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ABSTRACT

Single Particle Tracking (SPT) plays an important role in the study of physical

and dynamic properties of biomolecules moving in their native environment. To date,

many algorithms have been developed for localization and parameter estimation in

SPT. Though the performance of these methods is good when the signal level is

high and the motion model simple, they begin to fail as the signal level decreases

or model complexity increases. In addition, the inputs to the SPT algorithms are

sequences of images that are cropped from a large data set and that focus on a single

particle. This motivates us to seek machine learning tools to deal with that initial

step of extracting data from larger images containing multiple particles. This thesis

makes contributions to both data extraction question and to the problem of state and

parameter estimation.

First, we build upon the Expectation Maximization (EM) algorithm to create a

generic framework for joint localization refinement and parameter estimation in SPT.

Under the EM-based scheme, two representative methods are considered for generat-
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ing the filtered and smoothed distributions needed by EM: Sequential Monte Carlo -

Expectation Maximization (SMC-EM), and Unscented - Expectation Maximization

(U-EM). The selection of filtering and smoothing algorithms is very flexible so long

as they provide the necessary distributions for EM. The versatility and reliability of

EM based framework have been validated via data-intensive modeling and simulation

where we considered a variety of influential factors, such as a wide range of signal-to-

background ratios, diffusion speeds, motion blur, camera types, image length, etc.

Meanwhile, under the EM-based scheme, we make an effort to improve the over-

all computational efficiency by simplifying the mathematical expression of models,

replacing filtering/smoothing algorithms with more efficient ones (trading some accu-

racy for reduced computation time), and using parallel computation and other com-

puting techniques. In terms of localization refinement and parameter estimation in

SPT, we also conduct an overall quantitative comparison among EM based methods

and standard two-step methods. Regarding the U-EM, we conduct transformation

methods to make it adapted to the nonlinearities and complexities of measurement

model. We also extended the application of U-EM to more complicated SPT scenar-

ios, including time-varying parameters and additional observation models that are

relevant to the biophysical setting.

The second area of contribution is in the particle detection and extraction prob-

lem to create data to feed into the EM-based approaches. Here we build Particle

Identification Networks (PINs) covering three different network architectures. The

first, PINCNN, is based on a standard Convolutional Neural Network (CNN) structure

that has previously been successfully applied in particle detection and localization.

The second, PINResNet, uses a Residual Neural Network (ResNet) architecture that

is significantly deeper than the CNN while the third, PINFPN, is based on a more

advanced Feature Pyramid Network (FPN) that can take advantage of multi-scale
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information in an image. All networks are trained using the same collection of simu-

lated data created with a range of SBRs and fluorescence emitter densities, as well as

with three different Point Spread Functions (PSFs): a standard Born-Wolf model, a

model for astigmatic imaging to allow localization in three dimensions, and a model

of the Double-Helix engineered PSF. All PINs are evaluated and compared through

data-intensive simulation and experiments under a variety of settings.

In the final contribution, we link all above together to create an algorithm that

takes in raw camera data and produces trajectories and parameter estimates for

multiple particles in an image sequence.
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Chapter 1

Introduction

1.1 Overview of Single Particle Tracking

Single particle tracking (SPT) is an important class of techniques for studying the

motion of nanometer-scale biomolecules moving in their native environment. With

the ability to localize particles with an accuracy far below the diffraction limit of light

and to track particles across time, SPT continues to be an invaluable tool in under-

standing biology at the nanometer-scale by revealing details about particle dynamics

and their local environment such as diffusion rates, confinement length, and other

parameters (Shen et al., 2017). SPT has been applied to a wide variety of molecules,

including proteins (Simson et al., 1995; Holcman et al., 2018), mRNA molecules (Park

et al., 2010), DNA (Rösch et al., 2018), viruses (Ewers et al., 2005; Peerboom et al.,

2018), growth factor receptor (Clarke and Martin-Fernandez, 2019), Janus colloids

(Kurzthaler et al., 2018), and more (Zhong and Wang, 2020).

Typically, SPT analysis of a sequence of images begins with an image segmenta-

tion step where the raw images are post-processed to extract image sequences that

each contain information about a single particle of interest. These sequences are then

further processed to determine particle trajectories and motion model parameters.

Under the standard paradigm, a two-step process is applied to each image sequence.

In the first step, the location of the particle in each segmented image frame is de-

termined and linked across frames to form a trajectory (Chenouard et al., 2014) (we

refer to this as “localization refinement” since the initial segmentation is a coarse lo-
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calization step). In the second step, trajectories are analyzed to extract information

about the dynamic process, such as the value of the diffusion coefficient or other mo-

tion parameters. Localization refinement is often done using Gaussian Fitting (GF)

(Thompson et al., 2002; Anthony and Granick, 2009) while model parameters are

extracted from the trajectories using the Mean Squared Displacement (MSD) (Sax-

ton and Jacobson, 1997; Michalet, 2010) or Maximum Likelihood Estimation (MLE)

(Berglund, 2010; Calderon, 2016). Regardless of the algorithms used, this two-step

paradigm separates trajectory estimation from model parameter identification despite

the fact that these two problems are coupled.

One of the assumptions of the standard approach is that the localized positions

represent a simple linear observation of the true particle position corrupted by additive

white Gaussian noise. The actual data, however, are usually the segmented camera

images. The photon detection process in each pixel during imaging can be well

modeled as a Poisson-distributed random variable with a rate that depends on the

true location of the particle as well as on experimental realities, including background

intensity noise and the details of the optics used in the instrument. This already

nonlinear model becomes even more complicated at the low signal intensities that are

often found in SPT data.

To handle nonlinear measurement models and to jointly perform localization and

parameter estimation, one can take advantage of nonlinear system identification and

optimal estimation as in (Ashley and Andersson, 2015). Further, since the analysis is

off-line, one can use non-causal estimation methods. This general approach, known

as Sequential Monte Carlo-Expectation Maximization (SMC-EM), can handle nearly

arbitrary nonlinearities in both the motion and observation models and has been

shown to work as well as current state-of-the-art methods in the simple settings of

2-D diffusion and to work under more complicated motion and observation scenarios
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including estimating 3-D motion from wide field images.

Overview of the thesis

SMC-EM applies a basic Sequential Importance Resampling (SIR) combined with

a Forward Filtering Backward Smoothing (FFBS) to produce the posterior distribu-

tions needed by the EM algorithm. While estimation results on SPT data have been

quite good (Ashley and Andersson, 2015), these SMC elements come with a high

computational workload. To alleviate this, we developed a simplified scheme that re-

placed the SMC methods with an Unscented Kalman Filter (UKF) and an Unscented

Rauch-Tung-Striebel Smoother (URTSS); we refer to this as U-EM (Lin and Ander-

sson, 2019). The U-EM has a much lower computational burden than SMC-EM,

allowing the method to be applied to larger data sets with little loss of estimation

performance. Both the estimation accuracy and computational efficiency have been

validated by applications on Brownian motion and Ornstein-Uhlenbeck (OU) motion,

however, the standard UKF approximates model noise to be Gaussian for mean and

variance propagation. In addition, the specific type of UKF we consider in this work

assumes the model noise be additive (Särkkä, 2013). This restriction limits the appli-

cation of U-EM to a class of motion models that, notably, does not include confined

diffusion.

Confined diffusion is a particularly important model in biophysics, describing, for

example, the dynamics of particles inside vesicular compartments, motion in mem-

branes, and the motion of T-cells (Hilzenrat et al., 2020). Note that confined diffusion

is a nonlinear motion model driven by non-Gaussian noise (Kusumi et al., 1993). To

simplify the motion process, some existing work approximates confined motion using

an Ornstein-Uhlenbeck model that describes the diffusion of a particle attached to an

elastic tether; this model can be expressed in a form with additive Gaussian noise and

the parameters connected to the confinement lengths in a confined model (Calderon,
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2016). However, using a true confined motion model provides both more flexibility in

terms of the shape of the confinement region as well as a hope for more accurate esti-

mation of the relevant parameters. As discussed above, this setting is not amenable

to U-EM. It can, however, be handled using the more general SMC-EM technique.

As noted above the computational complexity of SMC-EM is high, a situation made

worse by the complexity of the one-step probability distribution under the confined

model. We address this computational complexity through three modifications to

SMC-EM. The first two of these use approximations to the state transition density

for the confined diffusion model as well as simplifications to the Bessel function that

describes the optical measurements. These approximations significantly reduce the

computational burden with little to no loss in achieved estimation accuracy. The

third modification is to replace the SIR filter and FFBS with more efficient versions

to produce the posterior densities for EM. Specifically, we use an alternative Gaus-

sian Particle Filter (aGPF) (Kotecha and Djuric, 2003) and a Backward Simulation

Particle Smoother (BSPS) (Godsill et al., 2004).

With this computationally efficient version of SMC-EM, we are able to extend

the method into more realistic but also more complicated models. For example,

the original camera model was suitable for Charge-Coupled Devices (CCDs) or Elec-

tron Multiplying CCDs (EMCCDs) where the readout noise statistics were common

across the device. However, the use of scientific Complementary Metal-Oxide Semi-

conductor (sCMOS) devices has become extremely common in recent years due to

their sensitivity, detection efficiency, large image size, and high frame rates. Unlike

CCD/EMCCD cameras, CMOS/sCMOS devices have pixel-dependent readout noise.

To extend the impact of our SMC-EM method, we have incorporated these models

into our estimation.

In addition to moving to sCMOS cameras, the field of SPT is increasingly turning
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towards engineered PSFs. The standard PSF of a sub diffraction-limit sizes particle

is the Born-Wolf Point Spread Function (BW-PSF). This PSF is symmetric about

the focal plane of the instrument and reveals very little information about the axial

(z) location of the particle. Engineered PSFs have been developed to encode more

information in the image about the axial direction. Two of the most popular are the

the Double-Helix PSF (DH-PSF) (Pavani et al., 2009b) and Astigmatic PSF (A-PSF)

(Kao and Verkman, 1994). The DH-PSF is created by inserting a phase plate into

the Fourier plane of the output light and is designed to produce a PSF with a pair of

lobes in the image plane. The particle is located at the center of the two lobes and

the orientation of the line between those lobes gives the axial location. The A-PSF is

generated by introducing a cylindrical lens into the light path, generating an elliptical

bright spot whose major and minor axes change as a function of the axial position of

the particle. Incorporating both the DH-PSF and Astigmatic PSF into our framework

allows for the joint estimation of particle trajectory and model parameters for full 3D

motion from a sequence of 2D images.

Because SPT experiments are often photon-impoverished and subject to signif-

icant background, it is important to consider the impact of signal and noise levels

when comparing different analysis algorithms. For example, (Saunter, 2010) inves-

tigated the performance of an experimental method in error estimation techniques

across a variety of signal and noise values, the comparison work in (Newby et al.,

2018) included the signal level as a core factor in their simulations, (Newby et al.,

2018) generated simulated videos at various levels of signal to noise ratios to validate

the use of convolutional neural networks on SPT data, and (Granik et al., 2019) ap-

plied deep learning to analyze particle trajectories based on simulated data over a

large range of signal to noise ratios. Though the standard SPT methods perform well

at high signal levels, many begin to fail as the signal level decreases or noise level
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increases. This motivates us to compare our EM based methods (e.g., SMC-EM and

U-EM) to the standard methods across a wide variety of Signal-to-background ratios

(SBRs), defined as the ratio between peak signal intensity and background noise.

The SMC-EM algorithm, and, in fact nearly all existing SPT analysis algorithms,

assume an input that is a sequence of images that are cropped from a large data set

and that focus on a single particle. To generate an end-to-end tool, we therefore must

provide a technique for extracting these sequences from the raw images. As this is

essentially a pattern recognition problem, we seek to apply machine learning tools to

detect particles in an image and extract cropped images for each particle that can be

linked into those sequences suitable for downstream analysis.

With the rapid development of machine learning, many researchers have leveraged

machine learning tools in both superresolution imaging and SPT, see, e.g., (Nehme

et al., 2018; Newby et al., 2018; Helgadottir et al., 2019; Cheng et al., 2021). Most

of the published approaches take in raw data and return either localization results,

trajectories, model parameters, or some combination of these. While one can certainly

use the localizations to extract cropped images in each frame, we hypothesize that

a network trained specifically for the detection task may outperform one repurposed

for that role. Moreover, most existing approaches rely on a Convolutional Neural

Network (CNN). In the field of computer vision however, object detection is often

done using more complex networks, such as a Residual Network (ResNet) (He et al.,

2016) or the Feature Pyramid Network (FPN) (Lin et al., 2017a). For object detection

in computer vision, we modified the aforementioned neural network architectures to

construct Particle Identification Networks (PINs) so as to detect particles of interest

in an image and extract a small image around each particle.

In this work, we develop three different Particle Identification Networks (PINs)

and train them on simulated data to do particle detection and extraction of cropped
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images. The first, PINCNN, uses a plain CNN architecture and serves as a baseline by

which to compare the other two. The second, PINResNet, uses the ResNet structure

while the final, PINFPN, uses an FPN. We consider data based on three different

optical PSFs: a standard PSF modeled by a simple Gaussian profile (see, e.g. (Zhang

et al., 2007)), an astigmatic PSF (Kao and Verkman, 1994), and a Double Helix PSF

(Pavani et al., 2009a). We train, validate, and test using simulated data generated

across a wide range of SBRs. To validate the approach on experimental data, we

deploy the same networks on images of fluorescently labeled AMPA receptors in live

primary rat hippocampal neurons, imaged at different intensities to create different

SBR settings.

1.2 State of the Art and Weaknesses

In this section, we describe the current state-of-the-art for localization, parameter

estimation, and particle detection and discuss their weaknesses, focusing on those

that motivated the work in this thesis.

1.2.1 Methods for Localization Refinement

As previously noted, SPT localization algorithms typically assume that their input

is sequence of images where each image contains a single particle. The input images

are obtained via post process where coarse localization estimation has been done to

segment the raw images and extract regions around individual particles. Recall that

we use the phrase “localization refinement” to refer to the process of localizing a

particle from one of these extracted regions.

Two of the most common approaches to localization refinement are GF (Thompson

et al., 2002; Anthony and Granick, 2009) and MLE (Smith et al., 2010; Huang et al.,

2013). When the Signal-to-Noise Ratio (SNR) is high and the PSF of the instrument

can be described by a Gaussian model or Gaussian mixture model, both GF and MLE
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return very accurate localization results. The MLE, however, is based on optimal

estimation theory and is more easily extended to more complicated observation models

such as those based on images from an sCMOS camera. It has been demonstrated

that, as expected, when the SNR is very high, the localization precision returned

by MLE is very close to that by Cramer-Rao Lower Bound (CRLB), establishing

that under these conditions the MLE (nearly) achieves the best possible precision

(Abraham et al., 2009; Mortensen et al., 2010; Smith et al., 2010; von Diezmann

et al., 2017). However, when at lower SNR levels (particularly when it is less then

four), or when the observation model is more complex (Smal et al., 2009; Chenouard

et al., 2014), the MLE no longer returns reliable estimates. However, SPT experiments

are typically photon-impoverished and subject to significant background levels, these

results motivate us to seek more accurate tools to do localization refinement.

1.2.2 Methods for Parameter Estimation

Once a trajectory has been determined from the image sequence, it is then analyzed

to estimate model parameters, most commonly using a MSD analysis (Saxton and

Jacobson, 1997; Michalet, 2010), though maximum likelihood techniques have also

been applied (Berglund, 2010; Calderon, 2016). While the MSD remains more popular

due in large part to its simplicity, the MLE has consistently been shown to yield more

accurate results (Smal et al., 2009; Berglund, 2010; Chenouard et al., 2014).

These standard methods are most effective when there is a large signal and a low

background intensity in the images with a SNR of at least five. As with localization

algorithms, the performance of parameter estimation fails outright when the signal

intensity gets low. Because SPT experiments almost always work with low signal

levels, developing methods that work well under these conditions is a key challenge.
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1.2.3 Machine Learning for Particle Detection

As noted above, machine learning techniques have begun to find application in SPT

and in super-resolution imaging (Nehme et al., 2018; Newby et al., 2018; Helgadottir

et al., 2019; Cheng et al., 2021), taking in raw camera images to return either local-

ization results, trajectories, model parameters, or some combination of these. Still

in their infancy, most of these methods apply simple (though deep) Convolutional

Neural Networks (CNNs) and do not take advantage of more advanced structures

that have been developed in the field of computer vision.

1.3 Contribution of the Thesis

Overall, this thesis makes contributions to the problem of particle detection and

extraction from raw camera images, as well as to those of state and parameter esti-

mation. These contributions can be summarized in three groups.

In the first group, we build upon the existing SMC-EM method to create a generic

EM-based framework for joint localization and parameter estimation from a sequence

of images of a single particle.

The second group addresses the particle detection and extraction problem to create

data to feed into downstream analysis algorithms. Unlike existing ML methods in

SPT, we focus on the particle detection problem and leverage better performing

network structures.

The final group links together the particle detection and extraction methods with

the SMC-EM framework to produce and end-to-end method to take in raw camera

data and produce particle trajectories and model parameter estimates for multiple

particles in an image sequence.

Below we detail specific contributions in these three groups.

1. Creation of U-EM



10

While the previously established SMC-EM approach can handle nearly arbitrary

nonlinearities in both the motion and observation models, the computational

complexity of the particle filtering scheme and numerical methods used in the

maximization step severely limit its applicability. We address this issue by re-

placing the particle-based methods with an UKF and URTSS (Merwe and Wan,

2004; Särkkä, 2013). This Sigma Points based EM scheme, which we call U-

EM, significantly reduces the computational burden, allowing it to be applied to

larger data sets and to more complicated models. This reduction in complexity

comes, of course, at the cost of generality in the posterior distribution describing

the position of the particle at each time point since the UKF-URTSS approxi-

mates this distribution as a Gaussian while the particle-based approaches can

represent other distributions (Särkkä, 2013).

2. Comparison of noise model transformation approaches for U-EM

One of the challenges in applying the standard UKF is that it approximates noise

in both the state update and measurement equations as Gaussian. The obser-

vation models concerned in this work, however, involve Poisson distributions

where the Poisson rate includes noise whose parameters depend upon the state

and experimental settings. Thus, to apply the UKF, the model must be trans-

formed into one where the measurement noise is Gaussian distribution instead

of Poisson. We explore two possible approaches: the use of a variance stabiliz-

ing transformation, such as the Anscombe or Freeman-Tukey transform, that

yields a measurement model with additive Gaussian noise with unity variance,

and a straightforward replacement of the Poisson distribution by a Gaussian

with a mean and variance equal to the rate of the original distribution. Our

results indicate that for SPT data, the Anscombe transformation provides the

best performance across a wide range of SBRs.
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3. Generic framework as a guidance for SPT studies

A third contribution of this thesis is the creation of a generic EM based frame-

work that allows users to select a variety of filtering and smoothing algorithms

based on the specific problem at hand, choosing computationally light schemes

(such as U-EM) when allowed for by the motion models, all the way up to

full nonlinear filtering and smoothing. We also design and implement quanti-

tative comparisons among different versions of our EM based methods against

standard SPT methods such as GF combined with MSD (GF-MSD) or with

MLE (GF-MLE or GF-MLEsCMOS when the images are acquired by an sCMOS

camera). This comparison looks at performance across a wide range of influen-

tial factors, including signal intensity, background noise level, type of readout

noise, and diffusion speed. These studies demonstrate that, if there are enough

photons and a good SBR, then GF-MLE (or MLEsCMOS), SMC-EM, and U-EM

perform similarly well and all outperform GF-MSD. Given the additional com-

putational complexity of the EM-based methods over GF-MLE/MLEsCMOS, it

makes more sense to apply these more standard algorithms in this setting. At

low signal levels, however, the EM-based methods outperform the others. The

choice between the different EM schemes is dictated in large part by the com-

putation time but also by the ratio of the (expected) diffusion coefficient and

the sampling rate. If this ratio is low, U-EM offers good results at significantly

less computation time than the SMC-EM methods. Based on the quantitative

investigation and analysis, we summarized a guideline for users to choose an

appropriate algorithm according to their requirement for time or accuracy.

4. Application of EM based framework on sCMOS data

A fourth contribution is an extension of the existing algorithms to data cap-

tured using an sCMOS camera. Due to their relatively low cost, high speed,
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and performance, sCMOS cameras are becoming popular tools for SPT data

acquisition and including them in our EM-based approach extends the impact

our algorithms can have.

5. Application of EM based framework on multiple PSFs

The use of engineered PSFs is becoming important in SPT and analysis algo-

rithms must be adapted to take advantage of the additional information they

provide. Our fifth contribution is to include models of two common PSFs,

namely the DH-PSF and the A-PSF, demonstrating performance in simulation

and showing how additional PSFs could be incorporated in future work.

6. Incorporation of time-varying parameters in SPT

Our sixth contribution is the incorporation of an optimal estimation algorithm

for systems with time-varying model parameters. Our approach combines our

U-EM-based approach to estimation in the SPT setting with a sliding window

scheme to estimate parameters over time. Results from simulations show that

our approach is successful in tracking time-varying diffusion constants at a range

of physically relevant signal levels.

7. Computationally efficient variants of SMC-EM

Our seventh contribution is the development of three modifications to SMC-EM

aimed at improving its computational efficiency. The first two modifications

use approximation methods to reduce the complexity of the original motion

and measurement models without significant loss of accuracy. The third modi-

fication replaces the previous SMC methods with a simplified Gaussian particle

filter combined with a backward simulation particle smoother, trading off some

level of generality for improved computational performance. We take advantage

of the improved efficiency to investigate the effect of data length on performance
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in localization and parameter estimation and demonstrate it through analysis of

simulated SPT data of a particle in a three dimensional confined environment.

8. Creation, testing, and comparison of three deep neural networks for

particle detection

Our eighth contribution is the creation, testing, and comparison of three differ-

ent deep networks for particle detection in raw camera images with SPT data.

The first, PINCNN, is based on a standard CNN structure that has previously

been successfully applied in particle detection and localization. The second,

PINResNet, uses a ResNet architecture that is significantly deeper than the CNN

while the third, PINFPN, is based on a more advanced FPN that can take advan-

tage of multi-scale information in an image. All networks are trained using the

same collection of simulated data created with a range of SBRs and fluorescence

emitter densities, as well as with three different PSFs, a standard Born-Wolf

model, the A-PSF, and the DH-PSF. Our results show that at high signal lev-

els, all three networks perform extremely well, indicating that the simpler and

smaller PINCNN is sufficient when the image quality is high. At low SBR levels,

however, the PINCNN is significantly outperformed by both the PINResNet and

PINFPN. All three PINs were first demonstrated using simulated images with

a variety of emitter densities and then using experimental images of labeled

AMPA receptors in rat hippocampal neurons imaged under both high and low

light signal levels.

9. Combination of the generic EM based method and deep neural net-

work

Our final contribution is to combine our generic approach to localization and

parameter estimation with PINResNet to produce an end-to-end scheme for SPT
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data analysis. We demonstrate this approach through both simulations and the

AMPA receptor data.

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows. In the next chapter, we introduce

the fundamental models behind the observed particles moving under the fluorescent

microscopy. In terms of the motion model, three most common types are taken into

consideration: Brownian Motion, Ornstein-Uhlenbeck Motion, and Confined Motion.

In terms of the observation models, we describe the general model and its specializa-

tion to sCMOS cameras, as well as the incorporation of multiple PSFs. In the third

chapter, based on conventional tools for SPT analysis, we summarize the traditional

two-step procedure to localization and physical parameter estimations in SPT and

summarize our generic framework built upon EM.

In Chapter 4, we develop U-EM. To adapt U-EM to the complicated measure-

ment models that are important in SPT, we introduce three model transformation

approaches and make a quantitative comparison among them. Then, we conduct an

overall comparison among SPT methods in estimation problems. The compared SPT

methods include GF, MSD, MLE, U-EM, and SMC-EM.

