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ABSTRACT

Complementary Metal Oxide Semiconductor (CMOS) Technology scaling has slowed down.

One promising approach to sustain the historic performance improvement of computing

systems is to utilize hardware accelerators. Today, many commercial computing systems

integrate one or more accelerators, with each accelerator optimized to efficiently execute

specific tasks.

Over the years, there has been a substantial amount of research on designing hardware

accelerators for machine learning (ML) training and inference tasks. Hardware accelerators

are also widely employed to accelerate data privacy and security algorithms. In particular,

there is currently a growing interest in the use of hardware accelerators for accelerating

homomorphic encryption (HE) based privacy-preserving computing.

While the use of hardware accelerators is promising, a realistic end-to-end evaluation

of an accelerator when integrated into the full system often reveals that the benefits of an

accelerator are not always as expected. Simply assessing the performance of the accel-

erated portion of an application, such as the inference kernel in ML applications, during

performance analysis can be misleading. When designing an accelerator-based system, it

is critical to evaluate the system as a whole and account for all the accelerator taxes.
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In the first part of our research, we highlight the need for a holistic, end-to-end analysis

of workloads using ML and HE applications. Our evaluation of an ML application for a

database management system (DBMS) shows that the benefits of offloading ML inference

to accelerators depend on several factors, including backend hardware, model complexity,

data size, and the level of integration between the ML inference pipeline and the DBMS.

We also found that the end-to-end performance improvement is bottlenecked by data re-

trieval and pre-processing, as well as inference. Additionally, our evaluation of an HE

video encryption application shows that while HE client-side operations, i.e., message-to-

ciphertext and ciphertext-to-message conversion operations, are bottlenecked by number

theoretic transform (NTT) operations, accelerating NTT in hardware alone is not sufficient

to get enough application throughput (frame rate per second) improvement. We need to

address all bottlenecks such as error sampling, encryption, and decryption in message-to-

ciphertext and ciphertext-to-message conversion pipeline.

In the second part of our research, we address the lack of a scalable evaluation in-

frastructure for building and evaluating accelerator-based systems. To solve this problem,

we propose a robust and scalable software-hardware framework for accelerator evaluation,

which uses an open-source RISC-V based System-on-Chip (SoC) design called BlackPar-

rot. This framework can be utilized by accelerator designers and system architects to per-

form an end-to-end performance analysis of coherent and non-coherent accelerators while

carefully accounting for the interaction between the accelerator and the rest of the system.

In the third part of our research, we present RISE, which is a full RISC-V SoC de-

signed to efficiently perform message-to-ciphertext and ciphertext-to-message conversion

operations. RISE comprises of a BlackParrot core and an efficient custom-designed accel-

erator tailored to accelerate end-to-end message-to-ciphertext and ciphertext-to-message

conversion operations. Our RTL-based evaluation demonstrates that RISE improves the

throughput of the video encryption application by 10×-27× for different frame resolutions.
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Chapter 1

Introduction

1.1 Motivation

One of the main challenges facing modern computing systems is the end of Dennard scal-

ing. For many years, the performance of general-purpose processors was able to keep pace

with the increasing demands of applications and workloads. However, as transistors con-

tinue to shrink, the power density of these devices has increased to the point where it is no

longer possible to maintain the same level of performance without consuming significantly

more power. This has resulted in diminishing performance gains of general-purpose pro-

cessors, necessitating alternative solutions. Hardware accelerators are becoming increas-

ingly important in this context because they offer a way to improve performance without

consuming excessive amounts of power. By offloading computationally intensive tasks

to specialized hardware, these units can perform specific tasks faster and more efficiently

than general-purpose processors. This allows computing systems to continue to scale their

performance while staying within reasonable power limits.

Examples of hardware accelerators commonly found in modern computer systems in-

clude graphics processing units (GPUs) for accelerating graphics and parallel computing

workloads (Nickolls and Dally, 2010), digital signal processors (DSPs) for accelerating

signal processing tasks (Tan and Jiang, 2019), field-programmable gate arrays (FPGAs),

and application-specific integrated circuits (ASICs) for accelerating custom algorithms and

computations (Kuon and Rose, 2010), and tensor processing units (TPUs) for accelerating

machine learning (ML) workloads (Jouppi et al., 2017).
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Many commercial computing systems integrate one or more of these accelerators, each

of which is designed to efficiently execute a specific task. Good examples of modern sys-

tems with numerous hardware accelerators include the Apple M1 (Apple Inc., 2020), which

includes a GPU, a neural engine, and a dedicated video encoding and decoding unit; the

Qualcomm Snapdragon 888 (Qualcomm Technologies, Inc., 2020), which includes a GPU,

a DSP, and a new Artificial Intelligence (AI) engine designed specifically for ML; and the

NVIDIA Drive AGX platform for autonomous vehicles (Nvidia Corp., 2023), which in-

cludes a GPU for visual processing, a deep learning accelerator for ML, and a computer

vision accelerator for real-time image processing.

One domain where hardware acceleration can provide significant benefits is ML. ML

is used in a wide range of applications, including natural language processing (Bouraoui

et al., 2022), image and video recognition (Camastra and Vinciarelli, 2015), speech recog-

nition (Deng and Li, 2013), recommendation systems (Nawrocka et al., 2018), and anomaly

detection (Omar et al., 2013) to perform human-like tasks. As ML models become more

complex, they require more computational power for training and inference. Over the

years, a large amount of work has been done on designing hardware accelerators for ML

that can greatly improve the performance and efficiency of training and inference tasks.

These solutions include massively-threaded GPUs (Choquette et al., 2021), (Chen et al.,

2014c), (Huynh et al., 2017), FPGAs and ASICs (Lecun et al., 2011), (Li et al., 2016),

(Sankaradas et al., 2009), (Chen et al., 2014a), (Chung et al., 2018), (Fowers et al., 2018),

(Askarihemmat et al., 2023), (Chen et al., 2014b), (Li et al., 2022).

Hardware accelerators are also widely used for accelerating data privacy and security al-

gorithms. In particular, lately, there is a growing interest in the use of hardware accelerators

for accelerating homomorphic encryption (HE) based privacy-preserving computing. HE

allows encrypted data to be processed and analyzed without having to decrypt it, thus pro-

viding strong data privacy and security guarantees. Although HE-based privacy-preserving



3

computing seems plausible, it is several orders of magnitude slower than operating on un-

encrypted data. Prior studies have attempted to address this performance gap by utilizing

hardware accelerators (Jung et al., 2021), (Bootland et al., 2020), (Badawi et al., 2021),

(Gupta et al., 2020), (Wang et al., 2014), (Cousins et al., 2017), (Reis et al., 2020), (Turan

et al., 2020), (Riazi et al., 2020).

While, broadly, the use of a hardware accelerator is promising, unfortunately, the evalu-

ation of a hardware accelerator in the context of the full system reveals that the accelerator’s

benefits are not always as expected. In fact, in some cases, using a hardware accelerator

leads to a performance loss (Azad et al., 2021), (Buch et al., 2021). Hence, an end-to-end

performance evaluation of hardware accelerators is critical to understand the overheads as-

sociated with using the hardware accelerator. Such an evaluation helps to ensure that the

use of the accelerator improves the overall application performance. In section 1.1.1 and

section 1.1.2 below, we provide concrete examples to back up this claim.

1.1.1 Tax for AI operations

Hardware accelerators can significantly enhance the performance and efficiency of an ML

model execution, i.e., inference. Nevertheless, to enable ML inference, an application

typically requires additional steps, such as retrieving data from sensors/databases, pre-

processing inputs and models, initializing backend hardware accelerators, transferring data,

and post-processing results. While every ML application must go through these necessary

stages, such overheads are often overlooked in performance analysis. In this section, we

will first explain our proposed methodology for the end-to-end evaluation of ML appli-

cations, followed by an example that utilizes it to understand and quantify the effects of

individual execution stages of a Database Management System (DBMS) ML application

on end-to-end performance.
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Evaluation Methodology

To evaluate the performance of ML applications, we recommend the following methodol-

ogy.

• Understand the processing stages of the ML application, including data capture or

retrieval, data pre-processing, inference, and data post-processing. We quantify their

individual contributions to the overall end-to-end application time. This understand-

ing will facilitate the understanding of bottlenecks in the application execution pipeline.

• Identify the key performance metrics that are relevant to the application. These may

include accuracy, inference time, throughput, latency, power consumption, and mem-

ory usage.

• Choose a dataset that accurately represents the problem domain and includes a di-

verse range of features and samples. This allows observation of the impact of dataset

complexity on the application’s performance. Additionally, evaluate the application’s

performance using various input distributions that it is likely to encounter in the real

world.

• Select a suitable ML model that aligns with the problem domain and available dataset

in the ML application. Additionally, it is important to adjust the model’s complexity

by tuning its parameters to observe how changes in complexity impact the applica-

tion’s performance.

• Configure and optimize the ML pipeline for each hardware backend. This may in-

volve selecting the optimal batch size, tuning the hyperparameters of the model, and

optimizing the code for the target hardware. To ensure the robustness and gener-

alizeability of the evaluation results, use multiple software tools for building and

evaluating the ML pipeline, such as Scikit-learn, Tensorflow, or PyTorch.
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• Use different hardware backends such as multi-core CPUs, GPUs, and ASIC or

FPGA accelerators to run inference. When using accelerators, consider the offload-

ing overhead, i.e., accelerator setup and the data transfer time. Additionally, study the

different accelerator integration options, such as tightly coupled, loosely coherent/non-

coherent coupled, and decoupled, to determine the best integration method for the

application. To carry out this step, we need to utilize a scalable evaluation/simula-

tion infrastructure that can accurately account for the interaction of the accelerators

with the rest of the system.

• Analyze the performance data and compare the results across different hardware

backends and software tools. Identify any bottlenecks or limitations specific to a

particular backend and evaluate the trade-offs between performance and other fac-

tors such as cost, energy efficiency, and scalability.

• Draw conclusions and make recommendations based on the evaluation results. Use

the insights gained from the evaluation to guide the selection of the optimal hard-

ware backend for your application and to inform future improvements to the ML

application pipeline.

Today’s DBMS applications integrate machine learning algorithms for the execution of

advanced analytical tasks such as predictive modeling, data mining, and natural language

processing, directly within the database environment to improve the speed, accuracy, and

efficiency of their data analysis. Figure 1·1 shows the high-level architecture of the SQL

Server DBMS analytics and ML inference pipeline (Microsoft Corp., 2023). Users submit

analytic queries that invoke custom Python scripts that run ML inference, to SQL Server.

SQL Server launches an external Python process to execute the script that involves pre-

processing, transferring the inputs, running inference, post-processing, and returning re-

sults. Below we elaborate on DBMS ML inference pipeline stages.
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addition, when using Python within SQL Server DBMS, we need to transfer the data

to an external process as input parameters. These input parameters can be of various

data types such as integer, float, string, or Pandas DataFrame. However, we need to

serialize the data into a format (e.g., binary format) that can be transferred between

SQL Server DBMS and Python process. The input parameters are then deserialized

and used within the Python script to perform the desired ML tasks. The results of the

code execution are returned back to the DBMS environment for further processing.

These data serialization/deserialization processes and data transfer add overheads to

end-to-end performance.

• Model Scoring/Inference: The inference can happen either on the CPU (see ➊ in

Figure 1·1), or on a PCIe-attached hardware accelerator (see ➋ in Figure 1·1). If the

inference task is offloaded to hardware accelerators, we need to explicitly transfer

the input data to the accelerator main memory and transfer the inference results back

to the host main memory through a PCI-e link or other similar interfaces. This data

transfer process can introduce overhead that depends on several factors, including

the size and complexity of the data being transferred and PCI-e bandwidth.

We evaluate the performance of each stage in the SQL Server DBMS ML pipeline

by measuring it for tree ensemble models and in particular, on the random forest model,

which is one of the top models being used in a wide range of classification and regression

applications (Psallidas et al., 2019). However, users can score any ML model with SQL

Server by invoking custom Python scripts. We use two datasets with different numbers

of data features: 1) IRIS (Dua, Dheeru and Graff, Casey, 2017), which is a multi-class

classification dataset with 4 features, 3 classes, and 150 data samples; and 2) HIGGS (Baldi

et al., 2014), which is a binary classification dataset with 28 features and 11M data samples.

We consider FPGA-based and GPU-based acceleration of the random forest inference.

For CPU experiments, we use up to 52 threads on a dual-socket Intel Xeon Platinum 8171M
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Figure 1·2: Speedups of the best-performing hardware over CPU.

processor with 26 cores (52 threads) per socket running at 2.6 GHz. For FPGA experi-

ments, we use Intel Stratix 10 GX 2800 on this machine. For GPU experiments, we use

NVIDIA Tesla P100 available in an Azure NC6s_v2-series Virtual Machine. We use both

Scikit-learn (Pedregosa et al., 2011) and ONNX (Bai et al., 2019) models for CPU exper-

iments. For GPU experiments, we use NVIDIA RAPIDS (NVIDIA, 2018) and Microsoft

Hummingbird (Nakandalam et al., 2020) libraries. For FPGA experiments, we implement a

random forest inference engine and map it to the FPGA implementation, extract the ONNX

model information and transfer it to the tree memories on the FPGA through PCIe 3.0 x16.

The FPGA design is clocked at 250 MHz and is programmed only once for all the experi-

ments with different tree ensemble structures.

Figure 1·2 shows the ‘shmoo’ plot for which backend among CPU, GPU, and FPGA

gives us the best ML inference performance for a given combination of the number of trees

in the random forest model (X-axis) and the number of records (Y-axis) for both IRIS and

HIGGS dataset. The plot indicates that offloading ML inference to an accelerator is not

always the best choice. For a simple model (small number of trees) or a small number

of records (i.e., the first 3 rows in the tables) we don’t gain any performance benefit from

offloading the inference to an accelerator because the offloading overhead is the dominant

time component in the overall inference time. A wrong decision to offload to an accelerator
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in this case can increase the latency by 10×. However, as the model complexity and/or

the number of records increases, we can gain >69× speedup in the inference time by

offloading to an accelerator. Another interesting point to note in Figure 1·2 is that given

that HIGGS has more data features than IRIS dataset and it generates larger models (which

are more compute-intensive to score), even with a smaller number of records (1K in HIGGS

compared to 10K in IRIS), offloading to an accelerator is still beneficial.

Figure 1·3 shows the overall inference latency (in ms) on CPU, GPU, and FPGA for

different numbers of records and model complexities for the IRIS and the HIGGS datasets.

As we can see, for different models, with an increase in the number of records, the inference

latency increases, and it affects the choice of the backend hardware we should use for the

inference.

