4·9: End-to-end Insertion Flow - Part 1 - (left) Initial layout, (center) polygons
selected for insertion marked in black, (right) after insertion-DRC-fix. We show the
results for three of the seven gates: INV_X1, AND2_X1, OR2_X1.
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(a) NAND Gate

(b) NOR Gate

(c) XOR Gate

(d) XNOR Gate

Figure 4·10: End-to-end Insertion Flow - Part 2 - (left) Initial layout, (center) polygons
selected for insertion marked in black, (right) after insertion-DRC-fix. We show the re-
sults for four of the seven gates: NAND2_X1, NOR2_X1, XOR2_X1, and XNOR2_X1.
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Table 4.5: Secured Standard Cells in Nangate FreePDK 45nm - Part 3 - Percentage
increase of the area of each standard cell compared to its non-secure version.

Gate Gate Sizing Percentage Increase
OAI222 X1 28.95
OAI222 X2 12.5
OAI222 X4 0
OAI33 X1 48.5
OR2 X1 135.86
OR2 X2 88.68
OR2 X4 14.04
OR3 X1 88.68
OR3 X2 57.24
OR3 X4 12.2
OR4 X1 57.24
OR4 X2 42.86
OR4 X4 14.57

SDFF X2 6.58
SDFF X1 1.43

SDFFR X1 1.26
SDFFRS X1 5.99
SDFFRS X2 3.27
SDFFS X1 10.79
SDFFS X2 0
TBUF X1 22.53
TBUF X2 32.02
TBUF X4 66.03
TBUF X8 0.29
TBUF X16 2.23
TINV X1 135.86
TLAT X1 25.91

XNOR2 X1 65.57
XNOR2 X2 126.84
XOR2 X1 76.32
XOR2 X2 30.99

insertion-drc-fix flow to insert the nanoantennas. SecRLCAD was capable of finding inser-

tions both at the edge for some cases, such as XNOR2_X1, and at the center for example

in NOR2_X1. This is because, for example, the area around the center is somewhat tight

in the XNOR2_X1 therefore SecRLCAD had to shift the horizontal metals to make space

around the center. We also see that the spacing constraint and the original connections have

also been maintained but have been tightened in order to cause as small of an area increase

as possible. We also observe that in many of the layouts there is a close to optimal amount

of metal reuse.

Table 4.3, Table 4.4, and Table 4.5 altogether show all the gates in the Nangate
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FreePDK 45nm and the area comparison of the non-secure and secure standard cells. We

observe that INV_X1 gate has a maximum increase of 369%. The average area gain is

56%. The smaller gates will have a larger area increase since these gates inherently have

less polygons that can be reused. Therefore INV_X1 having the highest overhead is ex-

pected since we have very few metal polygons to use for our structures and have to insert

five grating structures. Compared to a potential 100% increase in the dual-gate pairs, this

is a major reduction in the overhead. In Table 4.6 we show the area overheads for a variety

of hardware blocks for three different standard cell libraries.

Table 4.6: Various IC Chips Using Different Standard Cell Libraries. Full FreePDK
45nm is the complete 140 standard cell gates. Reduced FreePDK 45nm is the seven
small-sized standard cells, INV_X1, AND2_X1, OR2_X1, NAND2_X1, NOR2_X1,
XOR2_X1, and XNOR2_X1. We show the normalized area values of each hardware
block to the corresponding Full FreePDK 45nm version.

Standard Cell Library Hardware Blocks Area (µm2) Normalized Area Value

Full FreePDK 45nm

Exponential 1208.954 1⇥
Max 733.163 1⇥

ReLU 196.536 1⇥
Add 925.866 1⇥

Float Multiplier 6242.691 1⇥
Division 18646.663 1⇥

Systolic Array 16pe 418279.730 1⇥
Sodor 1-Stage 88807.267 1⇥
Sodor 3-Stage 99545.198 1⇥