In Chapter 5, we start to describe the limitations of U-EM and the prior SMC-EM

methods and then develop modifications to SMC-EM to speed up the computation

without significantly affecting the estimation accuracy. We demonstrate these meth-

ods through simulations of a particle diffusing in a confined environment. We improve

the computational efficiency through two mathematical modifications: a simplifica-

tion of motion model and a simplification of measurement model. These modifications

are validated through simulations using models of both EMCCD cameras and sCMOS

cameras.
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Chapter 6 describes our approach to using deep learning to address the problem

of the particle detection and image extraction problem in order to obtain the desired

input to EM framework. These networks are compared and then validated against

both simulation and experimental data.

In Chapter 7, we combine the EM based framework and PINs to do automatic

particle detection, extraction, and physical parameter estimation. The combined

method is validated based on both simulation and experimental data. In the final

chapter, we briefly discuss about open questions and future directions of the research

work.
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Chapter 2

Relevant Models in Single Particle

Tracking Microscopy

2.1 Motion Models

Assuming the motion process for each axis is independent and distinct, we first con-

sider a generic motion model in a given direction given by

xt+1 = f(xt, wt), (2.1)

where xt denotes the state of the system at time t in one direction, and wt denotes

a stochastic process. The model (2.1) can describe a variety of models important

to biomolecular motion, including pure Brownian diffusion, Ornstein-Uhlenbeck dy-

namics, confined diffusion, and more. Note that the motion of the biological macro-

molecules of interest in SPT occurs in fluids with a length scale of nanometers, the

dynamics are in the Stokes regime, meaning that inertial effects can be ignored. As

a result the state is almost always simply the position of the particle.

In what follows, we describe three fundamental motion models which are special

types of (2.1). Throughout this work, we assume the motion in each of the three

dimensions is independent of the others. For simplicity of presentation, we describe

the motion models below in one dimension for the purpose of easy presentation.
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2.1.1 Brownian Motion

A standard discrete time Brownian motion is given by

xt+1 = xt + wt, wt ∼ N (0, Q). (2.2)

where xt ∈ R represents the one dimensional position of the particle in the lateral

plane at time t and Q is a covariance given by

Q = 2D∆t. (2.3)

Here ∆t is the discretized period of time given by the frame rate of the camera, and

D is the (unknown) diffusion coefficient that we would like to estimate. The one

transition probability distribution is given by

p(xt+1|xt) =
1√

4πD∆t
exp

[
−(xt+1 − xt)

2

4D∆t

]
. (2.4)

2.1.2 Ornstein Uhlenbeck Motion

The Ornstein-Uhlenbeck (O-U) process can capture the motion of a biomolecule teth-

ered to a substrate using a flexible linker. The dynamics of an O-U process are

xt+1 = axt + wt, wt ∼ N (0, Q). (2.5)

Motivated by the model presented in (Zhang et al., 2007), we set a and Q in (2.1)

as

a = e−A∆t (2.6a)

Q =
D(1− e−2A∆t)

A
(2.6b)

where A > 0, the stiffness coefficient of the linker and D, the diffusion coefficient are
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the unknown parameters to be estimated.

From (2.6), the state transition probability density between two successive images

in one direction is

p(xt+1|xt) =

√
A

2πD(1− e−2A∆t)
exp

{
− A

2D

[
(xt+1 − xte

−A∆t)2

1− e−2A∆t

]}
(2.7)

2.1.3 Confined Motion

We consider the situation where a particle of interest is diffusing in a rectangular

“corral”, with each axis bound to an interval. We assume the x position is con-

fined within the interval [−Lx/2, Lx/2] and that the dynamics follow a diffusion with

reflective boundary conditions (Saxton and Jacobson, 1997). The state transition

probability function in the x direction is then

p(xt+1|xt) =
1

Lx

+
2

Lx

Np=∞∑
n=1

exp

[
−D∆tn2π2

L2
x

]
cos

[
nπ

Lx

(xt+1 +
Lx

2
)

]
cos

[
nπ

Lx

(xt +
Lx

2
)

]
.

(2.8)

The y (and z if necessary) directions follow analogous dynamics. The diffusion co-

efficient and confinement length (in each axis) are the unknown parameters to be

estimated.

2.2 Observation Models

2.2.1 CCD/EMCCD Camera

Because the particle of interest in SPT is smaller than the diffraction limit of light, the

image shape on the camera arising from the emitted fluorescence is largely determined

by the PSF of the instrument. Assuming segmentation has already been done, the

image acquired by the camera is composed of P 2 pixels arranged into a P ×P square
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array (note that the value of P s typically between 5 to 20 with the specific value

depending on the particular imaging setting). The pixel size is ∆x by ∆y with the

actual dimensions determined both by the physical size of the camera elements on the

camera and by the magnification of the optical system. At time step t, the expected

photon intensity measured for the pth pixel, λp,t, can be calculated via

λp,t = G ·

xmax
p,t∫

xmin
p,t

ymax
p,t∫

ymin
p,t

PSF (xt − ξ, yt − ξ′) dξdξ′, (2.9)

where G denotes the peak signal intensity, (xt, yt) is the position of the particle, and

the integration bounds (xmin
p,t , xmax

p,t , ymin
p,t , ymax

p,t ) are over the boundaries of the p-th

pixel. The details about the PSF and the corresponding mathematical expression will

be discussed in Chapter 2.2.3 - 2.2.5.

In addition to the signal, there is always a background intensity rate arising from

out-of-focus fluorescence and autofluorescence in the sample. This can be modeled

locally as a constant rate Nbgd over the small P × P array of the segmented im-

ages (Ashley and Andersson, 2015). Usually, the value of the backgroud noise is

measured experimentally and for the rest of the work, we assume it is known (though

its value can be estimated using the EM algorithm). Due to the shot noise inherent

to the photon generation process brought by CCD/EMCCD cameras, the measured

photons in the pth pixel at time t can be described by a Poisson process

Ip,t ∼ Poiss(λp,t +Nbgd), (2.10)

where Poiss(·) represents a Poisson distribution. Throughout this work, we define

the SBR as the ratio of the peak rate G to the background rate Nbgd. In simulation

studies, these terms are known exactly while in experimental work they must be

estimated from the data.
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2.2.2 sCMOS Camera

To maximize the signal level, experiments often use sensitive detectors such as Elec-

tron Multiplied Charge Coupled Device (EM-CCD) or scientific Complementary Metal-

Oxide Semiconductor (sCMOS) cameras. sCMOS cameras in particular have become

quite popular due to their (relatively) low cost, high resolution, frame rate, and

quantum efficiency, and their large field of view (Huang et al., 2013; Watanabe et al.,

2017). These cameras, however, bring pixel-dependent noise characteristics that, to-

gether with the Poisson-process nature of photon generation, must be accounted for,

particularly at low signal levels.

To simulate an sCMOS camera, we include pixel-dependent readout noise in the

measurement model through the choice of distributions for ϵp,t in Eq (2.10). We

base our measurement model on a Hamamatsu ORCA Flash 4.0 camera described

in (Huang et al., 2013).

From (Huang et al., 2013), the probability density function (PDF) of the measured

ADU (analog-to-digital units) counts Cp,t in the pth pixel at time t is a combination

of the Poisson photon noise and the Gaussian read-out noise and can be expressed as

P (Cp,t) = A
∞∑
q=0

1

q!
exp−µp,t µq

p,t

1√
2πVarp,t

exp
−

[
Cp,t−Op,t

gp,t
−q

]2
2Varp,t/g

2
p,t (2.11)

where A is a normalizing constant, µp,t is the number of expected photon electrons

arising from signals and background noise, gp,t is the amplification gain, Op,t and Varp,t

are the offset and variance of the readout noise in pixel p at time t, respectively.

From this distribution, the measured photon counts Ip,t for the pth pixel at time
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t is given by

Ip,t
QE

∆
=

Cp,t −Op,t

gp,t
≈ Poiss(µp,t) + ϵp,t, (2.12a)

ϵp,t ∼ N (0, σ2
p,t), (2.12b)

σ2
p,t =

Varp,t
g2p,t

. (2.12c)

where QE is the quantum efficiency of the camera pixels. In this work, for simplicity,

we ignore the offsest as it is just a constant shift, and set QE as 1 for simplicity.

Therefore, in our case, the measured photon counts Ip,t for the p
th pixel at time t can

be expressed as

Ip,t ∼ Poiss(µp,t) + ϵp,t (2.13)

with

µp,t = λp,t +Nbgd (2.14)

where λp,t is the expected photon intensity arising from signals, following the double

integral form as (2.9), Nbgd is the photon counts arising from background noise.

The corresponding PDF of the measured photon counts in pixel p at time t is

given by

P (Ip,t) =
∞∑
q=0

1

q!
exp [−(λp,t +Nbgd)] (λp,t+Nbgd)

q 1√
2πσ2

p,t

exp

[
−(Ip,t − q)2

2σ2
p,t

]
. (2.15)

where all values of Varp,t and gp,t that define σp,t depend on the type of camera sensors

used for imaging. If the readout noise is neglected, we set ϵp,t = 0; if a CCD/EMCDD

camera sensor is modeled, we set σp,t as a constant; if a CMOS/sCMOS is modeled,

the value depends on the pixel properties.

Our specific model for an sCMOS camera is based on that of (Huang et al., 2013).
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We fit the variance data in that work with the model

log10Occurance = a · exp (−b · variance), (2.16)

finding the best fit parameters to be a = 4.734, b = −0.001799. Similarly, we fit the

gain data to the model

log10Occurance = a1 · exp−(
g − b1
c1

)2 + a2 · exp−(
g − b2
c2

)2, (2.17)

leading to the values

a1 = 2.215, b1 = 2.19, c1 = 0.07661, a2 = 2.68, b2 = 2.249, c2 = 0.216.

Fig. 2·1 shows the gain and variance maps of the pixel-dependent readout noise

for a 512× 512 image, as well as the curve fitting results.

2.2.3 Born-Wolf Point Spread Function

The Born-Wolf Point Spread Function (PSF) at a three dimensional position (x, y, z)

can be described as

PSF (x, y, z) =

∣∣∣∣∣∣C
α∫

0

√
cos(θ)J0(κ sin θ

√
x2 + y2) exp(−iκz cos θ) sin θdθ

∣∣∣∣∣∣
2

(2.18)

where C is a complex constant that normalizes the model, α and κ are physical

constants, and J0 denotes a zeroth-order Bessel function of the first kind.

For images acquired in 2D, the PSF can be simplified as

PSFBW (x, y;xo, yo) = hBW · exp
(
− (x−xo)2

2σ2
x
− (y−yo)2

2σ2
y

)
, σx = σy =

√
2λ

2πNA
, (2.19)

where (xo, yo) is the position of the particle, hBW is the normalization factor used in

two ways in this thesis. The photon rate in a given pixel is then given by inserting
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Figure 2·1: Simulated maps and histograms of the pixel-dependent
readout noise.
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(2.19) into (2.9). Prior Chapter 6, we sethBW = 1
∆x∆y

to normalize by the area of the

pixel. From Chapter 6 on, we set hBW to

hBW =

∫
A

PSFBW (u, v; 0, 0)dudv = 1 (2.20)

where A is the area of a pixel region determined by integration bounds (xmin
p,t , xmax

p,t ,

ymin
p,t , ymax

p,t ) to normalize the PSF to one in the given pixel containing the particle.

Note that formally, the expression in (2.19) is a convolution of the PSF with a Dirac

delta function at the position of the particle; for simplicity of exposition throughout

this thesis, we refer both as a PSF; the meaning should be clear from context.

A typical image formed with the Born-Wolf PSF at a low signal level (here, Nbgd =

1, G = 10) is shown in the left-side image of Fig. 2·2, while an image at a higher

signal level (Nbgd = 10, G = 100) is shown in the right-side image.
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Figure 2·2: Typical images at low and high signal levels. (left)
Nbgd = 1 and G = 10, (right) Nbgd = 10 and G = 100. Notice the
different scaling in the two images.

2.2.4 Double-Helix Point Spread Function

The DH-PSF, illustrated in Fig. 2·3, uses a phase plate in the output path of the

microscope to generate a PSF such that the particle is at the center between two

lobes that rotate around each other as the particle moves along the axial direction
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(von Diezmann et al., 2017). While the true shape of the DH-PSF is non-trivial, it

Figure 2·3: The DH-PSF generates two lobes that rotate in the x− y
plane as the particle moves in the z direction. (left) A sequence of
simulated images of a particle at different z locations. (right) an equi-
intensity profile of the DH-PSF in (x, y, z), demonstrating the choice
of the “double-helix” name.

can be well-approximated by a pair of Gaussian lobes (Pavani et al., 2009b),

PSF (x, y) = hDH ·
(
exp

[
− (x−x1)2+(y−y1)2

2σ2
xy

]
+ exp

[
− (x−x2)2+(y−y2)2

2σ2
xy

])
, (2.21)

where hDH is again a normalization factor used in the same two ways as before, and

(xi, yi) are the centers of the lobes (i = 1 or 2), given by[
x1,2

y1,2

]
=

[
xp

yp

]
± r

[
cos θ
sin θ

]
, (2.22)

where r is a constant and (xp, yp) is the location of the particle. The angle of the

lobes, θ, is a monotonic function of the axial position with a specific relationship that

depends on the instrument.

This relationship is typically obtained by generating a calibration curve by scan-

ning a single feature along the axial direction and measuring the resulting PSF (von
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Diezmann et al., 2017). In this work, for simplicity we take a linear model

θ = −kz, (2.23)

where coefficient k can be found via fitting to data (Schechner et al., 1996). Note

that the k can be simplified to be a constant when the axial distance is not very large

(von Diezmann et al., 2017; Lin et al., 2021).

2.2.5 Astigmatic Point Spread Function

The Astigmatic PSF (A-PSF) is generated by inserting a cylindrical lens into the light

path. The resulting PSF is an elliptical spot whose major and minor axes change as

a function of the axial position of the particle. This PSF is well-approximated by

PSFAstig(x, y, z;xo, yo) = hAstig · exp
(
−(x− xo)

2

2σ2
x(z)

− (y − yo)
2

2σ2
y(z)

)
, (2.24)

where hAstig is a normalization factor such that
∫
A
PSFAstig(u, v, 0; 0, 0)dudv = 1, A

is the area of a pixel region; (xo, yo) is the location of the particle in the x− y plane,

and the PSF width σx and σy as a function of z can be fit into a defocusing curve

given by

σx,y(z) = σ0

√
1 + (

z − c

d
)2 + A(

z − c

d
)3 +B(

z − c

d
)4. (2.25)

We select parameters from (Smith et al., 2010), giving

Ax = −0.0708, Bx = −0.073, cx = 0.389, dx = 0.531, Ay = 0.164, By =

0.0417, cy = −cx, dy = dx, σx0 = 1.08, σy0 = 1.01.

Fig. 2·4 shows the simulated A-PSF width σx,y as a function of z.
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Figure 2·4: Astigmatic PSF width as a function of z.
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Chapter 3

Generic Framework for State Estimation

3.1 Standard Two-step Framework

As described in Chapter 1, a typical SPT analysis of a sequence of images begins with

an image segmentation step where the raw images are post-processed to extract image

sequences that each contain information about a single particle. These sequences are

processed to determine particle trajectories and motion model parameters, enabling

the ability to do non-causal estimation.

Under the standard paradigm, a two-step process is applied in which the parti-

cle is first localized in each image and these positions linked across frames to create

a trajectory; this trajectory is then analyzed to extract information about physical

parameters. This two-step paradigm, summarized in Fig. 3·1, separates trajectory es-

timation from model parameter identification despite the fact that these two problems

are coupled.

While there are a variety of algorithms in the SPT literature for localization, one

of the most common is that of Gaussian Fitting (GF). Similarly, while there are

many methods for estimating parameters, most biophysicists apply a Mean Squared

Displacement (MSD) analysis or, less commonly, Maximum Likelihood Estimation

(MLE). As we use these three techniques throughout this thesis as a baseline for

comparison to our own methods, below we briefly describe each of the them in the

SPT context.
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Figure 3·1: Illustration of the standard two-step approach. Seg-
mented image data is first passed through a localization step where an
algorithm such as GF determines the position of the particle in each
frame. The resulting trajectory is then analyzed using, e.g., the MSD
or MLE to determine model parameters.
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3.1.1 Gaussian Fitting (GF)

In the 2-D setting, the PSF of the instrument is well approximated by a Gaussian.

As a result the measured intensity, Ixy can be described as

Ixy = G exp

(
−(x− xo)

2

2σx
2
− (y − yo)

2

2σy
2

)
+Nbgd, (3.1)

where G is the peak amplitude of the intensity, (x, y) are the lateral coordinates in the

image frame, (xo, yo) are the position of the particle, (σx, σy) are physical parameters

describing the width of the PSF, and Nbgd is the background intensity. Fitting the

measured data to this model allows one to estimate the particle position as well the

other model parameters in (3.1).

3.1.2 Mean Squared Displacement (MSD)

MSD is one of the most frequently used methods for estimating diffusion coefficients

from trajectory data. Following (Saxton and Jacobson, 1997), the single-axis MSD is

given by

MSD(n) =
1

N − n

N−n∑
i=1

(ri+n − ri)
2 , n = 1, ..., N − 1, (3.2)

where N is the data length and ri is the position of the fluorescent particle in either x

or y in frame i. For a particle moving with a diffusion coefficient of D, the expectation

of the MSD is given by

E [MSD(n)] = 2Dn∆t, (3.3)

where ∆t is the time interval between frames of the image sequence. In this work

we fit calculated MSD curves to the model in (3.3) using the nonlinear least-squares

curve fitting solver lsqnonlin in MATLAB (MathWorks, Natick, MA).
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3.1.3 Maximum Likelihood Estimation (MLE)

While the MSD remains popular and is simple to use, it relies on several user choices

and is known to lack robustness with respect to measurement noise. An alternative

is to use optimal estimation theory. In particular, the MLE has good statistical

properties as it is both efficient and consistent, achieving the Cramer-Rao lower bound

(so long as sufficient data is available) (Michalet and Berglund, 2012). Consider the

problem of identifying an unknown parameter θ ∈ Rnθ for an arbitrary state space

model

Xt+1 = ft(Xt, wt, θ), (3.4a)

Yt = ht(Xt, vt, θ), (3.4b)

where Xt is the (vector) state of the system at time t, Yt is the (vector) observation

at time t, wt and vt are independent white noise processes, and θt is the unknown

(vector) parameter to be estimated. In the context of SPT, the state is the two or

three dimensional position of the particle, the function ft is defined by a particular

motion model (see Chapter 2.1), and the observation vector is the collection of pixel

values from the current image, reshaped into a P 2-length vector. The parameter

vector may include unknown motion model parameters (e.g. diffusion coefficients

and confinement lengths) as well as unknown parameters defining the observation

model (e.g. peak intensity or PSF width). The MLE determines an estimate of this

parameter by maximizing the log likelihood of the observed data Y1:N ≜ {Y1, . . . , YN},

θ̂ = argmax
θ

log pθ(Y1:N), (3.5)

where pθ(Y1:N) is the joint probability density of the observations Y1:N defined by

the model in (3.4). We use a computationally efficient version of the ML estima-

tor developed in (Berglund, 2010) for estimating the diffusion coefficient and the
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variance of observation noise vt under the assumption of a simple diffusion motion

model and a linear observation of the position corrupted by zero-mean Gaussian noise.

See (Berglund, 2010; Michalet and Berglund, 2012) for details.

3.2 Expectation Maximization Framework

The basic tool behind our approach of simultaneous localization and parameter es-

timation is the EM algorithm (see, e.g., (Särkkä, 2013)), an iterative approach for

finding an ML estimate. Based on EM, we created a generic framework for SPT

analysis shown in Fig 3·2.

x

y 1 2 3 T

∆𝒕

… …

Nanostage

Camera

Fluorescent particle

Image acquisition
(post process)

Measurement as input

E Step
(Conditional expectation)

Filtering Algorithm
(e.g., UKF or PF)

Smoothing Algorithm
(e.g., URTSS or PS)

Randomly initialized unknown 
parameters 𝜃(") and position

M Step
𝜃(") = arg max$ 𝒬(𝜃, 𝜃("%&))

Update 𝜃(")

Simultaneous Localization and Parameter Estimation

output

Characterize 
physical properties Dx

Dy

Localization Parameter Estimation

𝒬(𝜃, 𝜃($%&)) ⋆

⋆ 𝑒 : 𝑒() iteration of EM

Figure 3·2: Illustration of the EM-based framework for simultane-
ous localization and parameter estimation. Segmented image data is
passed directly to the estimation routine where EM alternates between
filtering/smoothing to find the distribution of the particle trajectory
and estimation of the parameter based on that distribution.

In what follows, we briefly describe our approach and the two main flavors of

it used in this thesis (additional variants that improve computational performance
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are presented in later chapters). Note that the EM approach does not produce a

point estimate for the particle location in each frame but rather an estimate of the

smoothed probability distribution of its location and thus provides more information

than the GF. For the purposes of this work, we obtain the particle location by taking

the mean of this distribution in each frame; however, other estimators could be used.

Consider once again the state space model in (3.4). In general, the log-likelihood

of the observations, log pθ(Y1:N), is intractable or cannot be written analytically. As

a result, (3.5) cannot be solved directly. The EM algorithm handles this through an

iterative approach, forming an approximation to the likelihood function at the eth

step, named Q
(
θ, θ(e)

)
, based on a current estimate of the parameter θ(e), and then

optimizing this to find the next estimate θ(e+1), stepping towards the MLE (Dempster

et al., 1977). The approximation is given by the conditional expectation of the joint

log likelihood function,

Q
(
θ, θ(e)

)
= Eθ(e) [Lθ(X0:N , Y1:N)|Y1:N ] , (3.6)

where θ is the unknown parameter, X0:N = {X0, X1, · · · , XN} is known as a hidden

state that, in the context of SPT, is given by the unknown particle locations, and

Lθ(X0:N , Y1:N) is the joint log likelihood function of the trajectory and observations.

This function is given by

Lθ(X0:N , Y1:N) = log pθ(X0) +
N∑
t=1

log pθ(Xt|Xt−1) +
N∑
t=1

log pθ(Yt|Xt). (3.7)

Using (3.7) in (3.6) yields

Q(θ, θ(e)) = I1(θ, θ
(e)) + I2(θ, θ

(e)) + I3(θ, θ
(e)), (3.8)

where
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I1(θ, θ
(e)) = E

[
log p(X0|θ)|Y1:N , θ

(e)
]
, (3.9a)

I2(θ, θ
(e)) =

N∑
t=1

E
[
log p(Xt|Xt−1)|Y1:N , θ

(e)
]
, (3.9b)

I3(θ, θ
(e)) =

N∑
t=1

E
[
log p(Yt|Xt)|Y1:N , θ

(e)
]
. (3.9c)

The calculation of Q
(
θ, θ(e)

)
is called the Expectation (E) step at the eth iteration.

It has been shown that any choice of θ(e+1) such that Q(θ(e+1), θ(e)) ≥ Q
(
θ(e), θ(e)

)
ensures the EM algorithm converges to a local maximum of the likelihood function.

Thus, the expectation step is followed by a Maximization (M) step to produce the

next estimate of the parameter,

θ(e+1) = argmax
θ
Q
(
θ, θ(e)

)
(3.10)

Despite the fact that convergence is only guaranteed to a local optimum, EM

has been shown to work well in practice (Dempster et al., 1977; McLachlan and

Krishnan, 2007). To implement the E step (that is, to calculate Q) by carrying out

the expectations in (3.9), it is necessary to know the posterior densities p(Xt|Y1:N)

and p(Xt, Xt−1|Y1:N). If the underlying model in (3.4) is linear with Gaussian noise,

then these distributions are easily obtained using a Kalman filter and a Kalman

smoother (Gibson and Ninness, 2005). For nonlinear observations, however, these

distributions must often be approximated in some way. The choice of how to handle

these nonlinearities defines the flavor of our method.
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3.2.1 Unscented - EM (U-EM)

U-EM approximates the posterior densities in (3.9) as Gaussians using a UKF and a

URTSS. The UKF was developed in (Julier and Uhlmann, 1997) as an alternative to

the Extented Kalman Filter, capturing (an approximation to) the mean and covari-

ance of a nonlinear stochastic process without relying on linearization or a Jacobian

computation. U-EM starts with the UKF to get the estimated state and covariance,

and then uses the URTSS to return the posterior probability densities required for

the EM algorithm.

