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Abstract—Available benchmark suites are used to provide real-
istic workloads and to understand their run-time characteristics.
However, they do not necessarily target the same platforms
and often offer a diverse set of metrics, leading to the lack
of a knowledge base that could be used for both systems and
theoretical research. RT-Bench, a new benchmark framework
environment, tries to address these issues by providing a uniform
interface and metrics while maintaining portability. This demo
illustrates how to leverage this framework and its recently-
added features to improve the understanding of the benchmarks’
interaction with its system.

Index Terms—Benchmark, Profiling, Classification

I. INTRODUCTION

Benchmarking plays an indispensable role in the real-
time community to evaluate, consolidate, and validate novel
research. Using benchmarks to evaluate the performance of
production systems is also of great value as simulators only
partially depict real platforms’ behavior. Benchmarking is thus
beneficial for many aspects of the real-time research commu-
nity: from system research to theoretical system modeling.

For system research, understanding the run-time behavior
of realistic benchmarks is crucial to assess performance gains
and showcase novel system designs. In such cases, local
knowledge such as the maximal memory activity during the
application run-time is valuable. On the other hand, theoret-
ical research can benefit from using workload characteristics
obtained empirically to test scheduling and regulation mech-
anisms against realistic loads. Informed improvements in the
quality of regulation mechanisms require access to a coherent
database of measurements providing a global knowledge via
the aggregation of several performance metrics.

Despite its importance, to date, no existing reference knowl-
edge base provides such local and global knowledge. Un-
fortunately, this leaves the community to rely on personal
knowledge or experience. The problem is (at least partially)
imputable to the high fragmentation of benchmark suites.
In fact, the most commonly used benchmark suites in the
community differ in several aspects, including (1) system
compatibility, (2) requirements, (3) measured metrics, and (4)
reporting formats.

To address these issues, we have created a new benchmark
framework called RT-Bench1 that was initially presented in [1]
and that we are continuously improving and expanding. As
part of the continued effort in the project, we hereby present

1https://gitlab.com/rt-bench/rt-bench

the first milestone towards creating and establishing a public
knowledge base of benchmark performance and profile char-
acteristics. In the context of this demo, we will illustrate how
the expanding knowledge base can be exploited to gain wider
and deeper understanding of the interaction between realistic
benchmarks and underlying hardware. To this end, we will
demonstrate how to use RT-Bench, and showcase its recently-
added features2 to profile, extract, and report benchmarks’
characteristics. Specifically, in our demo, we will:

• Present the latest advancements in the capabilities of RT-
Bench originally presented in [1] that now includes 67
benchmarks.

• Illustrate how to interpret the profiles of complex
benchmarks using key performance metrics. As an ex-
ample, the profile of a benchmark issued from the
image-filters3 suite is provided.

• Provide a first comprehensive overview and classification
of benchmarks issued from several suites.

II. FOCUS OF THE DEMO

This section presents and discusses the results of two classes
of experiments to gain global and local knowledge about the
benchmarks at hand. These experiments showcase the capa-
bilities of RT-Bench to collect and export measurement data.
In Section II-A, the local knowledge experiment leverages
the capability of RT-Bench to simultaneously monitor several
performance counters during the execution of a benchmark. On
the other hand, the “global knowledge” experiments presented
in Section II-B showcase the ability to directly contrast and
classify benchmarks issued from different suites.

While RT-Bench is also compatible with x86_64 Intel
CPUs, our evaluation is based on ARM embedded platforms.
In particular, we use a Raspberry Pi 3B+ to carry out the
experiments. The system features (1) a four-CPUs (Cortex-
A53) cluster operating at 1.5GHz4, (2) per-core 32KB+32KB
instruction and data caches, and (3) a 1MB shared last-level
cache (LLC). We use a Linux kernel version 5.15.61, and RT-
Bench applications have been compiled with GCC 10.2.1. The
RT-bench benchmarks we used include the adapted version
of the image-filters suite, the San-Diego Vision Bench-
mark Suite [2] (SD-VBS), and the TACLeBench suite [3].

2Comprehensive documentation on RT-Bench features can be found in the
documentation: https://rt-bench.gitlab.io/rt-bench/

3https://gitlab.com/rt-bench/image-filters
4The frequency scaling governor is explicitly set to performance.



Fig. 1. Profiling of the canny image filter (see image-filters bench-
mark suite) via performances counters.

A. Local Knowledge - Profiling

For this experiment, we selected the canny benchmark
from the image-filters suite to illustrate the profiling
and analysis capabilities provided by RT-bench. In fact, due to
its six-pass filtering, the benchmark implementing the Canny
algorithm [4] is an ideal candidate. The benchmark is run using
the vga input size (i.e., 640×480 pixels) on a single core, and
all the supported performance counters have been monitored.
Fig. 1 displays the normalized cumulative activity for each
performance counter.

Fig. 1 clearly illustrates the fluctuations in resource demand
taking place during a benchmark’s execution. While the evolu-
tion of the instructions retired and the L1-D cache references
remain stable throughout, the trend of other performance
counters increases at various rates, hinting at the existence of
several execution phases with distinct characteristics. In this
case, such profiling is particularly interesting for budget-based
memory regulation mechanisms.

B. Global Knowledge - Benchmark Clustering

Using the aggregated performance counter activity and the
timing measurements, it is possible to extract, compare, and
classify benchmarks that belong to the various suites. Thanks
to the wide choice of metrics reported, many classification
criteria are available. Our demo will cover a handful of
them. One such classification is reported in Fig. 2. Here, we
showcase the relative positioning of the supported benchmarks
w.r.t. their Instruction per Clock-cycles (IPC) and their Last-
level Cache Refills per Clock-cycles (LLC-RPC). The figure is
a visual representation of how CPU-bound vs. memory-bound
the considered applications are.

Three observations can be made from Fig. 2. Firstly, only
four benchmarks (all from SD-VBS) stand out w.r.t. how fre-
quently they cause LLC refills. Secondly, all other benchmarks
create less frequent LLC refills and are grouped together in
a large cluster where only very few display an IPC higher
than 1. Finally, most benchmarks lay in a dense low-IPC and
low-refill frequency cluster. This cluster is mainly composed

Fig. 2. Clustering of benchmarks and their suite based on instruction per
clock (IPC) and last-level cache refills per clock (LLC-RPC).

of TACleBench and image-filters benchmarks. The presence
of the former can be explained by the small input data size
used, whereas the latter can be explained by its reliance on
costly floating point operations.

III. CONCLUSION

In this article, we demonstrate how the recent advancements
in RT-bench help get further insights into benchmarks.

The authors of this article and members of the RT-Bench
project are committed to maintaining and expanding the tools,
the supported benchmarks, and the measurement database.
Future extensions include the analysis of Artificial Neural
Networks models powered by widely used libraries (e.g.,
Tensorflow) and the capacity to define task sets to release
simultaneously.
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