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ABSTRACT 

The growth of data capacity in optical communications links, which form the 

critical backbone of the modern internet, is facing a slowdown due to fundamental 

nonlinear limitations, leading to an impending "capacity crunch" on the horizon. Current 

technology has already exhausted degrees of freedom such as wavelength, amplitude, 

phase and polarization, leaving spatial multiplexing as the last available dimension to be 

efficiently exploited. To minimize the significant energy requirements associated with 

digital signal processing, it is critical to explore the upper limit of unmixed spatial channels 

in an optical fiber, which necessitates ideally packing spatial channels either in real space 

or in momentum space. The former strategy is realized by uncoupled multi-core fibers 

whose channel count has already saturated due to reliability constraint limiting fiber sizes. 

The later strategy is realized by the unmixed multimode fiber whose high spatial efficiency 

suggest the possibility of high channel-count scalability but the right subset of mode ought 

to be selected in order to mitigate mode coupling that is ever-present due to the plethora of 

perturbations a fiber normally experiences. The azimuthal modes in ring-core fibers turn 

out to be one of the most spatially efficient in this regard, by exploiting light’s orbital 

angular momentum (OAM). Unmixed mode counts have reached 12 in a ~1km fiber and 
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24 in a ~10m fiber. However, there is a fundamental bottleneck for scalability of 

conventionally bound modes and their relatively high crosstalks restricts their utility to 

device length applications. 

In this thesis, we provide a fundamental solution to further fuel the unmixed-

channel count in an MMF. We utilize the phenomenon of topological confinement, which 

is a regime of light guidance beyond conventional cutoff that has, to the best of our 

knowledge, never been demonstrated till publications based on the subject matter of this 

thesis. In this regime, light is guided by the centrifugal barrier created by light’s OAM 

itself rather than conventional total internal reflection arising from the index 

inhomogeneity of the fiber. The loss of these topologically confined modes (TCMs) 

decreases down to negligible levels by increasing the OAM of fiber modes, because the 

centrifugal barrier that keeps photons confined to a fiber core increases with the OAM 

value of the mode. This leads to low-loss transmission in a km-scale fiber of these cutoff 

modes. Crucially, the mode-dependent confinement loss of TCMs further lifts the 

degeneracy of wavevectors in the complex space, leading to frustration of phase-matched 

coupling. This thus allows further scaling the mode count that was previously hindered by 

degenerate mode coupling in conventionally bound fiber modes. The frustrated coupling 

of TCMs thus enables a record amount of unmixed OAM modes in any type of fiber that 

features a high index contrast, whether specially structured as a ring-core, or simply 

constructed as a step-index fiber. Using all these favorable attributes, we achieve up to 50 

low-loss modes with record low crosstalk (approaching -45 dB/km) over a 130-nm 

bandwidth in a ~1km-long ring-core fiber. The TCM effect promises to be inherently 
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scalable, suggesting that even higher modes counts can be obtained in the future using this 

design methodology. Hence, the use of TCMs promises breaking the record spectral 

efficiency, potentially making it the choice for transmission links in future Space-Division-

Multiplexing systems.  

Apart from their chief attribute of significantly increasing the information content 

per photon for quantum or classical networks, we expect that this new light guidance may 

find other applications such as in nonlinear signal processing and light-matter interactions. 
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Chapter 1  

1. Introduction 

1.1. Optical Communication and Capacity Crunch   

The interconnectivity of our world owes much to the revolutionary impact of optical 

communication, which has radical transformed our societies during the last four decades. 

While optical communication has been enabled by advancements in technologies like 

lasers, fast detectors, and transmitters, the backbone of the communication infrastructure 

relies heavily on optical fibers. Following its invention in the 1970s, optical fiber cables 

rapidly replaced copper wire communication links, due to their larger bandwidth, cheaper 

price, and greater stability. 

Driven by the technologies shown in Fig. 1.1, the information capacity of a single 

optical fiber has increased by several orders of magnitude since the 1980s. Despite an 

exponential increase in demand for data services, the growth of data capacity is 

nevertheless experiencing a slowdown due to the fundamental limits of current technology. 