Consider a generic dynamic state space system depending on a parameter θ, of

which generic form is described the same as (3.4). Note that the UKF in requires a

model in which both the process and measurement noise terms appear in an additive

fashion. To make this explicit, we replace the general state space dynamic model

(3.4) with

Xt+1 = ft(Xt, θ) + wt(θ), (3.11a)

Yt = ht(Xt, θ) + vt(θ). (3.11b)

The U-EM scheme starts with a UKF to get the filtered estimate of the state X

and then applies a URTSS to return the posterior probability densities p(Xt|Y1:N)

needed for the EM algorithm where N denotes the total number of observations and

t = 1, ..., N . These steps are described below.

Unscented Kalman Filter (UKF)

The goal of the UKF is to form a Gaussian approximation of the distribution of

the state X (the location of the particle being tracked in the SPT data). Generically,

this distribution is given by

p(Xt|Y1:t) ≃ N (mt,Pt) , t = 1, ..., N (3.12)
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where N (mt,Pt) denotes a Gaussian (also known as a Normal) distribution of mean

mt and covariance Pt. These distributions at each time step are found as follows.

1. Prediction step: First calculate the deterministic sigma points, X , according to

X (0)
t−1 = mt−1 (3.13a)

X (i)
t−1 = mt−1 +

√
(n+ ζ)

[√
Pt−1

]
i
, (i = 1, . . . , n) (3.13b)

X (i+n)
t−1 = mt−1 −

√
(n+ ζ)

[√
Pt−1

]
i
, (i = 1, . . . , n) (3.13c)

where n is the dimension of the state, m0 and P0 are randomly initialized, [·]i
denotes the ith column of the matrix,

√
A is the matrix square root of A, and ζ

is a scaling parameter defined by ζ = α2(n + κ)− n. The parameters α and κ

are determined by the user to tune the algorithm performance. The parameter

α determines the spread of the sigma points around the mean and is usually

taken in the interval (0, 1], while κ is a secondary scaling parameter which is

usually set to 3− n (see (Särkkä, 2013) for details).

The sigma points are then propagated through the motion model

X̂ (i)
t = f(X (i)

t−1, θ), i = 0, ..., 2n (3.14)

and combined to produce the predicted mean and covariance at time t given

data up to time t− 1 according to

m−
t =

2n∑
i=0

W
(m)
i X̂ i

t , P−
t =

2n∑
i=0

W
(c)
i (X̂ (i)

t −m−
t )(X̂

(i)
t −m−

t )
T +Qt−1 (3.15)

where Qt−1 is the covariance matrix of the process noise wt in (3.4a). The
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weights in (3.15) are given by

W
(m)
0 =

ζ

n+ ζ
(3.16a)

W
(c)
0 =

ζ

n+ ζ
+ (1− α2 + β), i = 1, . . . , 2n (3.16b)

W
(m)
i = W

(c)
i =

1

2(n+ ζ)
, i = 1, . . . , 2n (3.16c)

Here β is used to incorporate prior knowledge of the distribution of state Xt

(with β = 2 used for Gaussian distributions (Särkkä, 2013)).

2. Update and filter: A new set of sigma points, X−
t , are formed from the predicted

mean and covariance according to (3.13) using m−
t and P−

t in place of mt−1 and

Pt−1. These sigma points are then propagated through the measurement model

(3.4b)

Ŷ(i)
t = h(X−(i)

t , θ), i = 0, ..., 2n. (3.17)

and combined to form

µt =
2n∑
i=0

W
(m)
i Ŷ(i)

t , (3.18a)

St =
2n∑
i=0

W
(c)
i (Ŷ(i)

t − µk)(Ŷ(i)
t − µk)

T +Rt, (3.18b)

Ct =
2n∑
i=0

W
(c)
i (X−(i)

t −m−)(Ŷ(i)
t − µt)

T , (3.18c)

Kt = CtS
−1
t , (3.18d)

whereRt is the covariance matrix of the measurement noise vt in (3.4b). Finally,

these are used to produce the filtered estimates of the mean and covariance of

the process at time t using the data up to time t through

mt = m−
t +Kt [Yt − µt] , Pt = P−

t −KtStKt
T . (3.19a)
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Unscented Rauch-Tung-Striebel Smoother (URTSS)

The URTSS iterates backwards from t = N,N − 1, ..., 0, beginning with the final

results of the UKF, ms
T = mT and Ps

T = PT , as follows.

1. Prediction and update: Form the sigma points Xt from (3.13) using mt and Pt,

propagate them through the motion model

X̂ (i)
t+1 = f(X (i)

t , θ), i = 0, 1, ..., 2n, (3.20)

and then combine the predictions by using

m−
t+1 =

2n∑
i=0

W
(m)
i X̂ (i)

t+1, P−
t+1 =

2n∑
i=0

W
(c)
i (X̂ (i)

t+1 −m−
t+1)(X̂

(i)
t+1 −m−

t+1)
T +Qt,

(3.21a)

Dt+1 =
2n∑
i=0

W
(c)
i (X (i)

t −mt)(X̂ (i)
t+1 −m−

k+1)
T , (3.21b)

where the weights are given in (3.16).

2. Produce the smoothed estimate: The mean and covariance of the smoothed

Gaussian density at time t are calculated from

Gt = Dk+1

[
P−
t+1|N

]−1

, (3.22a)

ms
t|N = mt + Gt(ms

t+1|N −m−
t+1), (3.22b)

Ps
t|N = Pt − Gt(Ps

t+1|N −P−
t+1)GTt . (3.22c)
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E-step via UKF and URTSS

From the results of the UKF and URTSS, the (approximate) posterior densities

needed for the EM algorithm are

p(Xt|Y1:N) ∼ N (ms
t|N ,P

s
t|N), (3.23a)

p(Xt, Xt−1|Y1:N) ∼ N
([

ms
t|N

ms
t−1|N

]
,

[
Ps

t|N Ps
t|NGTt−1

Gt−1P
s
t|N Ps

t−1|N

])
. (3.23b)

This gives the approximation of the Q function to be

Q(θ, θ̂(i)) ≈ −1

2
log(2πP0)−

1

2
log(2πQ)− 1

2
log(2πR)

− 1

2
tr
{
P−1

0

[
Ps

0|N + (ms
0|N −m0)(m

s
0|N −m0)

T
] }

− 1

2

N∑
t=1

tr
{
Q−1E

[
(xt − f(xt−1))(xt − f(xt−1))

T |YN

] }
− 1

2

N∑
t=1

tr
{
R−1E

[
(yt − h(xt))(yt − h(xt))

T |YN

] }
.

(3.24)

where Q,R are the covariance matrices for the motion model and observation model

respectively, P0,m0 are initial estimate of the motion covariance and mean state,

Ps
0|N ,m

s
0|N are smoothed estimates of the motion covariance and mean state at the

initial time, and tr denotes the trace operation. As previously noted, in the context of

the SPT the unknown parameter vector θ may contain terms from the motion model

(such as diffusion coefficients or confinement lengths) as well as from the observation

model (such as peak intensity).

M-step for Parameter Estimation

The application of the maximization step under the U-EM scheme yields an analytical

expression for the estimate of θ at the eth EM iteration, according to (3.10). The

specifics of this step depend on the particular choice of model and will be defined as
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needed throughout the remainder of the thesis.

3.2.2 Sequential Monte Carlo - EM (SMC-EM)

For the SMC-EM algorithm, the posterior densities in (3.9) are calculated using a

PF and PS, allowing for arbitrary distributions to be estimated. Note that the term

“particles” in SMC refers to the random samples used to represent a distribution

rather than the fluorescently labeled objects being tracked. In the remainder of the

thesis, the meaning of the word “particles” should be clear from context. The details

of SMC-EM are as follows.

Consider a generic dynamic state space system as in (3.4). The SMC-EM can use

arbitrary number of randomly generated Monte Carlo samples (often referred to as

particles) to approximate the posterior needed by the EM algorithm. Under the SMC-

EM scheme, a PF provides the filtered state estimates and importance weights. These

are then passed to a PS that works backwards to produce the smoothed distribution.

These steps are described below.

Particle Filter (PF)

For simplicity in exposition, we use a basic sequential importance resampling PF in

our basic SMC flavor. Alternative PFs with different numerical properties could also

be used (see (Doucet et al., 2009) and later sections of this thesis).

1. Randomly generate M initial particles at time t = 0 by drawing from the

initial distribution Pθ(x0),

xi
0 ∼ Pθ(x0), i = 1, ...,M. (3.25)

2. Propagate these M particles through the motion model (3.4a),

x̃i
t = ft−1(x̃t−1, wt−1, θ), i = 1, 2, ...,M. (3.26)
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3. Compute the importance weights,

wi
t

∆
= w̃i

t =
Pθ(Yt|x̃i

t)∑M
j=1 Pθ(Yt|x̃j

t)
, i, j = 1, ...,M. (3.27)

where Yt is the observed measurement at time t and Pθ(Yt|x̃i
t) is determined by

the measurement model in (3.4b).

4. Resample M new particles xj
t from the discrete distribution,

p(xj
t = x̃i

t) = wi
t, j = 1, . . . ,M. (3.28)

5. Increment t← t+ 1 and iterate from step 2 until t = N .

Particle Smoother (PS)

The PS used in our plain SMC flavor is a forward-filtering backward smoothing

method. As with the PF, other particle smoothing schemes can be selected.

1. Initialize the importance weights wi
t at t = N as wi

N |N = wi
t, i = 1, ...,M .

2. Decrement t ← t − 1 and calculate the smoothed weights wi
t|N by backward

computation,

wi
t|N =

M∑
j=1

wj
t+1|N

wi
tPθ(x̃

j
t+1|x̃i

t)∑M
l=1 w

l
tPθ(x̃

j
t+1|x̃l

t)
, (3.29)

where Pθ(x̃
j
t+1|x̃i

t) is determined by the motion model in (3.4a).

3. Iterate from Step 2 until t = 0.

E-step via PF and PS

Using the results of the PF and PS, the Q function can be approximated by

Q
(
θ, θ(e)

)
= I1(θ, θ

(e)) + I2(θ, θ
(e)) + I3(θ, θ

(e)) (3.30)
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where

I1(θ, θ
(e)) ≈

M∑
i=1

wi
1|N log Pθ(x̃

i
1), (3.31a)

I2(θ, θ
(e)) ≈

N−1∑
t=1

M∑
i=1

M∑
j=1

wij
t|N logPθ(x̃

j
t+1|x̃i

t), (3.31b)

I3(θ, θ
(e)) ≈

N∑
t=1

M∑
i=1

wi
t|N logPθ(yt|x̃i

t). (3.31c)

where wij
t|N are given by

wij
t|N =

wi
tw

j
t+1|NPθ(x̃

j
t+1|x̃i

t)∑M
l=1w

l
tPθ(x̃

j
t+1|x̃l

t)
. (3.32)

One benefit of SMC-EM over U-EM is its ability to represent arbitrary posterior

distributions rather than approximating them as Gaussians.

M-step for Parameter Estimation

The application of the maximization step under the SMC-EM scheme depends on

the particular motion model used. For pure diffusion, an analytical solution to the

maximization problem can be found but in general numerical methods are needed in

the optimization.
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Chapter 4

Performance of SPT Methods on Joint

Localization Refinement and Parameter

Estimation in Two Dimensional Diffusion

In this chapter we describe the U-EM flavor of our general scheme. We first compare

different methods of transforming the observation models into a form suitable for the

UKF and then compare U-EM both to baselines standard from the field as well as to

the more general SMC-variant of our own approach.

4.1 Model Transformations in U-EM

One of the challenges in applying the UKF is that it assumes Gaussian noise in

both the state update and measurement equations. In this work we focus on a pure

diffusion motion model to focus the discussion on a concrete setting, though the

method can handle other motion models. As the dynamic model for diffusion is linear

with additive Gaussian noise, applying the UKF in terms of the state update equations

is straightforward. The observation model, however, involves Poisson distributed

noise whose parameters depend upon the state and experimental settings. Thus, to

apply the UKF, the model must be transformed into one where the measurement

noise is Gaussian instead of Poisson. Two possible approaches are considered: one

is a choice of a variance stabilizing transformation, in particular the Anscombe and

Freeman-Tukey transform, that yields a measurement model with additive Gaussian
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noise with unity variance; the other is a straightforward replacement of the Poisson

distribution by a Gaussian with a mean and variance equal to the rate of the original

distribution.

Given the diffusion model described in (2.2) and the description of U-EM in Chap-

ter 3.2.1, the maximization step under the U-EM scheme yields an analytical expres-

sion for the estimate of Dx at the eth EM iteration, given by

D̂x,e =
1

2N∆t
·[

N∑
t=1

(x̂2
t|N,e + Pt|N,e) +

N∑
t=1

(x̂2
t−1|N,e + P 2

t−1|N,e)

− 2
N∑
t=1

(x̂t|N,e · x̂t−1|N,e + Pt,t−1|N,e)]

(4.1)

where x̂t|N,e is the estimate of the particle location at time t given data over all N

images. The analytical expression for D̂y,e is analogous to (4.1).

4.1.1 Direct Gaussian Approximation

For a sufficiently high rate, a Poisson distribution of rate λ is well approximated by a

Gaussian of mean and covariance equal to that rate (Gnedenko, 2017). One approach,

then, is to replace (2.10) with

Ĩp,t = λ̃p,t + vk, vk ∼ N
(
0, λ̃p,t

)
. (4.2)

where λ̃p,t = λp,t + Nbgd. This approach requires no modification to the measured

data. However, the noise term vk itself depends upon the state variable since the rate

λp,t is a function of the position of the particle.

4.1.2 Anscombe Transformation

The Anscombe transformation is a variance-stabilizing transformation that (approxi-

mately) converts a Poisson-distributed random variable into a unit variance Gaussian

one (Anscombe, 1948). Under this approach, the actual measurements are first trans-
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formed by

Ĩp,t = 2

√
Ip,t +

3

8
. (4.3)

The measurement model (2.10) is then replaced by

Ĩp,t ≃ 2

√
λ̃p,t +

3

8
+ vk, vk ∼ N (0, 1). (4.4)

4.1.3 Freeman Tukey Transformation

An alternative variance stabilizing transform is the Freeman and Tukey (Freeman

and Tukey, 1950). Under this approach, the measurements are first transformed by

Ĩp,t =
√

Ip,t + 1 +
√
Ip,t. (4.5)

and the measurement model is replaced by

Ĩp,t ≃
√

λ̃p,t + 1 +

√
λ̃p,t + vk, vk ∼ N (0, 1). (4.6)

Note that a similar transformation can be applied for noise models which are

a combination of Poisson noise and Gaussian readout noise. This is particularly

important when considering data from an sCMOS camera and will be discussed in

Sec. 4.3.

4.1.4 Demonstration and Analysis

To demonstrate the performance of the U-EM algorithm with different transformation

methods, we performed several simulations. 40 different ground truth trajectories

were generated from the diffusion motion model (2.2) and used to create simulated

images according to the observation model in (2.10). The optical parameters and

other fixed constants used in these simulations are shown in Table 4.1.

To explore the difference among these transformations, we fixed the background
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Table 4.1: Parameter settings in two dimensional Brownian diffusion.

Symbol Parameter Values

∆t Image period (discrete time step) 100 ms
N Number of images per dataset 100
P Number of pixels per squared image 25
Dx Diffusion coefficient in x direction 0.005 µm2/s
Dy Diffusion coefficient in y direction 0.01 µm2/s

∆x Length of unit pixel 100 nm
∆y Width of unit pixel 100 nm
λ Emission wavelength 540 nm
NA Numerical aperture 1.2

rate Nbgd = 10 and the peak signal intensity G = 100, representing a strong but

not atypical signal in actual SPT experiments. The estimated position at each time

was taken as the mean value of the smoothed distribution. The resulting root mean

square errors (RMSE) are shown in Fig. 4·1. As can be seen, all approaches perform

well with an estimation error of approximately 6.25 nm in x position and 7.30 nm in

y position. Both the similarity and the actual error level is as expected given that

the signal level is high.

Performance of parameter estimation over the 40 runs and with the three different

transformation choices is shown in Table 4.2.

Table 4.2: Parameter estimation of Dx and Dy on 40 datasets

Method Dx (µm2/s) Dy (µm2/s)

Gaussian 0.0047 ± 7.3e-4 0.009 ± 0.0011
Anscombe 0.0046 ± 7.3e-4 0.009 ± 0.0011
Freeman Tukey 0.0046 ± 7.3e-4 0.009 ± 0.0011

The primary differences among the different observation model transformations

become meaningful only when the rate of the Poisson distribution is low (as deter-

mined by the combination of signal level and background). We performed two sets

of simulations at different noise levels. In the first set, the noise Nbgd was fixed at
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Figure 4·1: Box plots of 2-D position estimation error using the
(Gauss) Gaussian approximation, (Ans.) Anscombe transform, and (F-
T) Freeman-Tukey transform. Blue and red box correspond to RMSE
in x and y position respectively.

one and the signal G increased from one to 10. In the second, SBR was fixed to 10

and Nbgd increased from 1 to 10. Other imaging and model parameters were kept the

same.

The localization results are shown in Fig. 4·2 with the top graph corresponding

to Nbgd = 1 (and thus extremely low signal levels) and the bottom to simulations

for a fixed SBR. In both plots, red corresponds to Gaussian approximation, blue to

Anscombe transform and green to Freeman-Tukey transform.

It is clear that differences only appear at the low signal levels. Note that in the first

plot with a peak intensity of G = 6, the rate in the pixel at the center of the PSF is

still only 7 counts. At the lowest signal levels, the Anscombe transform outperforms

the other two. While the Gaussian approach is close, the difference between the

mean and the center quartiles indicates that it has several large outliers. To put

these estimation errors in context, note that for the given imaging parameters, the

diffraction limit of light is approximately 270 nm.

The corresponding results for the estimation of the diffusion coefficients are shown
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Figure 4·2: RMSE of x position estimation with different {Nbgd, G}.
The superscript {1}, {2} and {3} indicates results based on the Gaus-
sian approximation, Anscombe transform, and Freeman-Tukey trans-
form, respectively. (top) Results holding Nbgd=1 fixed and varying G,
showing the behavior at very low signal levels. (bottom) Results hold-
ing the ratio SBR = 10 fixed while varying G. Note that for space
reasons, only results for Dx are shown; estimation of Dy is similar.
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in Fig. 4·3. As before, red corresponds to Gaussian approximation, blue to Anscombe

transform, and green to Freeman-Tukey transform. The true value is Dx = 0.005

µm/s2. These results parallel the trajectory estimation, with all transformations

of the observation equation being essentially equivalent at high signal levels and

Freeman-Tukey failing at the lowest signals.

Figure 4·3: Results of estimation of Dx with a true value of Dx =
0.005 µm/s2. (top) Results holding Nbgd = 1 fixed while varying SBR.
(bottom) Results holding the ratio SBR fixed while varying G.

As noted in Chapter 3.2, the primary motivation for U-EM is the reduced com-

putational load and indeed the method is faster then vanilla SMC-EM using any of

the three transformation methods (on the order of a few minutes using unoptimized

code in Matlab on a standard laptop with 10 EM iterations as opposed to hours with

SMC-EM). It is important to note, however, that among the three, the Gaussian ap-

proximation runs the slowest (approximately 10-15% slower). This is easily explained

from the equations (4.2) - (4.6) where we see that under the Gaussian approxima-



50

tion, the variance λp,t must be calculated at each time step while both Anscombe

and Freeman-Tukey avoid this since they are variance stabilized to one. Since the

Anscombe transform outperforms at low signal level and has lower computational

load, it should be the preferred approach.

4.2 Overall Comparison among SPT Methods on CCD or

EMCCD Data

In this section, we are interested in comparing EM based algorithms against standard

SPT methods, such as GF-MSD and GF-MLE, under the influence of different SBR

levels, motion blurs and diffusion speeds. We begin by considering the scenario where

the motion and observation models are following (2.2) and (2.10) respectively. While

we include background noise and a basic model of a pixelated image, we ignore other

camera-specific issues such as readout noise. Under this scenario we consider three

cases. In Case 1, we evaluate the performance of the algorithms in an experimental

setting with a relatively large signal and a low background. In Case 2, we investigate

algorithm performance across a range of signal intensity and background levels. In

Case 3, we explore the effect of the value of the diffusion coefficient on algorithm

performance, considering both an idealized setting with no motion blur and a more

realistic setting where motion blur is presented.

Images were simulated for N = 100 frames at an imaging period of ∆t = 100

ms (i.e, a frame rate of 10 frames/s) for a total of 10 s. To generate each sequence

of images, independent trajectories of length N × Nsub were generated where Nsub

represents a sub-sampling factor. In practice, cameras accumulate photons over an

integration period, and the motion of the particle during the exposure period may

affect the estimation accuracy. To replicate this motion blur effect, we assumed the

camera accumulated photons continuously during the first δt = 10 ms of each imaging
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period ∆t and produced each final frame by averaging the first 10 consecutive images

in the period and ignoring the rest. To generate statistics on algorithm performance,

K = 100 image sequences were generated for every parameter setting. Without

particular presentation, the optical settings should remain the same as previous ones.

In this section, the particular settings for optical parameters are given in Table 4.3.

Table 4.3: Fixed parameters used in the simulations.

Symbol Parameter Value

N Image sequence length 100
δt Shutter period 10 ms
Nsub Sub-sampling factor 100
K Number of sequences 100

4.2.1 Case 1: Observation at High Light Conditions

For this first case, the peak signal level was set to G = 100 and the background noise

to Nbgd = 10. (Note that these are the rates in each image after accumulating over

the shutter period.) Other imaging parameters were set as described in Table 4.3.

The diffusion coefficients were fixed to Dx = 0.005 µm2/s and Dy = 0.01 µm2/s.

For all EM based methods, the initial position is usually generated from a predefined

distribution. For ease of calculation, we have x0 ∼ N (0, 2D∆t) which is analogous

to y0.

Then the data were analyzed using GF-MSD, GF-MLE, U-EM, and three versions

of SMC-EM: SMC100, SMC500, and SMC1000 where the superscript denotes the num-

ber of Monte Carlo samples used in the PF and PS algorithms. A typical trajectory,

together with the position estimates produced by the U-EM algorithm as a typical

estimation result, is shown in Fig. 4·4. Under the U-EM scheme demonstrated in

Chapter 3.2.1, the analytical solution to diffusion coefficients on Brownian motion is

same to (4.1).
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Figure 4·4: A typical trajectory with Dx = 0.005 µm2/s and Dy =
0.01 µm2/s. (left) x and y trajectories together with the position esti-
mates from U-EM and the 3σ error bounds. (right) The ground truth
trajectory in the plane with color indicating time.

As described in Chapter 3.2, the EM algorithm at the heart of the simultane-

ous approach is an iterative scheme, improving the estimate at each iteration as it

moves towards a local optimal of the log likelihood function. The application of the

maximization step under the SMC-EM scheme in Chapter 3.2.2 yields an analytical

expression for the estimate of Dx at the eth EM iteration, given by

D̂x,e =
1

2N∆t
(Da

x,e +Db
x,e), (4.7)

with

Da
x,e

∆
=

M∑
i=1

wi
1|N,e(x

i
1|N,e)

2, Db
x,e

∆
=

N−1∑
k=1

M∑
i=1

M∑
j=1

wij
k|N,e(x

j
k+1|N,e − xi

k|N,e)
2.

where xi
t|N,e denotes the smoothed state for the ith sampling particle at time t, and M

is the number of samples used in the PF/PS. The analytical expression for estimated

Dy is analogous to (4.7).

