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ABSTRACT

Data is increasingly stored in data lakes, vast immutable object stores that can be

accessed from anywhere in the data center. By providing low cost and scalable stor-

age, today immutable object-storage based data lakes are used by a wide range of

applications with diverse access patterns. Unfortunately, performance can suffer for

applications that do not match the access patterns for which the data lake was de-

signed. Moreover, in many of today’s (non-hyperscale) data centers, limited bisec-

tional bandwidth will limit data lake performance. Today many computer clusters

integrate caches both to address the mismatch between application performance re-

quirements and the capabilities of the shared data lake, and to reduce the demand on

the data center network. However, per-cluster caching; i) means the expensive cache

resources cannot be shifted between clusters based on demand, ii) makes sharing ex-

pensive because data accessed by multiple clusters is independently cached by each

of them, and iii) makes it difficult for clusters to grow and shrink if their servers are

being used to cache storage.

In this dissertation, we present two novel data-center wide cooperative cache archi-

tectures, Datacenter-Data-Delivery Network (D3N) and Directory-Based Datacenter-

Data-Delivery Network (D4N) that are designed to be part of the data lake itself
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rather than part of the computer clusters that use it. D3N and D4N distribute

caches across the data center to enable data sharing and elasticity of cache resources

where requests are transparently directed to nearby cache nodes. They dynamically

adapt to changes in access patterns and accelerate workloads while providing the

same consistency, trust, availability, and resilience guarantees as the underlying data

lake. We find that exploiting the immutability of object stores significantly reduces

the complexity, and provides opportunities for cache management strategies that were

not feasible for previous cooperative cache systems for file or block-based storage.

D3N is a multi-layer cooperative cache that targets workloads with large read-only

datasets like big data analytics. It is designed to be easily integrated into existing

data lakes with only limited support for write caching of intermediate data, and

avoiding any global state by, for example, using consistent hashing for locating blocks

and making all caching decisions based purely on local information. Our prototype is

performant enough to fully exploit the (5 GB/s read) SSDs and (40, Gbit/s) NICs in

our system and improve the runtime of realistic workloads by up to 3×. The simplicity

of D3N has enabled us, in collaboration with industry partners, to upstream the two-

layer version of D3N into the existing code base of the Ceph object store as a new

experimental feature, making it available to the many data lakes around the world

based on Ceph.

D4N is a directory-based cooperative cache that provides a reliable write tier

and a distributed directory that maintains a global state. It explores the use of

global state to implement more sophisticated cache management policies and enables

application-specific tuning of caching policies to support a wider range of applications

than D3N. In contrast to previous cache systems that implement their own mechanism

for maintaining dirty data redundantly, D4N re-uses the existing data lake (Ceph)

software for implementing a write tier and exploits the semantics of immutable objects
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to move aged objects to the shared data lake. This design greatly reduces the barrier

to adoption and enables D4N to take advantage of sophisticated data lake features

such as erasure coding. We demonstrate that D4N is performant enough to saturate

the bandwidth of the SSDs, and it automatically adapts replication to the working set

of the demands and outperforms the state of art cluster cache Alluxio [25]. While it

will be substantially more complicated to integrate the D4N prototype into production

quality code that can be adopted by the community, these results are compelling

enough that our partners are starting that effort.

D3N and D4N demonstrate that cooperative caching techniques, originally de-

signed for file systems, can be employed to integrate caching into today’s immutable

object-based data lakes. We find that the properties of immutable object storage

greatly simplify the adoption of these techniques, and enable integration of caching

in a fashion that enables re-use of existing battle tested software; greatly reducing the

barrier of adoption. In integrating the caching in the data lake, and not the compute

cluster, this research opens the door to efficient data center wide sharing of data and

resources.
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1

Chapter 1

Introduction

Today, data and its analysis are at the center of many businesses. The amount of

data created every year continues to grow at exponential rates. Organizations are

collecting all data that could be of future value and making increasing use of today’s

cloud data centers’ rich services and elastic capabilities to process and glean critical

insights from it. The growth of data and modern large-scale distributed applications

(e.g., Facebook app, Netflix app, Spark, Tensorflow) have radically changed the way

data is stored and processed. Today many data centers deploy datalakes, low-cost

object-storage repositories that can store vast volumes of data [118, 27].

In most data lake realizations, the fundamental concept of the storage system is

no longer a file or a block but an immutable object. For scalability, object stores

access data using RESTful interfaces (e.g., the S3 interface [27]), discard many of the

semantics offered by traditional files systems (e.g., POSIX semantics), and explicitly

defer some of them to the application. For instance, immutable objects eliminate

the need for journaling, the S3 interface delegates handling anticipated temporary

failures to the application, and allows data to be aggressively cached. S3’s relaxed

consistency model allows objects to be lazily invalidated if a new version is written,

resulting in performance improvements for applications. Finally, the composability

of the S3 interface allows services to be simply layered on top of each other.

Originally, object storage systems were primarily used for storing large unstruc-

tured datasets, backups, and archives. Over the last decade, object stores’ role has
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expanded beyond their earlier use cases and object stores are increasingly being used

for applications that have traditionally required file or block-based storage systems.

The simplified semantics enable low cost highly scalable implementations of object

storage over commodity servers that make them an ideal alternative to distributed

file systems. Object storage is today used by a wide range of applications from data

analytics [125, 95], to deep learning [72, 92], to serverless functions [105, 117, 93], file

systems [75, 86], and even virtual block storage [45, 56].

Different workloads can have dramatically different access patterns, for example,

ranging from write dominated operations on objects of a few kilobytes to read dom-

inated operations on multi gigabyte objects [106, 78, 94]. This diversity has led to

multiple implementations of object storage optimized for different object types and

access patterns [82, 39, 89]. This means that, unless a data center wants to incur the

high cost to operate multiple data lakes[89], the performance of applications with ac-

cess patterns different from those the data lake has been designed for will suffer. Also,

in many cases, the capabilities of shared data lakes may not meet the requirement of

applications. Many data centers do not have a full-bisection bandwidth. Data access

may be significantly constrained by over-subscribed network links and the limitations

in performances of slow high-capacity drivers.

In many data centers, data lakes and the data in them are widely shared across

clusters or frameworks deployed by independent entities. In industry, clusters may

be owned or deployed by different groups or business units of a corporation. For

example, within Two Sigma [107], a financial hedge fund (also an industrial partner

of our group), different groups create individual clusters and deploy different analyt-

ical frameworks, and a wide number of these compute clusters repeatedly access the

same datasets (e.g.,newly added market data) from a shared data lake. The reasons

for multiple clusters include security, organizational structure, regulatory issues, or
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preference. Similarly, in academic data centers sharing of data is very common. Re-

searchers from different institutions collaborate or work on the same scientific data

sets (such as ImageNet [63], Harvard Dataverse [15]), but from their own institutional

or lab clusters. For instance, in our academic data center the Massachusetts Green

High Performance Computing Center (MGHPCC) [13] dozens of compute clusters

(totalling over 200K cores) access a shared 50PB data lake.

Caching systems are widely used to cache objects widely shared across users,

and address the mismatch between application performance requirements and the

capabilities of a shared data lake. The most recent caching works are 1) integrated

into the framework/cluster (e.g., Pacman [28], Alluxio [25], Quiver [72], MRD [91],

Hoard [92], or 2)integrated into the storage servers of data lake [118, 58, 82, 39, 90,

95, 106, 78, 94, 121]. The framework/cluster caching moves frequently accessed data

into (logically) nearby high speed storage, and enables the systems to be customized

for a particular framework or class of application to improve performance. However,

expensive cache resources are dedicated to separate frameworks/clusters; therefore,

they limit data sharing across frameworks/clusters and make it challenging to shift

the costly cache resources to where they are most needed. While storage side caches

reduce demand on slow disks, they are near the data lake, not the cluster, resulting

in heavy use of bi-sectional bandwidth. Moreover, these caches are usually general-

purpose caches and they are workload unaware.

Many previous works have studied “cooperative caching” [47, 104, 25, 30] for file

systems, exploring how to create larger shared aggregated caches using distributed

caches. These works implement cooperative caches by using all the client buffer

caches as an extension of the file system to improve the performance. They enable

data sharing, cache data near the client, avoid waste of idle cache resources, and

reduce the slow disk load. We borrow heavily from the rich research in cooperative
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caching systems and re-evaluate the design of “cooperative caching” for immutable

object-based data lakes.

This dissertation explores how cooperative cache architecture can be integrated

into today’s immutable object storage based data lakes, enabling data lakes to expand

across the data center. We carefully design two caching systems that distribute caches

across the data center, a trusted extension of the data lake rather than part of the

clusters that access the data lake. We show that this enables data to be efficiently

accessed anywhere in the data center, preventing expensive cache resources from being

siloed for a particular cluster/framework.

We explore two novel data center scale cooperative cache architectures for a data

lake. In particular, we investigate the consistency, availability, and resilience require-

ments of each approach, how to enable data sharing and use the composable S3 inter-

face to reduce the complexity of efficient caching and replication, and allow services

to be simply layered on top of each other, and the protection mechanisms needed in

a multi-tenant environment. We present the challenges and design tradeoffs of these

two architectures and study their effectiveness on improving the performance of ap-

plications. We demonstrate that unique features of object stores (e.g, immutability,

relaxed consistency) reduce the complexity of efficient caching and provide opportu-

nities for investigating cache management and data placement strategies that have

not been feasible in the past for file systems and block stores. Overall, in this disser-

tation, we present the design and implementation of Datacenter-Data-Delivery

Network (D3N) and Directory-Based Datacenter-Data-Delivery Network

(D4N). Both cache designs are developed and implemented by modifying Ceph [118],

an object-based storage system commonly used to implement data lakes.

Our first caching system, D3N, creates a multi-layer cooperative cache that miti-

gates network imbalances by caching data on the access side of each layer of hierarchi-
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cal network topology, adaptively adjusting the cache capacity of each layer based on

observed workload patterns and network congestion. A fundamental goal of D3N is

to allow simplified integration into existing data lakes to enable caching to be trans-

parently introduced into data centers and easily upstream code contribution into the

existing code base of an open-source data lake solution (e.g. Ceph project [118]).

D3N avoids the use of global state; instead it uses the local cache information for

caching policies and consistent hashing [68] for distributing the data blocks across

layers. We develop an algorithm that uses only the local information to partition the

cache capacity between local vs global requests to adjust to changes in workload and

network hotspots. D3N is focused on a read cache for analytical clusters [125, 54, 12],

and it supports non-durable write caching only for reproducible intermediate data by

exploiting the object stores’ immutability. We showed that D3N’s implementation

is highly efficient, able to saturate the dual NVMe SSDs and the 40 Gbit NIC; re-

sult in almost 5× performance improvement over default RGW, and a 3x reduction

in runtime for realistic workloads( 6.7). The adaptive cache partitioning algorithm

resulting in substantial gains(up to 30%) over static allocation( 6.4.1).

Our second cooperative cache system, D4N, implements a global reliable directory

that enables a richer set of caching policies, supports a durable distributed write-

cache, and targets a broader set of use cases. The global state of the cooperative

cache, maintained in a distributed directory, is used to enable local cache policies

to employ the aggregate caching resources efficiently, e.g., replicating data widely or

using the entire aggregate capacity to hold large working sets.

D3N focused on analytical workloads that were the dominant use of object-based

data lakes when we started this work. D4N is intended to be more general, enabling

a greater degree of application-specific specializations that make it appropriate for a

broader set of use cases. D4N implements two such specializations: small object coa-
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lescing and packing, and smart prefetching and caching for DAG-based applications.

We demonstrate that D4N can reduce cumulative job run time by a large amount

(e.g. 30% ( 6.5) ), and reduce demand on the network and the backend data lake. Its

analytic cluster-specific specialization improves the run time of real-word workloads

by 20% ( 6.7), and the small object packing specialization reduces data lake workload

by 400% over the case of no write tier and 200% over the case without object coalesc-

ing. Like D3N, D4N also does not require changes to client application, however the

shared directory, write tiers, and maintaining global state increase the complexity of

the system.

The D3N design is based purely on local information, uses consistent hashing

for block lookup, stores all durable states in the underlying data lake, and can be

easily integrated into an existing data lake. D3N has been upstreamed to the Ceph

community [19] and is available as an experimental feature in Ceph today, enabling

its use by the hundreds of data lakes based on Ceph. The D4N design, while more

powerful, entails more complexity, changes operational assumptions of the data lake,

and relies for correctness on state stored outside of the underlying data lake. We

have succeeded in integrating the D4N into Ceph to show its value. While we expect

our changes to be eventually integrated by the Ceph community, the process will be

much more complicated.

This dissertation makes the following contributions:

• We show that the old idea of a cooperative cache can be adapted to the needs

of today’s massive scale data centers and bandwidth-limited data lakes. We

explore two novel data center scale distributed cooperative cache architectures,

where each caching system is a transparent extension to the data lake itself,

dynamically adapting to different access patterns and providing acceleration to

workloads.
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• For D3N, we show that by carefully architecturing the system, it is possible

to design a caching system that could be integrated into a real production

data lake in a practical fashion and offers great value without requiring major

modifications to a complex storage system. We demonstrate that the simplicity

of design allows our changes to be easily upstreamed and it can be used in

hundreds of data lakes based on Ceph. D3N work shows it is possible to improve

the performance of analytical workloads significantly, without having a global

state and using deterministic data placement. Finally, we present a novel local

algorithm to enable a single cache to be efficiently shared by multiple levels,

where cache space is shifted between the layers based on demand, and evaluate

how it dynamically adapts to different access patterns and responds to network

contention.

• For D4N, we show that D3N work can be extended further to support a wide

range of applications. The advantage of D4N is to have a highly available shared

directory, which maintains the global state and avoids meta-data accesses to the

data lake, allowing us to separate caching policy from the caching mechanism

and enabling more flexible object placement strategies. The durable write tier

enable caching of newly generated data redundantly. With these advantages,

D4N supports application-specific specializations at the caching layer that en-

able workload-specific tuning of caching policies and improves the performance

gain for diverse workloads.

The rest of this dissertation is organized as follows. Chapter 2 provides relevant

background information and motivation. Chapter 3 discusses related works. Chap-

ter 4 presents D3N and D4N cache architectures, and chapter 5 shows the imple-

mentation of both systems. Chapter 6 presents our experimental evaluation of both

architecture and finally, chapter 7 concludes and discusses potential future work.



Chapter 2

Background and Motivation

This chapter provides background information and motivation for cooperative caching

at the data center scale. Section 2.1 describes object storage systems, and section 2.2

describes key properties of modern data centers and discusses the causes of the net-

work bottlenecks. Section 2.3 discusses workloads’ characteristics and their require-

ments from a data lake. Section 2.4 numerically demonstrates the value of cooperative

caching to motivate D3N and D4N architectures.

2.1 Immutable Object Storage

Many data centers deploy cost-effective, centralized storage repositories, called data

lakes, to store and share vast amount of data. In an enterprise this may be akin to the

classic data warehouse; in a scientific environment, a repository for shared datasets.

As seen in Figure 2·1, data lakes are often deployed as a separate cluster that typically

use many standard commodity servers with locally attached disks. Such data lakes

are typically implemented by object stores, such as Ceph [118], which support high

capacity and economical storage for unstructured data with fine-grained access control

to provide a varied level of access to datasets owned by different entities. Features

like simplified management, ease of use, and high data durability led to the wide use

of object stores in today’s data center.

Figure 2·2 shows the ecosystem of an object-based data lake with object storage

devices (OSD). Object stores store the data on OSDs consisting of an active daemon

8
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Figure 2·1: Modern Data Center Ecosystem. Many modern data
centers create data lakes as a separate cluster which are typically im-
plemented as object stores. Data center topology contains multiple
clusters connected via an over-subscribed data center network. Every
cluster in the data center shares the data stored in data lake.

and a multiple disks. OSDs are responsible for storage management functions such as

replication, synchronization, fault tolerance, and each OSD manages its own storage

space.

Object stores have different characteristics than traditional distributed file sys-

tems [58] or block storage [40], where these differences are crucial for accelerating the

distributed storage stack. Object stores are immutable, data can not be modified

after being created. Unlike traditional distributed file systems in which data is stored

in a hierarchical model (files within folders), objects are stored in a flat namespace

in object storage. The data is stored in large blocks (typically in MBs). To support

scalability, object stores discard many of the semantics of traditional file systems

(e.g., POSIX consistency).
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Figure 2·2: Immutable Object Storage with a Gateway

Object operations are atomic, where the object is either written entirely or not

written at all, and objects are not visible until the write is complete. If there is a

failure during a read or write operation the entire operation fails, and applications

have to restart the operation. The atomic operations ensure that the object never

ends up in an inconsistent state where the old data is not lost before new data has

been stored. To increase resiliency to network errors during a (large) object writes,

object stores limit the size of the object in a single write operation (e.g., 5GB in S3,

Ceph). They provide a mechanism called “multipart-upload,” where a contiguous

portion of the object’s data is uploaded independently and in any order. If the

writing of any part fails, then the application rewrites that part without affecting the

remaining parts. Once all parts are written, the object store assembles written parts

and presents the data as a single object. Each object is identified in the system by a

globally unique object id/version number (instead of a file name and file path), which

is used for locating and accessing the object. If an object is deleted and a new object

is created with the same name, it will have a new unique object id/version number,
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and the previous version of the object is removed later on by garbage collection.

The immutability greatly reduces the complexity of efficient caching and replica-

tion. It enables adoptation of erasure coding, a space-efficient and highly fault-

tolerant redundancy scheme for storage systems. For (n,k) erasure codes, each object

is divided into n equal-sized data chunks and k additional parity chunks, calculated

from the n data chunks. Any n out of n+k chunks can be used to reconstruct the

original object. Updates in erasure coding are expensive because they require read-

ing all chunks, updating the data, recomputing the parity chunks, and writing the

updated data and parity chunks back to the disks. This overhead does not occur

with immutable object storage because immutable objects can not be modified. In

addition, erasure codes may have a high disk seek and rotational delay for reads. In

object storage systems, the object size is large enough to largely amortize the cost of

seeks and rotational delays of erasure coding; thus with erasure coding, object stores

can provide much higher data durability than file systems or block storage.

As seen in figure 2·2, many object storage solutions provide a gateway to allow

applications to access the object storage servers. These gateways provide an S3

Compatibility REST API, allowing access to objects and buckets using standard

HTTP commands such as GET, PUT and DELETE. Any application that supports

HTTP can directly access the object store gateway, allowing the service to be used

by many different applications and platforms.

Due to the success and widespread use of Amazon’s S3 object storage, S3 API, has

become the dominant API for accessing objects. However, there are other interfaces

(such as Swift [4]) as well. In the rest of this dissertation, we will focus on S3. Today

almost every object storage [118, 78, 36] in the market supports the S3 API in some

form or other. Like data lakes, many frameworks also support direct access to the

object store using the S3 interface, via libraries or connectors such as S3A [102]for
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Spark, which provides HDFS-compatible access to S3 compatible objects.

The S3 interface, in contrast to general-purpose file systems, is composable,

where new functionalities can be implemented as an S3 service built on top of other

S3 services. For example, the composability of the S3 interface allows D4N to deploy

write tiers over an object storage system.