Figures 1·3 (a) and 1·3 (b) indicate that with a simple model (only 1 tree with a different

number of levels) if we have less than 10K records, CPU has the lowest latency and is the

most suitable hardware for inference. However, as the number of records increases over

10K, performing inference on FPGA or GPU is faster compared to CPU. The reason is that,

for a large number of records, the inference time is the dominant element in the overall

inference time, which can be greatly accelerated by FPGA and GPU due to their massively

parallel computing capabilities and deep computation pipelines.

In Figures 1·3 (c) and 1·3 (d), the model complexity is increased by increasing the

number of trees in the forest (from 1 tree to 128 trees). As we can see, even for a complex

model, for less than 1K records, the CPU is still the best hardware backend to run inference

for the small number of records.

We see the same trend in the latency graphs for both IRIS (Figure 1·3 (a)-(d)) and

HIGGS (Figure 1·3 (e)-(h)) datasets. However, in the case of the IRIS dataset, the crossover

point is higher for both models with 1 and 128 trees (10K, 1K) compared to HIGGS (5K,

500). The reason is that a dataset with a low number of features such as IRIS generates sim-
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Figure 1·4 illustrates the end-to-end time breakdown for the T-SQL query that involves

ML model inference. It can be observed that for a small model, i.e., a small tree count and

a small number of records, the scoring/inference time is insignificant, and the dominant

elements are Python invocation and model pre-processing times. However, as the number

of records and model complexities increases, Python invocation, model pre-processing,

and data transfer (between SQL Server and Python process) contribute only up to 25% of

the execution time, with inference time becoming the dominant component. Offloading the

inference step to an accelerator can significantly reduce the inference time, making the data

transfer time the dominant time component in the overall query time.

When running inference with 128 trees and 1 million input data from the HIGGS

dataset, hardware accelerators yield a 69.7× performance improvement (see Figure 1·2).

However, due to these application overheads, this only translates into a 2.6× end-to-end

query time improvement (see Figure 1·4). Alternatively, tighter integration of the ML in-

ference functionality within the DBMS would reduce many of these application overheads,

but an external Python invocation could allow for more customizations, including in the

choice of the ML inference engine and accelerator. Therefore, application developers and

system designers should prioritize a balanced approach to the entire system and end-to-end

application pipeline, rather than focusing solely on optimizing ML inference in isolation

when optimizing the system for the end-use performance experience.

1.1.2 Tax for HE Computing

HE allows data to be processed while it is still in an encrypted state without compro-

mising its privacy. Over time, numerous HE schemes have been developed, including

Brakerski-Gentry-Vaikuntanathan (BGV) (Gentry et al., 2012), Brakerski/Fan-Vercauteren

(BFV) (Brakerski, 2012), and Cheon-Kim-Kim-Song (CKKS) (Cheon et al., 2017). Among

these, the CKKS scheme stands out as it supports operations on real numbers, which are es-

sential for various applications such as ML, scientific research, and graph analysis. There-
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fore, we use the CKKS scheme to explore and understand any tax associated with HE

computing

Typically, in HE the client-side device encrypts the data and sends it to the cloud for

processing. The cloud servers operate on the encrypted data, generate a result that is in

encrypted form, and then send the result back to the client-side device. The client-side

device then decrypts the data. To encrypt the data, the client-side device must perform

encoding, error sampling, and encryption, which together form the “message-to-ciphertext”

conversion operation. Similarly, to decrypt the data received from the cloud, the client-side

device must perform decryption and decoding, which together form the “ciphertext-to-

message” conversion operation. In this section, we elaborate on the message-to-ciphertext

and ciphertext-to-message conversion operations.

• Encoding and Decoding: The CKKS scheme works with a native plaintext data type

that is a vector of length N/2, where each vector element is chosen from the field of

complex numbers C. The encoding operation takes this N/2-dimensional vector as

input and returns polynomial m(X) with integer coefficients. Encoding involves sev-

eral operations, including scaling, rounding, and polynomial interpolation. First, the

input message is scaled by a factor determined by the encryption parameters. This

is done to ensure that the message can be represented as an integer polynomial with

coefficients that fall within the range that can be encrypted. Next, the scaled message

is rounded to the nearest integer. This step is necessary because the CKKS scheme

can only encrypt integer polynomials. After that, the rounded message is used to

generate a polynomial. Finally, the polynomial is interpolated using Inverse Fast

Fourier Transform (IFFT) to obtain a set of complex numbers that can be encrypted.

Once the message has been encoded into a polynomial, it can be encrypted using the

CKKS encryption algorithm.

The decoding step is used to recover the plaintext message from the decryption out-
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put, which is a polynomial with integer coefficients. First, the integer polynomial

is scaled back to the original range of the plaintext message using the scaling factor

that was determined during the encoding process. During the encoding process, the

message was rounded to the nearest integer, which introduces a rounding error. This

error is removed by subtracting a small multiple of the ciphertext modulus from each

coefficient of the scaled polynomial. The scaled polynomial is then interpolated us-

ing the Fast Fourier Transform (FFT) to obtain a set of complex numbers. Finally, the

real part of the complex numbers is extracted to obtain the original plaintext message.

• Pseudo Random Number Generator (PRNG) and Error Sampling: In HE, ran-

dom polynomials are used to add noise to the encrypted data and prevent attackers

from learning information about the plaintext Generating high-quality error samples

is a crucial factor in maintaining the necessary security level during HE operations.

However, creating these error samples is a bottleneck in client-side operations. The

error sampling process involves two main steps: first, generating pseudo-random

numbers using a true random seed, and second, using these generated numbers to

produce uniform and binomially distributed error samples.

• Encryption and Decryption: The polynomial m(X), obtained from the encoding

step, can be encrypted under the public key pk, generating a ciphertext ct by com-

puting:

c0 = µ ·pk0 +m+ e0, (1.1)

c1 = µ ·pk1 + e1 (1.2)

Here, the µ polynomial is sampled from a uniform distribution, and the error poly-

nomials e0 and e1 are sampled using a binomial distribution. The coefficients in the

ciphertext polynomials (c0,c1) are elements of ZQ, where Z is a set of integers and Q
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defines the order of finite field. Here modulus Q is typically on the order of thousands

of bits to account for the noise growth in HE computation. The CKKS scheme sup-

ports the use of the Residue Number System (RNS) (also known as the Chinese Re-

mainder Theorem (CRT) representation) to compute such large operands efficiently.

Using the RNS approach, each coefficient is represented modulo Q = ∏
ℓ
i=1 qi, where

each qi is a prime number. We can represent x ∈ ZQ as a length-ℓ vector of scalars

[x]B = (x1,x2, . . . ,xℓ), where xi ≡ x (mod qi). We refer to each xi as a limb of x.

The ciphertext is decrypted to obtain the original message back using the following

equations:

m= c0 + c1 · s mod qℓ (1.3)

Here s is the secret key. Using RNS, both encryption and decryption can be per-

formed w.r.t. a smaller modulus qi instead of a large modulus Q.

During encryption, all inputs are transformed into the NTT domain, where they can

be manipulated more efficiently. Polynomial multiplication is a critical step in the

encryption operation, and a naïve approach to perform it has a computational com-

plexity of O(N2) multiplications for a polynomial of degree N, which can be com-

putationally expensive. However, NTT can be used to reduce this complexity. NTT

is a variant of the FFT that operates on elements of finite fields, rather than complex

numbers. During NTT, coefficients of the input polynomial are multiplied with the

power of an N-th primitive root of unity and combined with each other in a butterfly

fashion. This process is repeated recursively, dividing the polynomial into smaller

and smaller subproblems until the entire polynomial is transformed. In the NTT do-

main, polynomial multiplication can be performed using point-wise multiplication of

the transformed data, which has a computational complexity of O(N logN), which is

much more efficient than the naïve approach.
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Similarly, we need to perform an inverse NTT (iNTT) operation in the decryption

operation to transform the ciphertext from the NTT domain back into the plaintext

domain. Both NTT and iNTT operations add high computational complexity to the

encryption and decryption operations, respectively.

We use an example of video encryption to further illustrate message-to-ciphertext and

ciphertext-to-message conversion steps described above. A video is made up of multiple

frames, where a frame size is defined by fw × fh ×bpp. Here, bpp defines the bits per pixel

and assumes a value of 8 for a grayscale pixel. For a given N, logq, and limbs value, we

can encode N/2× logq bits in a single ciphertext, which implies that a single frame will

be encoded and encrypted within multiple ciphertexts (cts) and will have a total size of

N × logq× limbs×#cts bits. For a Quarter Quarter VGA (QQVGA), the frame resolution

is 120× 160 pixels. If this frame is in grayscale, the frame size will be 120× 160× 8 =

153,600 bits = 18.75 KB. With N = 4096 and logq = 30 bits, we can encode N/2× logq =

2048× 30 = 61,440 bits in a single ciphertext, which implies that a single frame will be

encoded and encrypted within 3 ciphertexts and will have a total size of 270 KB.

Evaluation Methodology

We evaluate the performance of message-to-ciphertext and ciphertext-to-message conver-

sions operations for HE video application using a methodology based on the one described

in section 1.1.1, with the following modifications:

• We study the processing stages of the HE client-side operations, including error

sampling, encoding/decoding, and encryption/decryption to quantify their individ-

ual contributions to the overall application time. This understanding will help in

better designing and optimizing the overall pipeline.

• We evaluate the application performance metric for input with different features such

as different video frame resolutions (e.g., QVGA and QQVGA). This allows us to
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observe the impact of input data complexity on the application’s performance.

• We select a suitable HE scheme (such as CKKS) that aligns with our problem domain

and available dataset.

• We use the SEAL-Embedded software library (Natarajan and Dai, 2021) instead of

the other available options such as SEAL (Chen et al., 2017), PALISADE (Kurt

Rohloff, 2018), and HElib (Halevi and Shoup, 2020) because it is optimized for

resource-constrained client devices. We modify SEAL-Embedded to call hardware

accelerators whenever needed.

• We use our accelerator integration framework (Chapter 2) to integrate an NTT ac-

celerator (Azad et al., 2022) into the BlackParrot SoC and accurately account for the

interaction of the accelerator with the rest of the system and measure the offload-

ing overhead. We implement both baseline and accelerator (NTT_Accel) systems in

SystemVerilog and simulate them using VCS, a cycle-accurate simulator, to collect

the performance results.

• We draw conclusions and make recommendations based on the evaluation results.

We use the insights gained from the evaluation to identify the bottlenecks in the HE

client-side operations pipeline, guide the selection of the optimal hardware backend,

and inform future improvements for the application.

We use BlackParrot RISC-V core (with 32 KB each of Icache and Dcache and running

at 1 GHz) and also an NTT hardware accelerator (Azad et al., 2022) (NTT_Accel) as our

hardware backends. The NTT operation is parallelizable, as it involves multiple butterfly

operations that can be computed simultaneously. Hence, the NTT accelerator uses parallel

butterfly units (BFUs) to further improve its performance. We study the impact of faster

NTT operation on the application performance metrics.
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Figure 1·5 (a) and (b) show the latency breakdown of the message-to-ciphertext and

ciphertext-to-message conversion for different scheme parameters (N, logQ) using the

baseline system (software execution). For all the parameter sets that we evaluated, the

encryption and decryption operations incur the highest latency because they perform mul-

tiple polynomial multiplications. The latency of the encryption and decryption operations

is dominated by NTT (67.98%-72.45%) and iNTT (72.15%-83.29%) operations. Error

sampling is also a bottleneck operation, accounting for up to 10% of the total message-to-

ciphertext conversion latency.

Due to the computationally intensive nature of NTT, hardware acceleration is often used

to speed up the computation. Several research efforts have focused on designing efficient

hardware accelerators for NTT operation, including FPGA-based implementations, ASIC

designs, and custom-built processors (Nannipieri et al., 2021), (Banerjee et al., 2019), (Li

and Liu, 2021), (Chen et al., 2022), (Li and Liu, 2021), (Ye et al., 2022), (Paludo and

Sousa, 2022), (Ye et al., 2022), (Su et al., 2022), (Ye et al., 2022), (Su et al., 2022),

(Duong-Ngoc et al., 2023).

Figure 1·6 (a), (b), and (c) show the NTT per second, message-to-ciphertext (M-t-C)

conversion operation per second, and the video encryption throughput, i.e., frame per sec-

ond (FPS) metrics for the baseline system and NTT_Accel with different numbers of BFUs

for a range of scheme parameters. As we can see, using hardware acceleration for NTT

operation (NTT_Accel) can lead to 381× improvement in NTT per second for different

scheme parameters. However, when we move from the baseline system to NTT_Accel,

there is only up to 4× improvement in the message-to-ciphertext conversions per second.

In the case of video encryption, with the baseline system (software execution), we can-

not encrypt even one frame per second. This is due to the slow and inefficient nature of

the software-based implementation of modular arithmetic in HE message-to-ciphertext and

ciphertext-to-message conversion process, which makes it unsuitable for real-time applica-
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tions. Using NTT_Accel with 1BFU configuration will only improve FPS by 3 frames per

second for smaller scheme parameters and will provide no improvement for larger scheme

parameters (N >= 212).

In addition, as we increase the parallelism level (number of BFUs) in NTT_Accel, we

observe a linear increase in NTT throughput. However, there is no corresponding increase

in the message-to-ciphertext conversion throughput and FPS metric. This is because the

error sampling and non-NTT operations in the encryption process account for up to 10%

and 21.2% of the end-to-end latency, respectively, making them the new bottlenecks. As a

result, further NTT acceleration does not enhance the end-to-end performance, resulting in

low message-to-ciphertext conversion per second and FPS metrics. One could use a more

powerful processor to address all bottlenecks, but then the power consumption would be

higher which would not be sustainable in a typical edge device.

Accelerating error sampling and non-(i)NTT operations in the encryption and decryp-

tion pipeline is needed to improve the end-to-end message-to-ciphertext and ciphertext-to-

message conversion latency, which results in improved application performance metrics.

Therefore, to measure the end-user performance experience in a realistic way, it is crucial

to evaluate end-to-end application performance metrics instead of evaluating the perfor-

mance of just one kernel, such as NTT.

It is worth noting that we conducted our experiments in bare metal mode and so the

direct memory access (DMA) and data transfer overhead is minimal. Bare metal refers to

running code directly on the hardware without the intervention of an operating system or

other software layers. In this scenario, direct access to hardware resources, including the

DMA capabilities, typically results in lower overhead and higher performance compared to

running the same code on an operating system, which adds additional layers of abstraction

and control. If we use an operating system, the data transfer overhead for NTT_Accel sys-

tem will be significant as we need a round-trip through the kernel device driver to transfer
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the inputs (µ, pk0, m, e0, pk1, e1) and return their results (inputs in NTT domain). There-

fore, this overhead degrades the end-to-end performance as we discussed in Section 1.1.1,

and needs to be taken into account when optimizing the performance for the end-user ex-

perience.