The resulting evolution of the diffusion coefficient parameter estimates over the
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100 different trajectories for the three versions of SMC-EM and for U-EM are shown

in the box plots in Fig. 4·5. These plots show that the EM algorithm generally

converges in a small number of steps and that, as expected, the performance of SMC-

EM improves as the number of Monte Carlo samples used in the PF and the PS

increases.

Figure 4·5: Box plots of estimated Dx and Dy by SMC-EM and U-
EM. The true values of the diffusion coefficients are shown as solid
horizontal lines in each plot. Note that the red line inside the box is
the median, the edges of the box represent the first and third quartiles,
the vertical dashed line indicates the bounds for data within 1.5 times
the interquartile range, and the red + symbols are data points outside
this range.

The comparison between the final results across the 100 trajectories for all the

algorithms are shown in the box plots in Fig. 4·6 and recapitulated in Table 4.4.

Results in y are similar and are omitted for space reasons. Note that there is a

clear bias in the diffusion coefficient estimation in the GF-MLE and in our EM based

methods. This is likely driven by a variety of factors, including the length of the data

set (since MLE methods are only guaranteed to be consistent, meaning that they

converge to the true value as the amount of data becomes large) and nonlinearities in
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the models. A close examination of the SMC-EM results shows that bias reduces as we

go from SMC-EM100 to SMC-EM500 and then to SMC-EM1000. The SMC techniques

more faithfully represent the nonlinear nature of the system as the number of MC

samples. By contrast, the UKF at the heart of U-EM is accurate only to second-order.

This supports the argument that the nonlinearities in the observation models are at

least partially responsible for driving the bias.

(a) Estimation of Dx (b) RMSEx for localization in x.

Figure 4·6: Performance comparison among the different analysis
methods. With G = 100, Nbgd = 10, Dx = 0.005 µm2/s, and Dy = 0.01
µm2/s. (a) Box plot results for the estimate of Dx. (b) RMSE for
x−localization.

Table 4.4: Algorithm performance at G = 100, Nbgd = 10, Dx = 0.005
µm2/s, Dy = 0.01 µm2/s. Note that the estimates in table are in the
form of mean ± Std. while the boxplots in Fig. 4·6 indicate the median.

Approach Est.Dx (µm2/s) Est.Dy (µm2/s) RMSEx(nm) RMSEy (nm)

GF-MSD 0.0055 ± 0.0059 0.0102 ± 0.0096 6.7 ± 0.524 6.7 ± 0.506
GF-MLE 0.0046 ± 9.72e-4 0.0092 ± 0.0019 6.7 ± 0.524 6.7 ± 0.506
SMC-EM100 0.0044 ± 7.76e-4 0.0092 ± 0.0015 9.2 ± 1.100 9.8 ± 1.300
SMC-EM500 0.0046 ± 7.23e-4 0.0097 ± 0.0015 6.6 ± 0.757 6.5 ± 0.629
SMC-EM1000 0.0046 ± 7.15e-4 0.0097 ± 0.0015 6.0 ± 0.580 5.9 ± 0.488
U-EM 0.0044 ± 7.0013e-4 0.0091 ± 0.0013 6.3 ± 0.475 7.7 ± 1.200

These results show that at these high signal levels, GF-MLE, SMC-EM, and U-EM

all perform similarly in terms of diffusion coefficient estimation. GF-MSD, however,
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while having a similar mean, has a much larger variance and many more outliers

than the others. Localization performance is evaluated in terms of the RMSE over

an entire trajectory. Both GF and the EM-based schemes yield accurate localization

with mean errors of below 7 nm for all but SMC100 where the small number of Monte

Carlo samples used to represent the location distribution leads to both a larger error

and a larger variance relative to the other schemes. Table 4.4 also shows that the

performance improvement is minimal when the number of Monte Carlo samples in-

creases from 500 to 1000. In the remainder of this work, then, we use 500 particles

in SMC-EM.

4.2.2 Case 2: Performance at Different Signal-to-Background Ratios

In this second case, the diffusion coefficients were again fixed at Dx = 0.005 µm2/s,

Dy = 0.01 µm2/s and the imaging parameters set as in Table 4.3. The peak intensity,

G, was varied across two decades, from 1− 100, and the background noise, Nbgd, was

varied from 1 to 15. As before, 100 datasets of 100 images each were simulated at each

pair of {G, Nbgd} and the performance of the four algorithms, GF-MSD, GF-MLE,

SMC500, and U-EM compared.

To evaluate the parameter estimation performance among the different approaches,

we followed the approach set out in (Michalet and Berglund, 2012) and defined a suc-

cessful estimate as one which was within 25% of its true value. The success maps for

each of the algorithms are shown in Fig. 4·7.

In these plots, color corresponds to the percentage of runs where successful esti-

mation was achieved. Results for Dy were similar and are omitted for space reasons.

These results show that GF-MSD has the worst performance of all four algorithms

across all settings of intensity and background noise level with very low rates of suc-

cess even at the highest SBR and signal levels considered. At the absolute lowest

signal levels, GF-MLE shows the highest success rate (though that rate is still very
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Figure 4·7: Success maps of the four algorithms. The percentage of
trajectories resulting in an estimated Dx within 25% of the true value
as a function of peak intensity G and background level Nbgd is shown.
Yellow indicates 100% success while blue represents 0%. Results along
the two white curves are shown in Fig. 4·8.
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low). The two EM-based methods, however, show the highest level performance when

the entire range of SBRs is considered.

To dive more deeply into these results, we compared the performance in the ac-

curacy of diffusion coefficient estimation at SBRs of G/Nbgd = 10 and G/Nbgd = 1

along the two white curves on the success maps in Fig. 4·7. The parameter estimation

results are shown in Fig. 4·8 for both SBR = 1 (representative case at low signal in-

tensities) and SBR = 10 (representative case at high signal intensities) . The figures

show the mean and median for all algorithms as well as the middle two quantile (50%)

range.

Note that at SBR = 1, the GF-MSD approach essentially fails while GF-MLE

needs an intensity of G = 10 before its estimates are reasonable. By contrast, our

EM based methods return reasonable results beginning at an intensity of G = 3.

With an SBR of 10, all four algorithms yield reasonable results, though the GF-MSD

algorithm has the worst performance with a median value that significantly under-

reports relative to the true value and with quantiles that are much larger than those of

the other schemes. The other three algorithms all have similar performance, though

the EM-based methods do yield tighter quantiles.

We also compared the localization accuracy of the different algorithms for the

same data. The results for both SBR = 1 and SBR = 10 are shown in Fig. 4·9. As

before, we show the center two quantiles, mean, and median of the estimates over

the 100 trials at each value of G and Nbgd. (Note that since both the GF-MSD and

GF-MLE algorithms use GF for localization, their results are combined as they are

equivalent.) SMC-EM500 outperforms the other algorithms at all signal levels. Except

at the very lowest signal level, U-EM outperforms GF. As the signal level increases,

GF eventually catches up to match the results of SMC-EM and U-EM.
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(a) SBR=1

(b) SBR=10

Figure 4·8: Diffusion coefficient estimation performance over 100 sim-
ulation runs at different signal and background levels. With fixed (a)
SBR = 1 and (b) SBR = 10. Shown are the middle two quantiles
(colored, shaded area), median (solid line), and mean (dashed line) us-
ing GF-MLE (red), GF-MSD( green), U-EM (purple), and SMC-EM500

(cyan). The true value was Dx = 0.005 µm2/s.
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Figure 4·9: Localization performance (RMSE) over 100 simulation
runs at different signal and background levels. With fixed (left) SBR =
1 and (right) SBR = 10. Shown are the middle two quantiles (colored,
shaded area), median (solid line), and mean (dashed line). GF (green),
U-EM (purple), and SMC-EM500 (cyan).

4.2.3 Case 3: Performance as a Function of Diffusion Coefficient

In the presence of motion blur, the performance of both localization and parameter

estimation will depend on the diffusion coefficient. In addition, because the EM-based

schemes jointly estimate the trajectory and the model parameters, it is reasonable to

expect that performance will depend on motion model parameters even in the absence

of motion blur (representing the limit of instantaneous image acquisition). To study

this, we fixed the signal levels at G = 100, Nbgd = 10 (where all algorithms perform

similarly) and ran simulations with Dx = Dy over the range of 0.001 µm2/s to 10

µm2/s, considering both the case with motion blur (with Nsub = 100) and without

(with Nsub = 1). We set a threshold for localization failure as the diffraction limited

resolution given by the Rayleigh criterion. For the imaging parameters used here this

leads to

∆LRayleigh =
0.61λ

NA
= 270 nm. (4.9)

The results for localization in the absence of motion blur are shown in Fig. 4·10a.

As expected, if the measurements can be obtained instantaneously then the perfor-
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mance of the GF method is independent of the diffusion coefficient since in each

frame the particle is motionless. The EM-based schemes, however, do show degraded

performance as the diffusion coefficient increases with the resulting thresholds shown

in Table 4.5. It is perhaps somewhat surprising that U-EM and SMC-EM have such

drastically different thresholds given that they use the same observation model. How-

ever, the problem in U-EM arises primarily from the the breakdown of the unscented

transform at large noise variances. Thus, while U-EM is much better than SMC-EM

in terms of computational complexity, it is limited to small values of the ratio of

diffusion coefficient to sample rate due to the inability of the UKF to handle large

variances in the noise inputs.

(a) Without motion blur (b) With motion blur

Figure 4·10: Localization performance in terms of RMSE across vary-
ing diffusing speeds. (a) without and (b) with motion blur using GF-
MSD/MLE (green), SMC-EM500 (cyan), and U-EM (purple). The
failure threshold is defined as the Rayleigh resolution criterion (red,
dashed).

The case with motion blur is shown in Fig. 4·10(b). U-EM and SMC-EM perform

similarly to the setting without motion blur. Now, however, estimation based on GF

also shows a limit on the diffusion coefficient beyond which localization fails, likely

driven by the fact that motion blur causes the PSF to diverge from a simple Gaussian

shape. The resulting limits are shown in Table 4.5. It is important to note that when

using GF, we take advantage of the prior information available in the segmentation

and limit the estimate to be within the segmented image.
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Table 4.5: Diffusion coefficient threshold before localization failure
with G = 100, Nbgd = 10.

Condition GF (µm2/s) U-EM (µm2/s) SMC-EM500 (µm2/s)

No motion blur ∞ 0.05 3.0
With motion blur 6.0 0.05 3.0

The values of the thresholds for the diffusion coefficient depend, of course, on the

specific imaging parameters. In general, in the absence of motion blur, increasing the

peak intensity G or the shutter time δt will increase the SBR and thus improve local-

ization performance and one would expect the SMC-EM methods to work at higher

diffusion coefficient values. Since U-EM depends on the unscented transform, increas-

ing the imaging rate (that is, decreasing ∆t) will reduce the process noise and thus

increase the diffusion coefficient threshold. In the presence of motion blur, decreasing

the shutter time will mitigate its effects but at the cost of reducing the number of

acquired photons and thus the SBR. This can be compensated for somewhat by in-

creasing the intensity parameter G by increasing the power of the excitation, though

the ability to do so is limited by phototoxicity issues.

To better understand the degradation in localization as the diffusion coefficient

increases, we show in Fig. 4·11 typical runs both with and without motion blur. These

results show that at larger diffusion coefficients, the U-EM scheme simply fails while

the others degrade more smoothly, particularly in the absence of motion blur.

For SMC-EM, we show results using different numbers of sampled particles in the

PF methods. With a small number of samples (e.g., SMC-EM100) and at large D,

the SMC-EM tends to track the particle well in most frames but occasionally to lose

that track. Because segmentation ensures that the data is never too far from ground

truth, the algorithm is often able to pick up the location again. Increasing the number

of sampling particles in the SMC-EM mitigates this effect at any given value of D

and thus the threshold on the diffusion coefficient increases with increasing number
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(a) D=0.01 µm2/s (no motion blur) (b) D=10 µm2/s (no motion blur).

(c) D=0.01 µm2/s (with motion blur). (d) D=10 µm2/s (with motion blur).

Figure 4·11: Typical localization performance of GF, SMC-EM, and
U-EM. (green) GF, (orange) SMC-EM with 100 Monte Carlo samples,
(cyan) 500 Monte Carlo samples, (red) 1500 Monte Carlo samples, and
(purple) U-EM at a diffusion coefficient of (a,c) 0.01 µm2/s and (b,d)
10 µm2/s, both (a,b) without and (c,d) with motion blur.
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of particles in the filter. To further demonstrate this, we also show typical results

when using 1500 sampling particles; SMC-EM is then able to track the particle even

at 10 µm2/s.

The results for the estimation of Dx as a function of the diffusion coefficient

are shown in Fig. 4·12, both with and without motion blur. As noted before, the

UKF element of the U-EM algorithm fails as the covariance of the process noise,

defined by the value of the diffusion coefficient, gets large. As seen in the localization

performance results in Fig. 4·11, this leads to complete loss of tracking which in turn

leads to failed diffusion coefficient estimation. By contrast, SMC-EM, GF-MSD, and

GF-MLE continue to produce good estimates throughout the entire considered range

(though, of course, GF-MSD has much larger variance than the other approaches. It

is perhaps surprising that SMC-EM produces good diffusion coefficients at large D

even though, as seen in Fig. 4·10, localization performance degrades significantly. The

likely reason is that, as illustrated in Fig. 4·11, for a large part of any given trajectory,

tracking is good with only a few large outliers. These outliers have a serious impact

on the RMSE but a smaller effect on the diffusion coefficient.

(a) Without motion blur (b) With motion blur

Figure 4·12: Mean estimates of Dx by GF-MSD, GF-MLE, SMC-EM,
and U-EM as a function of the true diffusion coefficient. (a) without
and (b) with motion blur.

In two dimensional diffusion cases, we described two versions of our EM-based
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framework for simultaneous localization and parameter estimation from SPT data.

Our algorithms indicate that, at least in the two-dimensional setting considered, if

there are enough photons and a good SBR, then GF-MLE (or MLEsCMOS), SMC-EM,

and U-EM perform similarly well and all outperform GF-MSD. Given the additional

computational complexity of the EM-based methods over GF-MLE/MLEsCMOS, it

makes more sense to apply these more standard algorithms in this setting. At low

signal levels, however, the EM-based methods outperform the others. The choice

between the different EM schemes is dictated in large part by the computation time

but also by the ratio of the (expected) diffusion coefficient and the sampling rate. If

this ratio is low, U-EM offers good results at significantly less computation time than

the SMC-EM methods. These conclusions are summarized in Fig. 4·13.
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Figure 4·13: Qualitative guidance for choice of SPT localization and
parameter estimation algorithm. Shown are the algorithms that pro-
duce similar results in each of the domain with the method. The boxed
algorithm in each quadrant has the lowest computational load.
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4.3 Application of EM based Methods on sCMOS Data

In this section we incorporate the sCMOS model described in Chapter 2.2.2 into

our scheme. Simulations were performed using the settings in Table 4.3 and at two

different signal levels, one low (G = 10) and one high (G = 100). A typical image

frame at G = 100 and Nbgd = 10, together with the pixel-by-pixel variance and gain

maps for this frame, is shown in Fig. 4·14.
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Figure 4·14: Typical frames related to sCMOS camera model. (a)
Observation with Nbgd = 10, G = 100. (b) Variance and (c) Gain maps
of the pixels in the frame shown in (a).

The work in (Huang et al., 2013) showed that GF can yield poor results on sC-

MOS data and, motivated by this, developed a localization algorithm specific to the

sCMOS model using ML estimation. Following (Huang et al., 2013), the probability

distribution function for a pixel value with both shot noise and read-out noise can be

approximated by

PsCMOS(z = Ip,t + σ2
p,t|λp,t(θxy,t), Nbgd, gp,t,Varp,t)

=
e−(λp,t+Nbgd+σ2

p,t)(λp,t +Nbgd + σ2
p,t)

z

Γ(z + 1)
,

(4.10)

where Γ(·) is the standard Gamma function. The MLEsCMOS for localization at time
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t can be expressed as

θ̂xy,t = argmin
θxy,t

{
− ln

[
25∏
p=1

PsCMOS(z = Ip,t + σ2
p,t|λp,t(θxy,t), Nbgd, gp,t,Varp,t)

]}
,

(4.11)

where θ̂xy,t is the maximum log-likelihood estimation of localization at time t.

Using the form of the PSF for λp,t given in the main paper, this MLE can be

expressed as

θ̂xy,t = argmin
θxy,t

25∑
p=1

[
(λp,t +Nbgd + σ2

p,t)− z · ln(λp,t +Nbgd + σ2
p,t) + ln Γ(z + 1)

]
,

(4.12)

where z = Ip,t + σ2
p,t. In the remainder of this subsection, then, we use that approach

to localize the particle in each frame. We combine those localization results with

the MLE approach to parameter estimation from (Berglund, 2010) and refer to this

combined algorithm as MLEsCMOS+ .

Combining the photon detection process of the microscope with the read-out noise

of the detector leads to a nonlinear, non-Gaussian measurement model. While this

can be handled directly using SMC methods, the UKF requires Gaussian distributed

noise. Therefore when using U-EM scheme, we need to transform the model in (2.13)

into a form amenable to the UKF. There are different approaches for variance stabi-

lization, such as the Anscombe (Anscombe, 1948) or the Freeman and Tukey (Free-

man and Tukey, 1950) transformations, or direct approximation by a Gaussian model

(when measured intensities are sufficiently large) (Gnedenko, 2017). These different

approaches have been discussed and compared in (Lin and Andersson, 2019) where

it was found that in general the Anscombe transform performs the best in the SPT

setting. Therefore, we use the generalized Anscombe transformation (Makitalo and
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Foi, 2012) to transform the observation model (2.13) into

Ĩp,t = 2

√
λp,t +Nbgd +

3

8
+ σ2

p,t + vt, vt ∼ N (0, 1). (4.13)

To apply this transformation, the observed measurements Ip,t should be first ex-

pressed as

Îp,t = 2

√
Ip,t +

3

8
+ σ2

p,t. (4.14)

We then take the transformed observation as the input for the U-EM method

described in Chapter 3.2.1.

4.3.1 Diffusion with Brownian Motion

First, we focus on two dimensional Brownian motion (2.2). The comparison between

the final results across all 100 simulation runs among all the algorithms at the high

signal level are listed in Table 4.6, and they are summarized in box plots shown as

Fig. 4·15.

Table 4.6: Algorithm performance at SBR = 10 on sCMOS data.

Approach Est.Dx (µm2/s) Est.Dy (µm2/s) RMSEx(nm) RMSEy (nm)

MLEsCMOS+ 0.00472 ± 0.00105 0.00922 ± 0.00199 6.72 ± 0.513 6.82 ± 0.514
SMC-EM100 0.00450 ± 0.00084 0.00947 ± 0.00142 9.97 ± 1.338 11.19 ± 1.857
SMC-EM500 0.00470 ± 0.00079 0.00964 ± 0.00144 7.35 ± 0.711 7.65 ± 0.756
SMC-EM1000 0.00473 ± 0.00078 0.00968 ± 0.00145 6.90 ± 0.620 7.04 ± 0.560
U-EM 0.00448 ± 0.00074 0.00894 ± 0.00135 7.36 ± 0.547 8.99 ± 1.22

These results indicate that when the signal level is high, all methods perform

well in parameter estimation and localization, though when using only 100 particles

in SMC-EM the RMSE is higher than with the other methods. In addition, SMC-

EM500 and SMC-EM1000 show fewer outliers than the other methods.

The comparison between the final results across all 100 simulation runs for all

the algorithms for the low signal level are shown in the box plots in Fig. 4·16 and
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Figure 4·15: Estimation performance of different SPT methods on
sCMOS camera model at G = 100 and Nbgd = 10.

recapitulated in Table 4.7. The EM-based schemes show significant improvement

over MLEsCMOS in this setting in terms of both reduced variance in the parameter

estimates and smaller RMSE in localization.

Figure 4·16: Estimation performance of different SPT methods on
sCMOS camera model at G = 10, Nbgd = 10.

To further highlight the localization performance differences between the algo-

rithms, in Fig. 4·17 we show the results from a typical run. While all methods track

the true trajectory, MLEsCMOS produces more outliers while the EM-based methods

stay closer to the trajectory throughout the run.
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Table 4.7: Algorithm performance at SBR = 1 on sCMOS data.

Approach Est.Dx (µm2/s) Est.Dy (µm2/s) RMSEx(nm) RMSEy (nm)

MLEsCMOS+ 0.00484 ± 0.00247 0.00999 ± 0.00391 54.59 ± 6.18 54.76 ± 6.45
MLE∗

sCMOS+ 0.00484 ± 0.00247 0.00999 ± 0.00391 54.22 ± 5.65 54.55 ± 6.12

SMC-EM100 0.00699 ± 0.00287 0.0114 ± 0.00312 30.77 ± 6.65 36.50 ± 9.65
SMC-EM100,∗ 0.00661 ± 0.00177 0.0112 ± 0.00286 29.89 ± 3.61 35.23 ± 4.30
SMC-EM500 0.00668 ± 0.00206 0.0110 ± 0.00311 28.71 ± 3.47 33.92 ± 4.49
SMC-EM500,∗ 0.00642 ± 0.00159 0.0109 ± 0.00294 28.71 ± 3.47 33.33 ± 3.31
SMC-EM1000 0.00662 ± 0.00207 0.0109 ± 0.00307 28.46 ± 3.46 33.44 ± 4.04
SMC-EM1000,∗ 0.00646 ± 0.00171 0.0108 ± 0.00291 28.34 ± 3.26 33.02 ± 3.26
U-EM 0.00556 ± 0.00165 0.00931 ± 0.00293 31.58 ± 5.26 44.00 ± 17.24
U-EM∗ 0.00551 ± 0.00158 0.00891 ± 0.00239 31.25 ± 4.08 38.56 ± 6.52

∗ excluding outliers.

Figure 4·17: Typical localization results at G = Nbgd = 10.
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4.3.2 Estimation with Ornstein Uhlenbeck flow

In this subsection, we combine the sCMOS observation model with an Ornstein-

Uhlenbeck motion model andstudy the relative performance of SMC-EM and U-EM

under this scenario. In addition, since the quality of the final estimates depends both

on the chosen algorithm and the amount of available data, we also consider the impact

of the number of camera frames available for analysis.

The investigation work start with data simulations with Table 4.8 listing the

parameter settings particular to the O-U process simulation. When using U-EM, the

tuning parameters for the UKF were set to (α, κ, β) = (1, 0, 2).

Table 4.8: Parameter settings for simulating O-U process

Symbol Parameter Values

Dx,y Diffusion coefficient 0.01 µm2/s

A Stiffness coefficient 1.0s−1

δt Shutter period 10 ms
G Peak intensity gain (signal) 100
Nbgd Background noise 10

First, we focus on a typical case with a fixed image length ofN = 100. We simulate

100 sample paths and corresponding image sequences and analyze them using SMC-

EM and U-EM. 10 EM iterations were run under each EM based method. Fig. 4·18

showing the evolution of the parameter estimates as a function of the EM iteration.

The overall mean and standard deviation of the estimated parameters are sum-

marized in Table 4.9. These results indicate that both U-EM and SMC-EM have

good performance. As the number of particles used in SMC-EM grows, the RMSE,

parameter estimation variance, and parameter estimation bias all decrease. However,

this comes at a cost in computation time.

Correspondingly, the overall mean and standard deviation of the estimated posi-
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Figure 4·18: Boxplot of estimates as a function of EM iteration for
(top) U-EM and (bottom) SMC-EM100.

Table 4.9: Parameter estimation with 100 images

Method D (µm2/s) A (s−1)

U-EM 0.008514 ± 0.00072991 1.01 ± 0.28134
SMC-EM50 0.0080737 ± 0.00096272 0.99224 ± 0.2702
SMC-EM100 0.0086592 ± 0.00087748 1.0164 ± 0.28005
SMC-EM500 0.0092505 ± 0.00091714 1.0466 ± 0.29636
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tion are summarized in Table 4.10 where performance is determined using the RMSE

between the true particle position and the mean of the smoothed distribution p(xt|YN)

across an entire trajectory. In the table, SMC-EMM denotes an SMC-EM scheme us-

ing M sampled particles.