Today, due to their desirable features (e.g., scalability, cost, high availability) ob-

ject stores are increasingly being used for applications that have traditionally required

file systems or block storage such as data analytics [125, 95], deep learning [72, 92],

serverless functions [105, 117, 93], and file systems [75, 86]. Different workloads can

have dramatically different requirements from the data lake such as high throughput

to support millions of concurrent requests, various redundancy levels for different

applications, providing support large and small IO, or efficiently sharing storage re-

sources between multiple users. This diversity has led to multiple implementations of

object storage optimized for different object types and access patterns [82, 39, 89, 31]

It should be noted that object stores have many advantages over a file or block stor-

age system: they provide a simple storage interface with immutable objects, avoiding

the complex semantics and consistency requirements of general purpose file systems,

and they provide opportunities for investigating strategies that have not been feasible

in the past for block storage. Their simple consistency model significantly simplifies

caching and tiering to accelerate the performance of applications. For example, there

is no need to invalidate the read cache since simply changing object id/version will

cause cached read data to be ignored. Larger-granularity object access (in MB) allows

investigating cache management approaches that were not feasible for block storage.

The expense of more complex algorithms (e.g., machine learning) can be amortized

over longer transfer time, and more information can be tracked per access unit with-

out loss of efficiency. Moreover, the S3 interface enables composable services to be
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layered on top of each other, allowing object stores to provide rich functionality and

support more applications.

In this dissertation, we argue that the rich functionalities to efficiently support

a wide range of applications should be layered on top of the underlying immutable

data lake while enabling a single data lake to be used for long term durability. This

way, the underlying object-based data lakes can be optimized for storage efficiency

(e.g., supporting large immutable objects that can take advantage of erasure coding

and storage technologies like SMR). This, in the future, may lead to the re-invention

of the storage stack in data centers, basing it on immutable write-once objects stores

and seeking mechanisms for efficiently implementing mutability, resiliency, and con-

sistency at the most appropriate layers.

Throughout this dissertation, we use the following three terms from the object

storage terminology; i) object, ii) bucket and iii) block. In object storage, the file

is called object (also called s3-object in S3 API terminology). Objects are stored in a

container called bucket(also called s3-bucket in S3 API terminology), where buckets

can contain unlimited number of objects, and block is fixed-size chunk of an object

(e.g., 4MB in Ceph).

2.2 Modern Data Centers

In figure 2·1 illustrates a very common data center or co-location facility for academic

and enterprise environments. We first describe key elements of the data center in

detail (Section 2.2.1), and then describe why network bandwidth is limited in many

data centers.

2.2.1 Key elements

As seen in Figure 2·1, data centers typically have some form of hierarchical network,

where TOR switches allow computers on the same rack to communicate at their
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maximum speed, some number of racks may be part of a tightly coupled compute

clusters, and bandwidth becomes constrained as communication has to traverse higher

levels in the network. In many data centers, compute clusters are independent units

owned and managed by different entities: a single organization or different units of an

organization (private data centers) or multiple organizations (co-location facilities).

The massive demand for data today, has resulted in many data centers deploying

large object-storage based data lakes, typically deployed as its own cluster (light

blue), that can inexpensively store huge amounts of data and can be used by software

running anywhere in the data center. Many data centers usually deploy a single data

lake, which is shared among the various entities involved with the data center. In

general the data lake is managed by the data center or co-location facility provider.

Entities involved with the data center create compute clusters and run different

computation frameworks like Spark [125] and Tensorflow [12]. These clusters may be

comprised of a single compute cluster (as shown in Figure 2·1), multiple compute clus-

ters, or portions of compute clusters. These clusters can be launched on-demand [59]

or may be long-lived. They can run on virtual machines [37], containers [110], server-

less platforms [3] or baremetal nodes [80].

2.2.2 Reasons for Limited Network Bandwidth

The performance of a data lake is limited by its underlying network. In these environ-

ments, a critical bottleneck can be getting the data from a large shared data lake due

to limited network bandwidth in data centers due to the network oversubscription.

Network oversubscription means that the maximum amount of traffic that can be

sent to a given switch is greater than that which can be routed through it. Most data

center networks are constructed so that higher layers of the network topology are

more heavily oversubscribed compared to lower layers. In many data centers, servers

in the same rack are connected at full bandwidth via one or two switches. There is a
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modest degree of oversubscription in the network within a compute cluster (e.g. 2x)

but a very large degree of over-subscription (relative to total server NIC bandwidth)

in the data center network that connects these compute and data lake clusters. This

corresponds to the intuition that servers that are topologically closer to one another

will be more likely to communicate with one another (e.g., servers within a rack or

servers within a compute cluster).

Although previous research has assumed full bi-sectional bandwidth [85, 118];

in practice cost prevents their widespread deployment. Even for hyperscalars, rack

uplinks - i.e. the connections between top-of-rack (ToR) switches and the rest of the

data center - are over-subscribed, with e.g., a ratio of 3:1 in Google’s Jupiter [109]

interconnect. This is a natural consequence of today’s technology, where servers and

cost-effective switches often have interfaces of the same or nearly the same speed

(e.g., 100 Gbit/s uplinks vs. dual 40 Gbit/s NICs). In this environment, the cost,

complexity, and even physical volume of cabling required for full bisection bandwidth

(i.e. 1 rack uplink per server NIC) puts it out of reach of all but the most extreme

applications.

One reason for the high network oversubscription in many data centers is that

the portions of the data center are upgraded independently of other portions. Such

upgrades may be coordinated to preserve balance (or desired oversubscription) within

the upgraded portion, however hardware clusters may be deployed at different times,

with different network technologies, and different clusters and network links may be

owned or deployed by different entities: sub-units of a corporation, research groups

in a university, or entire companies in a co-location facility. For example, in the

MGHPCC [13] data center, hardware clusters of some research groups can have up to

200Gbps links to each server, with massive intra-cluster bandwidth, yet these clusters

may be connected to an institutional network at 40Gbps, which in turn is connected
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to the cross-data-center switch at 40Gbps or 100Gbps.

2.3 Understanding Workload and Their Requirements

In this section, we describe key properties of modern data centers’ workload, their

needs, and the implications for cache system design. Our design is motivated by key

properties (i) data sharing is common, (ii) locality is important, (iii) storage demand

is highly variable, and (iv) workloads have diverse requirements. We discuss these

properties and the four requirements (RQ1, RQ2, RQ3, RQ4) they imply for efficient

caching of storage.

2.3.1 Data sharing is common

Previous work has shown that applications running on different frameworks often

share data [20, 72, 33]. For example, Abdi et al. [20] analyze a trace from a production

cluster with multiple analytic frameworks, and demonstrate that 36% of Spark jobs

share objects (42% of total data) with Hive, while all tables accessed by Oozie were

shared with Hive. A similar observation is reported by the authors of Quiver [72], a

cache for deep learning training (DLT) jobs, which observe that “A few popular input

datasets are used across numerous DLT jobs and across several model architectures”.

Even though clusters can support multiple frameworks, much of this sharing hap-

pens between clusters. In many academic institutions, researchers often work on dif-

ferent institutional clusters, but share scientific datasets. For instance, the machine

learning community train their models on common datasets such as ImageNet [63]

or Youtube-8M [21]. As another example, in our datacenter MGHPCC [13], Harvard

Dataverse Repository [15] stores scientific datasets which are accessed by researchers

from different groups. These reuse and data sharing patterns also exist in industry.

For instance, Two Sigma [107] has a various number of compute clusters, divided ac-

cording to organizational structure or analytic platform type, each access data from
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a shared data lake. As soon as a new dataset appears (in this case, recent market

data), jobs accessing that data will be launched on many of these clusters.

(RQ1) Support sharing: If data is cached as a result of any workload, other

workloads should be able to take advantage of that cached state to avoid both demand

on the data lake and expensive cache storage.

2.3.2 Locality is important

The compute-storage disaggregation and oversubscribed networks in data centers re-

duces the data locality for applications. As we described in section 2.2.2, in many

data centers, the bandwidth internal to racks and between some racks (e.g., of the

same institution) is much larger than the bi-sectional bandwidth of the data center.

Accessing data stored from a remote data lake creates an additional network load,

thus the data lake network can become a bottleneck due to over-subscription of data

center network.

(RQ2) Preserve locality: To reduce use of limited bi-sectional bandwidth, data

should be cached near where it is being accessed.

2.3.3 Demand is variable

The success of hardware virtualization technologies and allocation and provision tech-

nologies for bare-metal clouds enable high elasticity of compute resources, where the

size of a compute cluster can grow and shrink in a few minutes. Compute clusters

hosted in a data center serve a wide range of applications/frameworks who may change

their behavior dramatically. Applications can be deployed on many nodes using elas-

tic compute resources and executed in a distributed way. Not only does its storage

demand change as a cluster grows or shrinks, but the location of the demand may

change, e.g., as an elastic cluster expands beyond its original location. As a result,

demand for storage can change rapidly. This is visible in IBM’s COS traces [49, 61],
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where one large set of the tenants have dramatically different rates of access at dif-

ferent times, while another set accesses the storage predictably in bursts (e.g., every

day at midnight), and yet another only accesses data for a few days. This variability

is made more complex by cluster elasticity, available in all public ([34, 51, 35]) and

many large-scale private clouds.

(RQ3) Enable Elasticity: To respond to changing demand, cache resources should

not be dedicated to a particular framework or cluster, rather a cache should be able

to dynamically shift expensive cache resources to the source (workload and location)

that most need them.

2.3.4 Demands are diverse

Today, object storage is used by a wide range of applications.Different workloads

may have very different demands on storage. This was shown in previous research,

that observed diverse data access sizes, frequency, operation types, and durability

requirements [64, 28, 70, 99]. We see this also in the IIBM cloud based object store

service (IBM COS) [49] traces. Here we find that while 17 traces include only read

requests, two traces have 83% write accesses; while some traces are dominated by

requests for objects under 1KB, others access objects greater than 1GB, and that the

rate of object overwrites in a trace varies from 0.1% to almost 99%.

(RQ4) Support specialization: To support wide range of applications caching

system should enable workload specific tuning of caching policies. It should be possi-

ble to specialize cache management, e.g., cache bypass, pinning, eviction, write-back,

and prefetching.
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2.4 Value of Cooperative Caching

To motivate the cooperative caching of D3N and D4N, we developed a simple nu-

merical model parameterized from micro-benchmarks ( Section 6.3.1) and real-world

traces (Section 6.1). In our model we compare three different caching approaches:

1)Pure local caching (L1), where there is no cache cooperation and the entire cache is

dedicated to local requests, 2)Multi-level cooperative caching (L1 + L2), where each

cache manages a portion of its local cache “greedily” (L1), and the remaining portion

“globally”(L2). 3)Distributed caching (L2), where the entire cache space is managed

globally without any replication.

Our model shows that cooperative caching (L1 + L2) that caches both local and

remote requests has a significant advantage over single layer caches such as pure L1

or pure L2 when the data center has a hierarchical network topology with oversub-

scription.

We modeled a cooperative cache with two level, assuming a cache node with 1

TB of SSD on each rack that is shared between L1 cache dedicated to caching rack-

local accesses and L2 cache dedicated to caching remote accesses, a 10Gbit switch

connecting between 2 and 16 racks, and a 10Gbit link to the datalake. We use miss

rate curves (MRCs) (Figure 2·3c) calculated from Facebook and Two Sigma traces

(see Section 6.2), then estimate the hit rate at each level of cache, and from that

numerically derive the aggregate storage bandwidth seen by clients. The model is:

r =
1

1−m1
rL1

+ 1−m1−m2
rL2

+ m2
rDL

m1 = MRC(FL1 · C)

m2 = MRC((1− FL1)C ·N)

(2.1)

where rL1, rL2, rDL are L1 hit, L2 hit and L2 miss bandwidths, FL1 is the fraction

of cache devoted to L1, C and N are the capacity of a single cache and number of
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Figure 2·3: a)MRCs of Facebook and Two Sigma trace, b - c) Modeled
throughput of storage cluster for varied numbers of caching nodes (N),
ratio of L1 and L2 cache. 1 TB cache per node, 40 Gbit cache / 20 Gbit
for storage traffic inter-rack / 10 Gbit to datalake.

caches, and MRC is the miss ratio curve for the workload.

Figure 2·3 shows the storage throughput for a two level cache for 2, 4, and 8 cache

nodes, as we vary the L1 fraction of the cache from 100% (fully-local) to a minimum of

1
N

(due to unified caching). The leftmost point on each plot (i.e. 100% L1) estimates

the performance of a pure-local caches, and the rightmost point on each plot (i.e.

100% L2) estimates the performance of a distributed cache without replication. We

set rL1 rL2 and rDL assuming a datacenter with 40 Gbit ToR switches, 40 servers per

rack and 100 Gbit uplinks, resulting in a 16:1 oversubscription. 1

1We set rL1 to 40 Gbit, rL2 to 20 Gbit and rDL to 10 Gbit/s; with a 16:1 oversubscription it seems
optimistic to assume 20 Gbit of the 100 Gbit uplink is available for storage traffic, and 10 Gbit/s is
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Our simple numeric model underestimates the value of the two-level cache in that

it assumes that the bandwidth between L2 caches is not contended, and that there

is no locality in requests from the same rack or cluster. Even with these pessimistic

assumptions we see that the multi-level approach offers better performance than either

a pure L1 or pure L2 approach for 4 cache servers or more. The industry trace, with

its 90% reuse rate at eight cache nodes shows a 40% improvement over a pure L1

cache and a 25% improvement over a pure L2 cache.

roughly the bandwidth we have seen from our 90 spindle Ceph cluster.



Chapter 3

Related Work

This chapter provides the larger context for this work and gives an overview of the

caching system research related to our works. Caching is a well-studied problem

in various computer systems ranging from multi-processors to web systems. In this

chapter, in particular, we focus on the caching systems designed to improve the

performance of data lakes in data centers and the original cooperating caching systems

for file systems.

We group caching systems for data lake, based on how they are integrated into

the existing storage stack, into two categories; i)storage level caching that uses the

caching resources distributed to the nodes that are providing the storage service, and

i)client level caching that is either deployed within the framework or compute cluster.

In section 3.1.1 and section 3.1.2, we describe work done in each of these areas, and in

section 3.1.3 we discuss how they relate to the key requirements (RQ1-RQ4) described

in section 2.3. Finally, in section 3.2, we discuss the rich cooperating caching research

for early file systems, which deeply influenced the design and implementation of D3N

and D4N.

3.1 Data Lake Caching

3.1.1 Storage level caching

With the reduced cost of higher speed storage devices such as solid-state drives

(SSDs) [53], they are widely used at various levels in data centers, and are tightly

22
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integrated into the storage-system stack. Many storage vendors provide either a trans-

parent flash cache layer(e.g., IBM XIV SSD cache [62]) or a flash tier(e.g., IBM Easy

Tier [60], EMC FAST [48]) within the high-end storage server to reduce disk latency.

Data lake implementations generally [118, 58, 82, 39, 90, 95, 106, 78, 94] cache data

at the nodes where the data is stored, with the fundamental goal of reducing demand

on the slow disks; however, they don’t prevent generation of excessive traffic to the

data lake.

An alternative solution, tiering, is implemented by many data centers [57, 77,

95, 41, 6, 24]. The tiering approach is popular because it can utilize multiple types

of storage media (e.g., memory, SSD, Disk) with different performance and capacity

characteristics to create tiers for accommodating various data types, thus reducing

the storage cost significantly [69]. The major drawback of this approach comes when

migrating the data and its replicas between tiers, which usually adds complexity to

the design and implementation, and may degrade the performance of applications.

For instance, the Ceph team reported that a tiering approach reduces most workloads’

performance [41].

These solutions are generally workload unaware, and caches/tiers are automati-

cally used by all the clusters and frameworks accessing data.

3.1.2 Client level caching

Framework caching

We use the term framework caching to refer to caching done either at the level of

framework that supports applications of a particular class or caching integrated into

a specific application. Many frameworks, from serverless to data analytics to deep

learning, have implemented framework and workload specific storage caches [91, 124,

72, 92, 116, 99, 117, 79]. In addition, caches at this level can be integrated into

the general resource management of the framework. For example, Faa$T [99], a
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storage cache for serverless functions, employs the memory used for the VM running

a serverless function to cache the storage accessed by the function.

Framework cache solutions can adopt highly specialized cache management poli-

cies matching the applications they support by exploiting the application-level seman-

tics, and can provide maximum performance gains for applications. These policies

rely on either the hints from applications or highly repetitive and predictable data

access patterns of workloads. For example, Faa$T [99] implicitly prefetches storage by

loading the cache when starting a function. MRD [91], a caching system for analytic

platforms, exploits information about the schedule of jobs to prefetch data before it

is needed. MRD [91], extracts rich information from the analytics platforms in the

form of Directed Acyclic Graphs (DAG), and utilizes DAGs information to optimize

both eviction and prefetching of data to improve cache management in Spark. In a

very different fashion, Quiver [72], a cache for deep learning, takes advantage of the

phenomena that learning algorithms can handle the data in random order to serve

the data in the order most efficient for the cache.

Cluster Caching

A number of systems have been developed that cache data using cluster level resources

(e.g., memory, SSD, local disk) to avoid access to shared data lakes [25, 28, 96,

16, 64]. Cluster caching solutions are usually co-located with the computation, and

use the compute nodes’ resources (e.g., memory, SSD) to form a cache layer, and

therefore they provide high locality. Organizations do not have to co-locate caches

with computation and can dedicate separate resources for caching at the cluster level

to allow elasticity for compute clusters; however, this approach is not very common

and may decrease the data locality. Multiple frameworks/applications running in

the same cluster can share the cluster-level caches, therefore specialization based

on application semantics or their access patterns is limited compared to framework
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caches.

Much of the recent work has focused on data analytics [28, 25], coordinating

caching across nodes to optimize these workloads. For instance, Pacman [28] is a

distributed in-memory cache designed for data-analytic clusters to reduce the impact

of stragglers by increasing the memory locality of parallel tasks. The most related

approach work to D3N and D4N, Alluxio [25] (formerly known as Tachyon [74]),

implements a distributed cache layer on compute-local memory or SSD to improve

the performance of the data analytics workloads. Alluxio is a cluster-level cache

because typically Alluxio is deployed co-located with compute clusters, is controlled

by the cluster not by the underlying storage provider and Alluxio does not support

multi-tenancy due to its security model. It allows access to the immutable data lake

by mounting the S3-based bucket but implements the user authorization for accessing

the cached data based on the POSIX permission model. When Alluxio fetches the

data from the data lake, it only inherits bucket-level ACLs when determining file

system permissions for a mount point, and ignores the ACLs of a set to individual

objects [2, 1]. This means the user has the same access rights for all the objects

under the same S3-based bucket. Moreover, there is a lack of access control for short-

circuit operations (local read-write), where users can directly access the locally stored

data [123].

3.1.3 Meeting the requirements

RQ1 - Support sharing: Data lake level caches naturally support data sharing since

all frameworks and clusters running in the data center are sharing cache resources.

On the other hand, caching at the client level introduces challenges for data sharing

since caching is separate for each framework/cluster these systems are not visible

to other frameworks/clusters. As a result, in framework/cluster caching frequently

accessed data ends up becoming replicated in multiple caches, and requests are forced
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to go to the data lake, even if the data is already available in other caches.

RQ2 - Preserve locality: Data lake caches do not preserve locality. Generally,

these solutions are not concerned with preserving locality, since the cache resources

are deployed near to the storage nodes and far from the compute cluster where data

is being accessed.

On the other hand, client level caching often caches data in the memory of the

node where it is being accessed. If they are deployed on a set of co-located physical

computers, caching at these levels will have a good locality. However, if caches are

deployed in a virtualized environment, then these caches usually do not preserve

locality. The lack of data locality is also reported by the Alluxio community when

users deploy Alluxio and compute framework on the Kubernetes environment. [7].