Optical fiber capacity and interface rates scale at ~20% per year, while global traffic 

continues to grow   ~45% per year (Winzer et al. 2017). As a result, we are headed towards 

a so-called capacity crunch. 
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Figure 1.1: The evolution of system capacity per fiber in optical communication systems 

(Mizuno et al., 2017). While fiber capacity has increased dramatically since 1980, it is 

now facing a capacity crunch around 100Tb/s due to the fundamental nonlinear Shannon 

limit. System capacity beyond this limit was demonstrated using space-division 

multiplexing (SDM), which could expand capacity. 

The theoretical information capacity is given by the Shannon formula (Shannon, 1948) 

C = B ∙ log2(1 + SNR)                                                          (1.1) 

where B is the bandwidth and SNR represents the signal-to-noise ratio.  

The primary limit of the current system derives from the fiber nonlinearity 

manifested under high optical power, which fundamentally restrains the maximum SNR 

allowed in the communication system. This nonlinear, Shannon capacity limit suggests that 

maximum spectral efficiency (i.e., the ratio of capacity to bandwidth) is around 10 bit/s/Hz, 

meaning   the maximum capacity of a standard, single-mode fiber (SMF) is about 100Tbit/s 

in the conventional telecom band (Mitra et al. 2001). To mitigate fiber nonlinearity, various 
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types of special fibers have been developed, such as micro-structured fibers with hollow 

cores (Roberts et al, 2005) and fibers with lower nonlinear indices based on new materials 

(Dragic et al, 2012), but none of them have been competitive with silica fiber in terms of 

cost, material loss, and fabrication complexity. 

Wavelength-division multiplexing (WDM) fueled the capacity evolution during the 

1990s, with a growth rate of about 78% per year over 10 years (R.-J. Essiambre et al., 

2010). Conventional bandwidth is limited to C-band (1530nm to 1565nm) due to the gain 

window of Erbium-Doped Fiber Amplifier (EDFA). Although various optical 

amplification technologies that could broaden the WDM window are currently being 

studied, it is estimated that this strategy would yield less than a fivefold increase in system 

capacity because of the limited low-loss window of silica fiber and paucity of gain media 

outside conventional bands (Winzer et al., 2014). 

For a given bandwidth and SNR, the Shannon formula provides a theoretical 

capacity that can only be achieved with optimum constellation and coding. Modulation 

techniques have also significantly advanced such that the practical capacity has nearly 

approached the theoretical Shannon limit (Winzer et al., 2012). 

Current technologies have already exhausted the dimensions of wavelength, 

polarization, time, and phase, leaving spatial diversity as the remaining dimension to 

efficiently exploit (Winzer et al., 2014). Similar to WDM, partial division multiplexing 

(SDM) could offer multiple orders of magnitude of capacity enhancement, and thus a 

potential solution to address the tremendous growth in demand for data services. 
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1.2. Space-Division Multiplexing 

Unlike wavelength channels, spatial channels can more easily mix in one fiber, 

inevitably resulting in crosstalk that fundamentally impairs the SNR. One approach to 

reducing crosstalk involves isolating independent spatial channels. In this approach, 

crosstalk is one of the significant metrics for evaluating the capacity of the unmixed SDM 

system. In such a system with M multiple channels, the Shannon formula becomes (Luis et 

al., 2017)  

C = B∑log2(1 + (SNR𝑖
−1 + XT𝑖)

−1)

𝑀 

 𝑖=1

                                     (1.2) 

where XT𝑖 is the sum of the crosstalk (XT) from all other channels to the i-th channel. 

Although the channel count is critical in multiplying the capacity, there is a trade-off 

between M and XT. 

One direct approach to accommodate multiple channels within a fiber is the 

utilization of uncoupled multicore fibers (MCFs), where additional independent cores are 

added to a SMF. Although complete elimination of inter-core coupling is not possible 

regardless of the core separation distance, the term "uncoupled" signifies that the mode 

coupling (or crosstalk) is sufficiently low for the desired modulation format and 

transmission distance (detailed in Chapter 8). By employing large core spacing and core 

trenches to suppress inter-core coupling, crosstalk levels of approximately -40 dB/km can 

be achieved for up to 22 homogeneous cores in a fiber with a cladding diameter of 260 μm. 