Reduced FreePDK 45nm

Exponential 1370.39 1.13⇥
Max 835.488 1.14⇥

ReLU 196.536 1⇥
Add 1026.791 1.11⇥

Float Multiplier 10257.866 1.64⇥
Division 20161.186 1.09⇥

Systolic Array 16pe 605135.350 1.44⇥
Sodor 1-Stage 114772.579 1.29⇥
Sodor 3-Stage 130277.259 1.32⇥

Nanoantenna-inserted FreePDK 45nm

Exponential 1905.11 1.57⇥
Max 1194.00 1.62⇥

ReLU 196.53 1⇥
Add 1336.78 1.44⇥

Float Multiplier 13145.83917 2.07⇥
Division 29392.16 1.52⇥

Systolic Array 16pe 828091.6585 1.98⇥
Sodor 1-Stage 147169.47 1.65⇥
Sodor 3-Stage 166124.76 1.66⇥

Full FreePDK 45nm library has access to all 140 standard cells available in the Nangate

FreePDK 45nm library. Reduced FreePDK 45nm library has access to seven of the stan-
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dard cells available in the Nangate FreePDK 45nm library, INV_X1, AND2_X1, OR2_X1,

NAND2_X1, NOR2_X1, XOR2_X1, and XNOR2_X1. Nanoantenna-inserted FreePDK

45nm library has access to seven of the standard cells available in the Nangate FreePDK

45nm library, INV_X1, AND2_X1, OR2_X1, NAND2_X1, NOR2_X1, XOR2_X1, and

XNOR2_X1 but they also have nanoantennas inserted. We observe that the area difference

increases for more complicated hardware blocks. The most complicated hardware block

we design is the Systolic Array 16pe. For this hardware block, we observe that the area

overhead of just reducing the number of gate options is 1.44⇥. The reason this occurs is

because the more complicated hardware designs utilize the more complex standard cells

more often compared to simpler designs. Not having access to these standard cells means

the synthesis tool has to reconstruct these designs using the simpler standard cells. By

inserting nanoantennas into these seven gates, we further increase the area overhead up

to 1.98⇥. The average area overhead of Reduced FreePDK 45nm hardware blocks over

Full FreePDK 45nm is 1.25⇥, while for Nanoantenna-inserted FreePDK 45nm hardware

blocks it is 1.6⇥.

4.4 Summary

This chapter proposed SecRLCAD, an RL-based CAD flow to insert nanoantennas into

each individual standard cell in a given standard cell library instead of just non-functional

filler cells or dual-gate pairs. We automate the flow end-to-end to take an existing standard

cell library as input, insert an optical nanoantenna in each cell of the library, and generate

a secure standard cell library as output. Our flow is highly generic and can handle new

tech nodes, nanoantenna designs, and standard cell libraries. We automate SecRLCAD to

generate all the necessary files for synthesis so that there is minimal overhead and the

secured cells are easily used in CAD flows.

Furthermore, we experiment with manually designing seven standard cells for GF 22nm
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FD-SOI (GlobalFoundries, 2006). Based on this experience, we can reduce the design time

of securing the ⇠100 standard cell gates from ⇠28.5 months to only a couple of hours.

Utilizing SecRLCAD, we can secure the Nangate FreePDK45nm Library at an average

area increase of only 56% compared to the ⇠ 100% of the prior methods. Finally, it is

important to note that given a certain resolution of gates, inserting a nanoantenna could

give security at a given fidelity. The resolution depends on how many gates in the IC an

attacker would need to create enough space to insert their HT circuit into. Having such a

scheme would further reduce the area overhead of the nanoantennas since each functional

gate would not need to be a nanoantenna-inserted gate. This is out of the scope of this work

but opens interesting possibilities for future work.



89

Chapter 5

Conclusion and Future Work

This thesis presents and evaluates two thrusts of using ML for hardware design and man-

agement In this chapter, we summarize the contributions of this thesis and outline the di-

rections for future work.