As expected, these results show that the performance of SMC-EM depends strongly

on the number of particles used. All schemes, however, show very good performance

with a resolution far below the diffraction limit. These same results are shown as

boxplots in Fig. 4·19.

Table 4.10: Localization performance with 100 images

Method RMSEx (nm) RMSEy (nm)

U-EM 8.6558 ± 0.9979 8.9193 ± 1.1069
SMC-EM50 13.6751 ± 2.0489 13.4994 ± 1.8195
SMC-EM100 10.6292 ± 1.3278 10.7201 ± 1.3692
SMC-EM500 7.5029 ± 0.7495 7.6169 ± 0.7535

Figure 4·19: Boxplot of RMSE by U-EM and SMC-EM of (left, blue)
x and (right, red) y.

A typical example of a trajectory estimation result by SMC-EM and U-EM shown

in Fig. 4·20. For space reasons, only results in x are shown; results in y are similar.
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Figure 4·20: Typical trajectory estimation result.

As part of this work, we explore the bottlenecks in computation and find that

the main limitation comes from the calculation of the double integrals in the obser-

vation model (2.19). Therefore, we replace the direct execution with a table lookup

approach which guarantees an error < 10−3 for computing λp,t. To improve the SMC

performance, we take advantage of parallel processing in Matlab. The calculations

were carried out on a 2.3 GHz Intel Core i5 running Mac OS 10.14.4. Fig. 4·21 shows

the corresponding improvement in the runtime of the two SPT methods. Note that

it takes only two seconds for U-EM to complete an analysis run with 100 images.

In the SPT setting, the number of image frames available depends on a variety

of factors including the frame rate, the intensity of the excitation, and the type of

fluorescent label used. Data sets can range from the 10’s to 1000’s of frames. In

this work, we explored different data lengths, from N = 10 to 1000 on log spacing.

For each N , 100 datasets were simulated with parameter settings as Table 4.8. In

this work, 10 EM iterations are enough for estimation convergence. The parameter

estimation and localization performance by U-EM, SMC-EM100, and SMC-EM500 are
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Figure 4·21: Runtime of different EM-based methods on single
dataset at Nbgd = 10, G = 100 with image length of 100.

shown in Fig. 4·22.

Due to space limitations, only the results of RMSEx are presented here; results

of RMSEy are similar. As expected, as the number of images increases, the final

estimates have lower variance and bias for the parameters and lower RMSE. For

SMC-EM, more images mainly contributes to a reduced variance, while the larger

number of sampled particles mainly contributes to a closer median estimate.

In this subsection, we described the application of two EM-based methods, SMC-

EM and U-EM, to SPT data analysis, focusing on Ornstein-Uhlenbeck motion and

sCMOS cameras. Our results indicate that U-EM has a significant advantage over

SMC-EM in terms of computation time but that, with increasing number of particles

in the Monte Carlo methods, SMC-EM provides more accurate estimation. We also

explored the impact of data length on estimation performance with results showing

that increasing the amount of data reduces both bias and variance.
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4.4 Time-varying Diffusion

Finally, in this section we demonstrate how to apply U-EM to time-varying motion

models, developing an estimation algorithm based on local likelihood estimation. We

once again focus on the diffusion motion model with nonlinear observation model. The

idea of local likelihood is very old (for some historical background see e.g. (Loader,

1999)). Local likelihood is a natural development of the sliding window approach

(Loader, 1999). However, a thorough theoretical understanding of the method was

not developed until the 1990s in the statistics literature under the name local least

squares or local polynomial modelling (Loader, 1999; Fan and Gijbels, 1996). Despite

these developments, the theory has not diffused widely outside the statistics literature

and so a number of basic insights are still ignored in other application domains.

There are, of course, alternatives to a local modelling approach. For example,

there is significant literature on how to model data using a global polynomial fit

(kernel approach). However, this method potentially needs a large number of compo-

nents to yield a reasonable low bias (Fan and Gijbels, 1996), and, as a consequence,

may introduce over-parametrization, which has an effect on the variance of the esti-

mate. The local approximation approach, in general, only requires a small number of

parameters.

4.4.1 Time-varying Likelihood

The idea in our modification to allow for time-varying parameters is to pose a time-

varying likelihood which is time-invariant in a window of a nominated length. The

likelihood is then optimized in this window, and the process is carried out by leaving

one sample out and taking a new one in order to keep the same window size. The

process finishes when we have included the last available sample.
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The local likelihood is defined as:

lt(θt) =
N∑
k=1

Kk,tl(yk|θt), (4.15)

where Kk,t := K(
k − t

h
) is usually called kernel, h is the window length1, t is a point

within the window, usually the middle point, and k indicates any point within the

window. Different values for h can be used, as well as different kernels (or weights),

and the most appropriate selection of them is a nontrivial issue, see e.g. (Fan and

Gijbels, 1996). One common window is the so called Epanechnikov, see e.g (Fan and

Gijbels, 1996), which is used throughout this work.

Due to the nonlinear measurements of SPT, obtaining the likelihood function is an

intractable problem, and thus we use the auxiliary Q function of the EM algorithm as

an approximation of the likelihood, extending it to the time-varying setting through

the local approach. We then consider the following equation:

Qt(θt, θ̂
(i)
t ) =

N∑
k=1

Kk,tE{pθt(xk, yk)|YN , θ̂
(i)
t }. (4.16)

From (3.8), we can write

Qt(θt, θ̂
(i)
t ) = I1(θt, θ̂

(i)
t ) + I2(θt, θ̂

(i)
t ) + I3(θt, θ̂

(i)
t ), (4.17)

where now each Ii, i = 1, 2, 3 is a function of the time-varying parameter θt. As noted

above, in the SPT setting, the parameter θt only appears in I2 hence, we can write

the time-varying E-step as

Qt(θt, θ̂
(i)
t ) =

N∑
k=1

E{Kt,k log p(xk|xk−1)|YN , θ̂
(i)
t }. (4.18)

To optimize this time-varying function, we use a similar procedure as in the time-

1or bandwidth in the statistics literature
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invariant case, that is, we set the derivative of Qt with respect to θt to zero and

solve. The resulting estimates optimize the (windowed) likelihood within window h.

The estimation algorithm continues when the time points are shifted by one unit and

finishes when the last data point is included in the window. Of course, the shifting

can be done by more than one unit to reduce computation, see e.g. (Fan and Gijbels,

1996).

Notice that the difference between Qt and Q (found in the time-invariant EM) is

the inclusion of K(v), and the time dependancy of the parameters of interest. We

add the sub-index t in this function to denote that it depends on the time-varying

parameter θt.

To summarize, the local likelihood approach introduces a time-varying E -step,

denoted by Qt, that will be optimized within a window h. This, in turn, will optimize

the log-likelihood function within the same window, to create the local likelihood ap-

proach. For our SPT problem, and discarding the constant terms and the parameters

for the initial conditions, we can obtain the following auxiliary function

Qt(θt, θ̂
(i)
t ) = − log |Q−1

t |
N∑
k=1

Kk,t+

tr{Q−1
t [S̃11 − 2S̃T

01 + S̃00]}

(4.19)

with

S̃11 =
N∑
k=1

Kk,t[x̂k|hx̂
T
k|h + Pk|h], (4.20)

S̃01 =
N∑
k=1

Kk,t[x̂k|hx̂
T
k−1|h + Pk,k−1|h]

T , (4.21)

S̃00 =
N∑
k=1

Kk,t[x̂k−1|hx̂
T
k−1|h + Pk−1|h]. (4.22)

The values for x̂k|h, Pk|h, and Pk,k−1|h are the smoothed state, variance, and covariance,
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which are found using the UKF and URTSS, for details see (Lin and Andersson, 2019).

The M-step is completed by taking derivative of Qt with respect to Q−1
t and

setting it to zero, obtaining as a result:

Q̂
(i+1)
t =

1∑h
k=1Kk,t

[S̃11 − 2S̃T
01 + S̃00]. (4.23)

For the purpose of showing the benefits of our time-varying approach, we use the

näıve version of EM. However, we note that there is a robust version for the M-step,

see e.g. (Gibson and Ninness, 2005), based on the Cholesky factorization, which

improves the robustness of the implementation.

It is well-known that the only requirement needed in the EM algorithm to converge

to a stationary point of the likelihood function (not necessarily the global maximum)

is that Q(θ̂(i+1), θ̂(i)) ≥ Q(θ̂(i), θ̂(i)). In fact, this is assured to occur when another

auxiliary function found in the EM algorithm, known as H(θ, θ̂(i)), is proven to be

non-increasing; for details see e.g. (McLachlan and Krishnan, 2008).

Since our algorithm is based on EM, it inherits these same convergence properties.

Of course, this also implies we cannot guarantee convergence to the true value because

the EM algorithm itself only yields the global maximum under certain special cases

(McLachlan and Krishnan, 2008, ch.3). In our scheme, the proposed lt(θt) defined in

(4.15) follows the property:

lt(θ̂
(i+1)
t ) ≥ lt(θ̂

(i)
t ).

where the proof can be found at (Godoy et al., 2020). This well reflects that local

likelihood does increase at each step.

4.4.2 Demonstration of the Effect of Kernel

We first demonstrate the effect of the inclusion of a Epanechnikov kernel function

K(v), for two different peak intensities G = {10, 50} with 10 being a relatively weak
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signal and 30 a relatively strong one. Fig. 4·23 shows five lines corresponding to two

different window sizes each with and without a kernel is used or not, and the real value

of Dx. As expected, the kernel smoothing effect is stronger with shorter windows and

with lower signal level as in Fig. 4·23(Top) compared to Fig. 4·23(Bottom). These

results thus indicate that a kernel is an important element of the estimation process.

Figure 4·23: Effect of the kernel with window sizes of 50 (purple,
with kernel, and yellow, without kernel) and 100 (red, with kernel, and
green, without kernel). (Top) Low SNR with Ngbd = 1 and G = 10.
(Bottom) High SNR with Ngbd = 1 and G = 50.

4.4.3 Demonstration of the Window Size

We now fix the kernel to the Epanechnikov form and look more deeply at the effect

of the different window sizes. The results for h = 50, 100, at two different SBR
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levels, running 50 different simulation trials, are shown in Fig. 4·24 with the median

indicated by the center lines and the middle two quantiles by the shaded area. Color

corresponding to window size with 50 in blue and 100 in red. As expected, the figure

shows that the smaller window size leads to a quicker response but larger variance.

Comparing the results in Fig.4·24, we note an increased variance in the estimate at

lower SBR levels.

Figure 4·24: Effect of window length h=50 (light blue) and h=100
(red) with median across 50 trials indicated by dashed lines and the
center two quantiles by the shaded region. (Top) Low SBR with Nbgd =
1, G = 10. (Bottom) High SBR with Nbgd = 1, G = 50.

Table 4.11 shows the RMSE (over 50 runs) for different window lengths and signal

intensities. The table indicates improvement in terms of accuracy for longer window

lengths but with diminishing returns as the window increases. Note that while here
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Table 4.11: Root mean square error (RMSE) for different window
lengths and signal intensity (G)

window (RMSE ± std ) ×10−3 (RMSE ± std ) ×10−3

h G=50 G=10

50 0.8006± 0.1408 0.9197± 0.2752

75 0.7616± 0.1406 0.8179± 0.2626

100 0.7375± 0.1386 0.7622± 0.2547

125 0.7144± 0.1347 0.7227± 0.2515

the window length is chosen empirically, there are data-driven methods available,

e.g. the Steins Unbiased Risk Estimator (SURE) (Long et al., 2005), to select good

window sizes.

4.4.4 Demonstration of the Slide Length

The proposed scheme involves non-trivial calculations as, in each window, the EM

needs to be run across the entire set of data in that window. While these computations

can be performed off-line, implying that the computational complexity is not a major

concern, it is often a matter of convenience to a user for estimates to be performed

as quick as possible. One simple approach for reducing the overall computation time

is to simply shift the window by more than one data point each time. In Fig.4·25, we

show the results of running the time-varying approach, stepping forward by 1, 5, 20,

and 50 steps.

Figure 4·25: Comparison of different shift sizes with shifts of 1 (yel-
low), 5 (green), 20 (blue), and 50 (red). The true parameter is shown
in purple.
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Somewhat surprisingly, there is little loss in accuracy, though of course there is

loss of sensitivity to multiple, rapid changes in parameter values with larger shifts.

So far we have introduced an algorithm for time-varying parameter estimation in

the context of single particle tracking where we have a complex, nonlinear measure-

ment model. The proposed algorithm considers the use of previously developed tools,

namely the EM algorithm combined with a UKF and the URTSS, in a local approach.

Using physically accurate simulations, we explored the effect of using a kernel and the

window lengths, all at two different SBRs. We also considered the effect of increasing

shifts in the window as a means of reducing the computational load of the analysis

technique.
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Chapter 5

Computationally Efficient Application of

Sequential Monte Carlo - Expectation

Maximization

5.1 Variant of Sequential Monte Carlo Method

Under the EM framework, the selection of filtering and smoothing algorithms is very

flexible so long as they produce the necessary distributions. In earlier chapters, we

have made use of the basic version of SMC-EM where the SMC components is com-

prised of an SIR filter and a FFBS. In this chapter, we turn instead to an alternative

Gaussian Particle Filter (aGPF) (Kotecha and Djuric, 2003) and a Backward Simu-

lation Particle Smoother (BSPS) (Godsill et al., 2004) to produce a more computa-

tionally efficient version of SMC-EM. While the improved efficiency does theoretically

come at the cost of accuracy in the representation of the distributions, our results

indicate that, at least for the models considered, this impact is small in practice. To

distinguish these two versions of SMC-EM, we denote SMC1-EM as the old version

and SMC2-EM as the newer, more computationally efficient version.

The Gaussian Particle Filter (GPF) (Kotecha and Djuric, 2003) approximates the

filtered distribution as a Gaussian (though extensions to more general distributions

through propagating higher moments are straightforward). As with all such filters,

the GPF consists of a measurement update step and a time update step. In the mea-

surement update step, particles are drawn from an importance sampling function,
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π(xt|Yt). The choice of this function is informed by the specific problem (see (Hand-

schin and Mayne, 1969; Doucet et al., 2000; Tanizaki, 2003) for details) but often

this is selected to be the prediction distribution (a normal distribution with a mean

and covariance determined in the time update step). These samples are weighted

based on the measurement distribution and their sample mean and covariance calcu-

lated to produce the filtered distribution. In the time update step, samples are drawn

from this filtered distribution, propagated through the motion model, and the sample

mean and covariance determined to produce the prediction distribution. In a simpli-

fication known as the alternate GPF (aGPF), the weighted samples from the filtered

distribution are reused in the time update, avoiding the need to resample particles.

To further reduce the computational load, we selet all the particles at the time

update step to be at the mean of the filtered distribution. These are then propagated

through the motion model as usual. We also follow a suggestion of (Kotecha and

Djuric, 2003) and use these propagated particles in the measurement update rather

then drawing from the importance function. With these choices, we avoid the need

for resampling from any distribution, simplify the implementation of the propagation

through the motion model, and avoid the need to calculate explicitly the covariance

matrix of either the filtered of the predicted distribution. We refer to this algorithm

as the simplified aGPF (sGPF); it is summarized in Alg. 1.

To initialize the filter at time t0, the first samples are drawn from an importance

function defined as a uniform density over a cubic volume centered at (xo, yo, 0),

where (xo, yo) define the center of the first image, with a side length of twice the pixel

size ∆x. This is a somewhat arbitrary choice and can be easily modified if there is

additional information available or if a larger uncertainty is needed at the initial time.

The BSPS, shown in Algorithm 2, takes the filtered weights of the sGPF {w̃j
norm,t, x

j
t :

t = 1, ..., N ; j = 1, ...,M} and calculates the smoothed weights. The computational
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Algorithm 1 simplified GPF

1: /* Initialize */
2: Set t = 0
3: Sample particles x̃i

0, i = 1, . . . ,M, from the initial importance function
4:

5: /* Measurement update */
6: /* Compute particle weights */
7: w̃i

t = p(yt|x̃i
t), i = 1, . . . ,M.

8: /* Normalize the weights */

9: w̃i
norm,t =

w̃i
t∑M

j=1 w̃
j
t

, i = 1, ...,M.

10: /* Calculate the mean of the filtered distribution */
11: µt =

∑M
j=1 w̃

j
norm,tx̃

j
t .

12:

13: /* Time update */
14: /* Initialize M particles */
15: x̃i

t = µt, i = 1, . . . ,M .
16: /* Propagate through the motion model */
17: x̃i

t+1 = ft(x̃
i
t, wt, θ), i = 1, 2, . . . ,M.

complexity of this scheme is O(NMK). We note that there are other variants of

BSPS with even better computational complexity, such as BSPS with rejection sam-

pling (Douc et al., 2011). Such approaches, however, must compute upper bounds on

the state transition density and we find the cost of doing so for the confined model

considered here makes such methods more costly than simple BSPS. One of the ben-

efits of BSPS, however, is that the simulated trajectories are independent to each

other. Our implementation takes advantage of this to simplify the computational

load by parallelizing computations when possible.

5.2 Three Dimensional Diffusion with Confined Mode

5.2.1 Model Simplification

The complete one step distribution for the confined diffusion motion model in (2.8)

involves an infinite sum. Our approximation is simply an informed choice of the
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Algorithm 2 Backward Simulation Particle Smoother

1: /* Simulate K smoothed trajectories from time N */
2: for k = 1 to K do
3: /* Draw index ℓ according to weights {w̃j

norm,N}Mj=1 */

4: set x̃k
N |N = x̃ℓ

N .
5: end for
6: /* Propagate the remaining simulated trajectories */
7: for t = N − 1 to 1 do
8: for k = 1 to K do
9: /* Compute new weights */
10: w̃j,k

t|N ∝ wj
tp(x̃

k
t+1|N |x̃

j
t) for j = 1, ...,M .

11: /* Normalize the smoothing weights */

12: w̃j,k
t|N =

w̃j,k
t|N∑M

j=1 w̃
j,k
t|N

, j = 1, ...,M.

13: /* Draw index ℓ according to {w̃j,k
t|N}Mj=1 */

14: set x̃k
t|N = x̃ℓ

t.
15: end for
16: end for

number of terms needed to maintain good accuracy without undue computation. For

simplicity of notation we define

β
∆
=

D∆tπ2

L2
.

Writing the probability distribution in (2.8) out to Np terms we get

pNp(xt+1|xt) =
1

L
+

2

L
×

Np∑
n=1

exp−βn2

cos

[
nπ

L

(
xt+1 +

L

2

)]
cos

[
nπ

L

(
xt +

L

2

)]
.

(5.1)

Note that while this is no longer a true distribution (as it does not integrate to one),

the goal in what follows is to choose Np so that this error is small enough to ignore.
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To that end, define the error

e
∆
= p(xt+1|xt)− pNp(xt+1|xt)

=
2

L

∞∑
n=Np+1

exp−βn2

cos

[
nπ

L

(
xt+1 +

L

2

)]
cos

[
nπ

L

(
xt +

L

2

)]
. (5.2)

We then have

|e| ≤ 2

L

∞∑
n=Np+1

exp−βn2 ≈ 2

L

√
π

4β
erfc(

√
βNp), (5.3)

where erfc is the complementary error function, given by

erfc(x) =
2√
π

∞∫
x

exp−t2 dt. (5.4)

Let ϵ denote a desired threshold on the error. Then, from (5.3), the needed number

of terms is

Np =
1√
β
erfc−1

(
ϵL

2

√
4β

π

)
. (5.5)

This expression depends on the parameters of the confined diffusion model, L and D

(through β), and is illustrated for the case of L = 0.5 in Fig. 5·1. While these values

are not known a priori, in practice it is reasonable to assume that approximate bounds

on their values are known, guided by the physical problem and prior experience.
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Figure 5·1: Relationship between Np and β.

In addition, as Fig. 5·1 illustrates, high accuracy is achieved over a wide range of

parameters using a very small number of terms.

We turn our attention now to the measurement model in (2.18). The zeroth-order

Bessel function of the first kind is

J0(r) =
∞∑
n=0

(−r2/4)n

n!2
. (5.6)

To reduce the computational cost of evaluating (5.6), we rely on a method intro-

duced in (Kadri, 2019). This technique approximates the near-field (small r) and far

field (large r) using simple cosine functions,

J0,near = cos (Mr) , J0,far =

√
2

πb1r
cos (b2r − b3) , (5.7)

where M and the bi (i = 1, 2, 3.) are constants chosen to match the true Bessel

function at select locations. More details can be found at (Kadri, 2019). To use this



90

Figure 5·2: Bessel approximation methods.

in our observation model, we set r to be

r
∆
= κ sin θ

√
x2 + y2 (5.8)

where κ is a constant physical value determined by

κ
∆
= 2πn/λ (5.9)

where n is the refraction index and λ is the emission wavelength.

These two approximations, together with the true function, are shown in Fig. 5·2.

The near-field approximation is quite accurate for small r. As we are assuming our

image data has been segmented, we know that the true particle location lies within

the
√
P ×

√
P pixels and thus r is guaranteed to be small, allowing us to use only

the near field approximation in the remainder of this paper.

To demonstrate the impact of these two modifications, we show the computation

time of the original formulation (which involved 10,000 terms in the confined model
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(2.8) and a numerical evaluation of the Bessel function) and of the modified versions

(using 20 terms in (2.8) and the near-field approximation of J0). The calculations were

carried out in Python 3.8 on a 2.3 GHz Intel Core i5 running MacOS 10.15. Since

these models are evaluated at each time step, these reductions have a significant

impact on the overall time of our estimation algorithm.

Table 5.1: Runtime comparison: original vs. simplified

Runtime (sec) Before modification After modification

Motion model (2.8) 5.645862 0.000924

Measurement model (2.19) 48.551610 0.063256

Because the single particle is smaller than the diffraction limit of light, the image

on the camera is described by the PSF of the instrument. In 2-D (and in the focal

plane of the objective lens), the PSF is well approximated by

PSF (x, y;xo, yo) = G · exp
(
−(x− xo)

2

2σ2
x

− (y − yo)
2

2σ2
y

)
, σx = σy =

√
2λ

2πNA
, (5.10)

where (xo, yo) is the location of the particle, G is the peak intensity of the fluorescence,

λ is the wavelength of the emitted light and NA is the numerical aperture of the

objective lens being used (Zhang et al., 2007).

5.2.2 Observation by CCD/EMCCD

In this part, we demonstrate the performance of SMC2-EM, comparing it to SMC1-EM

and then take advantage of the computational efficiency of SMC2-EM to investigate

the effect of data length on estimation performance.

In this work, the motion model and measurement model follow (2.8) and (2.10)

respectively. We assume the images were formed with Born-Wolf PSF in (2.18).

The parameter values chosen for the simulations are typical values in the biophysical
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setting (see, e.g., (Chenouard et al., 2014; Ashley and Andersson, 2015)) and are

listed in Table 5.2. In practice, images are captured at a given frame rate (every ∆t

units of time). Photons are collected during the shutter period δt (with δt ≤ ∆t.

The particle being tracked of course is in motion while the shutter is open, leading

to an effect known as motion blur. While imaging parameters are typically chosen to

minimize this effect, the blur is not zero. To account for this, each of our images is

generated as the sum of Nsub sub-images collected over the shutter period δt. For each

setting considered, 25 datasets were simulated to produce statistics on the results.

All simulation work was carried out in the Python 3.8 environment.

Table 5.2: Imaging parameters for 3D simulation with confined mo-
tion.