This has led to successful transmission demonstrations of 2.15 Pb/s when combined with 

WDM techniques (Puttnam et al., 2015).  
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However, limitations in reliability necessitate that the fiber diameter remains below 

approximately 250 μm (Sakamoto et al., 2017), thereby fundamentally restricting the 

number of cores that can be accommodated within a single fiber. By incorporating 

heterogeneous cores that suppress inter-core coupling, the core count can be maximized to 

37 (Sasaki et al., 2017). Nevertheless, this introduces sensitivity to macro-bending due to 

bend-induced effective index variation (Saitoh et al., 2013), resulting in significant 

degradation of crosstalk (e.g., up to -20 dB/km) around and below the threshold bending 

radius (approximately 30 mm, dependent on the inter-core index difference). Despite 

notable advancements, both the capacity and core count have reached a saturation point, 

suggesting an inherent scalability limit for MCF technology. 

Perhaps a simpler way to increase capacity would be adding more SMFs as “fiber 

bundles”. Indeed, this is the current approach to relieving the capacity crunch without 

drastically altering current optical fiber cable infrastructure. To justify the replacement of 

the fiber bundle, any SDM technology must present an obvious cost or energy advantage. 

In this context, the limitation on capacity is more fundamentally related to the cost and 

energy expended per bit (Winzer et al., 2011). Although optical fiber has a higher capacity 

than copper wire, it was not until the 1970s, when the cost of optical fiber was reduced to 

that of copper wire, that optical fiber was widely adopted. Subsequent mass production 

further drove down the price, firmly establishing optical fiber as the dominant links for 

long-haul communications systems. 

Replacing the entire infrastructure of the telecom system, especially for sub-ocean 

fiber cables spanning over 1000 km, will be an expensive endeavor. Instead, a more 
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feasible approach would involve integrating SDM technology gradually, starting with 

certain fiber components through an incremental strategy. This approach allows the current 

SMF-based system to benefit from SDM capabilities, even if long-haul transmission 

remains the ultimate objective. In particular, an SDM amplifier with shared pump 

amplification could be helpful in reducing energy consumption even in the current SMF-

based telecom system. Notably, this approach has already been successfully implemented 

in submarine optical communication, marking the first commercial adoption of SDM 

technology (Google, 2019). 

Given the challenges associated with mitigating the mixing of spatial channels, an 

alternative approach is to intentionally mix and then disentangle them using MIMO 

Multiple-Input Multiple-Output (MIMO) digital signal processing (DSP). This technique 

is already well-established in wireless radio-wave antennae. Since spatial channels 

arguably mix after a long distance (i.e., in fiber with a reasonably high channel count), the 

question is not whether, but when to use MIMO DSP. In this approach, one must 

thoroughly mix the spatial channels, which can be done using conventional multimode 

fibers (MMFs). Data transmission using up to 15 spatial modes with 30 by 30 MIMO was 

demonstrated in a ~23km graded index MMF and had spatial efficiency much higher than 

that of the MCF (Fontaine et al., 2015). 

However, MIMO DSP requires scaling the number of finite impulse response (FIR) 

filters as the square of the number of modes. This computation is very power consuming 

and such complexity limits the potential scalability. As such, it doesn’t fully address the 

power and cost concerns pertaining to the current fiber bundle. Given that the MIMO 



 

 

7 

algorithm is designed for a specific system with a given number of channels, it is 

incompatible with a system that adds, drops, and re-routes individual SDM tributaries. 

Furthermore, this solution cannot be applied to single photons in quantum networks. 