5.1 Summary of Major Contributions

On the hardware management front, to improve processor performance, we propose Pup-

peteer, a low-overhead non-invasive RF-based hardware manager that predicts which

prefetchers should be switched ON for a given instruction window. To the best of our

knowledge, Puppeteer is the only manager capable of adapting multiple prefetchers at run-

time both at the same cache level and across different cache levels. Puppeteer is trained

offline and then at runtime utilizes prefetcher invariant events to choose which prefetchers

should be switched ON. Puppeteer is trained to maximize processor performance instead

of the model accuracy by utilizing a regression scheme instead of classification. Finally,

Puppeteer is trained using only a tiny portion (< 10%) of the data and can still achieve

high performance. Effectively, it shows good generalization to the underlying distribution

with a low amount of data. For the 232 traces that we evaluated, Puppeteer achieves an

average performance gain of 46.0% in 1 Core (1C), 25.8% in 4 Core (4C), and 11.9% in

8 Core (8C) processors compared to a system with no prefetching. Furthermore, the main

benefit of Puppeteer is its capability to reduce negative outliers. Puppeteer reduces negative

outliers by 89%, down to 8 outliers from 53, and a 20% reduction in the IPC loss of the
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worst-case outlier compared to the state-of-the-art prior prefetcher managers.

On the hardware design front, we propose an RL-based CAD flow, SecRLCAD, which

secures standard cell libraries by inserting nanoantennas into the standard cells using a

graph-cut algorithm and an RL agent to fix DRC issues. SecRLCAD inserts nanoanten-

nas into individual standard cells and not just into filler cells or into dual-gate pairs. Out

methodology allows complete coverage of an IC and decreases the opportunities for a ma-

licious person to insert HTs. Our flow is a novel way to secure standard cells against HT

and is faster than the high overhead imaging methods that require IC delayering. SecRL-

CAD speeds up the design time of secure standard cells by four orders of magnitude as

compared to manual design. We build SecRLCAD to be as modular as possible, and it can

be readily adapted to support new nanoantenna designs, different technology nodes and

different standard cell libraries.

5.2 Future Work

5.2.1 Puppeteer

Puppeteer manages hardware prefetchers across the memory hierarchy. There are multiple

immediate ways that Puppeteer can be extended.

Extending Puppeteer to Other Hardware Components

Puppeteer can be extended to manage branch predicting, Dynamic Voltage Frequency Scal-

ing (DVFS) policies, and cache reconfiguration. The idea here would be certain application

regions perform better when given a unique combination of certain hardware components,

and am application can benefit from different combinations of these components. For ex-

ample, an application region that has regular branching behavior but has irregular prefetch-

ing behavior could benefit from a simple branch predictor such as a one-level branch pre-

dictor and an irregular access prefetcher such as a Markov chain prefetcher. Another ap-
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plication region might have regular prefetching behavior but irregular branching behavior,

hence, a one-level branch predictor and a Markov chain prefetcher would not give good

performance. The optimization space has many local minima and maxima, making it diffi-

cult to decide on which components to use in combination together. Sometimes to achieve

higher performance, a manager would need to be able to turn OFF certain components that

would for the average case make sense to leave ON. At the simplest case, consider the case

of a single branch predictor (BP) and a single prefetcher (PF). There would be four unique

management configurations where (i) BP = ON, PF = ON, (ii) BP = ON, PF = OFF, (iii)

BP = OFF, PF = ON, and (iv) BP = OFF, PF = OFF.

The complex interactions in a state-of-the-art out-of-order (OoO) core make it difficult

to say that all application regions would benefit from either/or both the BP and the PF being

left ON indefinitely. Therefore, having an ML-based manager for multiple components

could benefit performance. To the best of our knowledge, there are no works that have

cross-component managers.