RQ3 - Enable elasticity: Data lake level caching naturally supports demand elas-

ticity due to the disaggregation of the storage and compute. If a framework or cluster

shrinks, its cached data will be saved in the data lake caches, and the saved data can

be used by other frameworks and clusters or by future accesses.

In contrast, cluster level caching does not support elasticity. As we mentioned

in section 2.3 demands vary a lot across different applications/frameworks, which

may lead some cache resources to underutilized. Shifting caching resources elastically

between different frameworks or clusters is challenging; releasing cache resources as

the demand shrinks means losing some of the cache states. If the caching system is

deployed within the framework or cluster, then we need to grow/shrink the cache as

the framework/cluster grows/shrinks. In addition, if the caching system has a write

cache, then the cache resources cannot be released immediately when the frame-

work/cluster shrinks until the dirty data in the write-cache is written back to the

data lake.
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RQ4- support specialization: Data lake level caching does not support special-

ization for workloads. Understanding the access patterns of different workloads is

challenging at this level, therefore these caches usually are workload agnostic. While

caching is not specialized, specialized data lakes have been used for particular work-

loads. For example, a recent study [31] suggests deploying multiple micro object

stores, where each one is independently configured and tuned for a particular ac-

cess pattern to allow the tenants to choose the proper storage for their workload.

Facebook originally had in each data center several different HDFS data lakes for

analytics, f4 [82] data lake for cold objects, and Haystack [39] for hot objects. To

avoid the management complexity of multiple data lakes and the cost of stranded

resources, Facebook recently has developed a common data lake, Tectonic [90]. In

the same way, we argue that specialized caching is important to match the cache

behavior to the workload requirements, Tectonic argues that specialization is critical

to supporting a wide range of workloads efficiently.

Framework caches by their nature are specialized to the workload. Cluster caching

introduces limitations for specialization since there are different applications and ac-

cess patterns.

3.2 Cooperative Caching

In the 90s and early 2000s, there were a large body of important research [47,

30, 50, 103, 65, 71, 38, 84, 114, 46, 113, 83, 55, 22] on cooperative caching for file

systems that extended the file system across different machines accessing it. The

pioneering work on cooperating caching by Dahlin et al [47] defines the cooperative

caching for distributed file systems in 1994, as a system to improve network file system

performance by coordinating the contents of client caches and allowing requests not

satisfied by a client’s local in-memory file cache to be satisfied by the cache of another
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client. Cooperative caching forms a new cache layer in the storage hierarchy by using

the client’s memory as a global file cache, usually located between the client and

storage disks, to reduce the disk accesses by increasing the global hit rate..

The original cooperative caches focus on distributed file systems, where the servers

connected with LAN(e.g., ATM, Myrinet) have low latency and high bandwidth. The

underlying assumption in these studies is that the high-speed local area networks are

faster than disks, which means accessing data in a remote memory over the network

can be much faster than accessing it from a local disk. In this aspect, the problem

is similar in today’s data centers with full bisection bandwidth within the rack, an

over-subscribed inter-rack network within clusters, and a further over-subscribed data

center network between clusters and an enterprise data lake. Most distributed file

systems are implemented as an extension of the operating system, where a remote

file acts the same as one on a local file system. They use POSIX semantics (or

similar interface), which forces some of them to have expensive consistency semantics;

whereas, file systems relax their consistency for better performance. Different features

of distributed file systems and applications’ requirements strongly impact the design

of cooperative caching, resulting in a wide range of caching techniques. Management

strategies in these systems must deal with trust issues and resource allocation, and

move or replicate data between different caches for performance or consistency.

D3N and D4N borrow many ideas from the rich research on cooperative caching in

file systems. This section compares our works with past cooperative caching systems,

re-visit critical design decisions of post-works, and discusses how we adapt some of

these design choices for immutable data lakes.

Trust and Cache Cooperation: In many studies [47, 50, 103, 65, 114] mutual

trust was assumed among all participating clients, thus caches on these clients are

naturally extension of the file system. In most of the works, caches are owned and
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managed by the file system, and all caches participate in cooperation. Shark [30], a

peer-to-peer file system with cooperative caching, differs from prior studies by consid-

ering mutual distrustful clients. Shark uses encryption and opaque tokens to enable

cache cooperation and secure data sharing. Another work, Utility-Based Cooperative

Caching (C-Util) [122], shows a new cooperation model for trusted caches belonging

to different owners. Each cache is selfish and only participates in cooperation if its

performance is guaranteed to be improved. This model might be adopted in public

clouds where different users access another user’s cached data; since public clouds

explicitly price their services and resource, thus users can calculate their cost and

benefits.

D3N and D4N distribute caches all around the data center, in a similar way net-

work file systems distribute servers on LAN. Because D3N and D4N are an extension

of the data lake, unlike Shark, caches in our design are trusted, allowing us to sidestep

many of the issues related to data authenticity and trust. To allow sharing and elastic-

ity, in contrast to the C-Util, all caches in our designs are controlled by the data lake

and must participate in cooperation for improving the overall data lake throughput.

File/Block Lookup: The location of data in the cooperative cache is found

either by hashing [47, 29, 38, 46], where each cache is responsible for storing the

portion of keyspace, or by some form of a global directory (e.g., centralized metadata

server) [50, 47, 122, 114]. Locating blocks by hashing simplifies the implementation,

allows a direct cache to cache communication, thus avoiding the overhead of metadata

lookup, and reducing redundant data duplication. However, as reported by previous

research [47, 122], placing the data using hashing prevents data replication at the

cache layer, and reduces the local hit rate.

An alternative approach is to use a centralized metadata server to maintain the

global view of the cache state. The downside of this method is that caches must



30

contact to the server for every block access, and inform the server whenever a block

moves in and out of the cache. For instance, the N-Chance Forwarding algorithm by

Dahlin et al. [47] uses a centralized server to determine where the block is cached.

Later on, the Berkley xFS file system [29] implements the N-Chance Forwarding

algorithm by decentralizing the metadata server by splitting it into many metadata

servers. xFS maps files to a particular metadata server and distributes this mapping to

all clients and metadata servers. Furthermore, it tries to co-locate the home metadata

server of the file with the cache that is accessing the file to improve performance.

Other systems have adopted the de-centralized metadata server approach [50, 114, 30].

A different lookup strategy is proposed by hint-based cooperative caching [103], where

clients share hints about block locations with each other to minimize the metadata

lookup. The first copy of a block to be fetched from the storage by any cache is called

the master copy, and only the master copy can be forwarded to another cache. When

a cache forwards the master copy to another cache, it will update its hint to show

where the block is sent, and if the cache later needs to access the block, it follows

the path indicated by the chain of hints to reach the block. The location stored in a

hint might not be accurate because the block might already be evicted. As reported

in the paper, the location hints become inaccurate at higher rates when the working

set approaches the aggregate memory size, resulting in a decreased hit ratio on the

client caches, increased costly server accesses, and degraded performance.

To implement highly scalable caches, we avoid using a centralized approach. D3N

avoids global state and uses consistent hashing [68] to locate the blocks. D3N uses

multi-layer design to overcome the low locality issues reported in previous studies

with hashing approach [47, 122]. This way, D3N can still have a good amount of local

hit rate since the first layer replicates data for the locality. On the other hand, D4N

uses a de-centralized directory to maintain the global state.
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Unlike file systems that use small blocks (e.g., 4KB), D4N uses large blocks (e.g.,

4MB), and at this granularity, D4N benefits from the key advantages of block-level

caching. In addition, directory lookup overhead for caching at a block level is low

in D4N due to large blocks and data immutability. D4N has a similar approach to

xFS and GMS, where we use a distributed directory and co-locate every cache node

with a directory instance. xFS tries to map files to the nearest metadata server of

the file’s owner(writer); in contrast, D4N uses consistent hashing to map the key to

a particular directory instance.

Cache Management: Cache management policies can be implemented based

on local decisions with explicit cooperation [47, 30, 103, 65] or based on the global

cache state [47]. Dahlin et al. [47] proposed the “Greedy Forwarding” algorithm,

where clients serve data to each other, however, every client manages its local LRU

cache greedily, without regard to the contents of the other caches in the system or

the potential needs of other clients. The same block may be cached multiple times.

The greedy method improves the performance by duplicating data if there is a lot of

locality in the workloads. The greedy approach is adopted by many other systems,

including our work D3N, due to its simplicity and performance [38, 30].

Another common approach is to use the global cache state for management. The

cooperative caching algorithms are based on a global state and they tend to distin-

guish a local block that is accessed locally from a global block that is cached by a

node on behalf of another cache node. For instance, in the “N-Chance Forwarding”

algorithm by Dahlin et al. [47], every cache greedily admits blocks into its LRU queue,

however if the block is a singlet then instead of removing the singlet from the coopera-

tive cache, the cache forwards the singlet to a random cache, otherwise it discards the

block. To limit the lifetime of a singlet block, a recirculation count (N) is maintained

to limit the number of times a block is forwarded. The algorithm tends to replace
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global data with local data in busy clients, and accumulates the global data on the

idle caches. “N-Chance Forwarding” algorithm later was implemented in xFS [29].

While “N-Chance Forwarding” uses global information to identify singlet blocks,

other systems [122, 50, 114, 47] implement cache replacement policies based on

global state. These systems mimic/emulate the global LRU replacement algorithm to

identify the least valuable block in the system for eviction, and they also utilize the

idle memories of different clients. For instance GMS [50] and PGMS [114], implement

a global Weighted LRU. Their algorithm tries to balance cache space between local

and global accesses and avoids duplication of global blocks. The GMS algorithm

periodically collects the age of all local and global blocks from every cache, determines

less loaded caches and the least valuable blocks in the entire system for eviction,

and broadcasts the distribution of all old blocks in the cluster to each cache. This

way, GMS approximates global LRU. PGMS [114] later extended the GMS work by

prefetching blocks into the idle caches. Like PGMS, other early studies also mention

the use of idle client’s memory as a backing store for evicted blocks. Unfortunately,

in data lake implementations, the caches are busy all the time. Therefore, we have

to ensure that forwarding a block to a remote cache does not cause eviction of the

valuable data. On the other hand, in C-Util [122], clients share their future accesses

with a central server, which uses this information to determine for all clients which

blocks to store and which peers to serve data. The “hint-based cooperative caching”

protocol [103] explores the global cache state by exchanging their local hints, which

only approximates the global state of the caching system. The hints are helpful for

caches to determine where to evict singlet blocks or where to fetch a block. The

management decisions are not optimal but significantly reduce the communication

cost.

D3N uses the greedy approach for simplicity and performance, where each cache
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manages its own cache based on the local information. On the other hand, D4N

implements a cache management policy based on the global cache state. Unlike

prior studies, D4N’s directory can maintain much richer information about objects,

blocks, and cache nodes (e.g., request load, hit rate), because the lookup cost is

negligible, metadata overhead is much smaller, and the storage capacity of modern

caches are very large (TB capacity for data plus hundreds of MB memory for meta-

data). Maintaining all this information allows D4N to tune caching strategies per

cluster/framework. D4N’s algorithm identifies and compares the value of every block

globally by maintaining a global age. Unlike GMS [50] or PGMS [114], D4N’s algo-

rithm does not need any offline computation for calculating the oldest blocks in the

system, D4N only maintains a global age which allows each cache to run the same

algorithm independently and compare the blocks in different caches(See 4.5).

Write Cache: Most cooperative-caching solutions [47, 30, 103, 65, 50] implement

a read-only, write-through cooperative cache. Previous works with write-enabled

cooperative caching have either relaxed consistency or not address data sharing. One

of the reason is that prior studies reported that files are usually updated only by

their owner, and no files are simultaneously updated and read by many users [46,

22, 115]. Another reasons is that the strong consistency requirements of file systems

increase the management overhead of cache coherency; therefore, most cooperative

caches avoid providing a write-back cache [38, 103]. Approaches with a block lookup

mechanism that ensures cache exclusivity and avoids replication, such as hashing (e.g.,

C-DHT [122] or Hash-Distributed Caching [47]), can easily provide a write-back cache

since there is only a single copy of the block, however, these caches do not provide

durability.

For instance, DEFER [84] implements a log-based write-back cooperative cache,

and it does not provide consistency in the event of conflicting requests therefore
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not suitable for shared environments. NFS-CD [38] provides a write-back cache with

support of both relaxed and strong consistency. Strong consistency is provided with a

locking mechanism. The writer cache first acquires the lock from the cluster delegate,

writes data to its memory, and replicates data on other caches for durability. Dirty

data is written to the storage asynchronously at a later time.

In D3N, we take a different approach for non-durable write-back cache than previ-

ous studies. D3N writes data blocks to the highest layer and uses consistent hashing

to distribute the blocks. It avoids using locks or leases since blocks have a single

home location and data lake is immutable, however, it does not provide data dura-

bility. D4N, on the other hand, provides a durable write tiers where each write tier

maintains a write-back cache that supports both replication and erasure coding [98]

for the durability. To maintain cache consistency, D4N uses leases for updating the

metadata, and delegates a cache (the primary cache), which maintains the master

copy of the block and is responsible for the replication of the block to other caches.

Users access only the primary cache for reading data from write-cache.

Granularity: Some existing works prefer to store data at block granularity [47,

50, 122, 29, 65], while others prefer file granularity [103, 30]. In both D3N and D4N

architectures, we use block granularity for caching, which allow them to distribute

the large files across many caches to balance the load. Since data set sizes vary in

the data lakes, using block-based caching avoids external fragmentation and enable

partial caching for large objects.

3.2.1 Meeting the requirements

In general most cooperating cache architectures, similar to storage level caches, nat-

urally support wide sharing (RQ1), and preserve elasticity (RQ3). In contrast to

storage level caches, cooperative caching preserves locality (RQ2). Generally these

systems are general purpose, and there has been little focus on supporting specializa-



35

tion for caching (RQ4).



Chapter 4

Architecture

This chapter describes the D3N and D4N cooperative cache architectures for im-

mutable object based datalakes. Section 4.1 describes our assumptions, section 4.2

describes common design features, section 4.3 describes differences, and in sections

4.4 and 4.5, we describe D3N and D4N architectures in more detail. We conclude in

section 4.6 by discussing the tradeoffs between the architectures.

4.1 Assumptions

When designing D3N and D4N we have the following assumptions regarding the

structure of the data center and how compute clusters and data lakes are being

incorporated into them.

We assume that the data lake is a separate cluster in the data center, accessible

over the data center network from compute clusters needing access. The data access

may be significantly constrained by over-subscribed network links both within and

between compute clusters, and between the compute clusters and the data lake, or

that the data lake itself may have intrinsic performance limits (due to e.g., disk

bandwidth), and that addressing these limits may be outside the control of the parties

responsible for installing these compute cluster.

We assume that there is a sufficient re-use of the data read from a data lake

to make a caching solution valuable, and data sharing is common both within and

between the compute clusters. The popularity of data is dynamic and fluctuates

36
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dramatically, and the re-use pattern is complex. The compute servers’ local caches

may work well, however they can not cache objects shared over different servers both

within the same cluster and between different clusters. In addition, many workloads

may have large reads that may not fit in a compute server’s local cache. There is also

some geographic spacial locality in the data centers, where some of the data sets are

shared by the applications that are likely to be run on the same compute cluster or

on physically close servers.

We assume there some workloads that may create objects which will not be ac-

cessed either ever or for a long time (e.g., logs, archival data). These inactive objects

cannot be stored at the compute server local storage and may interfere with higher

priority reads at the data lake side.

We assume that applications require both high capacity and performance, and

storage hardware in the market have different cost, performance, and capacity char-

acteristics. The data lakes store data on less expensive high capacity slow storage

devices (e.g., disks, tapes), and caches use more expensive high speed storage devices

(e.g., DRAM, SSD).
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Figure 4·1: D3N and D4N architectures. Applications use the S3 in-
terface to access data lake. Cache nodes (purple) are distributed across
data centers, and they run data lake gateway (blue) that implements
caching functionality of each architecture, Lookup servers (green) iden-
tify nearest cache nodes to client, Heartbeat service (red) tracks the
set of active cache nodes.

4.2 Shared Goals and Design Features

D3N and D4N architectures share a number of key features:

Extending Data Lake: Both the D3N and D4N adopt cooperative caching, orig-

inally designed for file systems [47], to immutable object based data lakes allowing

the data lake to be extended across the data center. This enables caching data on

the access side of network bottlenecks, reducing the demand on the bi-sectional band-

width. Multiple caches cooperating to provide increased throughput (via replication)

or capacity (via exclusive caching) depending on workload characteristics. D3N and

D4N architectures offer the same network interface (S3) as the data lake, requiring

no changes to applications. In both designs, all caches are a trusted part of the

back-end data lake service, and by distributing them, we extend the data lake across

the data center; therefore each system support data center wide sharing where the

cached data can be accessed anywhere by different clusters or frameworks (RQ1). All

caches cooperate to store both locally and globally accessed data, enabling limited
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cache storage to be elastically used to cache whatever data is deemed the most needed

irrespective of which cluster or framework is using the data (RQ3).

Figure 4·1 shows D3N and D4N architectures in the context of a simplified view

of a data center. Cache nodes are the basic building blocks, and they implement

the data lake gateway (DL Gateway, see 2.1) that provides the S3 interface on top

of the OSDs as well as the caching functionality. Cache nodes are distributed across

the data center in both systems to improve the data locality (RQ2). For example,

a cache node can be placed per rack that allows requests to be handled local to the

requester, using workload locality to exploit high inter-rack bandwidth and reducing

cross-data center traffic. Cache nodes store data for read/write requests but use dif-

ferent cooperation models (Section 4.3). We do not dictate a specific host type for

running cache nodes or a specific storage medium to be used for caching by design.

A cache node can be a dedicated server in the rack or a virtualized/containerized ser-

vice. The preferred storage media for the cache nodes is high-speed SSD, providing

a combination of high capacity and sufficient bandwidth to saturate network links;

however other high-speed storage media such as memory may be used. In our testbed

we equipped each cache node with high-performance NVMe SSDs, and we partition

the cache capacity between a read and write cache.

Identifying Local Cache Nodes: One of the key advantages of integrating the

caches into the data lake, is that they are part of the data center infrastructure.

Therefore, we can exploit low-level approaches, to achieve locality.

A client uses DNS to find a cache node. We provide the IP address for the DNS

server, we called lookup server, on an anycast network [17] that will direct the DNS

request to the nearest lookup server, with a timeout of a few minutes. Lookup servers
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maintain the logical topology of the caches, and a heartbeat service is used to track

the set of active cache nodes. We do not use anycast to address the nearest cache

directly but instead use anycast to get to the lookup server, that in turn provides the

IP address of the nearest cache node. This two level approach is needed to support

VM migration. Requests from clients to caches are stateful, and if a client is running

in a VM and the VM is migrated, it needs to communicate to the original cache node

until the request has been completed. After a VM is migrated, it will continue to

communicate to the previous cache node until its use of the DNS mapping has expired

and it opens up a new connection. For correctness, clients query the lookup servers

both periodically and upon request timeout to handle events such as the recovery of

failed caches, client VM migration, or other events which might affect client-to-cache

pairing.

Caching at Block Granularity: In each architecture, the read caching is done in

large data blocks1 (e.g, 4MB) rather than on a per-object basis, for several reasons:

(i) it avoids external fragmentation, and enables to cache the part of large objects, (ii)

the blocks making up a large object are distributed across a number of caching nodes

in the higher layers, enabling the aggregate resources of many cache servers to be

used for a single object, and (iii) in a multi-tenant environment the use of fixed-sized

blocks simplifies management of cache resources, allowing per-tenant resource use to

be balanced fairly especially in the face of large variances in object size.