On the other hand, MIMO DSP is not incompatible with unmixed SDM. Coupled-

core MCF with "partial MIMO" reaches the maximum capacity ever demonstrated by a 

single fiber (Soma et al., 2017). In this regard, the number of unmixed channels is still the 

backbone. By introducing brute-force MIMO DSP on spatial channels that can be 

potentially disentangled physically, one unnecessarily wastes the system's energy 

consumption and computation power. Therefore, it is critical to figure out the scalability 

of unmixed spatial channels, based on which there should be a suitable combination with 

partial MIMO to reach minimal cost and energy per bit. Nonetheless, the balance with 

MIMO is not the primary concern in this dissertation. We still focus on the former question 

– what is the scalability of unmixed spatial channels in a fiber? 

On the other hand, MIMO DSP and unmixed SDM are not mutually exclusive. 

Coupled-core MCFs implementing "partial MIMO" have achieved the highest 

demonstrated capacity by a single fiber (Soma et al., 2017). In this context, the number of 

unmixed channels remains the backbone. Implementing brute-force MIMO DSP on spatial 

channels that can potentially be physically disentangled would result in unnecessary energy 

consumption and computational demands on the system. Therefore, it becomes imperative 

to determine the scalability of unmixed spatial channels, as this knowledge will guide the 

appropriate combination of partial MIMO for achieving minimal cost and energy per bit. 

However, it should be noted that achieving a balance with MIMO is not the primary focus 
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of this dissertation. Instead, the central focus remains on investigating the scalability of 

unmixed spatial channels within a fiber. 

Similar to isolating spatial cores in real space, separating spatial modes of an MMF 

in momentum space can also mitigate mode coupling. However, due to their higher state 

density and external perturbations, spatial modes in an MMF are prone to easy coupling, 

making it a fiber typically considered one in which all the modes mix. This mode mixing 

is also compounded by a lack of pure mode excitation, which distinguishes it from the 

inherent mode coupling that occurs within the fiber. Nevertheless, with advancements in 

mode excitation and characterization techniques, there has been a recent re-examination of 

the modal properties within an MMF. By carefully selecting a suitable subset of modes and 

reducing the number of undesired modes, it becomes possible to achieve a substantial 

number of unmixed modes within a highly multimode fiber. As depicted in Figure 1.2, 

significant advancements have been made in the development of unmixed-mode count 

within 10-100m-long MMF (Ramachandran et al., 2009, Ramachandran et al., 2010, 

Bozinovic et al., 2012, Gregg et al., 2019, Tugchin et al., 2015, Jung et al., 2017, Sit et al., 

2018, Yan et al., 2019, Zhu et al, 2020, Liu et al., 2020, Rottwitt et al., 2019, Zhu et al., 

2017, Ramachandran et al., 2008, Demas et al., 2015, Rishoj et al., 2019) and with >1km-

long MMF (Bozinovic et al., 2011, Bozinovic et al., 2013, Ung et al., 2014, Gregg et al., 

2015, Nejad et al., 2016, Gregg et al., 2016, Wang et al., 2016, Ingerslev et al., 2018, 

Cozzolino et al., 2019, Liu et al., 2016, Wang et al., 2022, Lu et al., 2022). 

 The available modes within multimode fibers (MMFs) can be classified into two 

categories: radial modes and azimuthal modes. Among these, the azimuthal modes in ring-
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core fibers have proven to be the most spatially efficient, leveraging the concept of light's 

orbital angular momentum (OAM). Remarkable progress has been achieved in the realm 

of unmixed mode count, with a ~1 km fiber demonstrating up to 12 unmixed modes (Gregg 

et al., 2016), and a ~10 m fiber showcasing 24 unmixed modes (Gregg et al., 2019), as 

illustrated in Fig. 1.2. Since a fiber core occupies a much smaller area, the spatial efficiency 

is much higher than that of MCFs. However, the further scalability of this approach still 

faces challenges in terms of mode coupling, and the relatively high crosstalk associated 

with it limits its practical application to device lengths. 

 

Figure 1.2: Development of unmixed-mode count in an MMF with 10-100m long and 

with >1km long. The fibers illustrated here include simple step-index fibers utilizing high-

order radial modes and ring-core fibers utilizing high-order azimuthal modes. The mode-

count record is 24 over 10s-m length and 12 over 1-km length, both in ring-core fibers.  