Symbol Parameter Value

Dx, Dy, Dz real diffusion coefficient in 3D 0.01 µm2/s

Lx, Ly, Lz length of confined channel in 3D 500 nm

G peak intensity 100 counts
Nbgd background intensity rate 10 counts

N number of image frames/dataset 100
n Refraction index 1.33

Nsub subsamples per image 100
α maximum semiangle of objective lens sin−1(NA

n
)

δt shutter period 10 ms
∆t imaging period 100 ms
κ wave number of the emitted light 2πn/λ

For the motion model approximation, Np = 40 was selected in the expansion

(giving an error of ϵ < 1× 10−5). When implementing the two versions of SMC-EM,

both parallel processing (on four cores) and a table-lookup (for the double integrals

in (2.19)) were used. The motion model parameters to be estimated were the con-

finement lengths in three dimensions (Lx,y,z) and the diffusion coefficients in three

dimensions (Dx,y,z). The estimation of the confinement length in the x direction at
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the (e+ 1)th EM iteration is

L̂x,e+1 = max
t

2|x̂t|N,e| (5.11)

where x̂t|N,e is the smoothed estimate of the particle position at time t for the eth EM

iteration. Estimates in y and z are similar. The diffusion coefficients were estimated

by numerically finding the root of the derivative of the (particle-based approximation

to the) Q function.

Performance is measured through both the RMSE of the localization of the tracked

particle across the trajectory and the accuracy of the parameter estimates. Note that

because the measurement model (2.18) is symmetric above and below the focal plane

(defined as z = 0), we cannot distinguish between a particle being above or below

that plane. Thus, when considering the RMSE we use |z|.

As shown in Fig. 5·3, SMC2-EM is significantly faster than SMC1-EM. Even with

1000 Monte Carlo samples, SMC2-EM remains much faster than our original ap-

proach.
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Figure 5·3: Runtime of different versions of SMC-EM for 10 EM
iterations on a single dataset with image length N = 100.
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Then we compared the performance of localization and parameter estimation un-

der the two versions of SMC-EM using 100 image frames (a typical value in practice)

and 100 Monte Carlo samples in each algorithm. The RMSE of the localization for

the two methods is shown as boxplots in Fig. 5·4, indicating that the simplifications

of SMC2-EM have little effect on localization accuracy.

Taking advantage of the computational efficiency of SMC2-EM, we increased the

Monte Carlo samples from 100 to 500 and to 1000. The localization performance for

all cases are shown in Table 5.3.

Table 5.3: Mean and standard deviation of localization performance
with N = 100 images.

Method RMSEx (nm) RMSEy (nm) RMSE|z| (nm)

SMC1-EM
100 15.3045 ± 1.4592 15.0352 ± 1.3360 47.2614 ± 5.7451

SMC2-EM
100 15.6719 ± 1.2892 15.6274 ± 1.4743 49.8244 ± 5.6984

SMC2-EM
500 13.1121 ± 1.1169 13.0864 ± 1.1250 37.3751 ± 4.8774

SMC2-EM
1000 12.9188 ± 1.1550 12.8046 ± 1.1451 35.0089 ± 3.2183

Figure 5·4: Boxplot of root mean square error (RMSE) by SMC1-
EM100 (blue) and SMC2-EM

100 (red) respectively. Note that the solid
line inside the box denotes the median, the edges of the box repre-
sent the first and third quartiles, the vertical dashed line indicates the
bounds for data within 1.5 times the interquartile range, and the red
+ symbols are outliers.
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As expected, the localization accuracy improves as more Monte Carlo samples are

used. A typical run and resulting estimated trajectories can be seen in Fig. 5·5.

(a) (b) (c)

Figure 5·5: Typical results for trajectory estimation using SMC1-EM
and SMC2-EM. (a) The ground truth trajectory with color indicating
time. (b) x-axis results. (Results in y are similar and are omitted for
space reasons.) (c) z-axis results. There’s little difference in localization
between SMC1-EM and SMC2-EM, however, there’s a big difference in
terms of computational efficiency, see Fig. 5·3.

In terms of parameter estimation, the results of the estimated confinement lengths

and diffusion coefficients are summerized in Table 5.4. As with RMSE, SMC2-EM

still shows parameter estimation performance on par with SMC1-EM despite the much

faster computation time. Increasing the number of Monte Carlo samples shows some

benefit in estimating the diffusion coefficients but has very little effect on determining

the confinement length. This can be explained by considering the typical trajectory

in Fig. 5·5. With the selected diffusion coefficients and simulation time, the fluores-

cent particle rarely explores the full confinement. Since the ML estimator for this

parameter is simply the range of motion in each axis, this leads to a negative bias in

that estimate.

Table 5.4: Parameter estimation performance with N = 100 images.

Method Lx (µm) Ly (µm) Lz (µm) Dx (µm2/s) Dy (µm2/s) Dz (µm2/s)

SMC1-EM
100 0.45619 ± 0.021631 0.45409 ± 0.017009 0.42645 ± 0.031515 0.0087497 ± 0.0013610 0.0088405 ± 0.0016812 0.011935 ± 0.0036097

SMC2-EM
100 0.45471 ± 0.022704 0.45371 ± 0.017289 0.42542 ± 0.037334 0.0085595 ± 0.0014248 0.0088739 ± 0.0017232 0.010455 ± 0.0039255

SMC2-EM
500 0.45834 ± 0.017476 0.45373 ± 0.016257 0.39403 ± 0.034646 0.0092509 ± 0.0014024 0.0091535 ± 0.0014212 0.009164 ± 0.0025437

SMC2-EM
1000 0.45701 ± 0.017557 0.45511 ± 0.017103 0.38553 ± 0.029079 0.0093116 ± 0.0013983 0.0093294 ± 0.0014023 0.010374 ± 0.0042114
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One of the advantages of SMC2-EM is its ability to handle larger data sets due

to its lower complexity. Since tracking a particle for a longer time allows it to more

effectively explore its entire confined region, one expects that the estimation of the

confinement parameter will get improved with longer data runs. To explore this, we

ran simulations with the same parameter settings as before but now using 50, 100,

500, and 1000 images. The localization estimates are summarized in Table 5.5 and

the parameter estimates in Table 5.6.

As expected, there is improvement in all metrics as the data length is increased

with the largest impact being on the estimation of the confinement length.

Table 5.5: Influence of data length on localization using SMC2-EM
100.

Data length N RMSEx (nm) RMSEy (nm) RMSE|z| (nm)

50 16.8254 ± 3.2570 15.6224 ± 2.5032 48.3973 ± 10.4022
100 15.6719 ± 1.2892 15.6274 ± 1.4743 49.8244 ± 5.6984
500 14.8394 ± 0.7646 15.3108 ± 3.0564 47.8715 ± 3.5421
1000 14.7521 ± 0.4867 14.7728 ± 0.4596 47.2465 ± 1.8068

Table 5.6: Influence of data length on parameter estimation using
SMC2-EM

100.

Data length N Lx (µm) Ly (µm) Lz (µm) Dx (µm2/s) Dy (µm2/s) Dz (µm2/s)

50 0.40068 ± 0.075374 0.40825 ± 0.061829 0.38755 ± 0.046502 0.0082067 ± 0.0025068 0.0078197 ± 0.0021422 0.0097096 ± 0.006772
100 0.45471 ± 0.022704 0.45371 ± 0.017289 0.42542 ± 0.037334 0.0085595 ± 0.0014248 0.0088739 ± 0.0017232 0.010455 ± 0.0039255
500 0.48164 ± 0.007607 0.48342 ± 0.006331 0.49621 ± 0.020851 0.0088356 ± 0.0008336 0.0088379 ± 0.0007134 0.010643 ± 0.0021146
1000 0.49247 ± 0.003490 0.49301 ± 0.004967 0.52136 ± 0.020327 0.0087642 ± 0.0005017 0.008880 ± 0.00050147 0.01 0547 ± 0.0011662

5.2.3 Observation by sCMOS

In this part, we use simulations to demonstrate SMC2-EM and compare its perfor-

mance against algorithms based on the standard localize-then-estimate paradigm.

Without specific illustration, the SMC-EM for all the remaining contents refers to

the SMC2-EM. We assume segmentation of the raw images to a sequence of images

containing the DH-PSF of the single particle has been performed. This is, of course,
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a non-trivial task, especially at low signal levels. Our interest here, however, is on the

relative performance of the estimators and by beginning with the segmented image

sequences we can avoid confounding effects of segmentation.

For the comparison, we use two approaches for stand-alone localization. The

first is based on a GF to each lobe of the DH-PSF in the image to determine their

centers; the particle location is then determined from (2.22) and (2.23). The second is

MLEsCMOS, developed in (Huang et al., 2013) for estimating two-dimensional particle

locations from sCMOS camera data, and modified here to include the DH-PSF for 3D

localization. Once the particle trajectory has been determined, we estimate model

parameters using either the MSD or a fast, MLE-like scheme. For the MSD, we

perform a nonlinear fit to the MSD based on the confined diffusion model in (Kusumi

et al., 1993). For the MLE-like scheme, we use the true MLE for the confinement

length; as shown in (Ashley and Andersson, 2015) this estimator is simply given by

the range in the estimated trajectory in each axis.

However, the nonlinear nature of the motion model precludes a simple solution

of the MLE of the diffusion coefficient. Rather than utilizing a numerical solver,

we apply a computationally efficient approximation to MLE for the diffusion coef-

ficient assuming a free diffusion model as developed in (Berglund, 2010; Michalet

and Berglund, 2012). We denote these combinations of algorithms using localization-

estimation so that, for example, GF-MLE refers to localization using a Gaussian fit

and parameter estimation using the MLE-like scheme, while MLEsCMOS-MSD refers

to localization using the MLEsCMOS algorithm and parameter estimation using a fit

to the MSD.

Simulations were made of a particle diffusing in 3D, confined to a cube centered at

the origin with dimensions of 500 nm. Each simulation consisted of N = 100 frames

at an imaging rate of 10 frames/s (for a period of ∆t = 100 ms). In practice, cameras
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accumulate photons over an integration period and the resulting motion blur arising

from particle motion during integration is an important factor in performance.

To replicate this effect, trajectories of length N ×Nsub were generated where Nsub

represents a sub-sampling factor. An image is generated at each of the subsample

steps in the shutter period δt. These are then averaged together to produce the final

image for that imaging period to incorporate the effect of motion blur. The ground

truth position for that image is taken to be the average of the particle position

over the shutter period. The parameter settings for all simulations are summarized

in Table 5.7. To generate statistics on algorithm performance, 50 datasets were

simulated for each experimental setting.

Table 5.7: Simulation Parameter Settings

Symbol Parameter Value

Dx,y,z diffusion coefficient in {x, y, z} 0.01 µm2/s

Lx,y,z confinement length in {x, y, z} 500 nm

Nbgd background intensity rate 10 counts

G peak intensity 10− 50 counts
N number of image frames/dataset 100

Nsub subsamples per image 100
NA numerical aperture 1.2
λ emission wavelength 540 nm
r distance between DH-PSF lobes 300 nm
k gain of z to θ in DH-PSF −0.1π/180 rad
σxy width of each lobe of DH-PSF 234 nm

P number of pixels 225 pixels
∆x,∆y effective pixel width 100 nm

δt shutter period 10 ms
∆t imaging period 100 ms
QE camera quantum efficiency 1.0
ε peak expected value of readout noise 10 counts

To investigate the behavior of the algorithms at low signal levels, we varied the

peak intensity G across the range of 10-50 counts, holding the background rate fixed.



99

The SNR of the images can be defined as (Long et al., 2012; Beier and Ibey, 2014)

SNR =
G×QE√

(G+Nbgd)×QE × F 2
n + ε2

(5.12)

where Fn is the excess noise factor (Fn = 1 for sCMOS cameras) and the other terms

are defined in Table 5.7). Because we directly set the background and peak intensity

level, we report results as a function of Signal-to-Background Ratio (SBR), defined

by

SBR =
G

Nbgd

. (5.13)

From (5.12) and (5.13), the corresponding SNR and SBR levels considered in the

simulations are shown in Table 5.8.

Table 5.8: Relationship between SNR and SBR

SBR 1 2 3 4 5

SNR 0.913 1.75 2.53 3.27 3.95

Typical images generated by the DH-PSF of a single particle under these SBR

conditions are shown in Fig. 5·6.

Figure 5·6: Typical images at (a) SBR=1, (b) SBR=2, (c) SBR=3, (d) SBR=4,
and (e) SBR=5.

Performance across different signal-to-background ratio (SBR)

We measure localization performance using the Root Mean Square Error (RMSE)

over the entire trajectory as compared to the ground truth. Due to the motion blur

effect, the notion of “ground truth” must be defined; here we use the average of the
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positions of the true trajectory over the integration period. The results over these

simulations are shown in Fig. 5·7 as a function of SBR with GF shown in black/gray,

MLEsCMOS in red, SMC100-EM in green, and SMC1000-EM in purple. The mean

for each algorithm is shown as a dashed line, the median as a dotted line and the

shadowed region shows the 10%-90% quantiles of the estimates.

Figure 5·7: Localization performance evaluated by RMSE among dif-
ferent methods as a function of SBR. The shadowed area denotes the
10% quantile - 90% quantile of all estimates for each estimator.

The results indicate several interesting features. First, as expected, increasing the

number of Monte Carlo samples used in SMC-EM improves localization performance.

Second, the algorithms differ primarily at the lowest SBR levels, performing similarly

after an SBR of 4. At lower signal levels, the GF shows the lowest accuracy and,

in the limiting case of SBR=1 is essentially equivalent to taking the center of the

segmented image as the particle location. Both MLEsCMOS and SMC-EM, however,

yield good localization even at the lowest SBR levels, with SMC-EM showing the best

results.

An estimation result on a typical trajectory (with SBR=1) is shown in Fig. 5·8.

All of the algorithms follow the general trend of the true trajectory. GF, however,

yields multiple large outliers, particularly in the z-direction, driving its larger RMSE.

The MLEsCMOS is more variable than the SMC-EM methods which use data from the

entire sequence of images and the motion model when inferring the particle location.
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Because MLEsCMOS consistently outperforms the GF approach, we do not consider

the GF method further.

Figure 5·8: Trajectory estimation comparison by different SPT meth-
ods at SBR=1.

The results on parameter estimation using the different schemes are shown in

Fig. 5·9 for the diffusion coefficient and in Fig. 5·10 for the confinement length. The

results from MLEsCMOS-MSD are shown in light blue, those from MLEsCMOS-MLE in

red, from SMC100-EM in green, and from SMC1000 in purple. As before the mean

for each algorithm is shown as a dashed line, the median as a dotted line, and the

shadowed region shows the 10%-90% quantiles of the parameter estimate.

Figure 5·9: Diffusion coefficient estimation performance as a func-
tion of SBR. The true diffusion coefficients were Dx = Dy = Dz =
0.01 µm2/s. The shadowed area shows the 10% quantile - 90% quantile
of all estimates.
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Figure 5·10: Confinement length estimation performance as a func-
tion of SBR. The true confinement lengths were Lx = Ly = Lz =
0.5 µm. The shadowed area shows the 10% quantile - 90% quantile of
all estimates.

These results clearly show that a fit to the MSD yields the worst performance in

estimating the model parameters with both a larger bias and a much larger range of

estimates. In general, the SMC-EM methods and MLEsCMOS-MLE have very similar

performance for estimating the diffusion coefficient, though the SMC-EM methods

have a smaller spread and bias. The exception is in the z axis where the SMC-

EM methods exhibit a larger positive bias than MLEsCMOS-MLE at an SBR of one

but otherwise shows the same trend. At SBRs of two and above, this bias remains

consistent and, while small, is non-zero. There is some evidence in our prior work

that the primary driver of this bias is the relatively short length of the trajectories;

as the datalength is increased, this bias decreases (Lin and Andersson, 2021).

The confinement length results show that at SBRs of 4 or above, the SMC-EM and

MLEsCMOS-MLE approaches are quite similar. As the SBR decreases, however, the

MLEsCMOS-MLE overestimates the length while the EM approaches remain accurate,

though with an increased spread in the estimates at lower SBR.

Performance across different confinement lengths

It is reasonable to expect that estimation performance will depend on the con-
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finement length. If L is very large, the particle will not interact with the boundaries

very often and you may need very long runs to get an accurate estimate of the con-

finement. However, because the motion essentially becomes free diffusion, estimating

the diffusion parameter is likely to be easier. Conversely, with small values of L, the

nonlinearities in the motion model due to the confinement will be dominant. Because

the particle is very likely to interact with the boundaries, even in short trajectories,

estimation of L may be easier while the estimation of D may suffer since the mo-

tion no longer looks like diffusion. This is particularly likely in the MLEsCMOS-MLE

algorithm since the diffusion estimation assumes a free diffusion model.

To explore this effect, we performed simulations for confinement lengths ranging

from 0.1 µm - 0.5 µm. Because MLEsCMOS outperforms GF and MLE outperforms

MSD, we compared SMC-EM only to MLEsCMOS-MLE. Based on the results in Chap-

ter 5.2.3, we expect the algorithms to differ at the lowest SBR but to perform similarly

at higher SBR. We therefore show results here for SBR=1 and SBR = 5. We also

found that confinement length had little effect on localization and focus here on pa-

rameter estimation.

The estimation results for SBR=1 are shown in Fig. 5·11. In this figure, re-

sults from MLEsCMOS-MLE are shown in red, from SMC100-EM in green, and from

SMC1000-EM in purple. The mean for each algorithm is shown as a dashed line, the

median as a dotted line, and the shadowed region shows the 10%-90% quantiles. The

true parameter values are shown as a solid black line.

The results indicate that SMC-EM accurately captures the confinement length

across the entire range of L considered. MLEsCMOS-MLE has the correct trend but

shows a bias that decreases as the confinement length increases. Because the MLE

for the confinement length is given by the range of the estimated trajectory, this

likely reflects a larger propensity for occasional outliers in localization. Because the
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Figure 5·11: Parameter estimation performance as a function of
confinement length at SBR=1. The true diffusion coefficients were
Dx = Dy = Dz = 0.01 µm2/s. The shadowed area shows the 10%
quantile - 90% quantile of all estimates.

SMC methods utilize the motion model in localization as well as in parameter esti-

mation, such outliers are much less likely. Similarly, the SMC-EM methods are more

reliable for diffusion coefficient estimation at smaller confinement lengths. At the

smallest confinement lengths, the particle spends most of its time interacting with

the boundary of the domain and has limited mobility. As a result the diffusion coef-

ficient is significantly underreported. The estimate improves with increasing L, with

the SMC-EM methods consistently outperforming MLEsCMOS-MLE.

Estimation results for SBR=5 are shown in Fig. 5·12. Because localization is more

accurate at the higher SBR, the estimation of confinement length using MLEsCMOS-

MLE is more accurate, matching the performance of SMC-EM. At the smallest con-

finement lengths, however, MLEsCMOS-MLE still underestimates the diffusion param-

eter, performing substantially worse than the SMC-EM approach.
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Figure 5·12: Parameter estimation performance as a function of
confinement length at SBR=5. The true diffusion coefficients were
Dx = Dy = Dz = 0.01 µm2/s. The shadowed area shows the 10%
quantile - 90% quantile of all estimates.

An alternative metric of performance in parameter estimation is the success rate

defined as the percentage of trials with parameter estimates within 25% of the true

value (Michalet and Berglund, 2012). While this is a coarse metric, it provides a

simple, concise means of comparing performance across a wide range of conditions.

Heat maps showing the success rate of the algorithms across all values of SBR and

confinement length we considered are shown in Fig. 5·13 for the confinement length

and in Fig. 5·14 for the diffusion coefficient.
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Figure 5·13: Heat map of success percentage in confinement length
estimates. (top row) MLEsCMOS-MLE. (middle row) SMC100-EM. (bot-
tom row) SMC1000-EM.

In each image, the columns show results in the {x, y, z} directions, the first row is

for MLEsCMOS-MLE, the second for SMC100-EM, and the third row for SMC1000-EM.

The general trend for the confinement length is that both MLEsCMOS-MLE and SMC-

EM accurately estimate this parameter at higher SBR and larger L. As either SBR or

confinement length is reduced, the SMC-EM methods outperform MLEsCMOS-MLE.

This general trend is repeated in the diffusion coefficient estimation shown as Fig.

5·14, with two notable differences. First, the heat maps indicate that at the smallest

confinement length and lowest SBR, the SMC-EM methods show a large increase in

success rate for the axial diffusion coefficient. Referring back to Fig. 5·11 shows that

this is driven by a very large increase in variability of the SMC-EM estimates under
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these conditions rather than a true improvement in performance. Similarly, at the

smallest confinement lengths, SMC100-EM has a higher success rate than SMC1000-

EM. This again is due to the increased variability in the diffusion coefficient estimates,

driven now by the smaller number of Monte Carlo samples in the filters.

Figure 5·14: Heat map of success percentage in diffusion coefficient
estimates. (top row) MLEsCMOS-MLE. (middle row) SMC100-EM. (bot-
tom row) SMC1000-EM.

Additionally, as expected the larger number of Monte Carlo samples in SMC1000-

EM improves performance, at the cost of additional computation time. The SMC-

EM algorithms were implemented in Python 3.8 on a 2.3 GHz Intel Core i5 running

MacOS 11.2. This work utilized significantly faster filtering schemes than the early

implementation of SMC-EM found in (Ashley and Andersson, 2015) (see main paper

for details).
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To compare, we re-implemented the original algorithm in the Python environment,

taking advantage of two other computational improvements we included in the newer

version, namely parallel processing (on four cores) for the Monte Carlo filters, and a

table lookup (to avoid computing the integrals defining the photon rate in each pixel

of the camera).

As shown in Fig. 5·15, the updated algorithm (labeled as SMC2-EM) runs sub-

stantially faster. This speed improvement allows us to use a much larger number of

Monte Carlo samples, improving the overall performance of the algorithm.
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Figure 5·15: Runtime of different versions of SMC-EM for 10 EM
iterations on a single dataset with image length N = 100.

Fig. 5·16 - 5·20 present the results of the simulation study of localization perfor-

mance as a function of Signal-to-Background Ratio (SBR) and confinement length.

As with the results in the main paper, the results indicate that SMC-EM outperforms

the other approaches at the lowest signal level. In addition, our joint localization and

estimation scheme is especially beneficial when the particle is tightly confined. In all
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the figures, red corresponds to MLEsCMOS, green to SMC100-EM (using 100 Monte

Carlo samples), and purple to SMC1000-EM. The median of the results is shown as a

dotted line and the mean as a dashed line. The shadowed region shows the 10%-90%

quantiles. The results are organized from smallest confinment (L = 0.1 µm) to largest

(L = 0.5 µm).

Figure 5·16: True L=0.1 µm: RMSE as a function of SBR. The
shadowed area indicates the 10% - 90% quantiles, same to the remaining
Fig. in this chapter.

Figure 5·17: True L=0.2 µm: RMSE as a function of SBR.

Figure 5·18: True L=0.3 µm: RMSE as a function of SBR.
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Figure 5·19: True L=0.4 µm: RMSE as a function of SBR.

Figure 5·20: True L=0.5 µm: RMSE as a function of SBR.

Fig. 5·21 - 5·23 show the results of the simulation study of parameter estimation as

a function of confinement length and Signal-to-Background Ratio (SBR) ranging from

2 - 4. These Fig. together with Fig. 5·11 - 5·12 reveal that, SMC-EM outperforms the

other algorithms at the lowest signal level and when the particle is tightly confined.

The median of the results is shown as a dotted line and the mean as a dashed line.

The shadowed region shows the 10%-90% quantiles. The results are organized from

smallest confinment (L = 0.1 µm) to largest (L = 0.5 µm).
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Figure 5·21: SBR=2: parameter estimation as a function of confine-
ment length (true Dx = Dy = Dz = 0.01 µm2/s).