1.2 Thesis Contribution

End-to-end evaluation of hardware accelerator-based systems is essential for ensuring that

these systems are correctly optimized for their intended applications and that the system as

a whole is delivering the desired level of performance (end-user performance experience).

End-to-end evaluation typically involves several stages, including benchmarking, profiling,

and tuning. Benchmarking is used to evaluate the performance of the system under different

workloads and scenarios, while profiling is used to identify potential bottlenecks or areas

for optimization. Tuning involves adjusting the hardware and software configurations to

optimize for performance and energy efficiency. This evaluation should be an ongoing

process, as new workloads and hardware configurations emerge, and as the requirements

of applications and users continue to evolve. To this end, we present the thesis statement

as follows:

It is essential to evaluate the system as a whole and account for all the accelerator taxes

when designing an accelerator-based system.

The main contributions of this Ph.D. research are discussed in the following sections.

1.2.1 BlackParrot: An agile open-source RISC-V multicore for accelerator SoCs

One of the challenges of building and evaluating accelerator-based systems is the lack of a

scalable evaluation/simulation infrastructure that can accurately account for the interaction

of the accelerators with the rest of the system. This can be attributed to the lack of open-

source software and hardware platforms that can be used to build these systems. While
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there are some open-source tools available for building and evaluating these systems, they

are often limited in their capabilities.

Software simulators such as gem5-Aladdin (Shao et al., 2016), gem5-gpu (Power et al.,

2014), PARADE (Cong et al., 2015), Scale-Sim (Samajdar et al., 2018), and SMAUG (Xi

et al., 2020) are useful tools for evaluating hardware designs and software systems, but

they have limitations when it comes to performance and accuracy. Moreover, they are

much slower than native execution and both their performance and accuracy degrade con-

siderably as the system size scales up. Similarly, there are open-source hardware-level

platforms like Rocket Chip Generator (Asanović, Krste., 2016), HERO (Kurth et al., 2017),

OpenPiton (Balkind et al., 2020), ESP (Giri et al., 2018), and Chipyard (Amid et al., 2020).

However, these platforms either lack scalability, lack support for different accelerator types,

lack a generalized accelerator interface, lack silicon validation, or a lack of user-friendly

development language.

We develop BlackParrot1, an agile open-source Linux-capable RISC-V multi-core pro-

cessor for accelerator SoCs, which is optimal in terms of power, performance, area, and

complexity. BlackParrot implements the RISC-V “RV64G” architecture and supports three

privilege levels-machine, supervisor, and user-as well as SV39 virtual memory; these ex-

tensions are sufficient to efficiently run full-featured operating systems such as Linux.

BlackParrot is designed as a scalable, heterogeneously tiled multi-core micro-architecture.

As part of the BlackParrot project, we develop a robust and scalable software-hardware

framework for integrating accelerators in heterogeneous systems. Each accelerator tile fea-

tures specialized hardware for executing coarse-grained tasks in a loosely-coupled manner.

BlackParrot supports both streaming and coherent loosely-coupled accelerators. To achieve

modularity, we design a socket for each accelerator tile that decouples the accelerator de-

sign from the rest of the SoC. This socket provides components that handle various func-

tions, such as memory-mapped registers, interrupt requests, DMA, and hardware-coherent

1This work was in done in collaboration with the University of Washington.
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transactions. We design a new tile socket for third-party accelerator integration in a mod-

ular way such that at design time the SoC architect may select a different adapter for each

specific accelerator tile. The concept of socket plays a key role in supporting the flexibility

of the BlackParrot methodology because it accommodates accelerators designed using a

variety of design flows as a third-party IP block.

Accelerators invocation utilizes a software stack and an application programming in-

terface (API) to allocate shared data and configure accelerators in bare metal or on top of

Linux. The lightweight API can be easily targeted by a user program or by a compiler,

and it invokes the accelerators through Linux device drivers that are automatically gen-

erated. The BlackParrot accelerator framework also includes the necessary synthesis and

simulation scripts for testing the accelerator implementation.

Accelerator developers can use this ecosystem to evaluate different accelerator integra-

tion mechanisms as well as accelerator designs for the targeted application. This helps to

measure and minimize the end-to-end latency for applications, with different invocation

and completion semantics, parallelism granularity, synchronization types, and memory ac-

cess patterns.

In the ParrotLine case study, we integrate the Microsoft Zipline accelerator with the

BlackParrot Core to validate our framework. Zipline is a compression engine that sup-

ports lz77 compression formats such as xp10, gzip, and zlib. Zipline contains 2 main

engines, Compression and Encryption IP, and Decompression and Decryption IP. We in-

tegrate Zipline as a streaming accelerator tile as it requires a large amount of input/output

data transfers. We observed up to 22× speedup for different input file sizes. In addition,

our end-to-end performance analysis shows that speedup decreases for larger file sizes.

This decrease in speedup is attributed to the offloading overhead becoming a significant

component in the overall latency.
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1.2.2 RISE: RISC-V SoC for HE Client-Side Operations Acceleration

There is plenty of research being done on accelerating server-side HE operations. Unfor-

tunately, little attention has been paid to client-side operations, even though they can be

non-trivial. On the client side, there have been some research works to accelerate the NTT

kernel (Nannipieri et al., 2021), (Banerjee et al., 2019), (Li and Liu, 2021), (Chen et al.,

2022), (Li and Liu, 2021), (Ye et al., 2022), (Paludo and Sousa, 2022), (Ye et al., 2022),

(Su et al., 2022), (Ye et al., 2022), (Su et al., 2022), (Duong-Ngoc et al., 2023). However,

these efforts often fail to optimize the end-to-end message-to-ciphertext and ciphertext-

to-message conversions, resulting in suboptimal application performance metrics (refer to

Section 1.1.2).

To address this gap, we profiled client-side HE operations for a range of scheme pa-

rameters (N and log Q). We observed that during message-to-ciphertext and ciphertext-to-

message conversion operations, error sampling, encryption, and decryption operations are

the performance bottlenecks. Additionally, we found that the NTT operation presents a sig-

nificant bottleneck in the encryption and decryption process, requiring a large number of

modular multiplications and additions. Based on the profiling results, we architect RISE,

an SoC that includes a RISC-V BlackParrot core and an area and energy-efficient hard-

ware accelerator (integrated as a streaming accelerator) to efficiently perform end-to-end

HE client-side operations.

RISE speeds up the error sampling process by combining a lightweight pseudo-random

number generator with fast sampling techniques. To accelerate encryption and decryp-

tion operations, RISE uses scalable, data-level parallelism for the NTT operation. This

parallelism-based approach enables RISE to meet the diverse needs of different applica-

tions and platforms. Furthermore, the non-(i)NTT portion of the encryption and decryption

process is accelerated in the hardware, resulting in improved overall performance. We use

several optimizations in RISE such as a shared data path for the en/decryption operations,
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on-the-fly twiddle factor computation, memory reuse, and data reorder techniques to meet

the performance requirements of resource-constrained client devices.

We conduct a thorough evaluation of RISE using a complete RTL design containing

a BlackParrot RISC-V processor interfaced with our accelerator. We analyze RISE’s per-

formance, area, and energy efficiency by executing end-to-end message-to-ciphertext and

ciphertext-to-message conversion operations. Our analysis reveals that across a range of

parameters, RISE reduces the message-to-ciphertext and ciphertext-to-message conversion

latency by 28.79×-104.39× and 7.95×-66.08×, respectively, as compared to the software

execution. RISE also achieves much lower energy-delay product (EDP) and area-delay

product (ADP) than software execution. Specifically, RISE achieves 471.24×-6191.19×

lower EDP when performing message-to-ciphertext conversion and 36×-2481.44× lower

EDP when performing ciphertext-to-message conversion, as compared to the software

execution. Similarly, RISE has 24.06×-55.36× lower ADP when performing message-

to-ciphertext conversion and 6.65×-35.05× lower ADP when performing ciphertext-to-

message conversion, as compared to the software execution.

We also conduct a case study using a video application to evaluate RISE and determine

how it improves the video application performance (end user’s performance experience).

When using software execution for message-to-ciphertext conversion, we are unable to

encrypt even one frame per second. Accelerating NTT in hardware while running the re-

maining operations on software did not improve the frame rate for large scheme parameters.

However, by optimizing and running the entire pipeline in hardware, RISE is able to en-

crypt up to 17 QVGA frames and 64 QQVGA frames per second for the smallest (N = 210)

scheme parameters, and up to 10 QVGA frames and 27 QQVGA frames for the largest

(N = 214) scheme parameters. This frame rate is typically sufficient for most surveillance

cameras and mobile platforms.
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1.3 Organization

The remainder of this thesis is organized as follows. In Chapter 2, we review the back-

ground on RISC-V, state-of-the-art on heterogeneous system simulators and hardware plat-

forms, and present our work on the design and implementation of BlackParrot, an agile

open-source RISC-V multicore for accelerator SoCs. In Chapter 3, we review the state-of-

the-art HE accelerators and introduce RISE, our RISC-V SoC for HE client-side operations

acceleration. In Chapter 4, we discuss the future directions and conclude this thesis.
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Chapter 2

BlackParrot: An agile open-source RISC-V
multicore for accelerator SoCs

In recent years, there has been a growing trend toward the use of accelerator-based systems

with multiple accelerators. These systems are designed to perform complex computations

and accelerate a wide range of applications. The emergence of these systems has led to

new challenges in system design, such as the need for a scalable evaluation/simulation

infrastructure that can accurately account for the interaction between multiple accelerators

and the rest of the system including the CPU, memory, and I/O subsystems. To address the

lack of a widely adopted and scalable infrastructure for building and evaluating accelerator-

based systems, this chapter discusses our design of BlackParrot, an open-source hardware

platform for designing such systems (Azad et al., 2019) (Petrisko et al., 2020).1

2.1 RISC-V Instruction Set Architecture

RISC-V (Waterman et al., 2014) is an open-source instruction set architecture (ISA) that

has been widely used in recent years by both academia and industry for building processors

and the surrounding software environment The RISC-V ISA was originally developed at the

University of California, Berkeley in 2010, with the goal of creating a simple and modular

ISA that could be easily extended to meet the needs of different applications and markets.

Unlike proprietary ISAs, which are typically licensed and controlled by a single company,

RISC-V is an open standard that anyone can use, modify, and distribute without paying.

1This work was done in collaboration with the University of Washington.
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One of the key advantages of RISC-V as an open-source ISA is the flexibility and

adaptability it provides. With a modular design, RISC-V allows for the creation of custom

instruction sets that can be tailored to specific workloads and applications, resulting in im-

proved performance and energy efficiency. Additionally, the open-source nature of RISC-V

enables collaboration and innovation across the industry, as developers and companies can

freely share and build upon each other’s work. As a result, RISC-V has gained signifi-

cant traction in a variety of markets, including edge computing, IoT, and high-performance

computing, among others.

RISC-V supports three different address spaces, namely RV32, RV64, and RV128, cor-

responding to 32-bit, 64-bit, and 128-bit architectures, respectively. In this chapter, our

focus is on the commonly used RV64 processors. The RISC-V ISA defines a base integer

instruction set, such as RV64I, as well as several standard extensions. For 64-bit address

space, the standard general-purpose RISC-V ISA is RV64G, where "G" represents the base

integer prefix, and the names of the other general extensions, i.e., RV64IMAFD. The "M"

extension is for integer multiplication and division, "A" is for atomic instructions, and "F"

and "D" are for single-precision and double-precision floating-point, respectively. Addi-

tionally, the RISC-V ISA provides a standard extension for compressed instructions (“C”).

2.2 Related Work

In this section, we provide an overview of the state-of-the-art on heterogeneous system

simulators and hardware platforms, along with their limitations.

2.2.1 Open-Source Software-Level simulator

Software simulators such as gem5-Aladdin (Shao et al., 2016), gem5-gpu (Power et al.,

2014), PARADE (Cong et al., 2015), Scale-Sim (Samajdar et al., 2018), and SMAUG (Xi

et al., 2020) are widely used in the field of computer architecture to evaluate and com-
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pare different hardware designs and software systems. These simulators provide a way to

test a design’s performance and functionality without requiring the actual hardware to be

available. However, despite their usefulness, software simulators have limitations when it

comes to accuracy and performance.

One major limitation of software simulators is their slower execution speed compared

to native execution. Software simulators have to simulate the behavior of hardware, which

requires significant computation and memory resources. As a result, software simulations

can be orders of magnitude slower than running the same code natively on actual hardware.

This slower execution speed can be a significant drawback when running simulations that

require a lot of computational resources or that need to run for long periods.

Another limitation of software simulators is their accuracy. While software simulators

try to replicate the behavior of hardware as closely as possible, they may not always ac-

curately model all aspects of the hardware. As a result, the results obtained from software

simulations may not be entirely accurate, especially for complex designs. This lack of ac-

curacy can be a significant issue when evaluating new designs or when trying to optimize

existing ones.

Both the accuracy and performance of software simulators degrade considerably as the

system size scales up. As the size of the system being simulated increases, the amount of

computation required also increases. This increased computational demand can cause sig-

nificant performance degradation and inaccuracies, making software simulators less useful

for large-scale simulations.

2.2.2 Open-Source Hardware-Level Platforms

There are open-source hardware-level platforms like Rocket Chip Generator (Asanović,

Krste., 2016), HERO (Kurth et al., 2017), OpenPiton (Balkind et al., 2020), ESP (Giri

et al., 2018), and Chipyard (Amid et al., 2020). However, these platforms lack scalability,

lack support for different accelerator types, lack a generalized accelerator interface, lack
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silicon validation, or a lack of user-friendly development language.

Rocket Chip Generator (Asanović, Krste., 2016) is an open-source SoC that is devel-

oped using Chisel RTL language. In Rocket Chip, multiple cores are connected to a coher-

ent TileLink bus. Each core in Rocket Chip has a RoCC (Rocket Chip Coprocessor) inter-

face, which can be used to tightly integrate an accelerator with the core. Loosely-coupled

accelerators can be connected to the TileLink bus. However, this bus-based architecture

limits the SoC scalability. Moreover, the Rocket Chip Generator uses Chisel, which isn’t

an industry-standard language. This has limited the adoption of the Rocket Chip Generator

by both academia and industry.