Exploiting Composability: The S3 interface, which is composable — i.e., capa-

1In object stores, the file is called object. Objects are stored in a container called bucket, and
block is fixed-size chunk of an object(e.g., 4MB in Ceph). (See 2.1)
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ble of being stacked in layers, each providing the same interface to the layer above,

creating different systems and services. This enables the layering of rich functional-

ity such as application-specific customization, replication, encryption, security, and

similar services. D3N and D4N take advantage of this composability, using the same

interface between cache nodes that the nodes expose to clients of the data lake, sim-

plifying the implementation. In addition, D4N implements write tiering on high speed

SSD for recently written objects, and employs the same S3 interface to lazily copy

aged objects between the write tiers and the backend data lake that uses high-capacity

storage. The composability enables both systems to use alternative S3 implementa-

tions for high-capacity storage (e.g., MinIO [78] or similar S3 services on top of tape

robots)

Exploiting Immutability: Objects are immutable and cannot be modified after

they are uploaded in the proper implementation of S3. Object operations are atomic;

thus, an object is not visible until the upload completes.Data lakes store objects (and

their blocks) with a unique object ID and maintains version numbers and the hash

of the objects content in objects’ metadata. The object ID along with hash of the

content and version number changes if an object is deleted or replaced with a differ-

ent object with the same name as the original. Most object based storage systems

commonly provides these unique object ID and version numbers(e.g., S3 [27] and

Ceph [118]). Both designs exploit the data immutability provided through the S3

interface. We use object ID (D3N) and S3 object name and hash of the object content

(D4N) to identify the cached blocks. We note that in D4N design, we consider the

hash of object content as an indicator for its version number, which allows D4N to

identify objects globally both in the D4N write tier and the data lake. To provide
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strong consistency, read requests always fetch object metadata from the data lake

(D3N) or the directory (D4N); thus, they will always obtain a consistent version of

the object. If an object is deleted and a new object is created with the same name, all

read cached data is implicitly invalidated because the object will have a new object ID

or hash. In contrast, previous cooperative caching approaches for file systems needed

to aggressively invalidate any cached data in the read cache, imposing considerable

overhead and complexity. D3N does not keep track of read cache, and D4N, while

keeping track of where data is cached for performance, does not need to maintain this

information resiliently.

Integrating into Data Lake Gateway: Instead implementing a new and separate

cache layer, both designs integrated into existing gateway functionality, and they al-

low clients to rely on just one implementation of complex data lake services. Both

architectures rely on mechanisms(e.g., authentication, serialization,synchronization)

provided by the data lake (Ceph) software. For instance, D3N and D4N piggyback

the IO serialization mechanism provided by the data lake gateway to maintain correct

read-after-write and shared-write semantics between multiple clients(See Section 4.3).

They rely on the data lake gateway logic for object fragmentation, flow control mech-

anism to order the incoming and outgoing requests, limits the number of outstanding

requests, and S3-compatible authentication mechanism and access control list (ACL).

D3N relies on the data lake for namespace operations (e.g., generating metadata for

an object). D4N deploys the existing data lake software as a write tier and uses all

mechanisms provided by the data lake (e.g., replication, synchronization, fault tol-

erance) to implement the write tier. This enables D4N to exploit existing erasure

coding support of the data lake, which is one of the major reasons why D4N provides
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better write performance than other caches that rely on replication(Section 6.3.2). In

addition to the performance and complexity advantage of gateway integration, the

fact that D3N and D4N rely on existing control flow and the gateway implementation

greatly reduces the barrier to acceptance by the upstream community, and ensures

that enhancements are made to the data lake will automatically apply to caches.

Moreover, users have a strong guarantee that both the D3N and D4N data lake ex-

tensions provide exactly the same durability guarantees, not requiring them to trust

two different implementations at the cache and data lake level for the resilience of

their data.

Workload Adaption: Both architectures automatically adapt to workload charac-

teristics, and neither of them requires applications to control the cache management.

The cache nodes make caching decisions based on historical information without any

input from the application. For each architecture, we developed a cache management

algorithm that controls replication and dynamically adapts to the access patterns of

the applications. D3N partitions the cache space between local and remote requests

using miss ratio curves and measured latency; while, D4N uses global information to

avoid redundant caching when the working set size is large.

4.3 Design Differences

The fundamental differences between the two systems is that; D3N is designed to be

readily integrated into a data lake, minimizing the changes in the complex mecha-

nisms for ensuring consistency, availability, and durability of the data lake. D4N, on
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the other hand, is a more sophisticated design which demonstrates the greater value

that can be achieved by modifying these mechanisms to implement richer support for

cooperative caching and tiering.

Cache Cooperation and Block Lookup: D3N and D4N differ on how each sys-

tem organizes its’ caches and locates the blocks. D3N is a hierarchical multi-layer

cooperative cache, where layers correspond to wider domains of cooperation, and

misses are forwarded to the next higher layer using a consistent hashing. On the other

hand, D4N is a non-hierarchical cooperative cache, where it creates a single ag-

gregated distributed cache layer and uses a a distributed directory for locating the

blocks.

Supporting Write Requests: The figure 4·1, shows that their support for write

requests also differs in D3N and D4N. D3N provides a non-replicated write-back cache

only for the intermediate data and writes the blocks into the highest layer. Once the

object is written into the write-back cache, its metadata maintained in the data lake

is also updated. On the other hand, D4N provides reliable write tiers where each tier

stores data with erasure coding or replication. D4N exploits the composability of the

S3 interface, layering the write tier on top of the existing data lake. In contrast to

previous cache systems that implement their own mechanism for maintaining dirty

data redundantly, D4N re-uses the existing data lake (Ceph) software for implement-

ing a write tier. Thus, D4N provides exactly the same guarantees, using the same

implementation for accelerating write operations through tiering as the underlying

data lake.
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Maintaining Consistency: Another difference between the two systems is how

they maintain their consistency. In D3N, we rely on the underlying data lake for

consistency, where the data lake maintains per object metadata, including the unique

object ID. For every request, D3N first retrieves the per-object metadata and its

object ID from the data lake before serving any cached data. This allows clients to

bypass the D3N caches and to have direct access to the data lake. In the D4N design,

the write tier (the existing data lake (Ceph) software) generates per object metadata

for dirty data, including the the hash of object’s content. D4N maintains the object

metadata in the distributed directory, and for every request, it retrieves the object

metadata from the directory; thus, D4N does not allow applications to bypass the

cache layer since the writes must go through the cache nodes for consistency.

Design Complexity: In D3N, we explicitly focus on implementing a real working

caching system and “upstream” the code into an existing open-source Ceph codebase

to allow its use by a broader community; therefore, simplicity is one of the key

principles of D3N design. To keep the design simple, D3N focuses on a read cache

and supports a write cache only for intermediate data sets, avoids any global state

by using consistent hashing to locate blocks, and uses the same cache management

strategy for all workloads. D3N design focuses on read-mostly workloads, particularly

for big data analytics, where objects are large and accessed in their entirety.

D4N explores the use of the global state to implement more sophisticated cache

management policies and enable application-specific tuning of caching policies to sup-

port a broader range of applications than D3N. D4N architecture provides a reliable

write tier and uses a distributed directory to maintain the cooperative cache’s global

state (object and block metadata) and locate blocks in the cache. This way, D4N
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separates its caching mechanism from its caching policies, enabling caching policies to

be customized per workload to have flexible data placement and cache management

(RQ4). Thus, D4N can accelerate the performance of a wide range of applications

with different access patterns. D4N architecture is significantly more complex, main-

taining a global state and a reliable write tier.
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Figure 4·2: D3N multi-layer cache architecture. Cache layers: Layer
1 (L1), Layer 2 (L2), and Layer 3 (L3) are introduced at the top of
rack, aggregation, and cluster switching network layers, respectively.
L1 caches data for its local clients, L2 caches data for the clusters, and
L3 caches data for multiple clusters.

4.4 D3N Architecture

D3N caches are designed to be integrated into an existing data lake, with the caching

functionalities are implemented by modifying an existing object storage gateway to

preserve the data lake properties. Figure 4·2 shows how D3N creates caching layers

based on the hierarchical network topology. Here D3N is deployed across a set of racks

(or clusters), caching data from a remote data lake. We assume that the resources

within these racks may be optimized for their tasks, incorporating sufficient caching

and network resources to support the expected demand from the client machines

in the cluster. Conversely, we assume that bandwidth may be limited between the

clusters and the data lake, or that the data lake itself may have intrinsic performance

limits (due to e.g., disk bandwidth).

4.4.1 Components

Key elements of D3N’s architecture are its caching layers, the read cache, and the

write cache.
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Caching layers: D3N introduces cache layers based on network topology to mit-

igate the performance impact of network limitations. As seen in Figure 4·2, cache

layers: layer 1 (L1), layer 2 (L2), and layer 3 (L3) are introduced at the top of rack,

aggregation, and cluster switching network layers, respectively. Multiple cache layers

can be co-located in the same cache node. Each cache node acts as a L1 cache for

its local clients, caching requested data, while successive cache layers are formed by

aggregating resources across multiple caches. In each cache layer, every block has

a single “home” cache node determined by consistent hashing [68]. For instance, in

Figure 4·2, consecutive L1 caches cooperatively form a L2 cache layer and consecutive

L2 caches cooperatively form a L3 cache layer.

A cache node can co-locate multiple layers, and it combines these caches in a

unified cache where space can be dynamically traded off among layers based on where

bottlenecks are observed. For example, when compute nodes on all racks are accessing

remote data, significant cache space may be dedicated to the L2, maximizing the

amount of data cached within the cluster; if only one rack is busy the space on its

associated cache server may be dedicated to L1, eliminating the need to fetch data

from other racks. Co-located layers on the same cache node enables a unified cache,

only one copy of a block is stored even it is logically cached in multiple layerson that

node.

Read Cache: All caching in D3N is done in block granularity, and cache nodes

maintain a local mapping of blocks. A block2 is identified by its object ID generated by

the data lake and the block offset, and is cached as a file on an SSD-backed file system.

The read cache uses local information for cache management, and runs the same cache

management strategy for all requests. D3N allows “pluggable” cache management

policies and can support any eviction policy, e.g., LRU, or LFU; currently it uses

2Note that object stores map object onto a sequence of fix size large data blocks (e.g., 4MB),
and distributed blocks across storage servers, and D3N processes every block independently.
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independent per-layer LRU.

Write Cache: D3N supports write-around, write-through and write-back caching,

which applications can control on a per-object basis. An object is identified by its

object ID, and the metadata of cached blocks are maintained in the data lake. Write-

back cache does not replicate the objects therefore it is only suitable for temporarily

datasets that does not require strong reliability guarantees.

4.4.2 Data Flow

We introduce metadata semantics, the main operations and the data flow to support

read and write requests.

Metadata Semantics: The data lake maintains per-object metadata, including the

unique object ID and the mapping of an object to corresponding data blocks. Objects

are immutable, and uploading an existing object creates a new one, assigning it a new

object ID number. Cache nodes in D3N maintain a mapping between every cached

block and object. Per-object metadata is requested from the data lake before any

cache operation. When a new data is written to the cache object metadata in the

data lake is updated.

Read Request: For reads, clients send requests to the nearest cache node (L1) as

identified by the lookup service. D3N cache node retrieves the object ID from the

data lake for the request object, then divides the object into (typically 4 MB) blocks,

where each block is identified by their object ID and offset. If it is L1 hit, the cache

node returns the requested block immediately. Upon an L1 cache miss, the cache

node uses consistent hashing [68] to locate the block’s “home location” within the

higher layer (e.g., L2), and the request is forwarded to the block’s home location via

S3 range request. If the block is a miss at the home location (i.e L2) of the highest

level, then the block is retrieved from the data lake, a copy of the requested block

is stored both at the home (i.e. L2) and client-serving (L1) locations. Co-located
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layers’ read caches are unified : L1 requests for a block received at that block’s home

location result in a single cached copy of the data.

Write Request: Clients send requests to the nearest cache node (L1) as identified

by the lookup service. To support different use cases D3N supports write-through,

write-back and write-bypass. These modes can be selected on e.g., a per-object basis,

by overloading the Put request (adding header). The write-around policy disables

the D3N cache for write operations.The L1 cache forwards the write request to the

data lake without caching it. This mode avoids polluting the cache with data that

will only rarely (or never) be used in the future (e.g., archival data).

With the write-through policy, clients must wait for data to be synchronously

written to the data lake before continuing. This reduces the opportunity for data

loss at the cost of performance (our caches are single points of failure, whereas the

back-end storage is highly fault tolerant). Write-through caches data at the points it

would be cached by reading: in a two-layer cache scenario, L1 writes blocks locally,

to the data lake, and to their last layer (L2) home location. The data lake metadata

is updated when all writes to the back-end are completed, and the write is then

acknowledged to the client.

The a write-back policy caches blocks in the last layer (e.g., L2), to give all clients

a consistent view of newly-written data. As soon as all data blocks are cached in

the last layer, the cache node which receives the write requests from a client notifies

the data lake. The data lake generates the metadata of the object with a new object

ID and then the write is acknowledged to the client. Dirty blocks in the write-back

cache are flushed periodically, or under certain circumstances such as eviction of a

block or a user flush command. The write-back policy does not replicate the data,

which results in increased performance at the cost of reduced reliability. This mode

is useful for storing data that does not require strong reliability guarantees, such as
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workload’s intermediate data.

In both write-through and write-back, failure during write may result in blocks

prior to the point of failure being cached; however, since data lake metadata has not

been committed, these stale blocks will be inaccessible and eventually evicted.

4.4.3 Dynamic Cache Size Management

In a data center, workloads change throughout the day and the demand for network

and storage fluctuates. To react to these fluctuations cache and network resources

must be allocated carefully based on the demand. For instance, the network to back

end traffic might be congested, and in such a case the cache should store more data

for global accesses, or if workloads repeatedly process the same data sets and there

is limited sharing among workloads, then data sets should cache in rack local cache

servers. We have developed an algorithm that dynamically adjusts cache sizes of each

layer based on observed workload patterns and network latency to minimize mean

request latency.

The algorithm dynamically adapts the fraction of cache devoted to local vs. global

requests at each cache server, with a per-layer eviction algorithm (e.g. LRU) used

within each pool; chunks shared between L1 and L2 are purged when they have been

evicted from both. In particular, at each layer D3N tracks both miss overhead and

miss ratio curve (MRC), using a shadow LRU list for MRC tracking. This information

allows periodic adjustment of cache allocation: the MRCs may be used to predict the

change in L1 and L2 hit rates if capacity is moved from L1 to L2 or vice versa, and

mean response times for L1 and L2 misses used to estimate impact of such a change.

This approach adapts the size of L1 and L2 based on the application working set and

network bottlenecks. If L1 is too small, its miss rate will be high and there will be

many remote accesses to some L2 and if L1 is too large, L2 will be too small and its

miss rate will be large causing even longer latencies due to fetches to the data lake.
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Algorithms 1 and 2 shows our algorithm where we based the predictions of miss rates

as a function of layer size on observed access patterns and measured miss latencies in

the nearest past.

To approximate the miss rates, a shadow LRU [76, 66, 43] cache SL, is maintained

for both layers. Shadow caches have been explored in other works. Each shadow cache

is of full size, St and only stores the keys but not the data. There is a hit counter,

HCl, associated with each shadow cache. For an access to block b to some layer, the

associated shadow cache is accessed. If b is found in location i, then the hit counter for

location HCl[i], is increased and the blocks rearranged to maintain the LRU ordering.

If the layer has size s, then the sum of all HC[i] for i > s is the miss rate for that

layer.

Algorithm 1 Re-use distance measurement
1: b: requested block
2: `: layer (1 or 2)
3: St: total cache size (in blocks)
4: SL`: shadow LRU list (length St)
5: HC`: re-use distance histogram
6: −→s = (s1, s2): cache distribution, s1 + s2 = St

. Measure re-use distance for access to block b, layer `
7: procedure Measure(b, `)
8: if b ∈ SL` then
9: find i s.t. SL`(i) = b . LRU position
10: HC`(i)++
11: end if
12: reorder SL` LRU due to access to b
13: end procedure

Periodically we use the re-use distance histogram and mean miss latency measure-

ments
−→
L = (L1, L2) to adapt the cache capacity allocation. We first considered a

simple additive increase/decrease mechanism; however due to the wide range of pos-

sible allocations (St ≈ 106 in our prototype) the response time of such an algorithm

is very slow. Instead we search a fairly wide range3 of possible allocations (±q, where

q called adaptation limit, which has been set empirically to 0.05St in our prototype)

and select the best from this range.

3We limit the space searched, and thus the absolute magnitude of any correction, in order to
bound the eviction overhead after a large change in allocation.
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More specifically, Algorithm 2 shows how starting at an allocation−→s = (s1, s2), we

find a new assignment −→s ′ with a predicted miss rate −→m = (m1,m2) which minimizes

expected latency m1L1 + m2L2. We first (lines 7, 8) calculate the miss ratio curve

MR` for each layer, allowing us to predict the miss rate at that layer for varying

cache sizes. We then search a range of possible cache allocations −→s ′, centered at

−→s , selecting the allocation −→s ′ which minimizes the expected request latency. After

adapting the cache sizes (if −→s ′ 6= −→s ), we scale the distance histogram HC` so that it

represents a moving average4 of re-use distance frequency, balancing accuracy (from

accumulating data over multiple periods) with rapid adaptation (due to the rapid

decay constant).

Algorithm 2 Cache distribution adaptation
1: b, `, St,

−→s , HC`: As in Algorithm 1
2: MR`: miss rate (i.e. miss ratio curve)
3: L`: measured miss latency
4: q: adaptation limit (maximum assignment change in blocks)
5: i: cache server location

. Calculate updated L1L2 cache distribution −→s new
6: procedure Adapt
7: for ` in 1, 2 do

8: MR`(i) =
∑St

k=i HC`(k) . Calculate miss ratio curve

9: end for
10: Cmin = inf
11: snew = ∅
12: for −→s ′ in (s1 − q, s2 + q) . . . (s1 + q, s2 − q) do
13: −→m = (MR1(s1),MR2(s2) . Predicted miss rate
14: C = m1L1 + m2L2 . Expected latency
15: if C < Cmin then
16: Cmin = C
17: snew = s′

18: end if
19: end for
20: end procedure

Memory Overhead and Algorithm Complexities: The overhead of the D3N

adaptation algorithm includes (1) memory used for the shadow LRU lists SL` and

re-use distance histograms HC`, (2) computation to track re-use distance statistics

(Algorithm 1) and (3) computation to find an optimal capacity allocation (Algo-

rithm 2).

4Since the incoming counts are not scaled, the expectation of HC` is actually 2× the mean for a
single collection period, a constant factor which does not affect the location of the optimal point.



54

The shadow LRU list must store St different block identifiers each of which is an

RGW object ID (up to 128 bytes) plus an offset (4 bytes), or 132 · St bytes each for

the L1 and L2 shadow lists; with a 4 TB cache and a block size of 4 MB, this is a

total of up to 264 MB for the two layers. We use a skip list [81] to calculate LRU

position in O (logN) time, for an asymptotic complexity of O (logN) for Algorithm 1.

Locating −→s ′ in Algorithm 2 searches 2 · q cases, where q = O (St), for an asymptotic

complexity of O (St), although this may be reduced by using a more sophisticated

minimization algorithm.

Extension to 3 layers and more: In this case Algorithm 1 is unmodified,

updating e.g. SL3 and HC3 in the same way as for lower layers. The exhaustive

search in Algorithm 2, however, is clearly infeasible for 3 or more layers, and must be

replaced by a more efficient minimization algorithm such as hill climbing [43, 44].