Extending Puppeteer to Multi-Threaded Processors

Puppeteer was developed for single-core and many-core processors. The current imple-

mentation does not take multi-threading into account. Multi-threading brings other new

interesting challenges to Puppeteer. The resource sharing that exists in multi-core proces-

sors is still somewhat abstracted from the short-term behavior recorded during the scale of

an instruction window. This is because resource sharing events at high-level memory such

as L3 and LLC occurs less frequently during 100k instructions. Therefore, in the current

Puppeteer we can use a single core model to achieve reasonably good performance in the

multi-core experiments. But with multi-threading, this assumption no longer holds. From

the perspective of each thread, there are far more non-deterministic events, such as L1 data

traffic, occurring on each core because all the hardware is now shared with at least one

other thread. This would mean that resource sharing would need to be accounted for in a
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better manner in Puppeteer. The ML model could require a "hardware-resource-invariant",

i.e., application-related class of features, e.g., the number of unique addresses accessed, to

guide decision-making.

Extending Puppeteer to Other Hardware Optimization Goals

We design Puppeteer to achieve the highest processor performance possible. The corollary

would be to look into secondary goals such as power or bandwidth utilization. Prefetchers

spend around 5-10% of the total power of a computing system (Kamruzzaman et al., 2011;

Jiménez et al., 2014; Kalani and Panda, 2021). Logically, there are application regions that

do not have much performance to gain from certain prefetchers being turned ON, but they

would still needlessly spend power. By turning these prefetchers OFF, we could utilize the

now free power in other hardware components or even to scale frequency. Additional hard-

ware optimization goals, such as reducing power and memory utilization, could be coupled

with using different hardware components, such as branch predicting and DVFS, and uti-

lized with multi-threading to accomplish complex balancing among these components to

achieve even higher performance and lower power. Effectively the goal here would be to

allocate the power to the hardware component that would utilize it the best for a given

application region.

5.2.2 SecRLCAD

SecRLCAD has been developed to take a known standard cell layout and embed the

nanoantenna design into it. Two improvements could be made upon this methodology.

Extending SecRLCAD to Design Standard Cells from Scratch

Instead of taking a known standard cell design and embedding additional metals corre-

sponding to the optical nanoantenna structure, we can develop a methodology to design the

standard cell design around the nanoantenna structure. Ren et al. (Ren and Fojtik, 2021)
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suggest using genetic algorithms to build standard cells and apply an RL agent to clean

the DRC issues on the metal layer. Our approach would be similar in flow but would have

the additional constraint of sustaining the optical nanoantenna structure inside the layout

built by the algorithmic flow. The immediate benefit of such a flow compared to the current

SecRLCAD approach is this approach would be able to reuse more of the optical nanoan-

tenna structures for cell functionality. This would result in lower standard area compared to

the area of the current SecRLCAD approach. We can also include power and performance

as optimization sub-goals into the reward function which would improve performance and

lower power.

Extending SecRLCAD to Design Standard Cells and Nanoantennas from Scratch

The natural next step would be to eliminate the known nanoantenna design and start from

no known design. We can envision a flow where an algorithm, while building the standard

cells, checks for optical properties and builds the standard cell to generate the required

optical signature. This type of approach would lead to non-intuitive nanoantenna designs.

The area overhead would be further reduced compared to the prior approaches. Power

and performance numbers would also be better since the design would be built without

restrictive structures. The main challenge with this approach stems from achieving high

accuracy in optical simulations in place of FDTD simulations using a NN-based approach.

One would need to check the optical properties of the layouts while designing the stan-

dard cells. Unfortunately, FDTD simulations take an extremely long time ( ⇠ 24 hours).

The length of time required for a single FDTD simulation would prevent an algorithm

from checking for the signal in an iterative manner. Therefore, to accomplish this future

direction, there needs to be another algorithm that quickly converges to the expected opti-

cal response for a given structure. Potentially, this could be done using a Generative NN

approach.
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5.3 Final Remarks

In summary, we propose, implement, and evaluate two ML-based approaches for hardware

optimization and management. Our first approach, Puppeteer, manages and improves the

performance of hardware prefetchers at run time using an RF algorithm. Our second ap-

proach, SecRLCAD, utilizes RL and a graph-cut algorithm to insert optical nanoantennas

into standard cells to secure them against HT. We strongly believe that ML will aid hard-

ware designers in coming up with better designs, which will have better performance, lower

power, lower area and/or costs.
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