HERO (Kurth et al., 2017) is an FPGA-based research platform that combines a PULP-

based open-source parallel manycore accelerator with an ARM Cortex-A multicore pro-

cessor. PULP platform only supports streaming accelerator integration, and its focus is

mainly on ultra-low power systems rather than general-purpose compute systems. Open-

Piton (Balkind et al., 2020) is the first open-source Symmetric Multiprocessing (SMP)

Linux-booting RISC-V multicore processor. It supports the research of heterogeneous ISAs

and provides a coherence protocol that extends across multiple chips. However, OpenPiton

does not have a generalized accelerator interface, and the connection they expose is specific

to a processor model.

All three platforms mentioned above are built with a processor-centric perspective.

BlackParrot, on the other hand, is designed with a system-centric perspective. It has a scal-

able tile-based architecture with two different tile types (fully-coherent and non-coherent)

for accelerator integration. ESP (Giri et al., 2018) is also an open-source RISC-V based

research platform for heterogeneous SoC design. It has a tile-based architecture with a

dedicated tile type for accelerator integration. Unlike BlackParrot, ESP only has an FPGA

prototype and is not silicon validated.
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tion of local cache engines (LCEs), each of which controls an L1 cache, connecting over

an interconnection network to the programmable cache coherence engines (CCEs), which

collectively maintain the address-sharded directory state.

The micro-architectural tiles of BlackParrot are classified into four categories as shown

in Figure 2·1, which we will elaborate on below.

2.3.1 Core Tile

Each BlackParrot Core Tile includes a complete BlackParrot processor. It consists of one or

multiple coherent caches, along with a directory shard and an L2 slice. A standard system

incorporates several Core Tiles. Figure 2·2 shows the BlackParrot core micro-architecture.

The front-end of the processor presents a stream of instructions to the back end, which

follows an in-order but speculative approach. To avoid any delays caused by long-latency

back-end operations like servicing cache misses, the issue queue decouples the front-end

fetch from the back-end execution, enabling speculative fetching. During the instruction

fetch, exceptions can occur, but these are purely speculative and sent to the back-end to be

serviced along with other instructions. Apart from the PC, instruction, and exception, the

front-end also transmits metadata linked to the branch prediction that led to the specific PC

fetch.

The back-end of the processor is responsible for executing instructions, managing ex-

ceptions, and ensuring the architectural state of the processor is maintained. Messages are

transmitted from the back-end to the front-end to rectify any mispredictions and update

the shadow state in the front-end. These messages can include branch resolution, interrupt

redirection, iTLB manipulation, and privilege mode changes. Once a branch is resolved,

the associated branch metadata is transmitted back to the front-end. The back-end does not

inspect this metadata, and the specific branch prediction scheme employed by the front end

is entirely unknown to the back end.
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2.3.2 L2 Extension Tile

To expand the on-chip L2 memory in a BlackParrot system, an L2 extension tile can be

employed as a straightforward scale-out solution. Each L2 extension is equipped with a

directory and a non-inclusive, non-exclusive L2 slice. The distribution of L2 slices enables

a system designer to adjust the compute-to-cache ratio of a BlackParrot system effortlessly

without disturbing the critical paths in the cores or the NoCs.

2.3.3 Accelerator Tiles

Integrating accelerators into existing system architectures is a labor-intensive process, and

it introduces additional challenges related to data management. Tightly-coupled acceler-

ators are specialized hardware functional units, one or more of which are tightly coupled

into a processor core. They are invasive to the core architecture and typically rely on the

processor pipeline to perform memory accesses. The accelerator shares the register file,

MMU, and L1 data cache with the processor core.

Loosely-coupled (coherent and non-coherent) accelerators, on the other hand, are sep-

arated from the processor pipeline and can be attached at different levels of the memory

system hierarchy. In decoupled integration, the processor and accelerator have their own

memory subsystem with independent address spaces. A dedicated I/O interconnect, such

as PCIe, which is a low-bandwidth and high-latency protocol, provides communication

between host memory and accelerator memory.

BlackParrot provides a scalable and robust end-to-end framework for integrating ac-

celerators. This framework simplifies the integration of both loosely-coupled coherent ac-

celerators (with data caching and hardware coherency) and streaming accelerators, as well

as the offloading of jobs from the user application. This framework offers a hardware im-

plementation in SystemVerilog for simulation and FPGA prototypes. A socket is included

in each accelerator tile, which decouples the accelerator design from the rest of the SoC.
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This socket provides components that handle various functions, such as memory-mapped

registers, interrupt requests, DMA, and hardware-coherent transactions. The design of a

new tile socket for third-party accelerator integration is modular, allowing the SoC archi-

tect to select a different adapter for each specific accelerator tile at design time. The socket

concept is crucial in supporting the flexibility of the BlackParrot methodology because it

accommodates accelerators designed using a variety of design flows as a third-party IP

block.

The BlackParrot accelerator framework allows programs to run on both bare-metal and

Linux environments. This capability is enabled through software libraries, kernel drivers,

and firmware extensions. To invoke accelerators, a software stack and an application pro-

gramming interface (API) are utilized to allocate shared data and configure accelerators

in bare metal or on top of Linux. The API is lightweight and can be easily targeted by a

user program or compiler. Accelerators are invoked through Linux device drivers that are

automatically generated. Additionally, the framework provides some M-mode extensions

to enable low-level access to accelerators’ memory-mapped registers for configuration pur-

poses.

These features enable accelerator designers and system architects to evaluate their

accelerator-related ideas using hardware implementation instead of simulation and to find

the integration strategy with low offload and synchronization overheads for their applica-

tions to improve the end-to-end application time.

Coherent Accelerator Tile

A coherent accelerator tile includes an LCE with a coherent cache backing it. A shared

memory space helps to reduce accelerator offloading overhead and improves programma-

bility. Additionally, hardware coherence simplifies the software stack by eliminating the

need for explicit software synchronization, such as cache flushes and invalidation. Accel-

erator developers can select one of the following options for the integration:



37

1. attach the accelerator directly to the provided BlackParrot data cache;

2. reuse the provided BlackParrot LCE and provide a specialized cache; or

3. provide a specialized LCE implementation that interfaces with directly with the net-

work.

Streaming Accelerator Tile

Streaming (non-coherent) accelerator tiles lack a cache memory behind their LCE link

and do not manage any physical memory. Consequently, utilizing streaming accelerators

entails costly data movement to the accelerator’s internal memories through specialized

drivers (DMA operation) and synchronization mechanisms. Streaming accelerators can be

useful in applications where data coherence is not a critical requirement, but high-speed

data processing or I/O operations are necessary Typical applications for streaming tiles

include basic I/O devices, network interface links, and GPUs.

2.4 BlackParrot: Networks-On-Chip

BlackParrot tiles are organized in a regular 2D mesh, with communication between adja-

cent tiles facilitated by a network-on-chip (NoC) interconnect. Unlike bus-based architec-

tures, BlackParrot’s NoC interconnect provides a scalable and high-bandwidth connection

between the various processing elements in the system. The NoC in BlackParrot is divided

into three classes: coherence (BedRock), DRAM, and I/O. Each class is optimized for its

specific protocol, which includes factors such as flit width, packet length, and coordinate

width. By tailoring the NoC classes to the particular requirements of each protocol, Black-

Parrot achieves an efficient and optimized physical design.
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2.4.1 BedRock Network

The BedRock network forms the cache-coherent fabric that connects all tiles in a Black-

Parrot system, acting as the central hub for all LCEs and CCEs. The protocol underlying

this network employs three logical channels: request, command, and response. To ini-

tiate a transaction, an LCE uses the request channel, specifying details such as read or

write, cached or uncached, and additional metadata for the return address. Meanwhile,

the command channel is utilized by a CCE to modify the LCE state of the system. This

includes setting tags, filling data, and completing synchronization sequences, as well as al-

lowing for transfers of cache lines between LCEs. All such transfers are carried out via the

command network. Finally, the response channel is responsible for coherence acknowl-

edgments, ensuring that requests are serialized and handled appropriately. Although the

BedRock protocol does not mandate it, the current implementation of the network employs

a wormhole-routed 2-D mesh, with one physical channel per logical channel.

2.4.2 DRAM Network

The DRAM network in BlackParrot is responsible for connecting the CCEs to devices that

are capable of handling memory requests, such as DRAM, Flash, or on-chip ROMS. As all

requests are initiated by a tile and serviced by memory devices at the bottom of the chip, the

memory network is designed to be a lightweight 0.5-D network. To optimize performance,

the DRAM network is particularly well-suited to wormhole routing, as DRAM controllers

tend to return the least significant word first. In wormhole routing, packets (data messages)

are divided into smaller segments, and each segment is sent separately from the source to

the destination through a network of interconnected nodes. At each node, a small part of

the packet, called the "header," is examined to determine the next node to which the packet

should be forwarded. This routing approach is advantageous for DRAM network because it

enables the data to begin transmitting before the entire packet has arrived, reducing latency
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and increasing throughput. By utilizing the DRAM network for memory requests, Black-

Parrot is able to efficiently handle large amounts of data while maintaining high levels of

performance.

2.4.3 I/O Network

The I/O network in BlackParrot is designed to establish a connection between the processor

and external peripherals like serial ports, PCIe controllers, I/O devices, and debugging

interfaces. This network operates as a 1-D wormhole network as messages can be initiated

both on and off the chip. he network’s 1-D wormhole design allows for efficient routing

of messages, reducing the chances of congestion and ensuring optimal performance. It is

important to note that the I/O network is only present in the I/O complex and functions

as a physical transport layer and transducer between BlackParrot protocols and standard

protocols such as AXI, WishBone, and simple bit-banging. Since the I/O network serves

as a transducer between BlackParrot protocols and standard protocols, it enables seamless

integration with external devices that use different communication protocols. This means

that BlackParrot can interface with a wide range of peripherals without requiring significant

modifications to its hardware or software architecture.

2.5 BlackParrot Software

In this section, we elaborate on BlackParrot’s software development kit (SDK), which is

a collection of tools and example benchmark suites to demonstrate how to develop the

BlackParrot SoC.

2.5.1 Baremetal and Linux Libraries

Libperch is BlackParrot’s baremetal library, designed to provide M-mode firmware code

for managing and controlling BlackParrot tiles. The library includes sample linker scripts

for supported SoC platforms, start code for running bare-metal tests, emulation codes for
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missing instructions, ecalls, and firmware routines for printing, serial input and output, and

program termination. Additionally, Libperch includes all the MMIO routines and func-

tions necessary for user programs to communicate with and control the accelerators. When

compiling a new bare-metal program for BlackParrot, users should link this library.

To facilitate program execution with POSIX I/O, BlackParrot employs PanicRoom.

PanicRoom is a library that was derived from Newlib (Johnston, Jeff and Fitzsimmons,

T, 2011), a C library designed for use in embedded systems. It includes a DRAM-based

filesystem, LittleFS (ARM, 2017), as well as a minimal C library. The primary advan-

tage of PanicRoom is that it eliminates the need for a complex host interface by providing

an operational filesystem through the implementation of only a few platform-level opera-

tions. This makes it a valuable tool for architectures that need to run programs with POSIX

I/O, as it simplifies the process of interfacing with the filesystem. The PanicRoom library

is based on open-source Newlib and open-source ARM LittleFS, providing flexibility for

customization and usage.

In the Linux environment, BlackParrot uses Buildroot (Petazzoni and Electrons, 2012)

to generate a BusyBox root filesystem and also uses OpenSBI (OpenSBI Community,

2021) as the machine-mode firmware. BlackParrot also provides a Linux kernel driver

that enables communication with the accelerator device file for configuring, reading, and

writing. Additionally, the firmware extends the supervisor binary interface (SBI) calls,

providing control over the accelerators.

2.5.2 Cosimulation Testing Framework

BlackParrot heavily relies on a system-level testbench, driven by program-level execution.

To ensure the design’s quality, a variety of testing strategies are employed, including a few

directed white-box tests, and functional regression tests like the RISCV-tests suite, BEEBS

suite, Spec, and CoreMark.

To provide a thorough and efficient means of testing, BlackParrot uses a hybrid ap-
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based lossless compression formats to achieve high compression ratios and low latency.

The exact throughput and latency will depend on the chosen technology and the integration

of Zipline into the system.

The Project Zipline has a Compression Encryption IP (CCEIP) that compresses and

encrypts frames of data while also providing validation services (by decompressing and

decrypting the frame and comparing it against CRCs). It also has a Decompression De-

cryption IP (CDDIP) that decrypts and decompresses frames of data.

A Command and its associated frame data will be transmitted to the CCEIP via an AXI

Streaming interface. The incoming data is first stored in a front-end decoupling FIFO with

a size of 12KB. To differentiate control information from data information, headers called

the type/length/value (TLV) Headers have been constructed. These headers describe the

type of information, the length of the data, and the actual data contents. This format allows

downstream blocks to manipulate and examine the TLVs while skipping over information

not intended for them. The frame data includes a series of TLV headers, and the down-

stream blocks will process them accordingly. In the end, the compressed/encrypted data is

sent to the outbound interface formatter. This formatter contains an 8KB FIFO to manage

the bursty nature of the traffic. Finally, the outbound interface formatter readies the data

for transmission to the receiver engine. The same computation flow applies to CDDIP.

Additional RTL is used to integrate Zipline into BlackParrot, as shown in Figure 2·3.

Zipline has an APB interface for configuring the accelerator and an AXI bus for memory

communication. We integrate Zipline with BlackParrot as a streaming accelerator, allowing

it to initiate data reads and writes through DMA to and from the system. To facilitate this,

we develop AXI/APB converters to connect the BlackParrot memory network with the

accelerator memory and add a DMA engine to fetch the input data and TLV headers into

the accelerator memory.

We evaluated the performance speedup of Zipline by compressing files of various sizes.
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As we increased the file size from 1KB to 8MB, the speedup decreased from 22× to 4.8×.

This was due to the offloading overhead or DMA overhead becoming the dominant time

component. The results illustrate how the accelerator tax can limit the end-to-end speedup

and emphasize the need for realistic performance analysis.

2.6 Summary

In this chapter, we have presented BlackParrot, an agile open-source RISC-V multicore for

accelerator SoCs. We have demonstrated the flexibility and ease of adoption of BlackPar-

rot due to its tiled-based architecture. We also discussed how BlackParrot supports both

streaming and coherent accelerator integration. This helps accelerator designers and sys-

tem architects to evaluate their accelerator-related ideas using hardware implementation

rather than software simulation and find the integration strategy that has low offload and

synchronization overheads for their application to improve the overall application time.
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Chapter 3

RISE: RISC-V SoC for HE Client-Side
Operations Acceleration

Homomorphic encryption provides a means to process confidential data while preserv-

ing its privacy. However, HE operations are memory and compute-intensive on both the

cloud and client sides, making efficient hardware acceleration necessary. Several existing

works take advantage of software and hardware optimizations to accelerate cloud-side HE

operations. However, unfortunately, there is no hardware accelerator to address the end-to-

end performance bottlenecks in the client-side operations, i.e., the message-to-ciphertext

and ciphertext-to-message conversion operations, to enable practical HE applications. To

bridge this gap, this chapter presents RISE: a RISC-V SoC for accelerating HE client-

side operations. RISE speeds up error sampling, encryption, and decryption operations,

which are the performance bottleneck in client-side operations, based on profiling results

discussed in Section 1.1.2.