4.4.4 Edge Conditions and Failure Modes

Coherence: D3N serves only immutable data. Objects are written first into the

write-back cache, and then the metadata is updated. For the write-back cache, in

a multi-writers use case, D3N relies on underlying data lake that serializes the IOs.

Cached blocks are stored with their unique object ID generated by data lake. Before

serving read requests, the cache node fetches object metadata (object ID) from the

data lake and does not serve cached data if the objects IDs do not match. Once the

object ID is retrieved from the data lake, D3N constructs the block IDs based on

the object ID; thus, the cost of this data lake access is amortized over the (typically)

large read requests generated by workloads such as big data analytics. This way,

read cache always obtain a consistent version of the object. For writes, as objects

are immutable, blocks are cached with a new object ID and offset, and old blocks are

invalidated.

Failures: If a cache node fails, any outstanding requests will fail; the application
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(or lower-level cache) is responsible for retrying the failed request. In the case of in-

process requests, the lookup service will redirect subsequent accesses to an alternate

cache nodes, chosen randomly to uniformly distribute load across remaining nodes.

For cache-to-cache access, the failed node will be omitted from the relevant cache

layer, and requests which would previously be directed to that node will be spread

across the remaining cache nodes. If a cache node fails, the dirty data in the write-

back cache will be loss; however if the header has not yet been committed, these stale

blocks will be inaccessible and eventually evicted. For clean data, there is no need to

recover data stored on the failed node; clean data can be fetch from the data lake.

Scalability: D3N can scale horizontally by adding more cache nodes. Each cache

nodes can query the list of active cache nodes from the look-up server and also pe-

riodically send a heartbeat information to announce that it is still alive with a flag

associated with its layer. Any cache nodes that does not send periodic heartbeat

messages for some time is considered dead and removed from the list. The consistent

hash ring is updated whenever a cache node is added or removed; thus, before adding

or removing a cache node, the dirty data on the write-back cache must be flushed

back to the underlying data lake.

Load Balancing: Users query the lookup server for the L1 server. Lookup servers

distribute the file requests to L1 cache node considering closeness and load to avoid

hot-spots. On all other layers (L2 to LN) hotspots are avoided as we use consistent

hashing to distribute blocks.
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Figure 4·3: D4N architecture. D4N supports a wide range of applica-
tions. D4N deploys multiple write tiers in large data centers to increase
the write locality for applications.

4.5 D4N Architecture

Figure 4·3 shows D4N’s high-level architecture in the context of a simplified view of

a data center. Like D3N, D4N also extends the data lake by distributing cache nodes

around the data center. D4N uses a distributed directory to maintain the global

state, and provides reliable write tiers to stores data either with erasure coding or

replication, and the dirty data is periodically copied to the data lake from write tiers.

In contrast to previous cache systems that implement their own mechanism for main-

taining dirty data redundantly, D4N re-uses the existing data lake (Ceph) software

for implementing a write tier and exploits the semantics of immutable objects. As

seen in Figure 4·1, D4N implements its caching functionality by modifying the data

lake gateway. D4N exploits the composability of S3 interface, layering write tiers

using the existing data lake software on top of the existing data lake.

Every cache node supports a local read cache and participates with other cache

nodes in a write tier. We choice to keep the read cache and write tier separate because;
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i) We can deploy different cache management and replication policies for the read and

write tier that is more suitable for the access patterns of each cache. ii) Read requests

won’t be affected by write requests and vice versa. iii) Write tier is durable, where it

replicates data, however read cache is not durable. Read cache caches data not only

for the data lake but also for the write tiers.

4.5.1 Components

Key elements of D4N architecture are the directory used to maintain global state, the

cache for read data, and write tiers for recently written data.

Distributed Directory: A global directory maintains information about the state

of all cached objects and the status of different cache nodes. The directory is dis-

tributed across the cache nodes using a highly available (replicated) in-memory key-

value store. Consistent hashing [68] is used to identify the cache node responsible for

each directory entry.

For each cached object, the directory maintains the state needed to authenticate

requests (owner, ACLs) and identify objects in the write tier (dirty state & cache

location). The key used to locate the directory entry is a combination of the object’s

bucket and name. We replicate the directory entries only for write tiers to prevent

data loss.

On a per-block basis (e.g., 4MB), the directory also maintains a list of all the nodes

caching a copy of the block. The key used to locate the block entry is a combination

of the object’s bucket and name, and the offset of the block in the object.

For every cached object and block, the directory supports extensible state that is

used by specialization. For example, the directory can maintain additional state to

enable pinning a block into the cache to prevent it from being prematurely evicted

or to enable marking an object as temporary (short-lived) for reuse and to avoid the
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write load on the data lake.

Read cache: The read cache is used to distribute load across the cache nodes and

reduce demand on the data lake, write tier, and network. Blocks are cached in a

portion of each cache node’s local storage, and a local mapping is maintained to

enable hits to be handled without a directory lookup.

If a requested block is not in the local cache, the directory is checked to tell if it

can be fetched from another cache node (block can be found in another read-cache

or in the write tier) otherwise it is fetched from the data lake. The cache node may

store the block for requests it handles, even if those blocks are already in the write

tier or another node’s read-cache, but tries to avoid creating addition copies of cached

blocks if it would result in evicting blocks that will need to subsequently be re-fetched

from the data lake (see section 4.5.3).

Write Tier: The write tier is used as a “filter” to control and limit write IO to the

data lake. Data objects are stored only in one place; either on the write tier or on the

underlying data lake. To allow short-lived objects enough time to “die in the cache

node”, D4N lazily writes dirty objects to the data lake and ensures read-after-write

requests are satisfied from the cache.

In a large data center, multiple write tiers can be initiated for write locality. The

write tier is distributed across cache nodes. Cache node participates in one of the

write tiers, and writes data at object granularity using a portion of cache node’s local

storage. Large objects (≥ 4MB) are stored using erasure coding (e.g. RS(4,2) [98])

and small objects (< 4MB) using triple replication across the cache nodes participate

in the nearest write tier.
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4.5.2 Data Flow

We introduce the main operations and data flows to support both S3 read and write

requests.

Read Request: When a cache node receives a read request for an object, it retrieves

the blocks belong to the object. For every block, upon a local cache miss, the cache

node issues a directory lookup. If the copy of the block exists on either an another

cache node or the write tier, then the block is fetched, a copy of the block is stored

in the local cache. If the block doesn’t exist in any cache node or directory lookup is

timeout, then the block is retrieved from the data lake, a copy of the block is stored

on the local read cache. In both cases the directory entry for the requested block and

the local cache mapping is updated.

Write Request: When a cache node receives a write request for an object, it is

responsible for durably writing the newly generated object into the caches in the

write tier that the node is participated in. Every cache node maintains a FIFO queue

to keep track of the IDs of dirty objects they received and their creation time. Once

the object (all blocks) is written successfully, object is marked as “dirty”, the write

tier cache identity is updated in the directory and the cache node inserts the object

id into its FIFO queue. Writes are atomic and overlapping, concurrent writes will

reflect a particular order of occurrence.

Cleaning Dirty Objects: Every cache node is responsible for writing the dirty

objects in its FIFO queue to the data lake. When the head object in the FIFO queue

reaches its lifetime, the cache node retrieves all blocks belong to the object, and

copies the object to the data lake, updates the object’s directory entry, and deletes

the object and its replicas from the write tier.

D4N uses a priority queue for the remote cache and data lake requests and all

interactions are asynchronous. Reads and writes have priority over writing dirty data
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back except in the case when the free space capacity drops below 10%.

To allow specializations, dirty object can be marked as “short-lived ” on the

directory (unless we are out of cache space), and D4N avoids moving it to the data

lake. If requester fails to delete “short-lived ” object, then D4N makes sure that

it is cleaned up after some reasonable amount of time. The maximum lifetime for

objects vary across different applications. In our design, we set a maximum lifetime

for every object in the write tier(e.g., 5× of the average object lifetime). When an

object reaches its maximum lifetime the cache node moves it to the data lake and

delete it from the write tier

List Bucket Request: D4N provides a single namespace federating the objects in

the write tier and the data lake. Upon a list bucket request, the cache node retrieves

the list of objects in the bucket from the write tier and the data lake .

Delete Object Request: Upon a delete request, cache node removes the object and

its replicas either from the data lake or the write tier, and update the directory. We

don’t need to do anything for the read cache, because the eviction algorithm removes

the deleted objects from the cache.

4.5.3 Cache Replacement Algorithm

D4N employs a novel algorithm that uses the global knowledge of cache node contents

stored in the directory and make decisions based on the global value of a block.

Our algorithm, Globally Weighted Frequency (GWF), is based on LFU with Dy-

namic Aging [32]. The idea of LFUDA is to adapt to changing workloads by adding

the “age” of the cache to the block value on each access, where the age is defined by

the weight of the last block evicted. As age grows, recently accessed blocks’ value get

incremented by larger amount and therefore older polluting blocks will be eventually

evicted.

The intuition behind GWF, is that with a global age the weight of blocks in
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different caches can be compared. As seen in the algorithm 3, two weights for each

block is maintained: a local weight (lw), that is incremented for only local accesses

and represents the weight (or value) of that block to the local cache, and a global

weight (gw), stored in the directory, that is incremented by the local cache age when

the block is remotely accessed. The sum of lw and gw of a block gives you the value

of that block in the whole cache. Age is a global value stored in the directory, and

to reduce communication overhead, each cache node updates its (potentially) stale

version of age, and the max value is periodically updated and broadcasted to all cache

nodes.

For eviction, algorithm 3 lines 26-42, GWF picks a victim block with minimum

lw in the target cache. If the victim block has another copy in a remote cache then

its local weight is added its global weight. In the case of the victim block being the

last copy, the sum of the gw and lw of that block is used to determine if it is still the

best candidate for eviction.

To use the space of underutilized remote caches, algorithm 3 lines 33-36, GWF

tries to push the evicted block to a remote cache by comparing the evicted block’s lw

against the average local weight of blocks in other caches. If lw of the block is higher

than average weight of any cache node, GWF will push the block to a cache node

with the lowest average weight.

4.5.4 Edge Conditions and Handling Failures

Coherence: D4N uses a directory-based cache coherence policy [73] and enforces

strong consistency. Like the data lake, the write tier, which uses the data lake im-

plementation is also immutable. Both write tier and the directory operations are

atomic and they serialize the requests for consistency. An object is visible after it

is written to write tier and the directory metadata is updated. D4N uses leases

[52] over the directory keys (similar to NFSv4 locking mechanism) which allow cache
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Algorithm 3 D4N’s GWF GetBlock and Eviction Algorithms

1: b: requested block
2: sizeb: size of block b
3: cachej: cache node j
4: age: the maximum age of among all the cache nodes
5: lwjb: local weight of block b in a cache node j
6: gwb: global weight of block b in the directory
7: lwjvictim: weight of the victim block in a cache node j
8:

9: procedure GetBlock(b, cachej)
10: if b ∈ cachej then . Local copy
11: lwjb+ = age
12: else
13: while freeSpacej < sizeb do . Not enough space
14: freeSpacej+ = EV ICTION(cachej)
15: end while
16: if b ∈ cachek|k!=j then . Remote copy
17: Fetch b from R = rand(cachek|k!=j)
18: gwb+ = age
19: else . No remote copy
20: Fetch b from datalake
21: lwjb+ = age
22: end if
23: end if
24: end procedure
25:

26: procedure Eviction(cachej)
27: victim = victim block with minimum local weight
28: if victim /∈ cachek|k!=j then . last copy
29: if gwvictim! = 0 then
30: lwjvictim+ = gwvictim

31: gwvictim = 0
32: end if
33: cm = cache node with minimum average weight
34: if lwjvictim > AvgWeightcm then . block has better value
35: PushBlockToRemoteCache(victim , cm)
36: end if
37: end if
38: gwvictim+ = lwjvictim . Remote copy
39: cachej = cachej - {victim}
40: age = max(lwjvictim, age)
41: return sizevictim
42: end procedure
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nodes to operate on shared keys in a mutually exclusive way. To prevent performance

degradation, the cache node acquires a lease on a particular key only for updating a

string value to prevent overwrites. We use string values for location of objects and

blocks, hash of the object content, objects’ ACLs and timestamp values. For writes,

the metadata in the directory is updated after the object is written into the write

tier. The write tier generates a hash of the object content which is maintained in the

distributed directory along with identification of a block(S3 bucket and object name,

and offset). The hash of the object content can be considered as version numbers,

which allow us to identify the final version of object across data lake and write tier.

Similar to D3N design, identification of a block(S3 bucket and object name, and off-

set) and the hash of the objects is used for cache invalidation, where D4N does not

serve cached data if these values of the block does not match.

If there are multiple write tiers, to serialize concurrent writes of the same object,

the lease for a key in the directory must be acquired (blocks the other writer) before

the object is durably written into the write tier, and once the write is completed then

the directory is updated and the cache node release the lease.

Scalability: D4N can scale horizontally by adding more cache nodes, and a cache

node contains a read cache and a directory instance, and portion of write tier.Each

cache node can query the list of active cache nodes from the look-up server and also

periodically send a heartbeat information to announce that it is still alive. Any cache

node that does not send periodic heartbeat messages for some time is considered as

dead and removed from the list. Since write tier uses the existing object storage based

data lake software; thus it is highly scalable. Scalability of the distributed directory

achieved by using a consistency hashing to map the keys to a directory instance.

Handling Failures:

Cache failure: For the read cache, a failure is not a concerning since blocks are already
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stored redundantly either in the write tier or in the data lake.

Directory failure: The directory content for the write tier is triple replicated, so upon

failure the request for the lookup will be forwarded to the another replica. The

consistent hash ring is updated whenever a directory instance added or removed, and

consistent hashing re-balance keys across the directory instances.5 Even if the entire

directory fails, caches are still operational and requests are served from either nearest

cache or from the data lake. In such scenario, only the dirty data on the write tier,

not yet written back to the data lake, will be accessible. To prevent permanent data

lose in D4N, we can scan every entry in the write tier metadata and reconstruct the

directory content.

Load Balancing: Lookup servers distribute the file requests to the cache node

considering closeness and load to avoid hot-spots. D4N balances the load on the

distribute directory via consistent hashing. Write tiers rely on the load balancing

mechanism of the data lake that distributes blocks and replicas using globally known

mapping function (such as CRUSH [119],which provides a good load balancing.

4.5.5 Cache Specialization

A key feature of D4N is its support for specializations, application-specific features to

improve performance for specific workloads. In contrast to application-specific data

stores, these specializations retain the advantages of a single shared storage system

such as statistical multiplexing and avoidance of stranded resources. Implementing

the specialization on data lake caches instead of the application or framework allow

sharing.This serves our design goals of transparency. We have prototyped two such

specializations as a proof of concept: small object coalescing and packing, and smart

prefetching and caching for DAG-based applications.

5Consistent hashing moves the minimal amount of data between the nodes whenever there is a
ring change.
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Small object support: This specialization optimizes small object creation and

storage by batching writes and combining them into a smaller number of large ob-

jects. The approach is similar that used in prior work by Kadekodi [67], which coa-

lesces small objects to reduce AWS per-operation costs. The underlying strategy of

batching writes for performance has a long history dating back to the log-structured

file system [100] and earlier.

When copying from the write tier to the data lake, D4N can combine multiple

small objects into a single large one, maintaining an index of the mapping from small

object name to large object, offset, and length. When small object coalescing is

enabled for a bucket, objects under a threshold (4MB) are tracked as they enter the

write tier; when a configured size (32MB in our experiments) is reached or an idle

timeout triggers they are written to the data lake as a single large object, and may

be retrieved individually via range requests. Locations of the coalesced small objects

are initially stored in the distributed directory, and are lazily persisted to the data

lake as described below. Directory leases are used to ensure only one cache node will

write coalesced objects to the data lake or update mapping tables at any one time,

as well as protecting the metadata tables.

Small object map information is gathered into tables (i.e. SSTables [42]) sorted

by bucket name, and written to the data lake as objects in an administrative bucket.

Keys may be found by binary search in each object, searching the newest first. similar

to an LSM tree [88], with a similar merging strategy to bound the cost of lookup.

Unlike an LSM tree, the directory acts as both memtable and a cache: after finding

an entry, a range of entries containing that key is copied to the directory, causing

other entries to be evicted.

Finally a garbage collection mechanism (not yet implemented) is needed to han-

dle deletion of coalesced small objects. The cost of this cleaning is expected to be
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significantly reduced by the delayed batch writeback: short-lived small objects will

be deleted in the write tier, and never coalesced into larger objects in the data lake.

Supporting analytical workloads with DAGs: We modified the previously

developed system by our group Kariz [20] for analytical frameworks. Kariz is a

customization of D4N for caching data from data lakes accessed concurrently by

multiple compute clusters running analytic platforms. Kariz extracts rich information

from the analytics platforms(PIG and SPARK) in form of Directed Acyclic Graphs

(DAG) to prefetch input objects and pin intermediate objects in the cache. With

extracted DAG information, Kariz can provides application level hints to the cache

nodes and enable efficient caching. We modified Kariz and it obtains the cache

content from the distributed directory, and based on the extracted DAG information

it prefetches the objects which will be accessed in near future by compute cluster from

the data lake to the caches. It also marks intermediate objects into the directory to

avoid the short-lived objects to written back to the data lake.Once the running job

is completed, application issues a delete request to remove intermediate objects.
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4.6 TradeOffs

In this section, we discuss the different trade-offs we made for D3N and D4N archi-

tectures that are necessary to achieve each architecture’s design goals.

Redundant Caching vs Design Complexity: D3N by design allows repeated

caching of blocks across different layers since the cache eviction/admission decisions

are performed locally within the cache pools in each layer. Redundant caching is

a natural consequence of consistent hashing with multi-layer design and local cache

management decisions, which is a required design choice for achieving simplicity in

D3N architecture. For instance, a block replicated in L2 may also be replicated on

higher layers, or a few popular blocks can be replicated across all the L1 caches

flooding the capacity, and preventing caching of slightly less popular blocks. D4N

design eliminates redundant replication by avoiding the layered cooperative cache

design and maintaining a global cache state. The global state in D4N design allows the

implementation of more sophisticated caching algorithms and adjusts its replication

of blocks based on access patterns while increasing the complexity of the design.

Supporting Write Requests vs Design Complexity D3N’s write-back cache

supports only intermediate data sets, where resilience is less critical. For example,

when a cache node fails, dirty data on the write-back cache will be lost forever, which

is not tolerable for many write requests. On the other hand, D4N deploys a durable

write tier using the existing datalake software and maintains the state in the global

directory. Having a write tier increased D4N’s complexity; however, improving the

performance of write requests is critical since write-heavy applications and producer-

consumer sharing patterns are very common in many data centers [61, 116].

Focusing on Big Data Analytics vs Wide Range of Applications: When

we started working on D3N, object stores were used mainly by big data analytical

frameworks with mostly read-only requests and non-critical intermediate datasets.
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Therefore, the D3N design focuses on big data workloads and has a single fixed cache

management policy (e.g., LRU) that applies to all clusters and frameworks. The

lack of durable write-cache and global cache state prevents efficient caching for many

applications. For instance, D3N does not support efficient caching for small object re-

quests, which can be dominant in many workloads [61]. On the other hand, recently

object stores are used by a wide range of applications(e.g., data analytics, server-

less, deep learning). The D4N design enables a greater degree of application-specific

specializations; thus can support efficient caching for a broader set of workloads. How-

ever, supporting more applications naturally, increase the cost of design complexity

in D4N.