Figure 5·22: SBR=3: parameter estimation as a function of confine-
ment length (true Dx = Dy = Dz = 0.01 µm2/s).
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Figure 5·23: SBR=4: parameter estimation as a function of confine-
ment length (true Dx = Dy = Dz = 0.01 µm2/s).
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Chapter 6

Particle Identification Network for

Particle Detection

In real SPT experiments, the acquired image typically contains multiple particles of

interest. Our analysis techniques, however, require a stream of images for a single

particle. Our goal in this chapter is to detect those particles in a single image and

to extract for each a small sub-image that is suitable for downstream processing,

including particle localization and linking across multiple frames into a trajectory. As

this is a pattern recognition and classification problem, we apply a machine learning-

based approach.

In this work, we first design and create three different Particle Identification Net-

works (PINs): PINCNN based on a standard CNN structure, PINResNet based on a

ResNet-50, and PINFPN based on a FPN. Next all PINs are trained using the same

collection of simulated data created with a range of SBRs, emitter density, and differ-

ent types of PSFs: Born-Wolf PSF, Double-Helix PSF, and Astigmatic PSF. Then a

quantitative comparison is conducted among three PINs by testing the same collec-

tion of data. In addition, the performance of all PINs is validated using experimental

images of labeled AMPA receptors in rat hippocampal neurons at both low and high

light conditions.

The primary contributions of this work: (1) the design, training, and testing of

deep networks focused on particle detection and image cropping, (2) the comparison

of three different ML architectures across a range of signal and background levels,
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showing that the complexity of PINResNet relative to PINCNN yields clear benefits

at very low SBRs while, at least for the PSFs considered, the additional layers of

PINFPN do not improve the performance relative to PINResNet, and (3) validation of

the approach on experimental data.

6.1 Problem Definition

In this section, we describe the particle detection problem and the expected output

before introducing the three PIN variants. Finally, we discuss the loss function used

for training. Note that to keep the description simple, throughout this work we assume

the input to the networks to be grayscale images of size 512×512 pixels. The PINs,

however, can handle images of other sizes without modification so long as the kernel

size is kept constant. We approach the detection task as a classification problem in

machine learning; this has a rich and well-developed foundation (see, e.g., (Ketkar

and Santana, 2017; Gupta and Sehgal, 2021)).

The input to our networks is a raw, 512×512 pixel image containing fluorescent,

sub diffraction-limit sized particles (see Fig. 6·5), though training could also be done

using data with non-fluorescent labels such as gold nanoparticles (see, e.g., (Liu et al.,

2020) for labeling strategies in SPT) or label-free techniques such as interferometric

Scattering Microscopy (iSCAT) data (Taylor and Sandoghdar, 2019). We consider

images with three different PSFs (Gaussian, astigmatic, and double helix). Given the

typical size of these PSFs in an image, we define the output to be a 64×64 image

where the value in each pixel defines the probability that the corresponding 8×8 pixel

region in the original image contains a particle. We refer to this output as a heatmap.

Note that at this point, we assume there is at most one particle in any 8×8 region.

This is a common assumption in SPT and is typically enforced by proper experimental

design. However, overlap can occasionally occur and thus later in this chapter we test
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our approach against images with dense collections of particles .

As is common in a classification problem, this output heatmap is converted to

a decision as to whether or not there is a particle in the corresponding region by

selecting a threshold on the probability; an output below the threshold is a negative

(there is no particle in the corresponding region) while a value above the threshold is

classified as a positive (there is a particle in the corresponding region). The quality

of a threshold is evaluated through two standard metrics, Precision (Pr) and Recall

(Re), defined by

Pr ≜ TP/(TP+FP), (6.1a)

Re ≜ TP/(TP+FN), (6.1b)

where TP represents the true positive classifications, FP the false positives, and FN

the false negatives. Pr measures the ability of the model to identify only true objects

in the class (here, the presence of a particle) as a fraction of all classified elements,

correct and incorrect. Re evaluates the ability of the model to find the objects in the

data. These two metrics both range from zero to one, representing competing goals;

improving performance in one degrades performance in the other. This tradeoff is

typically visualized using a precision-recall curve.

To select an appropriate threshold for a network we use the F1 score, given by

F1(p) ≜
2

1
Re(p)

+ 1
Pr(p)

, (6.2)

where p is a particular choice of threshold. Note that F1 is bounded between zero

and one, reaching the lower bound if either the recall or precision goes to zero, and
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the upper bound only if both go to one. The threshold, pthresh is then given by

pthresh = argmax
p

F1(p). (6.3)

It is useful to compare the performance of identification networks independent

of any particular choice of threshold. Given a list of N monotonically increasing

thresholds, this can be done using the Average Precision (AP), defined as

AP ≜
N∑

n=2

(Ren − Ren−1)Prn (6.4)

where Ren and Prn are the precision and recall at the nth threshold. (6.4) shows that

AP is a weighted sum of the precision of the classifier at each threshold with a weight

defined by the corresponding change in the recall achieved by the change in threshold.

After applying the threshold, each 8×8 pixelated region is labeled as either con-

taining a particle or not. However, the particle may be located anywhere within that

8×8 area. To ensure the image of the entire PSF is included for later processing, a

16×16 pixel area is extracted, with the center corresponding to the center of the 8×8

region.

We highlight that unlike previous chapters, we are considering here only a single

image; our problem is purely one of detection without any dynamic model information.

As one looks across images, however, the same particle may move from one 8×8 region

to another; as described further in Ch. 7 a linking step must be performed in order

to generate the image sequence needed by our EM-based framework.
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6.2 Architecture of Particle Identification Networks

6.2.1 PINCNN: CNN-based architecture

Inspired by (Newby et al., 2018; Helgadottir et al., 2019) where convolutional neu-

ral networks were applied to localize sub-diffraction limit-sized particles in images,

our first PIN uses a similar CNN architecture for emitter detection. Different from

(Helgadottir et al., 2019) that returns localization only and directly, the PINs re-

turn a sequence of cropped images required for EM based framework. Our structure,

shown in Fig. 6·1, uses three convolutional layers (denoted as CONV 1/2/3), each

with 0 padding of size 1 and a kernel size of 3. After each layer, a Rectified Linear

Unit (ReLU) is used as the activation function and max pooling of size two applied

to down-sample the input representation and produce the subsequent feature map.

After the third convolution layer, a 1×1 convolution is applied to linearly transform

the channel size of preceding layer from 16 to 1, then the output is passed through

a sigmoid function to return the output with the range 0 to 1. Given a selection of

a threshold pthresh, the heat map is converted to a detection map which can be used

to crop regions from the original image that contain a particle (this step is labeled as

“0/1” in Fig. 6·1). Note that this same thresholding and cropping procedure is used

in all three of our PIN architectures.

Input Image
512 × 512 × 1 Feature Map 1

256 × 256 × 8

CONV 1

Feature Map 2
128 × 128 × 16

Feature Map 3
64 × 64 × 16

CONV 2 CONV 3 1x1 CONV

Sigmoid

Prediction Heatmap 
64 × 64 × 1

Detection Map
64 × 64 × 1

0/1

Image Cropping

Figure 6·1: Architecture of PINCNN.
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6.2.2 PINResNet: ResNet-50 based Architecture

Inspired by ResNet-50 (He et al., 2016), we constructed PINResNet, a much deeper

neural network than PINCNN. An outline of the architecture is shown in Fig. 6·2.

The output of an initial convolutional layer (CONV 1) passes into a Stride-Reduced

ResNet-50 structure made up of four sequential groups of operations highlighted in

blue, green, yellow and red with each box indicating an intermediate feature map.

(Note that this name follows from the fact that our implementation used a reduced

stride step (from two to one) in groups 1, 3, and 4, as compared to the original

structure in (He et al., 2016).) The final output of the Stride-Reduced ResNet-50

block is then passed through a 1×1 convolutional layer followed by a sigmoid function

to produce the desired heatmap.

Input Image
512 × 512 × 1

Prediction Heatmap
64 × 64 × 1Stride-Reduced ResNet-50

Group 1 Group 2 Group 3 Group 4

CONV 1 1x1 CONV

Sigmoid

0/1

Image Cropping
Detection Map
64 × 64 × 1

Figure 6·2: Architecture of PINResNet.

6.2.3 PINFPN: Feature Pyramid Network based Architecture

PINFPN, first proposed in (Lin et al., 2017a), is a state-of-the-art for detecting objects

with features across a large range of length scales. While more complicated than the

ResNet architecture, PINFPN may perform better as PSFs exhibit both fine and coarse

features. The basic structure, shown in Fig. 6·3 is built from the Stride-Reduced

ResNet-50 block but with additional lateral and vertical connections. The vertical

connections up-sample the features to help predict higher resolution features with the

lateral connections help to enhance existing features by merging features maps of the
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same spatial size. The multiple heatmaps are aggregated into the final heatmap by

taking their mean.

Input Image
512 × 512 × 1

Group 4 HeatmapStride-Reduced ResNet-50

Group 2

Group 3

Group 4

Group 3 Heatmap

Group 2 Heatmap

Prediction Heatmap
64 × 64 × 1

Aggregation

Up sampling

Up sampling

0/1

Image Cropping
Detection Map
64 × 64 × 1

CONV 1

Lateral connection

Figure 6·3: Architecture of PINFPN

From Fig. 6·2 - Fig. 6·3, we see both PINResNet and PINFPN share the same

structure of Stride-Reduced ResNet-50 of which details is shown as Fig. 6·4. The

Group 1, 2, 3, and 4 in Fig. 6·2 - Fig. 6·3 correspond to blue, green, yellow and red

diagrams in Fig. 6·4 respectively. Note that the color boxes within Stride-Reduced

ResNet-50 denote the feature maps, while the color rectangles in Fig. 6·4 denote the

convolution layers. The second group is operated with stride of 2, so a downsampling

layer is needed to match the dimension. Therefore, the addition of a 1×1 convolution

layer with stride 2 is added to group 2, which is denoted by a green dashed and curved

arrow. The other three groups are constructed with a stride of 1 and thus do not
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need the addition of this 1 × 1 convolution layer. There are, however, multiple skip

connections without a 1× 1 convolution layer included as shown by the solid curved

arrows between layers. In essence, each group uses a stack of three layers (1×1, 3×3,

and 1× 1 convolutions respectively). Finally, the output of this sequence of stacks is

passed to a 1× 1 convolution followed by a Sigmoid function to produce the desired

prediction heatmaps. For both PINResNet and PINFPN, batch normalization is used

prior to the activation function so as to stabilize and accelerate the training process.
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Figure 6·4: Details of the four groups that define the Stride-Reduced
ResNet-50. The dashed curved arrow denotes a skip connection with
an addition of 1× 1 convolution layer with stride 2 while solid curved
arrows denote skip connections without any addition of convolution
layers.

6.2.4 Loss Function

The proposed PINs were trained with supervised learning using a binary cross entropy

loss between the prediction heatmap(s) and the ground truth heatmap on a pixel-by-

pixel basis. That is, the loss function was given by

L(ŷ, y) = 1

P

P∑
p=1

[−yp · log ŷp − (1− yp) · log(1− ŷp)] , (6.5)
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where P denotes the total number of pixels, ŷ the prediction heatmap (with ŷp the

value in the pth pixel), and y the ground truth heatmap (with yp the value in the pth

pixel).

Note that in most fluorescence images, the relative occurrence between positive

labels (that is, existence of an emitter) and negative labels (no emitter) are not

balanced. To handle such an imbalance, one typically uses a average focal loss.

To take the possible class imbalance problem into consideration, the proposed

PINs are trained with the average focal loss (Lin et al., 2017b). While the weighted

binary cross entropy is defined as:

L(ŷ, y) = 1

P

N∑
p=1

−α log ŷp − (1− α) (1− yp) log(1− ŷp), (6.6)

where P denotes the total number of pixels, ŷ denotes the predicted heatmap, y

denotes the ground truth heatmap, ŷp denotes the predicted result at the p-th pixel,

while the yp denotes the ground truth at the p-th pixel, α is a hyperparameter that

balances between positive and negative examples by weighing prediction errors up and

down (this will change the precision and recall accordingly). Noting that the weighted

binary cross entropy here is slightly different than the widely used representation,

where α is the weight on positive examples.

The average focal loss between the predicted heatmap(s) and the ground truth

heatmap per pixel is:

L(ŷ, y) = 1

P

N∑
p=1

−α yp (1− ŷp)
γ log ŷp − (1− α) (1− yp) ŷ

γ
p log(1− ŷp), (6.7)

where γ ≥ 0 is a tunable focusing parameter that adjusts the rate where easy-examples

are down-weighted. However, this introduces additional hyperparameters that need

to be carefully tuned. Both binary cross entropy and average focal loss return similar

results, for the ease of parameter tuning, all results for the remaining part are returned
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with binary cross entropy.

6.2.5 Implementation Details

The proposed PINCNN, PINResNet, and PINFPN are initialized with Gaussian distri-

bution and trained distributedly on 2 NVIDIA Tesla V100 GPUs with an Adam

(Kingma and Ba, 2014) optimizer with a learning rate of 0.001 for 10 epochs on the

simulated datasets. Due to the different sizes of the proposed PINs, we use batch

sizes of 128, 32, and 16 images per GPU respectively for each PIN.

Each image contains 20 emitters (except for data generated to test performance

as a function of the number of emitters), all with the same peak intensity. Images

were generated at SBRs ranging from 10 to 100, in steps of 10, by increasing the value

of G while leaving the background rate fixed at 10. Of all the simulated datasets,

65000 images (65%) were fed to the PIN for training, 15000 images (15%) were used

for validation, and 20000 images (20%) were used for evaluation.

6.3 Simulations

To train each of our PINs, and to compare their performance in controlled settings, we

used physical simulations. As described below, these simulations include background

and camera readout noise with data generated across a range of SBR, including for

very weak emitters. Further, we separately trained and tested the networks using

data from three different PSFs, namely a standard PSF using the Born-Wolf PSF

(BW-PSF), a Double-Helix PSF (DH-PSF) modeled as a pair of Gaussian spots that

rotated with the z−position of the emitter, and an astigmatic PSF (A-PSF). In this

section we describe our image generation process.

We assume the image acquired by the camera is arranged into a 512× 512 square

array of pixels. The pixel size is ∆x by ∆y with the actual dimensions determined

both by the physical size of the camera elements on the camera and by the magnifica-
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tion of the optical system. The intensity generated by the emitters is well described

as a Poisson process with the expected photon intensity in the pth pixel arising from

an emitter i at position (xi, yi) given by

λp,i = G

xmax
p∫

xmin
p

ymax
p∫

ymin
p

PSF (xi − ξ, yi − ξ′) dξdξ′, (6.8)

where G denotes the peak signal intensity level, and the integration limits are over

the boundaries of the pth pixel. The total expected intensity in a pixel is then just

the sum over all contributing emitters. The total expected intensity in this pixel is

then just the sum over all emitters,

λp =
∑
i

λp,i. (6.9)

The background signal arising from out-of-focus fluorescence and sample autoflu-

orescence is also modeled as a Poisson process. For simplicity, we assume a constant

expected rate of Nbgd photons/pixel over the entire image. Modifying this to vary

over different regions in the image is straightforward but we found good performance

in experiment even with this simple model. The measured intensity in pixel p is then

given by (2.10). To meet the assumption that the PSFs do not overlap, we randomly

sampled the initialized emitter positions while ensuring there were at least 10 pixels

apart.

6.3.1 Simulation Setup

Recalling the measurement model summarized in (6.8) and (6.9), the point spread

function determines the shape of images. In this work, three different PSFs are taken

into consideration: a standard PSF using the BW-PSF, a DH-PSF modeled as a pair

of Gaussian spots that rotated with the z−position of the emitter, and an A-PSF.
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Table 6.1 shows the fixed parameter settings that are used for three different point

spread functions. The imaging period ∆t denotes the time interval between any two

continuous images, the image sequence length N denotes the number of images per

dataset, each image is of 512 × 512 pixels, each pixel covers the region of ∆x × ∆y

nano-meters. All images are simulated with a constant background noise Nbgd. The

peak signal intensity G determines the SBR in this work, and it varies from 10 to

100, both NA and λ are physical parameters used for microscopy setup.

Details on specific parameter values, including peak intensity G, background rates,

and optical parameters, can be found in Table 6.1.

Table 6.1: Fixed parameter settings for all simulations

Symbol Parameter Value

∆t Imaging period 100 ms
N Image sequence length 100

∆x, ∆y Effective pixel length 100 nm
Nbgd background noise 10

G peak signal intensity 10 - 100

In this simulation setup, we consider three different PSF modes (Born-Wolf,

Double-Helix, Astigmatic) following (2.19), (2.21), and (2.24) respectively. Typical

images formed using the three different PSFs are shown in Fig. 6·5.

6.3.2 Simulation Results

For each PSF considered, 100,000 images were generated. Each image contained 20

emitters, randomly placed in 512 × 512 pixels. Peak intensities in each image were

the same for every emitter, and images were generated with peak intensities ranging

from G = 10 to G = 100 counts with a fixed background rate of 10 counts/pixel.
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Figure 6·5: Typical simulated images using (left column, (a,d,g))
BW-PSF, (center column (b,e,f)) DH-PSF, and (right column (c,f,i))
A-PSF. and formed at (first row, (a-c) low SBR (SBR =1) and (second
row, (d-f)) high SBR (SBR=10); (g-i) cropped regions of the individual
fluorescent emitters highlighted with green boxes in the second row.

For the first comparison, we focus on the precision-recall curves of the PINs

based on the evaluation datasets. In terms of the detection performance, both

PINResNet and PINFPN outperform PINCNN, and this difference is especially obvious

when SBR≤3, the precision-recall curves support that both PINFPN and PINResNet

outperform PINCNN at low SBRs, but all PINs perform well at relative high SBRs.

Though PINResNet and PINFPN return similar results, but PINResNet have simpler com-

putational complexity. Therefore, of all PINs concerned, PINResNet is state-of-the-art

across a wide range of SBRs. However, for the relatively high SBR levels, we suggested

PINCNN as the priority approach due to its outstanding computational simplicity. It

is also clear that performance is higher on the DH-PSF and A-PSF, likely due to the

richer structure of these engineered PSFs.
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Figure 6·6: Precision - recall curves of PINs on datasets with varied
PSFs where SBR=1 for subfigurs (a) - (c), SBR=2 for subfigurs (d)
- (f), SBR=3 for subfigurs (g) - (i). The columns from left to right
correspond to BW-PSF, DH-PSF, and A-PSF respectively.

For each setting of {PSF type, SBR, PIN method}, we calculated the probability

threshold by following (6.2) - (6.3) such that we obtained the largest F1 score among

all potential probabilities. And the probability threshold helps determine whether a

sub-region contains a fluorescent emitter or not. With the binary cross entropy, the

calculated F1 scores under different scenarios are listed in Table 6.2.

The detailed average precision scores using the evaluation datasets across all SBRs

and for all three PSFs and PINs are listed in Table 6.3, and recapitulated in Fig. 6·7

for the lowest SBRs. Similar to the Precision-Recall curves, PINResNet outperforms

all other methods under all conditions, though the difference from PINFPN is small.

At SBRs larger than 3, all three networks perform extremely well.
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Table 6.2: The calculated probability threshold using weights trained
with binary cross entropy.

PSF SBR 1 2 3 4 5 6 7 8 9 10

Born-Wolf
PINCNN 0.03 0.40 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
PINResNet 0.30 0.40 0.40 0.50 0.60 0.50 0.50 0.50 0.50 0.50
PINFPN 0.30 0.50 0.60 0.50 0.50 0.60 0.50 0.50 0.50 0.50

Double-Helix
PINCNN 0.04 0.40 0.50 0.60 0.60 0.60 0.60 0.60 0.50 0.60
PINResNet 0.40 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
PINFPN 0.40 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Astigmatic
PINCNN 0.09 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.70 0.70
PINResNet 0.40 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.40
PINFPN 0.50 0.50 0.50 0.50 0.60 0.50 0.50 0.60 0.50 0.50

Table 6.3: The AP scores using weights trained with binary cross
entropy.

PSF SBR 1 2 3 4 5 6 7 8 9 10

Born-Wolf
PINCNN 0.43574 0.98210 0.99406 0.99605 0.99720 0.99765 0.99780 0.99814 0.99825 0.99829
PINResNet 0.56356 0.99253 0.99716 0.99830 0.99884 0.99908 0.99926 0.99945 0.99953 0.99955
PINFPN 0.51832 0.99006 0.99646 0.99769 0.99850 0.99875 0.99900 0.99930 0.99935 0.99941

Double-Helix
PINCNN 0.52068 0.95240 0.98112 0.98883 0.99163 0.99318 0.99357 0.99427 0.99424 0.99432
PINResNet 0.83945 0.98884 0.99514 0.997036 0.99798 0.99835 0.99874 0.99891 0.99912 0.99924
PINFPN 0.83404 0.98823 0.99487 0.99689 0.99788 0.99831 0.99867 0.99888 0.99907 0.99921

Astigmatic
PINCNN 0.88282 0.98906 0.99461 0.99624 0.99702 0.99730 0.99763 0.99770 0.99742 0.99743
PINResNet 0.93106 0.99443 0.99741 0.99837 0.99882 0.99125 0.99932 0.99939 0.99947 0.99952
PINFPN 0.93008 0.99433 0.99733 0.99828 0.99875 0.99904 0.99927 0.999335 0.99942 0.99947

Figure 6·7: Comparison of average precision scores across the lowest
SBRs for (a) BW-PSF; (b) DH-PSF; (c) A-PSF.

From these results, we see that the additional complexity of PINFPN does not

bring a concomitant increase in performance relative to PINResNet, at least for the

PSFs considered here. Of the three networks considered, PINResNet is the best choice,

particularly at low SBRs. At higher SBRs, PINCNN performs nearly as well; due to

the relative simplicity of its network structure, it is likely a better choice.
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Take the images formed by Born-Wolf PSF at SBR = 1 as an example, we dive

into the details about detection results shown in Fig. 6·8. At such a low SBR level,

PINCNN returns the smallest number of true positives, both PINResNet and PINFPN

return more True Positives and less False Negatives, though they bring more False

Positives as well. For relative high SBR levels (SBR> 3), almost all detected boxes

return by PINs are true positives.

Figure 6·8: Comparison of detection results at SBR=1 where (a) -
(c) are 64 × 64 probability heatmap returned by PINCNN, PINResNet,
and PINFPN respectively; (d) - (f) are the 512 × 512 detection results
returned by PINCNN, PINResNet, and PINFPN respectively; the green,
yellow and red boxes denote True Positive, False Positive, and False
Negative respectively. All bounding boxes (i.e, extraction area) are of
16× 16 pixels.

While all training and evaluation was done using 20 emitters/image, real-world

data comes with a range of densities. We therefore tested our trained networks

on simulated data with densities ranging from 10 to 50 emitters per image. Since

the above simulation results indicate that all three PINs perform similarly at higher

SBRs, we focused on an SBR of one where the differences were most clear. For each
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PSF and each emitter density, 1000 images were generated and processed using the

three PINs. Performance was evaluated using the AP score; results are shown in Fig.

6·9. These results indicate that both PINResNet and PINFPN outperform the standard

CNN network structure across all emitter densities. Interestingly, above 30 emit-

ters/image with the DH-PSF and A-PSF, PINFPN has a slightly better performance

than PINResNet. However, the larger size of the DH-PSF and A-PSF relative to the

BW-PSF means that at these higher densities, the engineered PSFs begin to overlap.

While the networks considered here are not trained to handle overlapping emitters,

it is important to note that deep learning approaches can handle this situation, par-

ticularly when working with engineered PSFs that show additional structure (Nehme

et al., 2018) and thus it is reasonable to expect that the PINs can also be extended

to handle this situation by design.

Figure 6·9: Average precision score as a function of emitter densities
at SBR = 1 with (a) Born-Wolf PSF; (b) Double-Helix PSF; (c) Astig-
matic PSF.

To better understand the performance across emitter densities, we show in Fig.