3.1 Background

3.1.1 Homomorphic Encryption and Ring-Learning with Errors

Ring-Learning with Errors (RLWE) is a mathematical problem that has been widely used

in HE. The RLWE problem involves finding a polynomial with random errors in a ring

structure, and its hardness is based on the assumption that solving it is difficult. Given a

key sk chosen from a key distribution over R, an RLWE sample (b,a) ∈ r2
q is constructed



45

by sampling a from U(Rq) and noise e randomly from an error distribution over R and

computing b = as+ e(modq), where q is a prime number that determines the modulus of

the ring R. The RLWE assumption is that the distribution of (b,a) and U(R2
q) are compu-

tationally indistinguishable. The hardness of RLWE has been extensively studied and has

been shown to be closely related to the hardness of various mathematical problems, such

as lattice-based problems (Peikert et al., 2016).

The security of the most efficient HE schemes, such as CKKs, BGV, and BFV, relies

on RLWE. HE based on RLWE is a powerful technique that allows computations to be

performed on encrypted data without requiring decryption, thus preserving data privacy. In

RLWE-based HE, the encryption process maps plaintext messages to encrypted messages

in a ring structure, enabling various computations on the encrypted data, such as addition

and multiplication. However, the decryption process is computationally intensive and re-

quires solving the RLWE problem, which is a challenging task.

In HE computation, N and logQ values are important parameters that determine the

security and efficiency of the scheme. N represents the dimension of the ring or vector

space over which the homomorphic operations are performed. In other words, it defines

the size of the plaintext space, and larger N values can support more complex computations

but require more computational resources. logQ is the bit-length of the modulus used in the

scheme. The modulus is a large prime number that is used to reduce the ciphertext values

to a fixed range, preventing them from growing too large during homomorphic operations.

logQ determines the size of the ciphertext space and influences the security and efficiency

of the scheme. Larger logQ values increase the security of the scheme but require more

computational resources. Therefore, choosing appropriate N and logQ values is crucial to

balance the trade-off between security and efficiency in homomorphic computation.

The CKKS variant of the HE scheme allows computations on encrypted data containing

real numbers. This is particularly important for applications such as machine learning,
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scientific computation, and graph analysis, which require processing and manipulating data

in its native real number format. Therefore, we use the CKKS scheme to design RISE, and

Section 1.1.2 provides a summary of the CKKS message-to-ciphertext and ciphertext-to-

message conversion process.

3.1.2 Residue Number System

The Residue Number System (RNS) is a mathematical tool used in homomorphic encryp-

tion to speed up modular arithmetic operations by breaking down the computations on the

large integer values. RNS represents an integer by its value modulo a set of k integers

(called moduli) q1,q2,q3, ...,qk, which generally should be pairwise coprime. An integer,

x, can be represented in RNS by a set of its remainders x1,x2,x3, ...,xk under Euclidean

division by the respective moduli. That is, xi = x(modq)i and 0 ≤ xi < qi for every i. When

RNS is used, HE operations can be performed with respect to each small moduli instead

of a large modulus. Implementations of HE schemes take advantage of RNS to reduce

computational and memory costs of HE operations on both the client and server sides.

3.1.3 Number Theoretic Transform

Polynomial multiplication is a critical step in CKKs encryption and decryption operations.

A naïve approach to perform a polynomial multiplication has a complexity of O(N2) multi-

plications for a polynomial of degree N. Therefore, to reduce this computational complex-

ity, an NTT operation is applied to the polynomials so as to perform a point-wise multipli-

cation. Using NTT we can reduce the polynomial multiplication complexity to O(N logN).

NTT can be viewed as the finite field version of fast Fourier Transform (FFT). During NTT,

coefficients of the input polynomial are multiplied with the power of an N-th primitive root

of unity and combined with each other in a butterfly fashion. Before each polynomial

multiplication takes place in an encryption operation (see Equation (1.1) and (1.2)), the

polynomials are converted into an NTT domain. Similarly, we need to perform an inverse
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NTT (iNTT) operation in the decryption operation. Both NTT and iNTT operations add

high computational complexity to the encryption and decryption operations, respectively.

3.2 Related Work

HE schemes rely on lattice-based and post-quantum techniques. Therefore, they ex-

hibit numerous algorithmic similarities with post-quantum encryption schemes such

as CRYSTALS-KYBER (Avanzi et al., 2021), NewHope (Alkim et al., 2016),

SABER (Ribeiro et al., 2021), and NTRU (Guillen et al., 2017). However, HE schemes

operate on vectors and in rings that are considerably larger and its message-to-ciphertext

and ciphertext-to-message conversion algorithm is compute intensive and has a very high

memory usage. For the client devices that are constrained by power, performance, and area,

we need to develop efficient software and hardware solutions.

Software-Based Solutions

Microsoft SEAL (Microsoft Research, 2018) (Secure Encrypted Arithmetic Library) is a

powerful HE library that enables arithmetic operations on encrypted integers and real num-

bers. However, the computations required for HE can be resource-intensive, particularly

on client devices with limited processing power and memory. To address this issue, a new

version of SEAL called SEAL-Embedded (Natarajan and Dai, 2021) has been developed.

SEAL-Embedded uses techniques like RNS partitioning, data type compression, memory

pooling, and reuse to reduce memory consumption and make HE more feasible on resource-

constrained devices. However, since SEAL-Embedded is a software-based implementation

of encryption operations, it is still relatively slow and may not be suitable for real-time

applications.

As mentioned earlier, for a video application with a low resolution of QQVGA, SEAL-

Embedded fails to encrypt even one frame per second running at 1 GHz on a RISC-V core
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like BlackParrot (Petrisko et al., 2020) for a practical set of scheme parameters (polynomial

degree of N = 4096 and three 30-bit primes). This highlights the ongoing challenge of

achieving efficient and practical HE on resource-constrained client devices.

Hardware-Based Solutions

Few studies have focused on accelerating client-side operations for HE (Su et al., 2020),

(Yoon et al., 2019). Su et al. (Su et al., 2020) present an FPGA-based accelerator for the

BGV HE scheme, which differs from the CKKS scheme supported by our work. Their

BGV accelerator only supports small scheme parameters (N = 128, logQ = 27), which are

impractical for HE computation. Although the authors claim that their accelerator can be

extended to larger polynomial degrees to support higher security levels, support for larger

parameters is left as future work. Moreover, the accelerator is mainly optimized to achieve

high performance and throughput, while ignoring area/energy efficiency. Meanwhile, Yoon

et al. (Yoon et al., 2019) propose an ASIC-based en/decryption accelerator for HE opera-

tions. However, their evaluation only covers small parameters (N = 16). Even to support

these small polynomials, it needs large buffers to store the in/outputs and the pre-computed

twiddle factors, increasing the memory area.

In our work, we architect an accelerator that can perform message-to-ciphertext and

ciphertext-to-message conversions for practical scheme parameters. We use CKKS HE

scheme as it is a natural choice for client devices because it can efficiently perform secure

computation on the type of floating-point data often sampled by sensors. Our accelerator

uses data-level parallelism, shares the datapath between encryption and decryption opera-

tions, adopts memory reuse and memory reordering strategies, and eliminates the need for

additional on-chip memory to store twiddle factors by computing them on-the-fly.
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3.3 RISE: System View

This section presents the overall design of RISE, which is an end-to-end SoC (see Fig-

ure 3·1). RISE consists of a single BlackParrot RISC-V core and an accelerator that per-

forms error sampling, encryption, and decryption. The accelerator is interfaced with the

BlackParrot core in a streaming fashion because a large amount of data needs to be fre-

quently transferred between the two. To transfer all the input data from the main memory

of the BlackParrot core to the accelerator, we utilize a hardware DMA logic. The user

provides public keys (pk0, pk1) and input message m to the BlackParrot core, which is

responsible for performing en/decoding operations and the random seed generation using

SEAL-Embedded library.

The accelerator contains a PRNG unit that receives a random seed from the BlackParrot

core and generates a bit stream of pseudo-random numbers These pseudo-random numbers

are passed to a fast error sampler to generate the required error polynomials, i.e., e0, e1,

and µ. These error polynomials along with the encoded message and public keys are then

used to perform encryption. The encryption operation performs the operations described in

the Equations (1.1) and (1.2). Similarly, the decryption operation performs the operations

listed in Equation (1.3). For the decryption operation, we need the ciphertext, i.e., c0 and

c1, that is sent by the cloud and the secret key that is generated by the BlackParrot core

as inputs. Once the en/decryption operation is completed, the BlackParrot core receives an

interrupt from the accelerator. Then, the DMA logic transfers the output of the accelerator

back to the main memory of the BlackParrot core.

3.4 RISE: Micro-Architecture

In this section, we provide a detailed description of the micro-architecture of our accelerator

(see Figure 3·1).
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3.4.1 Error Sampling Unit

Error samples are critical to maintaining the required security level while performing HE

operations. However, generating these high-quality error samples is one of the bottlenecks

in client-side operations. As shown in Figure 3·1, error sampling basically consists of two

steps: generation of pseudo-random numbers using a true random seed, and generation

of uniform and binomially distributed error samples using the generated pseudo-random

numbers. Below we present the micro-architecture of a lightweight PRNG, a binomial

sampler, and a uniform sampler.

Pseudo-Random Number Generator

We have a customized PRNG unit as part of the accelerator to speed up the pseudo-random

number generation process (Keccak Team, 2018). One of the prior works (Banerjee et al.,

2019) evaluated various PRNGs and concluded that the SHA-3 hash family in the SHAKE

mode (Morris Dworkin, 2015), is 2× and 3× more energy efficient than ChaCha20 (Bern-

stein, 2008) and AES (Heron, 2009), respectively. This is due to the fact that SHA-3 in

SHAKE mode generates the highest number of pseudo-random numbers per round. There-

fore, in our PRNG unit design, we use a SHAKE function, which is more commonly re-

ferred to as Keccak. For our use case of en/decryption operation that requires a large

number of error samples (as N is >212), Keccak makes a perfect PRNG because its output

length is not predetermined. Hence, we can generate as many error samples as needed for

the en/decryption operation with just one invocation of the Keccak unit.

A Keccak unit typically consists of a round unit with two sub-units: Absorb and Per-

mutation. A true random seed (generated by TRNG), and the desired length of the pseudo-

random number, and the rate at which the pseudo-random numbers are generated (provided

by the BlackParrot core via control and status registers (CSRs)) are input to the Absorb sub-

unit. In our design, the true random seed consists of 1600 bits. A Keccak round operates
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on the data organized as an array of 5× 5 computation lanes, each of length 64. Hence,

the absorption phase changes the random seed from a 1D 1600-bit representation into a 2D

25×64-bit representation, and we store this 2D representation in a state register (see Fig-

ure 3·1). The value in the state register is permuted by performing a series of shift, XOR,

AND, and NOT operations in the Permutation unit (Keccak Team, 2018). We store the

output of the Permutation unit in the state register. We set the length of the pseudo-random

number to 1088 bits, which is the maximum length supported by Keccak.

Error Sampler

The output of PRNG is passed to a uniform sampler and a binomial sampler to generate

error polynomials. For RLWE cryptosystems, the original worst-case to average-case se-

curity reductions hold for both continuous (rounded) Gaussian distributions and discrete

Gaussian distributions. However, the implementation of efficient and constant-time Gaus-

sian sampling is a challenging problem (Agrawal et al., 2020). Prior works (Natarajan and

Dai, 2021), (Xin et al., 2020), (Duong-Ngoc et al., 2021) address this by calculating the

difference of the hamming weights of two random bit streams of length k, and can rapidly

obtain samples from a zero-centered binomial distribution1 in a constant time. We adopt

the same approach in our design.

Additionally, we implement a uniform sampling unit that uniformly samples the coef-

ficients of the polynomial from R3 (i.e., N coefficients sampled uniformly from {-1,0,1}).

We implement this functionality using a rejection sampling algorithm (Alkim et al., 2016).

The implementation is a constant time implementation of modulo3 reduction (see Fig-

ure 3·1).
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3.4.2 Encryption and Decryption Unit

Figure 3·2 (a) shows the encryption datapath, which follows Equation (1.1) and (1.2). Each

encryption operation calls the accelerator twice, once to compute c0 with (pk0,µ,m,e0)

input set and then to compute c1 with (pk1,µ,e1) input set. The datapath consists of poly-

nomial addition and multiplication operations. The polynomial addition involves simple

element-wise modular addition of the polynomial coefficients and has a complexity of

O(N). In contrast, polynomial multiplication has a complexity of O(N2), and like prior

efforts, we accelerate it using NTT (more details about NTT are in Section 3.1.3). Acceler-

ation using NTT reduces the complexity of polynomial multiplication to O(N). Similarly,

Figure 3·2 (b) shows the datapath for the decryption operation that follows Equation (1.3).

Decryption datapath again performs polynomial addition and multiplication operation. It

receives input polynomials that are already in the NTT domain. However, the decrypted

polynomial is required to be in coefficient form for performing the decoding operation

(we perform this operation on the BlackParrot core using the SEAL-Embedded library).

Therefore, the decryption datapath has an iNTT operation.

Unified En/Decryption Datapath

In order to reduce the area overhead of the accelerator, we share the datapath and control

logic of the accelerator between encryption and decryption operations (see Figure 3·2 (c)).

This is possible because the sequence of operations performed in the encryption and de-

cryption operations are the same. Moreover, the encryption operation uses the exact same

sequence of operations to compute both c0 and c1. Thus, we use the same datapath twice

to perform the complete encryption operation.

1Presuming this error distribution’s standard deviation is sufficiently large, no known attack exploits the
shape of this distribution. For our binomial distribution, we use a standard deviation of

√
21/2 ≊ 3.24 to

comply with the HE security standard (Albrecht et al., 2021).
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NTT Acceleration

The main performance bottleneck in the en/decryption unit is the NTT operation. Con-

sequently, we propose several optimization techniques to efficiently perform NTT while

incurring a low memory and area overhead. We discuss these optimizations in detail in the

rest of this section.