4.6.1 Limitation

Lack of Fairness vs Cache Utilization: rack space, storage, power, and network

bandwidth. Even though D3N and D4N try to provide a common good by eliminat-

ing network bottlenecks, each cluster’s individual benefits from D3N or D4N may be

different and disproportionate to the resources they provide The goal of both sys-

tems is to reduce the load on the data center network and data lake; therefore, the

caches aggressively storing data and cache resources used where they are most needed.

Fair resource allocation may leave a large amount of underutilized expensive cache

resources. Both designs prevent this by trade-off the cache utilization over fairness.

D4N’s Static Read/Write Cache Partitioning: D4N statically partitions the

cache space between a read and a write cache to reduce the complexity of the de-

sign. Allocating a large capacity to write-cache results in a waste of cache resources,

and allocating a small capacity can increase workloads’ latency significantly because

write requests have to wait until the dirty data is flushed back to the datalake. Imple-

menting a dynamic algorithm that identifies or predicts the future access types and
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adjusts the sizes of the partitions based on workload behavior will have great value.

However, partitioning the cache for read/write requests is not an easy problem; to

simplify datalake integration, we avoid adding this complexity in D4N design.

Small Objects in Write Tier: Write tier performs well for large objects since

the directory lookup does not impose any overhead. The directory lookup is more

costly for small objects than large objects, which was a reported problem in object

stores [9, 11]. For instance, when the data size of the object is smaller than 128KB

in MinIO [9] and 64KB in Ceph [23], both store object content as part of metadata.

A similar optimization can be implemented in write tier as well, D4N can store the

object content along with its metadata in the directory.
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Implementation

We have implemented D3N and D4N by modifying Ceph RADOS Gateway (RGW).

Section 5.1 gives a brief overview of Ceph Object store and Ceph RGW. Section 5.2

describes the implementation of D3N, and 5.4 describes the implementation of D4N.

5.1 Ceph RGW Overview

We have developed both implementations in Ceph [118], an open-source object-based

storage system commonly used to implement data lakes. Ceph is a replicated, mu-

table object store, accessible via the RADOS protocol [120], and a suite of services

implemented on top. In every Ceph cluster, there is a separate Object Storage De-

vices (OSD) daemon per local storage device. Each OSD handles I/O requests, and

cooperates with other OSDs to replicate data, balance the load and to recover from

failures. Ceph stores both data and metadata (e.g. users metadata, object meta-

data) on the OSDs. The Ceph RADOS gateway (RGW) [94] is one of the Ceph’s

services, providing S3/Swift compatible object storage interfaces, using multiple RA-

DOS objects—much like a file system uses disk blocks—to store a single RGW object

and its metadata. Today any framework which supports the S3 or Swift object inter-

faces (e.g. Hadoop, Spark, Storm, and Flink) can use Ceph RGW.

While the detailed implementation of RGW is outside of the scope of this work,

it is a complex system of hundred of thousands of lines of C++ code. It has three

layers: a webserver front-end (the Beast and the Civetweb library) which accepts

70
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Figure 5·1: Deployment of Unmodified RGW and D3N Architecture
in the Datacenter. (a) Load balancing for scale-out RGW deployment.
(b) D3N deployment with two-level caching.

HTTP requests, the radosgw layer that implements flow control mechanisms per

flow, and the librados layer, which issues requests to the underlying OSDs. The

front end provides a RESTful HTTP API to store objects and metadata, which is that

is compatible with S3/Swift APIs. RGW implementation is stateless, with everything

persisted in OSDs, it can be easily scaled horizontally.

A typical Ceph/RGW deployment is shown in Figure 5·1(a). Client requests (e.g.

using the S3 protocol) are load-balanced (via mechanisms such as round robin DNS)

across multiple RGW instances. Each request is handled by just one RGW server,

resulting in scaling of aggregate but not single-client performance.

RGW receives S3/Swift requests from clients and stripes them across multiple

OSDs (using mechanisms provided by the core CEPH library, librados [8]).The re-

quested object splits into fixed-size block (e.g. 4 MB by default). RGW forwards

the entire fixed-size block (e.g. 4 MB by default) to an OSD, chosen by the CRUSH

algorithm [119], in turn Ceph OSDs store the block either with replication or erasure

coding. Ceph uses primary-copy consistency model [26, 120] where the primary

OSD coordinates the other OSDs for replication and does not respond the application
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with acknowledgment until all replicas have been committed to cache nodes. This

way, the replication process ensures all replications are at the same state before any

other object operations can be processed. Ceph has atomic object operations, and all

the operations (read and writes) for the same object are directed to the same primary

OSD, and the primary OSD executes them linearly.

RGW has a window of 4 outstanding requests per connection (16MB), limiting

single-stream throughput to no more than four times that of a single device (e.g. disk,

in capacity-optimized deployments), but with sufficient connections will spread the

load across all devices in the cluster.

We originally consider two alternative approaches 5.3, but at the end we found that

it was natural to integrate D3N and D4N into RGW code base. Integrating the cache

logic within the RGW code base considerably simplifies the development and imple-

mentation of proposed architectures. For instance, RGW provides an S3-compatible

authentication mechanism and access control list (ACL) policies for buckets and ob-

jects, implements object fragmentation, and flow control mechanisms to order the

incoming and outgoing requests, and limits the number of outstanding requests per

flow. These features simplify the implementation of the cache architecture, where

corner conditions are handled by falling back to the behavior of unmodified RGW.

5.2 D3N Implementation

Our prototype, D3N, implements two levels of cache without a cache partitioning al-

goritm, and consists of modifications to the Ceph RADOS Gateway (RGW), allowing

use by any framework which supports the S3 or Swift object interfaces (e.g. Hadoop,

Spark, Storm, and Flink). D3N is integrated within the RGW without changing any

client interfaces. The implementation added or modified 2,500 lines of code. We

implemented all caching functionalities and also modified the GET Object routine in
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Figure 5·2: (a) Modification to RGW for D3N, (b) Modification to
RGW for D4N.

the RGW, therefore reading or writing an object from/to the cache is not different

than reading/writing an object from/to the data lake. It implements a L1 and L2

cache, storing cached data in 4 MB blocks as individual files on an SSD-backed file

system. The final prototype has been upstreamed into the Ceph RGW code base

with the assistance of our industrial partners (Red Hat) [19].

All client requests are routed to a nearest D3N L1 cache, where each block in a

request is identified by its object ID and offset, and stored as a file on a local file

system backed by striped SSDs (see Figure 5·1(b)). As shown in 5·2a, two additional

back-ends are added to RGW for retrieving the blocks: local storage (SSD) as L1

for local cache access where cache hits are read from files, and recursive D3N as L2,

where misses are redirected recursively to another D3N for L2 lookup via S3 requests

on behalf of the client (using client’s credential). Data retrieved from L2 is also cached

on local storage. The L1 and L2 caches are unified : one copy of a block is stored,

although layer membership is tracked for eviction purposes.

Several alternatives for local file I/O were evaluated—memory mapping, GNU

POSIX aio, and native kernel asynchronous I/O (libaio)—and POSIX aio was used

due to its performance in our tested configuration. Native file system I/O was fast
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enough to saturate our 40 Gbit network; thus SPDK [111] etc. were not considered.

As discussed in the architecture section, all requests from clients go to the nearest

L1 cache by the help of a local DNS server and anycast solution. We implemented

Anycast (RFC 4786) [17] in the existing MGHPCC’s Brocade bifurcated fabric using

Brocade Fabric Virtual Gateway along with virtual routers, virtual Ethernet devices,

and layer 2 VLANs. This anycast design allows clients to access the nearest cache

node via a fixed IP address. If a cache node fails, the clients are directed to redundant

cache nodes transparently.

Client caches the IP address of nearest L1 cache for a certain period of time and

during these time period client directly forward all his requests to L1 cache. For any

IO, as shown in figure 5·1(b), clients send requests to their local L1 , which breaks

the request into 4 MB blocks and handles each independently.

Optimizations: There are a number of optimizations that we considered but

did not implement. First, we are currently use the same S3 interface to talk between

cache nodes as clients talk to cache nodes. We could have added a new interface be-

tween cache nodes to handle L2 requests, potentially eliminating some of the overhead

inherent in handling client requests (e.g. authentication). Since we are forwarding

large requests (4MB) the overhead of S3 authentication should have much overhead.

Second we could have improved efficiency for accessing the SSD and network by

using SR-IOV-based techniques such as DPDK[111] or SPDK[111]. Finally, more ad-

vanced replacement policies, such as segmented LRU could be added to make more

informed eviction decisions. Our implementation currently does none of these opti-

mizations, however as we will show in the evaluation section 6.3, our implementation

is sufficient to achieve good performance and saturate both the network link and the

bandwidth of dual NVMe SSDs.

The absence of sophisticated implementation techniques has allowed us to imple-
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ment these changes in a limited number of lines of code, as well as making it possible

to submit these features for review and enable the changes to be upstreamed by the

Ceph community. We do, however, expect to need to further optimize the code both

to reduce the (fully used) occupancy of our server processors, and to exploit future

higher performance networking and storage devices.

5.3 Alternative Approaches:

Initially, it was not clear to us to have a complete implementation of this complex stor-

age service, therefore we investigate two existing off-the shelf alternative approaches:

HTTP Cache Varnish [14] and built-in Ceph support for SSD tiering. The first ap-

proach, using a reverse proxy, initially seemed like a straightforward way to implement

L1 cache. Since all the S3 requests are standard REST requests, we though off-the-

shelf web cache can work. We evaluated the Varnish reverse proxy cache, which can

use consistent hashing to distribute requests to a back end cluster. Performance was,

unfortunately, very poor achieving no more than 25% of the read throughput of a

single NVMe device. Moreover, with very large requests, the object-at-a-time opera-

tion of the cache resulted in long delays and frequent timeouts, making it impossible

to run any of our micro-benchmarks. An additional advantage of our D3N-RGW

implementation is that requests are for blocks rather than entire objects; which sup-

ports better repeated access to partial objects and distributes work across multiple

D3N-RGW for even a single request.

Second approach was using the Ceph Cache Tiering [41], which was also the

original inspiration for this work. Ceph Cache Tiering allows data to be promoted

to higher-speed storage when accessed. The design of tiering was problematic as it is

only able to promote or demote the entire placement groups which contains data from

multiple unrelated objects. Although this failing is specific to a particular design,
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there are generic issues with a tiering approach such as the overhead of migrating

objects in their entirety across tiers and locating the tier that objects reside in (See

3.1.1). Even tiering is implemented properly, it is not clear how to extend a tiering

solution to address network bottlenecks.

5.4 D4N Implementation

We implemented D4N by modifying the previously developed D3N prototype with

the capabilities needed to support specilizations for diverse range of applications.

Similar to D3N, D4N is integrated within the RGW without changing any client

interfaces. The implementation added or modified 14000 lines of C++ code to RGW

code base. D4N requires much more modification and implementation than D3N. We

implemented all caching functionalities and modified the Get Object, Put Object,

List Bucket, Get Object Info, Delete Bucket and Delete Object routines in the

RGW code base, and we added new functionalities such as retrieving object metadata

from the data lake, directory operations, and additional caching functionalities (e.g.,

cleaning dirty objects, copying objects from write tier to the data lake, prefetching

object, moving object to another rgw cache).

As shown in 5·2b, a new backend is added to previously developed D3N-RGW:

a write tier for redundantly storing the newly created data, which is accessed via

CEPH’s core library librados [8].

To implement a write tier, we use the existing Ceph OSD code, and deployed a

Ceph OSDs cluster as a write tier instead of implementing a durable and reliable write-

back cache from scratch. Using the existing Ceph OSD code reduces the engineering

and development effort significantly, because it has already support various erasure

coding algorithms and replication to provide durability, maintains data consistency

and cleanliness, and provide a mechanism for failure detection and recovery.
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We maintain the local storage (SSD) as read cache for serving read requests from

the underlying file system, and keep the S3 interface to access recursively to remote

D4N caches. The read cache and write tier store data in 4 MB blocks and object gran-

ularity respectively on an NVMe SSDs. In D4N-RGW implementation, we switched

from librados to S3 protocol to talk to data lake (Ceph OSD clusters should have

additional RGW up and running).

The shared directory is deployed as Redis datastore [97], which is a reliable,

durable and distributed in-memory key-value store and capable of dynamically scal-

ing. The Redis keyspace is sharded across cache nodes, and keys are mapped to

Redis instances via consistent hashing. Redis provides a leasing mechanism [52] over

per key which allows multiple RGW instance to operate with shared directory in a

mutually exclusive way.

We co-locate a Redis instance with a D4N-RGW on every cache node. D4N-RGW

code uses cpp-redis [5], redis client library written in C++, to implement directory

operations, which queries to redis either to retrieve, insert, update or delete a key.

In the Redis, we use Redis Hashes data type, which are maps between string fields

and string values, which allow us to store as much as data for a particular given key.

Redis stores information per object and block bases, and per cache node.

Finally, we have implemented two specializations. We implemented small object

packing, which is implemented by modifying the D4N-RGW code. Small objects (<

4MB) are stored with triple replication on the write tier to avoid the overhead of

erasure coding (since objects are small encoding and decoding overhead might be

expensive). D4N-RGW coalesces writes within batches before writing to data lake.

It packs multiple small objects into a large object (32MB) and stores the mapping

in the Redis directory. The prototype has not implemented the persistence of these

mappings to the data lake, and the garbage collection for small object packing.
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We modified previously developed Kariz [20] cache management tool, which is

implemented in Python. By adding only 100 lines of code, we allow Kariz to modify

the Redis directory and pin intermediate datasets. Kariz code implemented directory

operations uses redis-py [10], redis client library written in Python.



Chapter 6

Evaluation

The main goals of this dissertation is to enable the integration of a high-performance

cooperative cache into modern data centers’ immutable data lakes. To evaluate this,

we deploy our prototypes of D3N and D4N in the MGHPCC [13], and we experi-

mentally compare the performance of D3N, D4N, and the state of art cluster cache,

Alluxio [25].

Through evaluating D3N and D4N, we aim to show that our implementations

fulfills the following objectives: i) improve the performance of applications, ii) reduce

demand on the data lake and data center network, iii) automatically adjust to access

patterns, iv) provide a support for a broad set of applications via specializations (only

for D4N).

In Section 6.1, we highlight the characteristic of real world traces. Our analysis

shows tremendous amount of reuse (up to 96%) demonstrating our prototype can

have significant value in real data centers. We find that over the lifetime of the trace

other files become hot for periods of time and the re-use pattern is complex for some

files suggest the value of a dynamic caching mechanism for adapting the workloads.

Section 6.3 shows the base performance for D3N and D4N and shows the overheads

of implementation and the maximum performance gains achievable by D3N and D4N

prototypes using micro-benchmarks. We find that both implementations are able to

fully saturate the read speed of dual NVMe SSDs and the bandwidth of a 40GbE

NIC, result in performance on cache hit (5 ×) faster than a 90 spindle Ceph cluster

79
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accessed, the caches add no overhead on cache misses, and the directory lookup in

D4N prototype has a negligible overhead for large (4MB) objects.

Section 6.4 evaluates the adaptability D3N and D4Nto the changes in the ac-

cess pattern using macro benchmarks. D3N’s prototype does not implement the

cache partitioning algorithm, therefore we evaluate the algorithm using simulation.

Simulation result shows D3N’s novel partitioning algorithm dynamically adapts the

fraction of cache devoted to local vs. global accesses at each cache node, showing

gains of up to 30% against. fixed allocation in adapting to different access patterns

and in responding to network contention. On the other hand, the GWF algorithm

is implemented in D4N prototype, and we demonstrate that D4N adapts replication

to the working set of the demands; creating fewer number of replica if the working

set size is larger than the cache capacity, and more replicas if the working set size is

small. Our results are verifying our hypothesis for D4N prototype that the benefit of

flexible object placement using a directory outweigh the overhead of directory access.

Section 6.5 experimentally demonstrate the overall performance of D3N and D4N

and their adaptability for realistic workloads. By replaying a realistic workload, we

show that D3N (non-adaptive) achieves significant performance improvements for

realistic workloads—up to a 3x reduction in runtime vs. uncached when bandwidth-

constrained. We also show how D4N maximizes local hits and minimizes data lake

accesses for realistic workloads, and outperforms D3N (non-adaptive) and Alluxio.

Section 6.6 evaluate D3N and D4N under real, computation-based workloads

by running a PIG/Hadoop-based workload. We demonstrate that D4N can reduce

cumulative job run time by large amount (e.g. 30%), reduce demand on the network

and the backend data lake.

In section 6.7 we show that application-specific specializations at the caching layer

can achieve dramatic improvements in application performance as well as a significant
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reduction in data lake workload. A macro-benchmark, based on a publicly available

storage trace demonstrate that small object packing specialization won’t impact the

performance of small object reads or writes, but reduce the load on data lake storage

servers by 400% over the case of no write-back cache and 200% over the case without

object coalescing. We also demonstrate the significant value of using the application

hints for cache-specializations; by adding few lines of code to the existing Kariz code

base can improved the run time of DAG based workload by 20%.

6.1 Trace Analysis

To drive our evaluation and understand the properties of real workloads, we analyze

publicly available 2010 Facebook trace collected from 3000 nodes Hadoop cluster and

2017 Two Sigma [107] 1 trace collected from the 257 cache nodes which are serving

to analytical clusters.

In addition to Facebook and Two Sigma trace, we also use the following two traces

for evaluating our prototypes; a confidential trace[20] from a 300 node production

cluster that is running Hive/Hadoop [112],Spark [125], native MapReduce [106], and

streaming jobs, and recently released publicly available IBM object storage traces [49].

Table 6.1 lists the traces’ detailed characteristics. While these may not be fully

representative of access patterns to data lakes, they are the best large-scale traces

described in the literature.

6.1.1 Access Patterns

Measurements from Two Sigma for their data lake shows around a 96% re-access

rate across a trace representing 10 PB of data access, validating the first assumption

and suggesting that a caching solution will be very effective. Previous studies which

1We are working with our partner to make the trace publicly available.
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Facebook Two Sigma Confidential IBM

Trace ID TR-FB2010 TR-TS2017 TR-CP2021 TR-IBM2019
Public Yes No No Yes

Year 2010 2017 2021 2019
# of days 1 12 1 7
# of clusters 1 - 1 -
# of nodes 3000 257 300 -

# of input files accessed 25428 185M 331 149M
# of unique input
files accessed 17158 5936K 43 -

input bytes accessed 1097 TB 245 TB 2448 GB 161 TB
output bytes written 337 TB - - 188 TB

Table 6.1: Characteristics of the traces that we analyze to understand
the properties of real workload. We also use these traces to drive our
evaluation.
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Figure 6·1: Re-use patterns for Two Sigma and Facebook traces. Files
are identified by time of first access (X axis), actual access time is on
Y axis; color intensity indicates access count.

analyze the IBM object storage traces [49] and a confidential trace from a production

cluster [20] also verify this assumption.

Next, to understand their re-use pattern, we analyze TR-FB2010 and TR-TS2019

traces and present heatmaps of their access patterns. We note that both trace follows

a Zipf-like distribution. Figure 6·1a and Figure 6·1b are heat maps showing access

counts to each file over time, respectively for each trace, with files identified by their

time of first access. Both figures show that a number of files are accessed early

and remain popular throughout the trace while other files become hot for periods of

time at intermediate points in the trace; suggesting the value of a dynamic caching
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mechanism. In addition a second heat map ( Figure 6·1c) for the Facebook trace

shows access by byte rather than by file number. The value of block-level rather than

file-level caching is seen in comparing Figure 6·1b and Figure 6·1c. Regions where

byte re-use is significantly less than file re-use (e.g. along the Y axis) indicate partial

rather than complete reads of files.