6·10 - 6·12 the average counts of true positive, false positive, and false negative events

using PINCNN, PINResNet and PINFPN under each PSF. If these metrics were indepen-

dent of the number of emitters in the frame, we would expect to to see each grow in a

1:1 ratio with the number of emitters. This is approximately true in the true positives

and false negatives at the lowest number of emitters. However, when reducing from

20 to 10 emitters, there is a marked increase in the false positives, indicating that
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the network over-identifies particles when the density is lower than what the network

was trained at. As the density is increased past 20, the false positive counts stay

approximately constant (or even improves for the BW-PSF) while the true positive

rate falls off. These results support that, as expected, the network performs best with

a number of emitters close to that of the training data. This could likely be improved

by training using images with varying numbers of emitters in the dataset.

Figure 6·10: Average counts of (a) TP, (b) FP, and (c) FN under
three PSFs and across emitter densities using PINCNN.

Figure 6·11: Average counts of (a) TP, (b) FP, and (c) FN under
three PSFs and across emitter densities using PINResNet.

Figure 6·12: Average counts of (a) TP, (b) FP, and (c) FN under
three PSFs and across emitter densities using PINFPN.
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6.4 Experiments

6.4.1 Experimental Setups

To validate our approach, we applied our trained PINs to images of fluorescently

labeled AMPA recepters in live primary rat hippocampal neurons. Samples were

imaged using a 100x, 1.4 N.A. oil immersion objective (Zeiss Plan-Apochromat) and

data was acquired using a scientific CMOS (sCMOS) camera (Prime 95B, Teledyne-

Photometrics) under different levels of excitation intensity to produce data sets at

low (SBR ≤ 3), medium (3 < SBR ≤ 6), and high (SBR > 6) light conditions.

Images were acquired using a Zeiss Axiovert 200 inverted fluorescence microscope.

This was equiped with fluorescent filter cubes from Chroma, and a scientific CMOS

camera from Teledyne-Photometrics model Prime 95B. Contextual images were taken

using Zernike phase contrast imaging with illumination light in the red spectrum to

avoid exciting the fluorescent labels.

Neurons were prepared from embryonic day 18 rat embryos as previously de-

scribed (Hou et al., 2008). Dissociated hippocampal neurons were seeded onto Poly-

L-Lysine coated coverslips in 60mm dishes. Neurons were maintained in Neurobasal

medium (Thermo Fisher Scientific) and supplemented with 2% Neurocult SM1 Neu-

robasal medium (Thermo Fisher Scientific), 1% Horse Serum (Atlanta Biologicals),

L-glutamine (Corning), and 1% penicillin/streptomycin (Corning). One week after

seeding, 10µM 5’-fluoro-2’-deoxyuridine (Sigma-Aldrich) was added to the neuron me-

dia to suppress glial cell growth. On day in vitro (DIV) 15, neurons were incubated

with 1:200 GluA1 N-terminal antibody (Neuromab) and 1:200 655nm emission quan-

tum dots conjugated with F(ab’)2 anti-mouse IgG (Invitrogen) for 10 min at 37oC.

The incubation medium was then removed, and neurons were rinsed twice untreated

feeding media prior to being maintained in artificial cerebrospinal fluid (ACSF) for

imaging. The typical images at each setting are shown in Fig. 6·13.
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Figure 6·13: Examples of experimental images where (a) - (c) are at
low, medium and high SBR respectively. The brightness contrast have
been adjusted for easier visualization.

6.4.2 Experimental Results

In this section, we describe typical results on the experimental data under the different

conditions. Results on an image at low, medium, and high SBR are shown in Fig. 6·14

- 6·16 respectively. While there is no ground truth to allow for quantitative evaluation,

by visual inspection PINCNN clearly misses many particles that both PINResNet and

PINFPN detect, though these latter two also have a higher false positive rate. In

the image shown as Fig. 6·14, PINCNN detected 2 particles, PINResNet detected 86

particles, and PINFPN detected 90 particles.

Figure 6·14: Typical experimental results at low SBR using (a)
PINCNN, which detected two particles, (b) PINResNet, which detected
86 particles, and (c) PINFPN, which detected 90 particles.



133

Figure 6·15: Example results of the medium SBR experiment by PINs
where (a) detection map by PINCNN; (b) PINResNet; (c) PINFPN.

Figure 6·16: Example results of the high SBR experiment by PINs
where (a) detection map by PINCNN; (b) PINResNet; (c) PINFPN.

In terms of detection performance, both PINResNet and PINFPN return more de-

tected emitters than PINCNN. A visual inspection of these images supports the state-

ment that PINResNet and PINFPN outperform PINCNN, though without ground truth

this is a qualitative statement. Since we use the estimated parameters trained from

PINs on simulated datasets, we can only detect fluorescent emitters that are described

by the specific type of PSF used in training. Take Fig. 6·16 as an example, though

some bright spots have very clear appearances, but they are not formed by Born-Wolf

PSF, therefore the PINs cannot detect them.

Fig. 6·15 shows the results on an image with particles at a medium SBR. Once

again, both PINResNet and PINFPN detect many more particles than PINCNN with the
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standard CNN architecture finding 13 particles, the ResNet 96, and the FPN 79. Fig.

6·16 shows the results in the high SBR setting, and the results are similar to those

medium SBR images with PINCNN detecting 63 particles, PINResNet 105, and PINFPN

117. Notice that in both Figs. 6·15 and 6·16, many of the clearly visible bright spots

are ignore by all of the PINs. This is driven primarily by the fact that their shapes do

not match that of the corresponding PSF. The deep networks are thus both robust

against noise in the image but also brittle against differences between the training

data and the data in actual application.

6.5 Summary

In this work we considered three different deep neural network architectures for de-

tecting particles in fluorescence microscopy images. These architectures were trained,

validated, and tested using simulated data for three different PSFs and across a range

of SBRs. The results indicate that all architectures perform well at high SBRs but

when the SBR is very low, the additional complexity of the residual network and

feature pyramid network architectures provides a benefit. These results indicate that

for most settings, PINResNet provides a good balance of complexity and performance,

at least for the PSFs considered. The networks were then tested against data with

varying numbers of particles. Finally, PINResNet was demonstrated on experimental

data and connected to an existing localization and parameter estimation algorithm

to verify the method produces results that are suitable for downstream analysis.
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Chapter 7

Expectation Maximization Combined

with Particle Identification Networks for

Particle Detection, Extraction, and State

Estimation

7.1 Generic Framework

The goal of this chapter is to combine the PINs for particle detection and extraction

with our EM-based estimation framework to create an end-to-end scheme to produce

trajectories and parameter estimates for multiple particles in an image sequence. The

entire process is shown as Fig. 7·1 where a blue background is used to indicate our

core algorithms and a gray background is used to highlight outputs.

Throughout this chapter we apply the method across a range of SBRs and over

different PSFs. Based on the results of Chapter 6, we focus on PINResNet as our

image detection and extraction tool. Based on the results of Chapter 5, we use the

computationally efficient version of SMC-EM as the system identification method.

Throughout we use three dimensional, isotropic Brownian motion with Dx = Dy =

Dz = 0.01 µm2/s as the underlying particle dynamics.
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Figure 7·1: Combined PIN and EM-based estimation. The cropped
images produced by the PIN are linked using nearest neighbor associa-
tion into a set of image sequences, one for each particle in the original
data. These sequences are then fed into our EM-based estimation ap-
proach for trajectory and parameter estimation.

One new challenge in the general setting is how to initialize the particle filters.

If those initial locations are too far away from the particle, the SMC filters and

smoothers will fail. In this work, when using the BW-PSF and A-PSF, we initialize

our particles at the center of the pixel showing peak counts. For the DH-PSF, we

found the pixel of peak intensity for each of the two lobes, and initialized at the

midpoint. We have found through simulations that this is sufficient, though one

could certainly combine our method with a coarse localization using, for example, a

Gaussian fit or even an MLE-based method.

7.2 Simulations

In the application demonstrations, we validate the performance of the combination

method based on simulations with three different PSF types (BW-PSF, DH-PSF,
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A-PSF) at low (SBR=3) and high (SBR=10) light conditions respectively.

We first fed raw images of 512-by-512 pixels to PINResNet, using the training

weights from Chapter 6, and used nearest-neighbor linking to obtain multiple se-

quences of extracted images of 16-by-16 pixels. Note that in this work, we assume

the emitters are sparse in each image to ensure that their corresponding PSFs do

not overlap. As a result of this assumption, simple nearest-neighbor linking is suffi-

cient to build trajectories unambiguously. To keep our results simple, we randomly

picked 10 of these sequences to pass along to SMC-EM for localization and parameter

estimation.

7.2.1 Image with Born-Wolf PSF

Because the BW-PSF is symmetric about the optical plane (see (2.19)), we focus here

only on estimation in the x− y plane. The mean and standard deviation of estimates

by SMC100-EM are listed in Table 7.1. Fig.7·2 and Fig.7·3 show the estimated dif-

fusion coefficients as a function of EM iterations at low and high SBR respectively.

As expected, we find good performance in both settings with a larger dispersion of

estimate values in the low SBR setting relative to the high SBR condition.

The localization performance report in Table 7.1 shows excellent localization under

both high and low SBR settings. Both are well below the Rayleigh criterion, (4.9),

for the resolution in a optical image.

Table 7.1: Mean and standard deviation of estimates for images with
BW-PSF by SMC100-EM.

SBR Dx (µm2/s) Dy (µm2/s) RMSEx (nm) RMSEy (nm)

low 0.009535 ± 0.001578 0.009445 ± 0.001505 21.099798 ± 5.212201 20.419784 ± 2.420950
high 0.009610 ± 0.001237 0.008913 ± 0.001361 12.267687 ± 2.325187 12.778948 ± 1.789141
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Figure 7·2: Low SBR for BW-PSF: Diffusion coefficient estimates by
SMC-EM100.

Figure 7·3: High SBR for BW-PSF: Diffusion coefficient estimates by
SMC-EM100.

The typical trajectory estimation results at both low and high SBRs are shown in

Fig. 7·4. The estimated trajectory closely follows the true trajectory under both low

and high light conditions.
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Figure 7·4: Localization performance on simulation dataset by SMC-
EM100 where the top left figure shows the global trajectories of 10
sequences of particles in a same image, while the shadowed figures
presents details of the trajectory estimates under both low and high
SBR levels. The time interval between two continuous time steps is 0.1
seconds.

7.2.2 Image with Double-Helix PSF

Because the DH-PSF encodes information about all three axes, we report performance

on localization and estimation in x, y, and z. The mean and standard deviation of esti-

mates using SMC100-EM are listed in Table 7.2. As expected, estimation performance

is good, though all diffusion coefficients show a small negative bias. Localization pre-

cision is again well under the Rayleigh limit.

Table 7.2: Mean and standard deviation of estimates for images with
DH-PSF by SMC100-EM.

SBR Dx (µm2/s) Dy (µm2/s) Dz (µm2/s) RMSEx (nm) RMSEy (nm) RMSEz (nm)

low 0.008667 ± 0.001994 0.008001 ± 0.001648 0.008001 ± 0.008131 33.974816 ± 5.768505 29.786391 ± 12.645372 50.525915 ± 19.526161
high 0.008985 ± 0.001631 0.008245 ± 0.001509 0.008245 ± 0.001349 18.866758 ± 2.752270 17.136534 ± 5.457885 31.785005 ± 7.145085

Both Fig.7·5 and Fig.7·6 show the estimated diffusion coefficients as a function of

EM iterations at low and high SBR respectively, revealing that, with 100 Monte Carlo

particles, the diffusion coefficient estimates at either low or high SBR are steadily
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converging to real value. From the results in Chapter 4 on the quantitative analysis

of SMC-EM with different number of Monte Carlo particles, we expect to see a smaller

bias for estimates when using a larger number of Monte Carlo particles in SMC-EM,

at a corresponding cost in computation time.

EM iterations EM iterations EM iterations

Figure 7·5: Low SBR for DH-PSF: Diffusion coefficient estimates by
SMC-EM100.

EM iterations EM iterations EM iterations

Figure 7·6: High SBR for DH-PSF: Diffusion coefficient estimates by
SMC-EM100.

7.2.3 Image with Astigmatic PSF

The A-PSF also encodes information about the axial position of the particle and we

therefore again report performance in all three directions. The mean and standard

deviation of estimates by SMC100-EM are listed in Table 7.3. Interestingly, perfor-

mance is slightly worse in terms of localization error than with the DH-PSF (and

strikingly poor in the z-direction at low SBR). This is likely due to the fact that

the A-PSF does not have as much change in its output signal as a function of z

as the DH-PSF does. For more details about the relative performance of DH-PSF

and A-PSF, see (Badieirostami et al., 2010). Interestingly, the diffusion coefficient

estimation remains good despite the poor performance in localization. The diffusion
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coefficient estimation as a function of EM iterations are presented in Fig. 7·7 and

Fig. 7·8.

Table 7.3: Mean and standard deviation of estimates for images with
A-PSF by SMC100-EM.

SBR Dx (µm2/s) Dy (µm2/s) Dz (µm2/s) RMSEx (nm) RMSEy (nm) RMSEz (nm)

low 0.011147 ± 0.001965 0.008960 ± 0.001372 0.008960 ± 0.041199 25.663304 ± 12.269741 28.339670 ± 17.970637 277.096174 ± 151.606747
high 0.009613 ± 0.001590 0.008419 ± 0.001018 0.008419 ± 0.003914 13.732770 ± 4.258777 16.426717 ± 5.830601 61.235463 ± 13.842484

EM iterations EM iterations EM iterations

Figure 7·7: Low SBR for A-PSF: Diffusion coefficient estimates by
SMC-EM100.

EM iterations EM iterations EM iterations

Figure 7·8: High SBR for A-PSF: Diffusion coefficient estimates by
SMC-EM100.

7.3 Experiments

Since real experimental data lacks known ground truth, we cannot report on quanti-

tative performance. Moreover, each particle in an image is moving under a different

motion model, with different parameters and thus cannot be used to generate statis-

tics on the estimates. Finally, the emission intensities of each particle differ and thus

we expect different localization performance across particles. Nevertheless, it is im-

portant to demonstrate that our techniques work on real experimental data. To that

end, we present a qualitative demonstration using the experimental data of labeled
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AMPA receptors in primary rat hippocampal neurons to demonstrate the effective-

ness of our method on real biological data. Details on the experimental setup can be

found in Chapter 6, together with typical experimental images (Fig. 6·13).

7.3.1 Results

While PINResNet identifies multiple particles in each image, to keep things simple we

selected two of the sequences at low SBR and two at high SBR. Fig. 7·9 and Fig.

7·10 give the example of image extraction from experimental datasets under two two

different light conditions. These clearly show the difference in image quality arising

from the change in signal level. Note that in these images, the brightness and contrast

were adjusted for visualization; these were left unmanipulated in the data used for

estimation. In the blow-out images a constant offset was removed to shift the average

background rate (from regions with no particle) to an average of 10 counts.

Given the experimental setup, the PSFs are well-described using the Born-Wolf

model. Further, we know the AMPA receptors are moving in/near the synaptic cleft

between two neurons, which is a small domain on the order of 100 nm in linear

dimension. We therefore select a confined diffusion motion model with each axis

confined to a domain [−L/2, L/2]. For simplicity we take L to have the same value

for each axis. The one-step transition density in a single axis is given by (2.8). Note

that the estimation takes place in a local coordinate frame.
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SBR = 3 after excluding offset

Figure 7·9: Example of image extraction at low SBR from an ex-
perimental dataset. The image on the left is the experimental image
of which brightness and contrast have been adjusted for easier visual-
ization; the image on the right is the extracted image after excluding
offsets.

SBR = 10 after excluding offset

Figure 7·10: Example of image extraction at high SBR from an ex-
perimental dataset. The image on the left is the experimental image
of which brightness and contrast have been adjusted for easier visual-
ization; the image on the right is the extracted image after excluding
offsets.

After running the extracted images through SMC-EM100, we shift the coordi-

nates back to the global frame of the original image. The two trajectories are shown

in Fig. 7·9 for the particle at low SBR and in Fig. 7·10. The trajectories clear
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show hallmarks of confinement in both axes. The estimated parameter values were

Lx =0.081056 µm, Ly = 0.101468 µm, Dx = 0.010050 µm/s2, Dy = 0.010050 µm/s2

in the low SBR setting and Lx =0.100115 µm, Ly = 0.091620 µm, Dx = 0.010050

µm/s2, Dy = 0.010050 µm/s2 in the high SBR setting. These trajectories are super-

imposed back on one of the original images for context in Fig. 7·11 (low SBR) and

7·12 (high SBR).

Figure 7·11: Experimental data at low SBR: Trajectory estimation
at low SBR level by SMC-EM100.
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Figure 7·12: Experimental data at high SBR: Trajectory estimation
at high SBR level by SMC-EM100.
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Chapter 8

Conclusions

8.1 Summary of the Thesis

This thesis presented three sets of contributions centering on the goal of automatic

particle detection, extraction, and joint state and parameter estimation in single par-

ticle tracking microscopy. In the first set of contributions, we focused on tools to solve

the problem of joint localization refinement and physical parameter estimation. In

the second set of, we made use of modern machine learning techniques to handle the

particle detection and image extraction step to complete the initial step in prepar-

ing for SPT analysis. In the last set of contributions, we combined these two sets

together to get an end-to-end algorithm that take in raw image data and produces

joint localization and parameter estimation for multiple sequences of images each of

which contains a single particle.

In terms of joint localization refinement and physical parameter estimation, the

novelty of our work lies in two distinct areas. First, a generic EM-based frame-

work is created for localization and parameter estimation is created, allowing for a

variety of filtering and smoothing algorithms to be applied that make different trade-

offs between computational complexity and performance, allowing the user to select

methods that are best suited for their particular data. Through extensive simulation

studies, we showed that this approach outperforms the existing state-of-the-art, par-

ticularly in the low signal, high background setting which is common in SPT. While

the framework can support many different algorithms, we focused on U-EM as a high
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performing, low computation choice and SMC-EM for tackling models with stronger

nonlinearities which can confound the unscented methods of U-EM. In the class of

SMC methods, we introduced the use of computationally efficient particle filtering

and particle smoothing algorithms, allowing our methods to be applied to longer

data sets, significantly extending their utility to the biophysical community. Finally,

we also showed the importance of carefully considering each computational step, sim-

plifying both the motion and measurement models via mathematical approximations

to further improve the computational performance. To validate the availability of our

EM-based framework, we conduct quantitative analysis among a variety of scenarios

including different motion models, camera types, PSFs, SBRs, confinement lengths,

diffusion speeds, motion blurs, data lengths.

In terms of particle detection and extraction, the novelty of our work is in the

application of modern deep learning network structures to address the problem of

particle detection and image extraction. We created three different Particle Iden-

tification Networks (PINs): PINCNN based on a plain CNN, PINResNet based on a

ResNet-50, and PINFPN based on Feature Pyramid Network. We trained these neural

network architectures using simulated datasets, and applied the trained weights to

good effect on real experimental datasets. All PINs are evaluated and analyzed under

different illumination conditions, different numbers of particles, and different PSFs.

Last but not least, we linked PINResNet together with our EM-based framework

to make an entire procedure for automatic particle detection, extraction, and state

estimation. We validated performance through simulations and using biological data.

8.2 Future Directions

Despite the advances made by the work presented in this thesis, there still remain

many challenges and open questions to some applications.
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8.2.1 Motion Model Identification

Applying the EM based framework requires us to have prior knowledge of the type

motion model to estimate and measurement model being used. While it is not un-

reasonable to assume the user has significant domain knowledge to help guide this

choice, it would be better to have automatic model selection, or even use a Bayesian

formulation to produce estimates for multiple models and probabilities on those mod-

els being good predictors for the data. The choice of model influences not only the

most appropriate choice of filtering and smoothing algorithms, but also the biological

relevancy of the result.

8.2.2 Sample Initialization for Sequential Monte Carlo

When implementing SMC filters and smoothers, the initial choice of particles (that

is, the initial sampling distribution) has a strong effect on the quality of the final

estimate. In fact, if the initial particles are too far away from the true location of

the particle, there may not be enough information in those locations of the data

yield reasonable results. Therefore, it is important to find a reliable way to select

this initial distribution. In this work, we used a very direct and simple way to

select a rough localization as the initial samples, i.e., the center of the pixel with

the maximum number of photon counts in the BW-PSF and A-PSF and the related

form in the DH-PSF. This has proved to be a very reasonable approach for the planar

coordinates. However, determining and appropriate initial distribution for z is much

more challenging. To make these techniques most useful in real data with engineered

PSFs, it is important to determine a more accurate way to initialized those samples.

8.2.3 Extend the Comparison Scope of Particle Identification

We have created three different neural network architectures to do particle detection

and image extractions, and the results via both simulation and experimental data
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validate their performances across a variety of light conditions and emitter densi-

ties. However, it still worth to extend the comparison scope of particle identification,

for example, using TrackMate, human-eye detection, cross correlation, or template

matching.

8.2.4 Optimal Design of Point Spread Function

Our results show that the choice of PSF has a strong effect on the localization and es-

timation performance. While there has been work on design of engineered PSFs, they

have been focused on optimizing localization performance. For SPT data, though,

the features of interest are both the locations and the model parameters. Optimal

design of PSFs for estimating these parameters, even to the point of tuning them to

the specific estimation algorithm being used, could have a significant impact on the

field.
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Cardinale, J., Carthel, C., Coraluppi, S., Winter, M., et al. (2014). Objective
comparison of particle tracking methods. Nature methods, 11(3):281–289.

Clarke, D. T. and Martin-Fernandez, M. L. (2019). A brief history of single-particle
tracking of the epidermal growth factor receptor. Methods and protocols, 2(1):12.

150



151

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete
data via the emalgorithm. Journal of the Royal Statistical Society. Series B,
Statistical Methodology, 39(1):1–38.

Douc, R., Garivier, A., Moulines, E., and Olsson, J. (2011). Sequential Monte
Carlo smoothing for general state space hidden Markov models. Annals of Applied
Probability, 21(6):2109–2145.

Doucet, A., Godsill, S., and Andrieu, C. (2000). On Sequential Monte Carlo sampling
methods for Bayesian filtering. Statistics and Computing, 10(3):197–208.

Doucet, A., Johansen, A. M., et al. (2009). A tutorial on particle filtering and
smoothing: Fifteen years later. Handbook of nonlinear filtering, 12(656-704):3.

Ewers, H., Smith, A. E., Sbalzarini, I. F., Lilie, H., Koumoutsakos, P., and Helenius,
A. (2005). Single-particle tracking of murine polyoma virus-like particles on live
cells and artificial membranes. Proceedings of the National Academy of Sciences,
102(42):15110–15115.

Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and its Applications.
Chapman& Hall, CRC.

Freeman, M. F. and Tukey, J. W. (1950). Transformations related to the angular
and the square root. The Annals of Mathematical Statistics, 21(4):607–611.

Gibson, S. and Ninness, B. (2005). Robust maximum-likelihood estimation of multi-
variable dynamic systems. Automatica, 41(10):1667–1682.

Gnedenko, B. V. (2017). Theory of probability. Routledge.

Godoy, B. I., Vickers, N. A., Lin, Y., and Andersson, S. B. (2020). Estimation of
general time-varying single particle tracking linear models using local likelihood.
In 2020 European Control Conference (ECC), pages 527–533.

Godsill, S. J., Doucet, A., and West, M. (2004). Monte carlo smoothing for nonlinear
time series. Journal of the american statistical association, 99(465):156–168.

Granik, N., Weiss, L. E., Nehme, E., Levin, M., Chein, M., Perlson, E., Roichman,
Y., and Shechtman, Y. (2019). Single-particle diffusion characterization by deep
learning. Biophysical journal, 117(2):185–192.

Gupta, P. and Sehgal, N. K. (2021). Introduction to machine learning in the cloud
with python: Concepts and practices. Springer Nature.

Handschin, J. E. and Mayne, D. Q. (1969). Monte Carlo techniques to estimate the
conditional expectation in multi-stage non-linear filtering. International Journal
of Control, 9(5):547–559.



152

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 770–778.

Helgadottir, S., Argun, A., and Volpe, G. (2019). Digital video microscopy enhanced
by deep learning. Optica, 6(4):506–513.
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