Butterfly Unit (BFU): A Butterfly operation is the basic building block of NTT/iNTT op-

eration. An NTT/iNTT operation consists of log2 N stages (for a polynomial of degree N),

and each stage requires N/2 Butterfly operations. Each BFU takes two coefficients (say

a and b) out of the N polynomial coefficients as input and computes (a,b) = (a+ω · bq,

a−ω · bq) (refer Algorithm 1 line 13 and 14). Here, ω is the twiddle factor. A degree N

polynomial requires N/2 twiddle factors, where each twiddle factor needs logq bits. Our

accelerator computes twiddle factors on-the-fly within BFU to reduce the memory over-

head for storing them as pre-computed values.

BFU is fully pipelined with the throughput of 1 Butterfly operation per cycle. It is de-

signed to perform NTT, iNTT, polynomial addition, and multiplication operations that are

required by both encryption and decryption operations (see Figure 3·2). BFU has an inte-

ger adder and subtractor unit that performs modular reduction using a conditional operator.

BFU contains a modular multiplier where modular reduction operation is performed using

a Barrett reduction (Barrett, 1986) unit.

Barrett reduction computes modular reduction operation without performing any di-

vision and only involves two multiplications and one subtraction, shift, and conditional

subtraction operation (Barrett, 1986). In addition, it does not exploit any property of the

modulus q, which makes it ideal for supporting configurable moduli. The modular multi-

plier lies on the critical path in the accelerator. Hence, we pipeline the multiplier to reduce

the critical path and improve the operating frequency of the accelerator. As power and area
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are the primary design goals for edge devices, all the above computations are performed by

sequentially leveraging the pipelined BFU.

Memory Reuse Technique: All the necessary polynomials (m, e0, e1, µ, pk0, pk1, c0, c1)

should be kept in the accelerator’s on-chip memory for efficient en/decryption computation.

A single polynomial typically needs memory of ∼60 KB with N = 214 and logq = 30.

Therefore, we require a total of 480 KB to hold all the in/output polynomials. In our

memory reuse strategy, we manage the encryption and decryption operations such that at

any given time, we need to store a maximum of only two polynomials, which takes 120 KB

of space.

For memory reuse, we divide the entire on-chip SRAM memory into multiple banks

that are organized into two bank groups, i.e., BG0 and BG1. Each bank group corresponds

to a single polynomial and each polynomial is stored across multiple banks within a bank

group. During the encryption and decryption operation, we use these bank groups to store

the input, output, and intermediate polynomials. Hence, we share each of the two bank

groups among several polynomials as shown in Figure 3·3 (a) and (b).

As an illustration (see Figure 3·3), we carry out an in-place NTT in an encryption oper-

ation that gets the data for polynomial µ from BG0, processes it, and then writes the results

back to BG0. While we are still performing NTT on the polynomial µ, we load the next

input polynomial pk1 into BG1 in parallel. The modular addition and multiplication opera-

tions involve memory reuse as well. Both of these operations read the input from BG0 and

BG1 while writing the output to bank group BG1. Therefore, after the modular addition

or multiplication operations are complete, we can reuse BG0 for the subsequent operation.

Therefore, by utilizing a memory reuse strategy, we can efficiently perform en/decryption

operations while incurring a minimal memory footprint.

Memory Reorder Technique: The next memory level optimization that we perform is mem-
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Algorithm 1: NTT_swap4
Input: Polynomial a(x) ∈ Zq[x] in bit-reversed order
Output: NT T (a(x)) in normal order

1 m = 2;
2 for (stage = 0;stage < (logN −1);stage+= 1) do
3 ω = 1; ωm = ω2logN−1−stage

n ; upd_cnt = 1;
4 for ( j = 0; j < m∗2; j+= 4) do
5 for (k = 0;k < N;k+= m∗4) do
6 i0=[]; i1=[];
7 for (l = 0; l < 4; l+= 1) do
8 switch l do
9 case 0 do idx = j+ k ;

10 case 1 do idx = j+ k+2 ;
11 case 2 do idx = j+ k+m∗2 ;
12 case 3 do idx = j+ k+m∗2+2 ;

13 a[idx] = a[idx]+a[idx+1]∗ωq;
14 a[idx+1] = a[idx]−a[idx+1]∗ωq;
15 i0.append(idx); i1.append(idx+1);
16 if upd_cnt == N/(2stage+1) then
17 ω = ω∗ωmq; upd_cnt = 1;
18 else upd_cnt+= 1 ;

19

(a[i0[0]],a[i1[0]],a[i0[1]],a[i1[1]],
a[i0[2]],a[i1[2]],a[i0[3]],a[i1[3]]) =
(a[i0[0]],a[i0[1]],a[i0[2]],a[i0[3]],
a[i1[0]],a[i1[1]],a[i1[2]],a[i1[3]])

20 m = (m == N/4) ? 2 : (m∗2);

21 for (i = 0; i < N; i+= 1) do
22 Bit manipulation phy_addr = {i[logN −3 : 2], i[logN −1 : logN −2], i[1 : 0]} ;
23 a_out[i] = a[phy_addr];

24 return a_out;
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issue by modifying the NTT algorithm itself. For example, to use 1R1W memory banks for

an NTT, Roy et al. (Roy et al., 2014) proposed a memory-efficient NTT algorithm, which

we refer to as the NTT_swap2 algorithm. Their technique rearranges the output of the two

subsequent Butterfly operations to prevent bank conflicts (two 1R1W banks). As a result,

it guarantees that the input pair required by the Butterfly operation in the following stage is

in distinct memory banks.

Although using a 1R1W memory bank reduces memory space by half, there is still

scope for improvement. To further reduce memory area overhead, we suggest replacing

two 1R1W banks of size N/2 with four 1 read/write port (1RW) banks of size N/4. This

causes newer bank conflicts, which cannot be addressed by using the NTT_swap2 method.

For example, if a bank receives both read and write requests at the same time, we will need

an additional write buffer to store the write requests. Now the write requests must wait in

the write buffer until there are no incoming reads before opportunistically writing back the

results. Although using a write buffer is a good way to solve bank conflicts, the size of the

write buffer quickly grows. Our observation is that if there are N/4 continuous read and

write accesses to the same bank in a given stage, the write buffer must be the same size as

the banks (N/4) in order to hold all write requests that overlap with read requests to the

same bank. If we were to use the same size buffers as the memory banks, we incur the

same memory overhead as the 1R1W memory bank, making this solution impractical.

We propose a method called NTT_swap4 (refer Algorithm 1) to avoid using these large

write buffers. NTT_swap4 reorders the output of four successive Butterfly operations,

while NTT_swap2 reorders the result of only two Butterfly operations. (see Figure 3·4).

This is to ensure that not only the two inputs of each Butterfly operation are stored in

different banks (like NTT_swap2), but also the inputs of consecutive Butterfly operations

are stored in different banks (NTT_swap4). As the same bank is not repeatedly used in

this scenario, the write buffer can immediately write back the outcomes in the subsequent
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cycle. Thus, the write buffer can be as small as one element wide (logq) for a memory

bank.

We demonstrate NTT_swap4 technique example (for N = 32) in Figure 3·4. The order

of the Butterfly operations is indicated by the numbers (in red) before each pair of cells.

For example, in stage 0, the first four Butterfly operations access the following pairs:

(a0,a1), (a2,a3), (a4,a5), (a6,a7). However, stage 1 expects elements in the order of

(a0,a2), (a4,a6), (a1,a3), (a5,a7). To prevent successive Butterfly operations in stage 1

from accessing the same banks for reads and writes, we reorganize stage 0’s outputs into

the order anticipated by stage 1 (refer Algorithm 1 line 19). To carry out this reordering,

we use a Reordering Unit (RU).

Re-ordering Unit (RU): The RU reorders the output generated by the BFU and writes it

back into the memory banks. A small register array that can store up to 8 pairs of Butterfly

outputs and a reordering logic make up the RU. Reordering logic begins by sequentially

writing the two results of a Butterfly operation and their addresses to the register array in

each cycle. Once there are eight elements in the register array or four pairs of BFU outputs,

the reordering logic will send out the elements stored in the registers to the corresponding

memory bank. Both NTT and iNTT operations can be reordered effectively using RU. The

RU will be active only while doing NTT/iNTT computations based on the mode signal

(see Figure 3·1).

Control Unit (CU): The CU consists of two components – the computation controller and

the I/O controller. Based on the current operation (error sampling, NTT/iNTT, modular ad-

dition, and multiplication), the computation controller, which is an FSM, chooses the BFU

and RU mode signals. In addition, it generates the enable signal and read/write addresses

for memory bank accesses. During NTT/iNTT operation, the computation controller is
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also in charge of setting up the NTT unit to compute the twiddle factors on-the-fly. De-

pending on the type of CPU request received by the accelerator (encryption or decryption),

the I/O controller chooses the necessary set of BFU operations. Besides, based on the cur-

rent en/decryption stage, it also configures the DMA unit for the input/output data transfer

to/from memory banks.

Parallel NTT Computation

In this section, we present a technique to parallelize NTT to further improve its perfor-

mance. This is due to the fact that the area-efficient NTT design that we discussed above

cannot meet the performance requirements of high-end edge devices and several high-speed

applications. Therefore, by parallelizing the NTT computation, we can improve the perfor-

mance at the cost of area and power overhead. We evaluate this performance vs. area/power

trade-off to identify the optimal architectures for different design objectives in Section 3.5.

To improve the performance of NTT computation, we can perform multiple Butterfly

operations in parallel. Therefore, we propose a scalable parallel implementation of NTT

with multiple BFUs. To support a parallel NTT architecture using multiple BFUs, we need

to address two main requirements: 1. Multi-port memory banks to read/write multiple

BFUs’ inputs and outputs simultaneously and 2. On-the-fly computation of multiple

twiddle factors to enable multiple Butterfly operations in parallel.

Memory Bank Organization for Parallel NTT: Moving to a multi-port memory bank design

is not an efficient solution as increasing the number of ports will quadratically increase

the memory area overhead (Azad et al., 2022). To reduce the memory area overhead, we

still use the 1RW memory banks but we linearly increase the number of memory banks as

we increase the number of BFUs. However, we keep the total memory size the same by

proportionally decreasing the size of each memory bank. With an increase in the number

of memory banks, the data access pattern within each stage of the NTT becomes compli-
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cated resulting in data dependencies that need to be carefully managed. Consequently, our

proposed memory reorder technique (see Section 3.1.3) will not work as it is and requires

modifications.

We extend our memory reorder scheme to get rid of the memory bank conflicts by

reordering the output of 4× #BFUs Butterfly operations instead of reordering the output

of only four successive Butterfly operations (as proposed in NTT_swap4 technique). For

example, for N = 32 with 2 parallel BFUs, in stage 0, the first eight Butterfly opera-

tions access the following pairs: (a0,a1), (a2,a3), (a4,a5), (a6,a7), (a8,a9), (a10,a11),

(a12,a13), (a14,a15). However, stage 1 expects elements in the order of (a0,a2), (a4,a6),

(a8,a10), (a12,a14), (a1,a3), (a5,a7), (a9,a11), (a13,a15). To prevent successive Butterfly

operations in stage 1 from accessing the same banks for reads and writes, we reorganize

stage 0’s outputs into the order anticipated by stage 1.

Twiddle Factor Computation for Parallel NTT: As discussed earlier, to minimize the mem-

ory area overhead RISE computes the required twiddle factors on-the-fly instead of storing

the precomputed values. However, now as we increase the number of BFUs for the paral-

lel NTT approach, we need to compute many twiddle factors in parallel, thus introducing

stalls in the NTT computation pipeline that offsets the performance gains. The stalls are

introduced because RISE’s area-efficient design shares the BFU to compute the twiddle

factor and to perform the Butterfly operation. To eliminate pipeline stalls, we introduce a

separate modular multiplier to compute twiddle factors in parallel with the Butterfly oper-

ations. We note that we also need to increase the number of modular multipliers that are

used to compute twiddle factors, as we increase the number of BFUs.
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3.5 Evaluation

In this section, we evaluate RISE performance, area and energy efficiency for different

security parameters and with different level of NTT parallelism.

3.5.1 Experimental Setup

For our analysis, we run all edge-side operations on the following systems in bare-metal

mode:

• Baseline: BP processor executes all the operations from SEAL-Embedded library.

• RACE (Azad et al., 2022): In the RACE SoC, the hardware accelerator executes the

en/decryption operation, while the remaining operations (error sampling and en/de-

coding) are performed on the BP processor. We modified SEAL-Embedded library

to invoke calls to en/decryption operations on the accelerator.

• RISE: In the RISE SoC, the hardware accelerator performs error sampling and exe-

cutes the en/decryption operation while the remaining operations (en/decoding) are

performed on the BP processor. RISE supports a range of parallel BFUs (1 to 32)

within a single NTT operation. In our evaluation, RISE-1BFU and RISE-MaxBFU

correspond to configurations with 1 BFU and 32 BFUs, respectively.

All three systems, i.e., baseline, RACE, and RISE, make use of a single core BP con-

figuration (32 KB each of Icache and Dcache) running at 1 GHz. We implement all three

systems in SystemVerilog and simulate them using VCS. The hardware implementation is

cycle-accurate and captures the nuances of data movement between all parts of the systems.

For power, performance, and area evaluation, we use GlobalFoundries 12nm technology.

We synthesize the logic components in baseline, RACE, and RISE using Synopsys Design

Compiler, and use memory compiler for designing the SRAM arrays.
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3.5.2 Experimental Results

Performance Results

We evaluate RISE performance with different numbers of BFUs (1 to 32) for both message-

to-ciphertext and ciphertext-to-message conversion operations for a range of scheme pa-

rameters.

As shown in Figure 3·5 (a), across different scheme parameter (N, logQ) values, RACE

configuration achieves 7.8×-12.58× and 7.9×-66.08× better performance for message-to-

ciphertext and ciphertext-to-message conversion operations, respectively, compared to the

baseline. The performance improvement in RACE is because we offload the encryption and

decryption operations to the hardware accelerator, which speeds up encryption by 89.82×-

123.76× and decryption by 204.66×-244.44×. In RISE-1BFU configuration, on top of

encryption and decryption operations, we also offload the error sampling operation to the

hardware accelerator, which results in 1726.39×-1734.08× speed up in the error sam-

pling. However, RISE-1BFU configuration achieves just 3.68×-8.29× better performance

for message-to-ciphertext conversion operation compared to the RACE as the performance

improvement is limited by Amdahl’s law.