Our trace analysis validates three key assumptions behind the D3N and D4N

designs which are;

1. there is sufficient re-use of data from a data lake to make a caching solution

valuable,

2. the re-use pattern is complex and popularity of objects change over time,

3. it is valuable to cache data at the block rather than entire file basis.

6.1.2 Workloads

We evaluate our prototypes by replaying real-world traces described in the table 6.1.

Since the traces are collected from a much larger compute environment than our

environment, we replay part of some of the traces and scale down them to run on a

smaller-size cluster. We preserve the original arrival order of the jobs/requests in all

workloads to emulate access to a shared data lake.

We use trace TR-FB2010 to examine overall performance for workloads with more

realistic distributions (Section 6.4 and 6.5.2), with results unaffected by computa-

tional overheads. It was the only publicly available trace during the evaluation of our

prototypes, thus enabling reproducibility. TR-FB2010 contains jobs’ input file sizes

and the number of bytes they wrote as an intermediate and output. Unfortunately,

TR-FB2010 trace does not contain mapper information needed to determine request

locality; therefore we generated synthetic locality information.
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To be able to test the trace over a smaller-sized cluster, we scale down the original

file sizes by half (TR-FB2010-1) and by a factor of 10x(TR-FB2010-2). 2 Then we

replay a part of the trace with 75% percent re-use (a low re-use ratio compared to TR-

TS2017). TR-FB2010-1 workload includes 853 jobs processing 40 TB of data with

a 10.1 TB footprint; 8 TB of the data is repeatedly accessed while 2.1 TB of the data

is accessed only once. TR-FB2010-1 considers only read traffic to emulate access to a

shared read-mostly multi-institutional data lake. TR-FB2010-2 workload considers

both read and write traffic; 1.5 TB of intermediate data and 540 GB of output data

is written.

We use TR-CP2021 trace to understand the performance of both systems us-

ing real workloads, where the performance is limited by computation as well as I/O

speed(Section 6.6). TR-CP2021 is an hour-long trace, including statistics (query

submission rate, DAG structure, data access, data re-use) of submitted queries for

Hive/Spark and Spark jobs. We use TR-CP2021 trace to construct a synthetic work-

load. To simplify evaluation and preserve the confidentiality of partner data, trace

queries and DAGs were replaced with queries (and corresponding data) from TPC-

H [18] (translated into Pig Latin [87]), modified to mimic the original queries. More

specifically, for each query in the confidential trace we compare its structure and

selectivity with the 22 TPC-H queries and compute cosine similarity, then map to

the most similar query. The resulting synthetic queries thus closely mimic the query

structure, data re-use rate, access rate, and selectivity of the logged queries. We scale

down file sizes and query submission rate by 10x to fit our experimental environment.

The trace includes 331 jobs that access over 43 unique input data sets, with the size

of input objects varying from 1 GB to 256 GB.

To evaluate the small object specializations(Section 6.7), we use recently pub-

lished trace, TR-IBM2019, which captures the object storage accesses of a single

2Prior work has shown this has little or no impact on performance [28].
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tenant. TR-IBM2019 trace was the only publicly available trace available with small

IO operations, where the object size varies from tiny requests (< 1KB) to large

requests (> 1GB). The trace contains 98 different traces which are captured from

variety of workloads such as SQL queries, Deep Learning, NLP, Spark data analytic,

and document and media servers although they are not distinguishable in the traces.

We use trace-1 as a workload that is dominated by small object writes (97%), and

the trace includes only requests that access objects less than 4MB.

6.2 Experimental Setup

Infrastructure: Experiments are executed on a private academic data center, where

racks interconnected in a partial-mesh topology, with the equivalent of 4×40GbE

inter-rack links on each top-of-rack switch and an average distance of 3 hops between

racks. Hardware and software configurations are shown in Table 6.2 and Table 6.3

respectively.

Compute Nodes Cache Nodes Data Lake Nodes
Number 48 4 9
CPU 1x Intel E5-2690 2x Intel E5-2699v3 2x Intel E5-2660
Ram 128 GB 128 GB 128 GB
Disk 1x 500 GB HDDs 2x Intel P3600 1.5 TB 7x 600 GB HDDs

5400 RPM NVMe SSDs 7200 RPM
Network 10Gb/s 2x40Gb/s 10Gb/s

Table 6.2: Hardware Configuration

Ceph Redis Alluxio Hadoop Pig
Version 15.2.7 Octopus 6.0 2.7.1 2.10.1 0.17.0

Table 6.3: Software Configuration

For D3N experiments, compute and cache nodes are located on 2 racks; on each

rack we allocate 1 cache node with 2 NVMe SSDs each, and 8 compute nodes and the

storage cluster is comprised of 10 storage nodes with 90 HDDs. For D4N experiments,

we use 4 cache nodes with 2 NVMe SSDs each, 48 compute nodes, and a 9-node data
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lake with 63 HDDs. (Due to the hardware limitations we scale down the size of data

lake cluster from 90 HDDs to 63 HDDs for D4N experiments.)

6.3 Base Performance

We use a series of micro-benchmarks to present the base performance of D3N and

D4N properties under controlled circumstances. First, we evaluate the maximum

performance gains obtainable using the D3N prototype and D3N’s impact on miss

performance. Next, we compare D4N’s base performance against D3N and the state-

of-the-art cluster cache, Alluxio [25].

6.3.1 D3N Performance

We evaluate and compare the base performance, hit and miss throughput, of D3N

prototype with that of the unmodified (Vanilla) RGW that represents the direct data

lake access. We submit read and write requests to the Ceph data lake via D3N and

a “Vanilla” RGW. Read and write requests are submitted using Linux’s curl tool,

a high-performance HTTP client. In these experiments, for Vanilla RGW, the Ceph

OSD buffer caches are flushed before each test run to ensure that data is fetched from

the 90 OSD disks rather than the RAM of the OSD servers.

L1 and Write-Cache Performance: We evaluate L1 (local cache) hit and miss,

and write-cache performances. To summarize, micro benchmarks show that the im-

plementation of D3N can support per-cache read speeds of 5 GB/s, fully exploiting

the SSDs and NICs in our system, and adds negligible overheads on cache misses,

and the write-back caching is able to saturate the write performance of dual NVMe

drives.

For this analysis, we use eight compute nodes, each issuing eight concurrent 4 GB

read or write requests using the curl benchmark. Compute nodes are co-located on

the same rack with cache node.
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Figure 6·2: a)D3N hits improve the read throughput 5×, saturating
the dual NVMe SSDs and a 40 Gbit NIC. b) Write-back improves the
throughput by∼3× and write-through incurs a small (∼10%) overhead.

Figure 6·2a compares the read throughput of D3N L1 cache with the Vanilla

RGW. As seen in Figure 6·2a, our implementation is efficient enough to saturate the

dual NVMe SSDs and the 40 Gbit NIC; meaning L1 hit throughput almost 5× of

higher than Vanilla RGW. The black dotted line (5.0 GB/s) represents the maximum

read rate of the cache server SSDs as measured with “dd”; essentially the “speed

of light” for our experiments. It is also coincidentally the throughput of the cache

server’s 40GbE NIC. Also, L1 misses on D3N (which incurs the overhead of storing

missed data to SSDs in both L1 and L2) has ∼26% impact on the read throughput.

This overhead seems easily justified if it results in subsequent hits.

Figure 6·2b compares D3N write performance using write-through and write-back

to vanilla RGW. Write-back mode improves the write throughput 3×. Our implemen-

tation is efficient enough to saturate the capacity of the dual NVMe SSDs. Write-

through, which blocks until the write has completed to Ceph, incures additional

overhead over vanilla RGW of traversing multiple D3N caches and writing the data

to the SSDs. As we see this overhead is only around ∼10%. While the default policy
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right now is write-around (given the experimental nature of our changes), we expect

users to use write-back for intermediate data sets, where resilience is less critical, and

write-through in all other cases given the modest cost and the significant value for

subsequent hits.
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Figure 6·3: a)Comparison of L1 vs L2 hit performance
Writes to L1 cache are seen to incur significant overhead in the case of L2 hits. b)Read
miss with multiple D3N caches.Traversing multiple caches (L1 + L2) is seen to have
negligible effect on performance, while striping across 4 L2 D3N caches is nearly twice
as fast as unmodified RGW.

L1 vs L2 Performance: We run several experiments with micro-benchmarks to

understand the performance and overhead of accessing L2 (remote cache) in details,

and compare the cost of accessing a local cache vs a remote cache. To summarize,

in our environment (with a very high speed closely coupled data lake) D3N offers

a 5× higher throughput on L1 cache hits and 3× higher throughput on writes with

a write-back policy (saturating the SSDs on cache servers in both cases) and incurs

modest overhead on cache misses (∼26%) and write through (∼10%).

To compare L1 and L2 hit performance, three cases were measured and compared:

(a) L1 hit, (b) remote L2 hit with L1 disabled, and (c) remote L2 hit with L1 enabled.

Two cache servers are used, one on each of two racks, with 1 to 8 compute nodes on

each rack (16 nodes total) and 8 concurrent requests per compute node.

In Figure 6·3a we see that for L1 hits, 8 compute nodes per rack (the right most
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bar) are able to saturate both SSDs and 40Gbit NICs on each of the two cache servers,

with an aggregate throughput of 10 GB/sec, while the overhead of remote L2 requests

reduces throughput slightly, to 8.5 GB/s in the same case. In this case the overhead

of storing data on L1 nodes is significant, dropping performance to 5.5 GB/s; however

doing so allows additional full-speed L1 access to this data.

To evaluate L2 miss performance we measure four cases: (a) a single vanilla RGW

server, (b) a single D3N L1-only server, (c) two separate D3N servers configured as

L1-only and L2-only, with cascading cache misses, and (d) a pool of four L2 cache

servers, with one serving as a co-located L1 server. As before, eight concurrent 4 GB

requests are made from each of 1 to 8 client nodes.

In Figure 6·3b we see equivalent performance for cases (a), (b), and (c), indicating

that—even in the case of two cascaded cache misses—the overhead of D3N is not

significant in comparison with the throughput limits of the backend Ceph cluster.

In the final case (d) requests to the backend Ceph cluster are striped across four L2

caches; this is seem to result in significantly higher throughput than the vanilla case,

perhaps due to an increase in the number of connections to the backend Ceph cluster.

6.3.2 D4N Performance

We evaluate D4N prototype using s3-benchmark [101], a well-known and widely used

benchmarking tool, to measure the overheads and the maximum performance gains,

and compare its performance against D3N, Alluxio(ALL) and direct uncached access

to the data lake, referred to as Datalake in figures. We configure the Alluxio to cache

the data on a cache node whenever the data is accessed.

In these experiments we created a 48 nodes compute cluster running across 4

racks. Compute nodes submit 128 MB read and write requests, with 10 threads per

compute node; the total amount of data transferred per experiment is 200 GB.

To summarize our result, we found that, like D3N, the implementation of D4N
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Figure 6·4: Cache Hit and Miss throughput of D4N, D3N and Al-
luxio. All three caches are efficient enough to saturate SSDs and NICs
speed. D4N’s remote cache and write tier hit throughput saturates the
available network bandwidth between cache servers. D4N’s write tier
throughput is 1.6× higher than Alluxio due to performance advantage
of the erasure coding against triple replication.

can exploit the full bandwidth of the SSDs and NICs in our system like D3N, and

the directory lookup adds negligible overheads on cache hits and misses, the D4N’s

erasure coded write-tier throughput is 1.6 × higher than triple replicated Alluxio.

Read Performance: Read results are seen in Figure 6·4a. Upon a local read

cache hit, all three systems (D4N, D3N, Alluxio) performed comparably, reach-

ing speeds of 4.3 GB/s (35Gbit/s) per cache node and nearly saturating both the

compute-to-cache link (40 Gbit/s) and the paired SSDs (nominally 5.2 GB/s). When

all reads hit in remote cache, speed is limited by the 10 Gbit/s per-cache bandwidth

to all other caches, and per-cache throughput is 1.1 GB/s (8.8 Gbit/s). Read hits in

the erasure-coded write-tier have similar performance, as data is retrieved from re-

mote cache nodes. Read miss performance is the same for all three caches, and is the

same as for direct data lake access, indicating miss processing overhead is negligible

relative to data lake access speed.

Write Performance: Figure 6·4b shows the aggregate write throughput of the

write tier, which stores data using a (4,2) Reed-Solomon erasure code [98], compared



91

with Alluxio (3x rep) and direct data lake writes. (D3N does not support a reliable

write-cache therefore we show direct data lake writes rather than show to the non

reliable write-back cache.) D4N write-tier throughput is 2.6 × higher than direct

writes to the data lake, and 1.6 × higher than Alluxio, the latter due to the reduced

replication cost of the erasure code compared to Alluxio’s triple replication. We

note that directory look up and update overheads are negligible in both of these

experiments. We also note that previous study by Rasmi et al. [96] implements erasure

coding using Reed-Solomon [98] codes on Alluxio, however current publicly available

Alluxio implementation implementation use only replication for data durability.

6.4 Workload Adaptability

We show how D3N and D4N adapt changes in the access patterns by evaluating

each architecture’s proposed novel cache management algorithm. D3N’s dynamic

cache partitioning algorithm was never implemented in our prototype, therefore we

evaluate the algorithm using simulation. On the other hand, we implemented GWF

algorithm in the D4N prototype, so in practice only D4N prototype adapts to changes

in the access pattern. Therefore, the evaluation of D3N for real workloads in next

sections( 6.5.1 and 6.5.2) does not include the D3N’s adaptability algorithm but does

include D4N ones.

6.4.1 D3N’s Adaptability

We evaluate the D3N’s dynamic cache management algorithm using simulation. To

summarize, our simulation results show that a novel adaptive cache partitioning al-

gorithm using observed throughput and access patterns to optimize cache capacity

division between rack-local and cluster-wide data, showing gains of up to 30% vs.

fixed allocation in adapting to different access patterns and in responding to network

contention.
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Simulation: We implemented a cache simulator that mimics the D3N multi-layer

cache architecture. The simulator contains 1500 lines of code implemented in Python

using the standard SimPy simulation library [108].

In our simulation, we assume a data center with 10 racks, each rack containing

one D3N cache node and 20 client machines. The aggregate bandwidth between

clients and D3N nodes is 50 GB/s (i.e. one 40 Gbit NIC per node) and the bandwidth

between L1 and L2 is 15 GB/s, and with a rack-to-rack over-subscription of 3.3:1.

Each client issues concurrent 150 requests for 4MB objects. Both synthetic traces and

TR-FB2010-1 trace(Section 6.1.2)were used. TR-FB2010-1 trace does not contain

mapper information needed to determine request locality; therefore we generated

synthetic locality information, assuming that a repeat access to a file occurred on

the same rack with p = 0.7, and from another rack (chosen randomly) with p = 0.3.

At simulation start, each cache was divided equally between L1 and L2; every 1.5

minutes the cache allocation was adjusted by up to 5% of capacity in either direction.

(Sensitivity to these parameters was tested, and any combination able to adapt by at

least 2% every minute was found to give equivalent performance.) Each experiment

has a warm-up phase and run phase. In this section, we only report the results, which

are collected during the run phase.

Adaptability to different access patterns: To analyze D3N’s reaction to work-

load pattern changes over in time, we split the TR-FB2010-1 trace and assume that

for the first 36 minutes of the trace all requests arrive from Rack-1 and after the 36

minute mark all requests arrive from Rack-4, mimicking behavior when different parts

of the data center have high workloads at different points in time. In Figure 6·5(b)

we see L1 capacity for Rack-1 and Rack-4; after the access pattern changes at the

36th minute mark, Rack-4’s L1 capacity starts to increase while Rack-1’s L1 capac-

ity decreases, indicating rapid reaction to workload pattern changes. Figure 6·5(a)
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(a) Trace runtime. (b) L1 capacity as access patterns change.

Figure 6·5: Dynamic cache allocation: (a) runtime, static / dynamic
/ L2-only; (b) L1 capacity changes as access patterns change.

compares the overall runtime of the workload under dynamic and static partitioning

with a 50/50 L1/L2 assignment, and when only a single layer distributed L2 cache is

deployed. Runtime for dynamic partitioning is improved by 19% over static allocation

and 36% over a single L2 cache, respectively.

Adaptability to network load changes: Next we evaluate D3N’s adaptability to

changes in the network loads. We use synthetic trace, where all racks request the

same set of files and the size of the requested files are bigger than the total size of the

cache service. Starting from 240th second until the 440th second, we congest the link

that ties Rack-4 to other racks and the bandwidth drops from 15Gbits/s to 1Gbits/s.

As a result, it becomes costly for other cache-nodes to fetch data from L2 of Rack-4.

Therefore, all racks increased the capacity of their L1 caches during the congested

window.

Figure 6·6(b) shows the L2 capacity of Rack-1, Rack-2, and Rack-3 before, during

and after the congestion. We plot only 3 racks to make the figure more readable. We

note that remaining 7 racks follow the same pattern. When the congestion is over,

the dynamic algorithm slowly increases the capacity of L2. As seen in the figure,

D3N adjusts the cache capacities as expected. Figure 6·6(a) compares the overall job

completion time of the workload under dynamic and static allocation(50/50 L1/L2)

mechanisms. As shown in the figure, dynamic allocation completes 14% faster than
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(a) Trace runtime. (b) L2 capacity after network congestion.

Figure 6·6: Impact of dynamic cache allocation of D3N when a net-
work congestion occurs. (a) Runtime of static and dynamic allocation.
(b) L2 capacity with changing network congestion.

Figure 6·7: Runtime comparison of static and dynamic cache alloca-
tion for TR-FB2010 trace under different locality levels.

static allocation. Both figures indicate that D3N quickly reacts to network congestion

and adjusts cache sizes towards ideal settings.

Performance under different locality levels: In Figure 6·7 we see job comple-

tion time for dynamic and static (50/50 L1/L2) allocation for the TR-FB2010 trace

benchmark with different locality levels, from 100% (files always accessed at the same

L1) to 0%( access locations are random). Dynamic allocation improves job comple-

tion time for high-locality cases, e.g. by 42% and 26% for localities of 100% and 80%,

respectively.
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6.4.2 D4N’s Cache Elasticity

We evaluate how D4N can automatically adapts workload using it’s novel cache man-

agement algorithm GWF. One of the key features of D4N is its elasticity, enabling

cache resources to be automatically used where they will do the most good. GWF

exploits the distributed directory, enabling each cache to independently make repli-

cation decisions that are intended to automatically adjust cache usage based on the

storage working set. To summarize, GWF algorithm automatically adapts replication

to the working set of the demands, and D4N outperforms Alluxio even when Alluxio

is statically optimized to choose the correct policy for large and small working sets.

We use a simple uniform random workload to compare to Alluxio, which enables

applications to specify two strategies: All-AR(always replicate) using its “passive

replication” feature to always replicate objects to the accessed cache, and All-1R

(one replica) where data is cached opportunistically by the first cache that retrieves

it from the datalake, and not subsequently replicated. Since the implementation of

D3N has a fixed policy, we compare D4N to Alluxio with both always replicate and

never replicate.

We expected All-AR to be the optimal policy for small working sets where data

is fully replicated to all caches, and All-1R to be the optimal policy for large working

sets, since data will only need to be fetched from the data lake once. We hoped that

D4N would match the performance of each of these optimal policies automatically.

As expected, D4N does automatically adjust replication to match the optimal, but

as described below, it also outperforms both All-AR and All-1R in all scenarios.