RISE-1BFU configuration achieves similar performance as RACE for ciphertext-to-

message conversion operation (refer Figure 3·5 (b)), as this conversion does not include

the error sampling step. As we increase the number of BFUs within the NTT/iNTT op-

eration to perform multiple Butterfly operations in parallel, we observe a speed-up in

encryption and decryption operation. As shown in Figure 3·5 (a) and (b) for RISE-

MaxBFU configuration, with maximum number of BFUs (32), compared to RISE-1BFU

the message-to-ciphertext and ciphertext-to-message conversion performance improves by

37.7%-414.92% and 3.4%-35%, respectively. Overall, compared to the baseline sys-

tem, our RACE-MaxBFU improves the message-to-ciphertext conversion performance by

38.27×-433.14×, and the ciphertext-to-message conversion performance by 8.2×-89.25×.
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Comparison with Related Works:

Table 3.1 presents the performance comparison between RISE and other relevant state-of-

the-art works. The performance comparison includes the latency of NTT operation for a

single limb (the dominant operation in message-to-ciphertext and ciphertext-to-message

conversion), the SRAM size, the number of memory ports, and the evaluation platform

(ASIC or FPGA). As other existing works use different parameters (N and logq), we com-

pute the performance numbers for RISE for all of these parameter sets. It is evident from

the table that RISE performs faster NTT computation when compared to other designs for

all values of N except for (Li and Liu, 2021). Moreover, for every value of N, RISE utilizes

only single-port memory with the smallest SRAM size.

Thanks to our highly parallel and pipelined NTT computation design that leads to low

NTT computation latency. Li et al. (Li and Liu, 2021) can perform a single NTT in 38

cycles as they store precomputed twiddle factors in SRAM, which leads to 10× higher

memory requirement than RISE. In addition, they need dual-port memories to feed the

input to their vectorized NTT unit. RISE manages to perform NTT computations while

using only a single-port memory by leveraging NTT_swap4 method. Compared to the

related work, RISE has the smallest memory footprint because of our on-the-fly twiddle

factor generation unit and in-place NTT computation. We do not provide a head-to-head

comparison of the performance of RISE with the works by (Su et al., 2020), (Yoon et al.,

2019) as those prior works accelerate en/decryption operations to support HE operations

for the BGV scheme while we enable the support for CKKS scheme.

Power Results

Figure 3·6 (a) shows the power consumption in the message-to-ciphertext and ciphertext-

to-message conversion operations for different scheme parameter (N, logQ) values when

using baseline, RACE, RISE-1BFU, and RISE-MaxBFU systems. message-to-ciphertext
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Table 3.1: NTT operation Performance (cycle count) comparison with the state-of-the-art
designs in related works. A head-to-head comparison in terms of frequency, power and
area numbers cannot be done because of differences in platforms (ASIC vs FPGA) and
technology nodes.

Design N logq Latency
(Clock Cycles)

SRAM PlatformSize (KB) R/W Ports
(Nannipieri et al., 2021)

256

16 18554 2.25 KB Dual FPGA
(Banerjee et al., 2019) 24 1289 45 KB Single ASIC

(Li and Liu, 2021) 16 556 13.5 KB Dual FPGA
(Chen et al., 2022) 14 327 22.5 KB Dual FPGA

RISE 30 103 0.93 KB Single ASIC
(Li and Liu, 2021) 16 38 10 KB Dual FPGA
(Ye et al., 2022) 512 16 1074 18 KB Dual FPGA

RISE 30 215 1.87KB Single ASIC
(Paludo and Sousa, 2022)

1024
28 2568 108 KB Dual FPGA

(Ye et al., 2022) 28 2114 27 KB Dual FPGA
(Su et al., 2022) 32 650 355.5 KB Dual FPGA

RISE 30 447 3.75KB Single ASIC
(Ye et al., 2022)

4096
60 8284 110.25 KB Dual FPGA

(Su et al., 2022) 32 3075 355.5 KB Dual FPGA
RISE 30 1918 15KB Single ASIC

(Duong-Ngoc et al., 2023) 16384 60 536832 616.5 KB Dual FPGA
RISE 60 34814 480 KB Single ASIC

and ciphertext-to-message conversion operations have similar power consumption, within

0.01%, and we report the power consumption for the message-to-ciphertext2. The to-

tal power consumption for a message-to-ciphertext and ciphertext-to-message conversion

in the baseline system is 27.19 mW, out of which the SRAM power consumption is

41.49% = 11.4 mW and the digital logic consumes the remaining power. Overall, the

power consumption of RACE is about 25%-28% (for a range of scheme parameters) higher

than the baseline system for both message-to-ciphertext and ciphertext-to-message conver-

sion operations. The increase in the power consumption is due to 41.92%-43.55% and

3.36%-7.81% power increase in the digital logic and SRAM, respectively. The power con-

sumption in RISE-1BFU configuration increases by 11.62%-30.15% compared to RACE

2The ciphertext-to-message conversion does not perform the error sampling operation and so should have
lower power consumption than the message-to-ciphertext conversion. However, we did not power gate or
clock gate the error sampling unit during the ciphertext-to-message conversion and so it consumes some
power even during the ciphertext-to-message conversion. The error sampling operation takes less than 10%
of the total time required to perform message-to-ciphertext conversion, and so is not the dominant compo-
nent. Hence, the power consumed during message-to-ciphertext and ciphertext-to-message conversions are
comparable
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due to the additional digital logic required for the error sampling unit. As we increase the

number of BFUs from 1 to 32, the power consumption increases by 4.49%-10.98% due

to the more complex memory banking logic (14.61%-30.66%) and multiple parallel BFUs

(1.01%-4.11%).

Area Results

The area of RACE is 15% (smallest N) to 84% (largest N) larger than the area of the base-

line system. (see Figure 3·6 (b)). This increase in the area is due to the area required by

the accelerator where SRAMs primarily contribute to the increase in area. The area over-

head in RISE-1BFU is (3.65%-2.14%) compared to RACE, as error sampling contributes

very little to the overall area of RISE.-1BFU With an increase in the number of parallel

BFUs, the complexity of control logic and memory banking increases. Hence, as shown

in Figure 3·6 (b), by increasing the number of BFUs from 1 to 32, the area overhead of

RISE-MaxBFU increases by 17.59% to 22.38% as compared to RISE-1BFU for different

scheme parameters.

Area and Energy Efficiency

RISE aims to improve the performance of message-to-ciphertext and ciphertext-to-message

conversion at the cost of increase in area and power. Thus, Area-Delay Product (ADP)

and Energy-Delay Product (EDP) metrics need to be considered for evaluating our RISE

design. Figure 3·7 (a) and (b) compares the ADP value for baseline, RACE, RISE-1BFU,

and RISE-MaxBFU systems. As we can see, RACE decreases the message-to-ciphertext

and ciphertext-to-message conversion ADP by 6.76×-7.78× and 6.89×-35.80× compared

to the baseline, respectively. The improvement is the result of 7.8×-12.58× and 7.95×-

66.08× improvement in performance while incurring only a 15%-84% increase in the area.

The Figure 3·7 (a) also shows that in RISE-1BFU, the message-to-ciphertext conver-

sion ADP outperforms RACE (3.55×-8.12× lower). This is due to 3.68×-8.29× perfor-
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mance improvement while incurring only 3.65%-2.14% increase in area. Increasing the

number of BFUs from 1 to 32 improves the message-to-ciphertext conversion ADP by

1.13×-3.39× for different scheme parameters (due to 1.37×-4.14× performance improve-

ment and 17.59%-22.38% area overhead). For the ciphertext-to-message conversion the

ADP (refer Figure 3·7 (b)) of the RISE-1BFU system underperforms RACE by 3.65% for

the smallest N and 2.14% for the largest N as there is an increase in area overhead due

to the additional error sampling unit, which is not used by ciphertext-to-message conver-

sion. Increasing the number of BFUs to 32 worsens the ciphertext-to-message conversion

ADP of RISE-1BFU by up to 12.3% for small N values. This is because in RISE-1BFU

the decryption operation only accounts for 3.43%-10.40% of the total latency, which when

improved by adding parallel BFUs within iNTT, does not improve the performance by the

same proportion as the area overhead (17.59%-22.38%). For large N values, the ciphertext-

to-message conversion ADP increases by up to 10.35% as now decryption operation con-

tributes significantly to the total latency, which can be accelerated by instantiating parallel

BFUs.

Figure 3·8 (a) and (b) compare the energy efficiency of baseline, RACE, RISE-

1BFU, and RISE-MaxBFU systems. As evident from the figures, EDP follows a sim-

ilar trend as ADP. There is 38.6×-117.09× and 40.19×-3229.81× improvement in the

EDP for message-to-ciphertext and ciphertext-to-message conversion, respectively when

using RACE as compared to the baseline. The EDP of RISE-1BFU for message-to-

ciphertext conversion is 12.19×-52.87× better compared to RACE and by increasing the

number of parallel BFUs, EDP further improves by 1.69×-15.51×. Unfortunately, EDP of

RISE-1BFU for ciphertext-to-message conversion worsens by 11.62%-30.15% compared

to RACE for the same reason as ADP. The EDP of RISE-1BFU for ciphertext-to-message

conversion can be improved by clock gating the error sampling unit. Moreover, by using 32

BFUs the ciphertext-to-message conversion EDP improves by 1.71%-64.35% compared to
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RISE-1BFU. This improvement is due to the fact that increasing the number of BFUs im-

proves decryption operation performance, which leads to up to 35% performance improve-

ment for ciphertext-to-message conversion. We also get up to 21.69% energy consumption

reduction as the BlackParrot core consumes less idle energy.

Video Application Evaluation

We evaluate our RISE design using QQVGA and QVGA video frame encryption examples.

For calculating the number of ciphertexts required to encode and encrypt each of these

frames refer to Section 1.1.2. Figure 3·9 (a) and (b) shows the maximum frames per sec-

ond (FPS) that the baseline, RACE, RISE-1BFU, and RISE-MaxBFU systems can sustain

for different scheme parameter (N, logQ) values when performing message-to-ciphertext

conversion operation for QQVGA and QVGA, respectively. The frames are sent to the

cloud using a mid-band 5G network, which offers a balance between speed, capacity, and

coverage (Thummaluru et al., 2019). As shown in Figure 3·9, in the regions with maximum

bandwidth, mid-band 5G network can transfer up to 70 (QQVGA) and 23 (QVGA) frames

per second for the largest N value and in the regions with minimum bandwidth, it can only

transfer 7 (QQVGA) and 2 (QVGA) frames per second for the largest N value. So the

throughput of our designs for message-to-ciphertext conversion and ciphertext-to-message

conversion should match with these frame rates.

The baseline system is capable of encrypting up to 2 QQVGA FPS for N values smaller

than 2048 (refer Figure 3·9 (b)). However, as we increase N to 4096 or larger values, it

cannot encrypt even a single frame per second. On the other hand, for QQVGA, RACE

encrypts ∼16 FPS for small values of N and 5 FPS for the largest N value (16384). So at

large values of N we cannot saturate the 5G network at both the maximum bandwidth and

minimum bandwidth.

For QVGA resolution, the baseline system cannot encrypt even one FPS even for the

smallest N value (1024). However, RACE can encrypt 5 and 2 FPS for the smallest and
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largest N values, respectively. While RACE can support higher FPS than the baseline, it

cannot saturate the 5G network at both the maximum bandwidth and minimum bandwidth

for QVGA.

The RISE-1BFU system is capable of encrypting up to 48 QQVGA FPS for N values

smaller than 2048 (refer Figure 3·9(b)). For the largest N value, RISE-1BFU system is

capable of encrypting up to 10 QQVGA FPS. As we increase the number of BFUs from 1

to 32, the FPS numbers change to 64 and 27 QQVGA FPS for the smallest and largest N

values, respectively. Thus, we can saturate the 5G network at minimum bandwidth but not

at the maximum bandwidth.

For QVGA resolution (refer Figure 3·9 (a)), RISE-1BFU system is capable of encrypt-

ing up to 13 FPS for the smallest N value (1024) and 4 FPS for the largest N value. The

RISE-MaxBFU configuration can encrypt up to 17 and 10 QVGA FPS for the smallest and

largest N values, respectively. Thus, we can saturate the 5G network at minimum band-

width but not at the maximum bandwidth.

Typically surveillance cameras and mobile platforms have an average frame rate of 15

to 30 FPS (Usman et al., 2018) (shown by the green highlighted area in Figure 3·9 (a) and

(b)). For QQVGA resolution, RISE-MaxBFU meets this FPS requirement for all N and

logQ combinations. For QVGA, RISE-MaxBFU can barely meet the FPS requirement for

smaller values of N and logQ.

3.6 Summary

In this chapter, we have presented RISE, a RISC-V SoC designed for accelerating HE

client-side operations. We demonstrate that, in order to measure the end-user performance

experience in a realistic way, it is crucial to evaluate end-to-end application performance

metrics, rather than just one kernel (such as NTT) as has been done in most prior works.

To achieve an end-to-end optimization, we profile message-to-ciphertext and ciphertext-to-
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message conversion operations, and our analysis reveals that error sampling, encryption,

and decryption operations are the bottlenecks during conversion. RISE utilizes an efficient

and lightweight pseudo-random number generator core and combines it with fast sampling

techniques to accelerate the error sampling operations. To speed up the encryption and de-

cryption operations, RISE employs scalable, data-level parallelism to implement the num-

ber theoretic transform operation, the main bottleneck within the encryption and decryption

operations. We thoroughly evaluate RISE and our analysis reveal that RISE significantly re-

duces message-to-ciphertext and ciphertext-to-message conversion latency, EDP, and ADP

compared to the baseline, across a range of parameters. We also demonstrate how RISE’s

end-to-end performance optimization improves application performance metrics.



Chapter 4

Summary and Future Work

In this thesis, we emphasize the need for a holistic analysis of accelerator-based systems

and the consideration of all accelerator taxes to make informed decisions about when and

where to use accelerators. We first highlight this through AI and HE applications. Then, we

present and evaluate BlackParrot, an agile open-source RISC-V multicore for accelerator

SoCs, and RISE, a RISC-V SoC that leverages BlackParrot to accelerate end-to-end HE

client-side operations. In this chapter, we summarize the contributions of this thesis and

outline the directions for future work.

4.1 Summary of Major Contributions

4.1.1 AI and HE Tax

In this work, we use ML and HE applications as case studies to demonstrate that end-to-end

evaluation of hardware accelerator-based systems is essential to ensure that the systems are

optimized for their intended applications. This involves analyzing the system from input

to output to ensure that all components are working optimally and the system as a whole is

delivering the desired performance, resulting in an improved end-user experience.

Our evaluation of a DBMS ML application shows that the benefits of offloading ML

inference to accelerators depend on the backend hardware, model complexity, and data

size, as well as the level of integration between the ML inference pipeline and the DBMS.

Generally speaking, for models with lower complexity and smaller data sizes, it’s prefer-

able to use the CPU rather than a dedicated accelerator for inference. This is because the

78
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overhead of offloading (initializing the hardware accelerator and transferring data) is the

dominant time component in the overall inference time. In contrast, for models with higher

complexity and larger data sizes, using an accelerator for ML inference is more efficient

because the inference time itself is the dominant factor in the overall execution time.

Additionally, the data retrieval and pre-processing time account for the majority of the

execution time for small models and datasets, and up to 25% for large models and datasets.

For instance, when running inference on a random forest model with 128 trees and 1 mil-

lion input data from the HIGGS dataset using a hardware accelerator, we achieve a 69.7×

performance improvement. However, due to data retrieval and pre-processing bottlenecks,

this only translates into a 2.6× end-to-end performance improvement. Therefore, applica-

tion developers and system designers should prioritize a balanced approach to the entire

system and end-to-end application pipeline rather than focusing solely on optimizing ML

inference in isolation. For instance, in the context of DBMS ML applications, tighter in-

tegration of the ML inference functionality within the DBMS could reduce data retrieval

overheads and improve end-user performance.

For HE applications, the client-side only needs to perform message-to-ciphertext

conversion operation, which involves encoding, error sampling, and encryption, and

ciphertext-to-message conversion operation, which involves decryption and decoding. Our

evaluation results indicate that the encryption and decryption latency is dominated by NTT

(67.98%-72.45%) and iNTT (72.15%-83.29%) operations across a range of scheme pa-

rameters. As a result, significant efforts have been made to design hardware accelerators

for NTT/iNTT operations.

When evaluating a video application, we found that accelerating NTT in the hardware

greatly improves the NTT throughput (up to 381×) for different scheme parameters. How-

ever, there is only a slight improvement in message-to-ciphertext (up to 4×) and FPS (up

to 3 frames) throughput metrics for smaller scheme parameters (N <= 211), and no im-
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provement for larger parameters (N >= 212). As we increase the parallelism level in

NTT computation, we observe a linear increase in NTT throughput but no improvement

in the message-to-ciphertext and FPS throughput. This is because the rest of the opera-

tions in message-to-ciphertext become the new bottleneck, and further NTT acceleration

does not enhance the end-to-end performance. In the case of HE client-side operations,

error sampling accounts for up to 10% of the total message-to-ciphertext conversion la-

tency. Additionally, non-NTT operations in the encryption process account for 20.30% to

21.2% of the total latency, while non-iNTT operations in the decryption process account

for 15.99% to 16.05% of the total latency. Therefore, accelerating error sampling and non-

(i)NTT operations in the encryption and decryption pipeline would greatly improve the

message-to-ciphertext and ciphertext-to-message conversion latency, resulting in improved

application throughput metrics (such as FPS). Therefore, to realistically optimize end-user

performance, it is crucial to evaluate end-to-end application performance metrics instead

of the performance of just one kernel, such as NTT.

4.1.2 BlackParrot: An agile open-source RISC-V multicore for accelerator SoCs

We are addressing the lack of a scalable evaluation/simulation infrastructure for building

and evaluating accelerator-based systems by introducing BlackParrot. BlackParrot is de-

signed to be a scalable, heterogeneously tiled multicore micro-architecture for accelerator

SoCs, enabling a highly flexible and scalable design. BlackParrot’s tiles can be catego-

rized into four groups: core, L1 extension, streaming accelerator, and coherent accelerator

tiles. These tiles are arranged in a regular 2D mesh, and communication between neighbor-

ing tiles is facilitated by different NoCs. BlackParrot has three different NoCs: BedRock,

DRAM, and I/O networks.

BlackParrot offers a robust and scalable end-to-end framework for integrating accel-

erators. This framework simplifies the integration of both loosely-coupled coherent (with

data caching and hardware coherency) and streaming accelerators, enabling the offloading
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of jobs from the user application. The framework provides hardware implementation in

SystemVerilog and the capability of running programs in both bare-metal and Linux envi-

ronments (software libraries, kernel drivers, and firmware extensions). It assists accelerator

designers and system architects in evaluating their accelerator-related ideas using hardware

implementation, rather than simulation, to identify the integration strategy that has low of-

fload and synchronization overheads for their application. This optimization can improve

the end-to-end application time.

To validate this framework, we integrate the Microsoft Zipline compression accelerator

with the BlackParrot Core in the ParrotLine case study. We observed a maximum of 22×

end-to-end speedup for various input file sizes compared to the software execution. How-

ever, our end-to-end performance analysis indicates that the speedup decreases for larger

file sizes. This decrease in speedup is attributed to the offloading overhead becoming a

significant component in the overall latency. To address this, overlapping data transfer with

computations can effectively reduce the overhead.

4.1.3 RISE: RISC-V SoC for HE Edge Side Operations Acceleration

To address the performance gap caused by solely focusing on NTT acceleration, we present

and evaluate RISE, an area- and energy-efficient RISC-V SoC that leverages BlackParrot to

accelerate message-to-ciphertext and ciphertext-to-message conversion operations. RISE

speeds up the error sampling process by combining a lightweight pseudo-random num-

ber generator with fast sampling techniques. It also improves end-to-end performance by

overlapping error sampling with the encryption process. To accelerate encryption and de-

cryption operations, RISE employs scalable data-level parallelism for the NTT operation

and implements the remaining operations in hardware. Furthermore, RISE optimizes area

usage by implementing a unified encryption/decryption datapath and utilizing techniques

such as memory reuse and data reordering to minimize on-chip memory usage.

We conduct a thorough evaluation of RISE using a complete RTL design and analyze
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its performance, area, and energy efficiency metrics by executing end-to-end message-

to-ciphertext and ciphertext-to-message conversion operations for different scheme pa-

rameters. Our analysis reveals that RISE significantly reduces message-to-ciphertext and

ciphertext-to-message conversion latency, EDP, and ADP as compared to software exe-

cution, across a range of parameters. Specifically, RISE reduces message-to-ciphertext

conversion latency by 28.79×-104.39× and ciphertext-to-message conversion latency by

7.95×-66.08×. It reduces EDP by 471.24×-6191.19× for message-to-ciphertext conver-

sion and by 36×-2481.44× for ciphertext-to-message conversion. In addition, it reduces

ADP by 24.06×-55.36× for message-to-ciphertext conversion, and by 6.65×-35.05× for

ciphertext-to-message conversion.

For a video application case study, software execution for message-to-ciphertext con-

version was insufficient to encrypt even one frame per second. Hardware acceleration of

NTT, combined with software execution of the remaining operations, did not improve the

frame rate for large scheme parameters. However, by optimizing and running the entire

pipeline in hardware, RISE was able to encrypt up to 17 QVGA frames and 64 QQVGA

frames per second for the smallest (N = 210) scheme parameters, and up to 10 QVGA

frames and 27 QQVGA frames for the largest (N = 214) scheme parameters, which is gen-

erally sufficient for most client devices.

4.2 Future Research Directions

In this subsection, we outline the potential directions for future work.

4.2.1 Runtime Task Scheduler in Accelerator-based Systems

As we discussed in 1.1.1, the optimal hardware backend for running an inference task de-

pends on several factors including the model complexity, the data size for inference, and

the overheads associated with data movement and pipeline stage invocation. Figure 4·1
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Figure 4·1: The best-performing hardware for ML random forest inference depends on the
model complexity and data size.

illustrates the optimal hardware backend for ML inference based on the model complex-

ity and the number of inputs for a random forest model. For example, in cases where the

number of inputs is small and the model is less compute-intensive, it is best to keep the

ML inference on the CPU to avoid high accelerator offloading costs. A wrong decision

to offload to an accelerator in this case can increase the latency by 10×. However, as the

model complexity or the size of the inference dataset increases, offloading ML inference

to an accelerator becomes the optimal choice. A wrong decision to not offload to an ac-

celerator in this case can result in 70× lower throughput. These results highlight the need

for incorporating performance monitoring mechanisms into accelerator-based systems that

can measure the actual accelerator performance during runtime.

There are several analytical models that aim to provide accurate predictions of accelera-

tor performance and power consumption (Altaf and Wood, 2017), (Hill and Janapa Reddi,

2019), (Sriraman and Dhanotia, 2020)). These models are based on the observation that

the execution time and energy consumption of an accelerator are primarily determined by

the communication and memory access overheads involved in transferring data between

the accelerator and the main memory. These models provide a valuable tool for designers
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and developers of hardware accelerators and allow them to quickly and accurately evalu-

ate the performance and power consumption of their designs without the need for complex

simulation or profiling tools. However, these high-level models are not well-suited for

making offloading decisions at runtime as they do not consider the specific characteristics

of the executed application, system state, or other factors that may affect the accelerator’s

performance.

To make offloading decisions at runtime, advanced techniques are necessary that can

dynamically analyze the application, the system, and the available resources to determine

the optimal offloading strategy. One potential future direction is to design runtime sched-

ulers by extending the existing analytical models or developing an ML-based model in

accelerator-based systems. This approach will involve considering different knobs/tun-

able parameters at different levels, such as application-level parameters, platform/hardware

level parameters, dataset size, and model complexity parameters, to decide on accelerator

offloading based on end-to-end application performance.

4.2.2 In-Pipeline Hardware Accelerators

As we discussed in section 1.1.1, using accelerators is not always the best solution due

to the overhead associated with it. In such scenarios, runtime schedulers can schedule

operations on the CPU. However, to achieve better end-to-end performance and energy

efficiency, the concept of in-pipeline acceleration can be used. In-pipeline hardware accel-

erators are specialized hardware units that are integrated into the pipeline of a processor

to accelerate specific operations. These accelerators are designed to perform specific tasks

much faster than a general-purpose CPU, which can lead to significant performance im-

provements in specific applications. This approach reduces the overhead associated with

moving data between the processor and accelerator and can result in improved end-to-end

performance and energy efficiency.

The design of an in-pipeline accelerator requires an ISA extension that can accelerate
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specific computations required by the target application. Developing a custom ISA exten-

sion requires a thorough understanding of the application’s algorithms and computations.

The following steps are involved in designing a custom ISA extension:

• Design an instruction set extension that accelerates the specific computations re-

quired by the application.

• Develop a compiler backend that can generate machine code for the new instructions.

• Modify the processor’s microarchitecture to support the new instructions, which may

require changes to the pipeline, register file, and other components of the processor.

Numerous works have focused on accelerating ML in the processor pipeline by extend-

ing open-source RISC-V ISA with a domain-specific set of instructions (Azad et al., 2020)

(Louis et al., 2019) (Garofalo et al., 2020a) (Assir et al., 2021) (Garofalo et al., 2020b).

However, research in HE is still ongoing, and there is a lack of research in ISA exten-

sion and in-pipeline accelerators for HE. A potential future direction is to use open-source

ISAs, such as RISC-V, and extend them with a set of custom instructions to address the

bottlenecks of HE client-side and server-side operations in the CPU pipeline to improve

performance and energy efficiency.

Based on the profiling results we presented in section 3, en/decryption and error sam-

pling operations are the main performance bottleneck in client-side HE operations, i.e.,

message-to-ciphertext and ciphertext-to-message conversion. To improve the end-to-end

performance, this thesis proposes RISE as a loosely-coupled accelerator that is imple-

mented outside the processor core. However, it would be interesting to investigate the

possibilities of mixed hardware/software co-design through ISA extension and tighter in-

tegration of the accelerator with the processor core to determine the most energy-efficient

solution. Additionally, server-side operations such as dot product computations and poly-

nomial evaluations can also benefit from a custom ISA extension.
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4.2.3 Coherent Accelerators Using Compute Express Link (CXL)

One of the primary bottlenecks in accelerator-based systems is the data transfer process,

which can limit the overall performance of the system. To address this issue, a new open

standard interface called CXL (Sharma, 2022) has been designed to enable high-speed

communication between CPUs and accelerators. CXL uses a cache-coherent protocol that

allows accelerators to directly access memory without requiring the CPU to act as an inter-

mediary. This significantly reduces communication overhead and can improve the end-to-

end performance in accelerator-based systems. Potential future directions for CXL-based

accelerator systems are as follows.

• CXL Performance Optimization: Investigate new methods for optimizing the per-

formance of CXL-based accelerator systems, taking into account factors such as data

transfer times, accelerator utilization, and memory bandwidth. This could involve

developing new algorithms, scheduling techniques, and resource management strate-

gies that are optimized for CXL. To evaluate the effectiveness of CXL in reducing

data transfer and accelerator communication overhead, several factors need to be

considered such as application characteristics (the data size, data access pattern, and

the amount of computation performed by the accelerator) and workload distribution

(a workload that requires frequent data transfers between the CPU and accelerator,

such as iterative algorithms, may benefit more from CXL).

• CXL Accelerator Design: CXL provides a shared memory space between the CPU

and the accelerator, which can lead to contention for shared resources such as mem-

ory bandwidth and cache capacity. CXL also enables the use of advanced features

such as cache coherence, which further increases the complexity of designing ac-

celerator micro-architecture. Maximizing the performance of CXL-based accelera-

tors requires careful design and management of cache coherence protocols to mini-

mize the number of cache misses, optimize data locality, and minimize the impact of
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memory access latency by utilizing pipelining and parallelism in accelerator micro-

architecture. Overall, the use of CXL requires careful consideration of accelerator

micro-architecture to ensure that the benefits of the technology are fully realized and

that the accelerator can operate efficiently in a shared memory environment.

• CXL for Edge Computing: Investigate the use of CXL for edge computing, ex-

ploring the design of low-power, low-cost CXL-based accelerators for use in IoT

devices, autonomous robots, and other embedded systems. While CXL was orig-

inally designed for use in data centers, it is now being explored for its potential

applications in edge computing. Edge computing involves processing data closer to

the source of its generation, which reduces latency and increases the speed of data

analysis. By using CXL technology in edge computing systems, it may be possible

to further enhance the performance and efficiency of these systems.

4.3 Final Remarks

In summary, we strongly believe that to make informed decisions about the usage of accel-

erators, it is necessary to evaluate the accelerator-based system as a whole and consider all

the accelerator taxes involved. In this regard, in the first part of our research, we emphasize

the need for a holistic, end-to-end analysis of the workloads using AI and HE applications.

In the second part of our research, we propose a robust and scalable software-hardware

framework for accelerator evaluation using BlackParrot, an open-source RISC-V based

SoC design. Our framework can be used by accelerator designers and system architects to

perform an end-to-end performance analysis of accelerators by carefully accounting for the

interaction of the accelerator with the rest of the system. In the third part of our research, we

present RISE, a full RISC-V SoC, consisting of BlackParrot core and an efficient custom-

designed accelerator tailored for accelerating end-to-end HE client-side operations.
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