We use a trace consisting of 4800 requests uniformly and randomly directed to 400

unique objects. We configure the per-server cache to 64 GB, and vary the footprint

of the data from 50 GB to 200 GB, using the compute cluster and s3-benchmark

described above.shows the accesses to the data lake normalized by the size of the
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Figure 6·8: Compare D4N and two Alluxio configurations: All-1R
replicates a single copy of an object, and All-AR replicates an object
upon every request. Results of accesses tot he data lake normalized by
the size of the footprint. With small working set all just miss the first
access, with large working set All-AR results in many misses.

footprint.

Figure 6·8 shows the accesses to the data lake normalized by the size of the

footprint. With the small footprint, all caches only suffer one miss to the data lake.

As the footprint increases it still fits into the aggregate cache size, allowing All-1R to

continue to only hit the data lake once for each object. All-AR, which aggressively

replicates data, suffer 3x more misses to the data lake, since the additional replication

causes eviction of cached data. For the largest footprint D4N still incurs roughly 60%

additional data lake accesses, as it attempts to discern hot and cold blocks within

a uniform distribution, giving blocks accessed twice the weight of blocks accessed a

single time. Even with this increase, however, it reads less than half as much from

the data lake as All-AR.

Figure 6·9 shows the time to complete the experiment as the working set size grows,

normalized by the run time using D4N. For the small working set, D4N achieves 20%

better performance than All-1R and around 40% better performance than All-AR.

The improvement over All-1R is expected: both D4N and All-1R must (slowly) load

the data into cache, however once this is done, D4N will replicate it to all caches,
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Figure 6·9: Normalized run time for D4N and Alluxio with two con-
figurations where D4N is 1. D4N adjusts the number of replicas based
on the global demand, reduce the data lake accesses and has the short-
est run time for all scenarios.

enabling an aggregate bandwidth of close to 4× 40Gbit/s, while 3/4 of data accesses

with All-1R will be from a remote cache, allowing a peak speed of 4/3 × 10 Gbit/s.

We are surprised that D4N has an advantage over All-AR, and are investigating to

determine the performance issue with Alluxio causing this difference.

With large footprints All-AR run time is more than 2.3x slower that D4N, which

is expected since, as we have seen from Figure 6·8, it performs many more accesses

to the data lake. Surprisingly, D4N also outperforms All-1R, despite its additional

accesses to the data lake. We believe that the reason stems from D4N caching data at

the chunk rather than object level, enabling the modest number of additional blocks

fetched from the data lake to be retrieved in parallel with other data being served from

the cache. In addition, the demand on the data lake is still less than the available

bandwidth, and hence the advantage of a modest increase in local cache hits with

D4N compensates for the additional misses to the data lake.
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Figure 6·10: Facebook workload runtime: D3N vs. vanilla RGW,
full-bandwidth (80 Gbit) and throttled (12 Gbit) network to data lake,
full run and after 1/3-trace warmup. D3N improves runtime by 25%
with (unrealistically) high data lake bandwidth, and by 4× with a more
realistic network.

6.5 Realistic Workloads

In this section, we run macro-benchmarks using a large scale TR-FB2010-1 trace to

evaluate the performance of D3N and D4N for realistic workloads.

To summarize the results we had, macro benchmarks show that D3N and D4N

capture the enormous temporal locality in data center workloads to greatly reduce

the accesses to the data lake and improve the performance up to 3×, and D4N can

reduce cumulative job run time by large amount (e.g. 30%), reduce demand on the

network and the backend data lake.

6.5.1 Overall Performance for Realistic Workloads

Via macro-benchmarks, we measure the runtime impact of D3N for more realistic

read-only workloads. D4N will perform similar to D3N, and as we will see in the next

subsection 6.5.2 where we evaluate the workload adaptability of D3N and D4N for

realistic workloads.

We create a two layer D3N configuration using two cache servers with a total 5 TB

capacity. We use the production (non-adaptive) version of D3N, with a static cache
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Figure 6·11: Cumulative (sampled) data lake transfers for
Facebook workload D3N vs Vanilla, throttled (12 Gbit) network to
data lake. For D3N the link is saturated during the warm-up phase
due to cache misses, but demand is reduced during the measurement
phase due to cache hits; Vanilla takes 3× as long, saturating the link
throughput during the experiment.

of 50% to each cache layer. Aggregate bandwidth to the back-end storage cluster

was 80 Gbit/s (one 40 Gbit NIC per server); additional experiments were performed

with an aggregate bandwidth of 12 Gbit/s, by throttling each cache server-to-storage

connection to 6 Gbit/s. Hadoop clients were emulated by a custom tool, generating

HTTP requests (with a 512 MB block size) to mimic the S3 requests each mapper

would have initiated, allowing all mappers to be emulated from two 36-core nodes

with 40 Gbit NICs. Since the trace lacks client node information, requests were ran-

domly assigned to each mapper with no locality, giving conservative results vs. real

workloads with non-zero locality.

Figure 6·10 displays the trace completion time with and without D3N for the two

network bandwidth configurations. The experiment was divided into two consecutive

phases, warm-up and measurement. The warm-up phase consisted of the first 33%

of the total trace; performance results are reported for the measurement phase alone

as well as for the full workload run time (warm-up plus measurement). With an

unrealistic 80 Gbit of bandwidth to the storage pool, performance improved by about

25%. With 6 Gbit from each cache server to the backend (a conservative emulation of
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a shared 10 Gbit connection) the full workload and measurement-only times improved

by 2.4× and 3× respectively.

With only 75% re-use, we see that the cache is still highly effective, greatly increas-

ing storage system throughput and thus application performance. Throughput also

compares favorably with the traditional alternative of manually copying hot datasets

into a disk-based cluster-local HDFS system. Due to the huge speed disparity be-

tween NVMe and disk, it would take 60 to 80 disk spindles across this cluster to equal

the throughput of the two dual-SSD cache servers.

Another benefit is the reduction in inter-cluster traffic. Figure 6·11 we see cu-

mulative data transferred from the back-end storage (sampled using pbench) for the

12 Gbit/s experimental configuration. With the vanilla RGW, the Ceph link is nearly

always saturated, with 23 Tb of observed data transferred after the warmup phase,

while D3N transfers about 5 Tb, more than a 4× improvement (e.g. allowing 4 times

as many analysis jobs to share the storage backend or bottleneck links).

6.5.2 Adaptability of D4N, D3N vs Alluxio to Realistic Workloads

To examine D4N’s overall performance for workloads with more realistic distributions,

we replay TR-FB2020-2 trace with results unaffected by computational overheads. We

measure overall runtime, as well as the total volume of local hits, remote cache hits,

and data fetched from the data lake due to complete misses. We compare D4N with

D3N, All-AR(Alluxio always-replicate), and All-1R (Alluxio single-replica). In the

case of D3N, we use the production (non-adaptive) version of D3N and do not enable

the write-back cache (upstream community has not been willing to accept model of

unreliable storage of intermediate data, therefore production version of D3N does not

have a write-cache.).

Clients were emulated by a custom tool to generate S3 requests with a 128 MB

block size, mimicking mappers and reducers with zero CPU overhead. This allowed
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Figure 6·12: Local/remote cache and data lake accesses.
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Figure 6·13: Run time for D4N, D3N, and Alluxio configurations,
TR-FB2020-2 trace, no intermediate data. D4N maximizes local hits
and minimizes data lake accesses, achieving the lowest runtimes.

all mappers and reducers to be emulated from only 24 client nodes, 6 per cache. Since

the trace lacks locality information, requests were assign to mappers in round robin

order. Aggregate cache capacity was scaled from 128GB to 512GB, i.e. 32GB to

128GB per cache server.

Our first experiment replays only the input reads and final output writes; results

are seen in Figure 6·12 and Figure 6·13. Only data for 128GB and 256GB exper-

iments are reported, as little difference was seen between strategies for the 512GB

case. In each case, D4N accesses to the data lake (i.e. misses in both local and remote

caches) are as low or lower than All-1R, while local hit volume is as high or higher

than All-AR, and the resulting runtime is better than either.
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The next experiment replays the entire trace including intermediate output, with

an aggregate cache size of 640 GB. Once intermediate data is written, it is immediately

read by the same compute node, and then deleted. In all cases with write caching—

i.e. Alluxio and D4N—the temporary data is deleted before it would be written back

to the data lake, and only the final output data (540GB) is written back.
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Figure 6·14: Run time of the trace with intermediate datasets. Total
cache size is 640GB. D4N, All-1R and All-AR keeps the intermediate
data in the cache. D3N and All-1R performance drops due to the extra
traffic generated by the triple replication.

For Alluxio we use the full 640 GB for the combined read and write cache; D4N

uses fixed partitioning, and was configured with 512GB and 128GB read and write

cache respectively. Results are seen in Figure 6·14: D3N, with no write cache, has the

slowest run-time, while D4N outperforms both Alluxio options. We attribute this to

two factors: first, D4N uses erasure coding for its write-back tier, generating half as

much rack-to-rack traffic as Alluxio, and second, D4N deletes data based on age, while

Alluxio keeps data in cache until it is evicted via LRU. Results show that Alluxio-1R

suffers from the internal traffic that is generated for accessing the single replica, and

its run time is slower than Alluxio-AR. In both cases, data lake bandwidth was not

a bottleneck for writing output data.
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Figure 6·15: Run time and data lake accesses of production trace-
based analytical workload for D4N, D3N and uncached datalake. D4N
significantly reduces both run time data lake access.

6.6 Real Workload

The previous experiments either replay the real-world traces or used artificial work-

loads generated by what are essentially load testing tools; in real workloads per-

formance is limited by computation as well I/O speed. Will these gains hold up

under real, computation-based workloads, or have we merely accelerated I/O to the

CPU-bound portions of a job, while leaving the I/O-bound portions unaffected? To

investigate this we run a PIG/Hadoop-based TR-CP2020 workload, this time mea-

suring run time and datalake traffic, for three configurations: D4N, D3N, and direct

datalake access. Each cache node is configured with 512GB of cache space.

Results: We should note that the workload creates DAG-shaped query plan.

Some jobs has multiple phases where they create intermediate results that becomes

an input for the next job. In the experiment we observed that the workload creates

burst of IO requests, and spend some time on computation and then issue IO requests

again.

As seen in Figure 6·15a, D4N improves the performance by 31% and 12% against

datalake and D3N respectively. D4N performans better because i) it provides a write-

back cache which stores final output and also the intermediate data that has been
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Figure 6·16: Data lake storage server’s disk utilization for small IO
requests. When small IO directly written to the data lake. The disk
becomes a bottleneck. D4N’ small object packing reduce the load on
the disks significantly without impacting the performance.

generated between different jobs, and ii) D4N read data directly from datalake and

unlike D3N it does not have an additional hop upon a cache miss.

Figure 6·15a shows one of the cache servers data lake network traffic which is

captured by Linux-SAR monitoring tool. Results demonstrate that read and write-

back cache reduce data lake accesses significantly.

6.7 D4N’s Specialization

In this section, we evaluate the two specializations we have developed for D4N; small

objects specialization via write coalescing and analytical frameworks specialization

using Kariz [20], and we show how cache specialization can improve the performance

of the system and workloads’ runtime.

Small Objects Specialization We run an experiment to examine the effectiveness

of small object packing with measuring disk utilization across the data lake storage

servers. We use TR-IBM2019 that is dominated by small object sizes (4 MB and

less), and replay this trace using S3-benchmarkon a 48 node cluster where each node

creates 32 concurrent requests.

Small writes are coalesced in 32 MB objects and are written to the data lake

when they reach to the end of their lifetime in the cache, which is 1 minute in our
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experiment. We throttle the transfer rate to the data lake to 1 GBps per cache node.

Figure 6·16 shows disk utilization of one of the data lake server. Load is depicted

as disk utilization percentage, as reported by /proc/diskstats, across all disks in the

data lake. When small requests are written directly to the data lake storage servers,

we observe average disk utilization is between 40%-60%, and for some of the disks for

a certain period we observe 100% disk utilization. Coalescing small objects into large

objects reduces the load on the data lake storage disks. With coalesced writes, the

data lake disk utilization is below 15% for most of the time and never exceed 20%.

Coalescing writes doesn’t impact the write throughput since the data is written into

the write-tier. Read requests to small objects are issued as a “range-request”, and we

do not observe any performance degradation on the read performance.

We also observe that the aging process can create burst of I/O to the data lake.

Increasing the aging window and/or transfer rate increases the load on the disks. Our

results suggest that for the best performance the transfer rate and the window for

aging operation should be dynamically adjusted based on the observed traffic to the

data lake.

Analytical Frameworks Specialization In this experiment we evaluate the benefit

of specializations to support wide range of access patterns of workloads. We deploy

Kariz [20] to give hints to D4N based on the extracted DAG information of submitted

analytical workloads.

We mimic a shared multi-cluster data center where one cluster is aggressively

using the entire cache space and other clusters may starve. Caching specializations

like Kariz can provide more efficient caching for these clusters that are not aggressively

accessing the storage. To show this; we set up two clusters each with 12 compute

nodes, both accessing the same cache server, which has a 512GB capacity. Cluster

1 runs a workload, which creates 20TB read requests with 1TB unique dataset and
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uniform access distribution. Cluster 2 runs Hadoop/PIG framework along with Kariz

which runs TR-CP2021 workload.

When Kariz gives hints(prefetch, pin) to the D4N, the run time of DAG based

workload is improved by 20%. When the Kariz is disabled, Cluster2 has to read most

of the data from the data lake since Cluster1’s read demand is much larger than the

available cache capacity which results in eviction of the Cluster 2’s data sets from

cache.
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Chapter 7

Conclusions and Future Work

7.1 Conclusion

This dissertation focuses on extending immutable object-based data lake across a

data center using cooperative caching techniques. We developed two data center scale

cooperative cache architectures, D3N and D4N, designed to be part of the data lake

itself rather than part of the computer clusters use it. We demonstrate that exploiting

the immutability of object stores significantly reduces the complexity of cache design,

allowing us to explore caching strategies that were not feasible for previous cooperative

cache systems for a file or block-based storage. Both architectures explore cooperative

caching techniques to extend the data lake by distributing the caches all around the

data center and support data sharing across all workloads, frameworks, and clusters

in a data center which access the same shared data lake. We show that extending

the data lake to cache data near the point of access improves the locality and delivers

high bandwidth to applications.

D3N shows that it is possible to implement a real working cooperative cache for

immutable data lakes without requiring any modification to applications. It enables

the integration of caches into an existing data lake, and D3N has been upstream into

an existing Ceph as an experimental feature, allowing many data lakes around the

world to deploy it. We show it is possible to implement a cache management algorithm

to adjust local and global demand based on local information (measure latency and

historical access patterns). Our experiments demonstrate that D3N’s implementation
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is highly efficient to saturate the dual NVMe SSDs and the 40 Gbit NIC, where a

single SSD throughput is 5× faster than a 90 spindle Ceph cluster accessed without

network bottleneck. D3N achieves significant performance improvements —up to 3×

reduction in runtime and reduces the bisectional bandwidth demands by a factor of

4 for realistic data analytical workloads.

D4N architecture tradeoff the simplicity with sophisticated caching strategies.

D4N architecture shows the importance of maintaining a global state, which is re-

quired to have a write tier and cache specialization per application. We demonstrate

that it is possible to maintain a global state for object stores without introducing

performance overheads due to the large block access of object stores. This allows us

to explore sophisticated caching strategies that were not feasible for previous cooper-

ative cache systems for a file or block-based storage. D4N exploits the composability

of the S3-interface and re-uses the existing Ceph software to layer write tier on top

of the data lake. Finally and most importantly, D4N demonstrates the possibility

of designing a customizable storage system by enabling customization. It supports

application-specific specializations on top of a general storage service, eliminating

the need to fragment storage into separate pools in order to provide performance

improvements for specific applications. We implemented a new intelligent caching

algorithm, GWF, which automatically adjusts the global demand on the data cen-

ter by comparing the global values of each cached block, and performs well in both

high local demand and high global demand, and achieves substantial performance

gains over D3N and a state of art cluster cache Alluxio. D4N’s small object packing

specialization reduces the server load on the data lake by 200% over the case of no

write tier, and with analytic cluster-specific specialization, it improves the run time

by 20%.
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7.2 Future Work

One of the least explored areas of the D3N and D4N research agenda has been the fair

sharing of cache resources. In both cache architectures, the cache resource allocation

policies are first-come-first-serve. For instance, users who read data at long intervals

may gain little or no benefit from the cache simply because their data is likely to be

evicted. Another important future research direction is how to provide a partitioning

mechanism for a read and a write cache, dynamically adjusting the size of each cache

by sensing the characteristics of workloads. It would be crucial to investigate resource

allocation strategies for both architectures’ read/write cache and multiple users.

An obvious direction for future work is to develop new specializations to cus-

tomize caching policies for more workloads. With knowledge of the access pattern,

one can customize caching policies (e.g., replication, write-back, admission, prefetch,

redundancy), enabling valuable cache resources to be efficiently used. For example,

the replication policy of write tier (either replication count or erasure code length)

can be tuned per application to match the application’s availability requirements. In

addition, future work should explore how to combine cache specializations with the

composability of the S3 interface to implement new functionalities on top of D4N

caches or the data lake and understand the potential and challenges of customizabil-

ity and composability. Furthermore, it would be interesting to investigate how to

base everything on immutable object stores and find mechanisms for efficiently im-

plementing mutability, resiliency, and consistency at the most appropriate layers to

support a wide range of applications.

Both D3N and D4N are designed for a single data center. Future research can

extend both systems for hybrid clouds or geo-distributed data centers where data is

replicated to caches across multiple data centers and stored in different data lakes.

Can caches still exploit the immutability to efficiently move data between different
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data centers or cloud regions in such use cases? Investigating caching policies and

exploring how to address cache coherence and scalability issues in a geo-distributed

data centers would be an important research direction.

Finally, “upstreaming” the code is critical for system research because otherwise,

the promising research results go unnoticed and unused. Once the upstreaming is com-

pleted, the code will be supported by an external engineer team and can be deployed

and used in real production systems. We are still in the process of “upstreaming”

the D4N prototype which is a lengthy process of convincing the Ceph community,

followed by code review, testing, and further development. We are still unclear when

the upstream takes place; therefore, future work should develop strategies for making

the “upstreaming” process more efficient and easier for researchers, such as developing

unit testing strategies, automating the deployment and configurations, and providing

documentation.
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Spiro Michaylov, Rogério Ramos, Neil Sharman, Zee Xu, Youssef Barakat, Chris
Douglas, Richard Draves, Shrikant S. Naidu, Shankar Shastry, Atul Sikaria, Si-
mon Sun, and Ramarathnam Venkatesan. Azure Data Lake Store: A Hyperscale
Distributed File Service for Big Data Analytics. In Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD ’17, pages 51–63,
New York, NY, USA, 2017. ACM.

[96] K. V. Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion Stoica, and Kannan
Ramchandran. EC-cache: Load-balanced, Low-latency Cluster Caching with
Online Erasure Coding. In Proceedings of the 12th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI’16, pages 401–417, Berkeley,
CA, USA, 2016. USENIX Association.

[97] Redis. https://redis.io/, 2021.

http://docs.ceph.com/docs/master/radosgw/
https://redis.io/


120

[98] I. S. Reed and G. Solomon. Polynomial Codes Over Certain Finite Fields.
Journal of the Society for Industrial and Applied Mathematics, 8(2):300–304,
1960.

[99] Francisco Romero, Gohar Irfan Chaudhry, Iñigo Goiri, Pragna Gopa, Paul Ba-
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