Overall, the field of SDM research has progressed beyond merely pursuing 

capacity-focused hero experiments. The current focus lies in optimizing existing 

technologies and exploring various SDM devices for related applications. It is important to 

note that the availability of unmixed spatial modes also provide a large tool box for 

intriguing applications involving linear and nonlinear inter-modal interactions. 
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1.3. Beyond Cutoff 

Conventionally, the cutoff of fiber modes is believed to be determined by the fiber's index 

contrast, as it dictates the condition for total internal reflection (TIR). The previous section 

highlighted the significance of selecting the appropriate subset of modes, which primarily 

exists at the high-order end and accordingly gets limited by this forbiddance region. 

However, despite the extensive research conducted on MMFs and OAM modes in recent 

years, there remains a lack of comprehensive understanding regarding the fundamental 

concept of cutoff.  

The high-order radial and azimuthal modes mentioned earlier exhibit 

fundamentally distinct behavior in close proximity to, and even beyond, the conventional 

cutoff. Surprisingly, light with high OAM can be guided beyond this cutoff limit. This 

unique regime of guidance – topological confinement –holds the potential to further 

enhance the scalability of uncoupled MMFs, and is the central topic of this thesis.   

1.4. Thesis Content and Organization 

This thesis presents topological confinement as a unique regime of light guidance able to 

surpass the conventional TIR-based cutoff. Our findings demonstrate how topological 

confinement can address mode mixing issues in MMFs and achieve a record number of 

low-loss and low-crosstalk modes. These outcomes have direct applications in classic and 

quantum communication, as well as in various inter-modal interactions in nonlinear as well 

as quantum regimes. 

The thesis is organized as follows: 



 

 

11 

Chapter 2 and 4 provide an overview of the theoretical framework of this thesis. 

These chapters cover the properties of modes, and form a basis from which to understand 

the issue of mode coupling in MMF. Based on the theories reviewed, we conclude that 

OAM modes are the preferable eigenmodes for unmixed spatial channels. Chapter 3 

provides the techniques for mode characterization and excitation used in this thesis. 

Chapter 5 describes our efforts to scale the number of unmixed OAM bound modes. 

Based on our experiments, we conclude that mode count is fundamentally restricted by the 

challenges associated with shaping the refractive index profile and the fabrication process 

of the fiber. 

Chapter 6 then describes the principle of topologically confined modes (TCMs) and 

its potential to further scale mode count. Chapter 7 details the frustrated coupling 

phenomenon in TCMs. This effect fundamentally suppresses coupling between modes, 

leading to a record mode count in ring-core and step-index fibers. Chapter 8 demonstrates 

the inherently low crosstalk of TCMs, around two orders of magnitude lower than that of 

the bound modes. Chapter 9 demonstrates ~1km transmission of TCMs with record low 

crosstalk in the telecom S, C and L bands. The spectral efficiency is estimated to be on par 

with that of the uncoupled MCF.   

The final chapter, Chapter 9, summarizes the overall findings of our topologically 

confined mode research and discusses possible directions for future research.  

Appendix A details our method of making end caps for the ring-core fiber to avoid 

Fresnel reflections at the fiber end-facets. Appendix B summarizes the theoretical 



 

 

12 

framework underlying the phase matched layer (PML) scalar mode solver used throughout 

the thesis.  
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Chapter 2  

2. High-Order Modes in Fibers 

An eigenmode (or simply “mode”) of a fiber is a stable state of the electric field that 

maintains its transverse distribution along the propagation in a fiber. To understand the 

light propagation in optical fibers, one must identify a fiber's eigenmodes and their 

associated properties. This chapter will show that some modes are valid in certain 

circumstances or approximations, but do not emerge as true eigenmodes in a more general 

and rigorous case. That said, this thesis still uses the common nomenclature (e.g., LP modes) 

to refer these modes. Additionally, the term “true” or “real” is used to designate which 

eigenmodes actually satisfy the initial definition. 

Since its invention in the 1970s, single-mode fibers (SMFs) have captured the 

interest of researchers, overshadowing the utilization of multimode fibers (MMFs). SMFs 

have become the backbone of modern communications infrastructure, while MMFs are 

rarely employed for long-haul transmission. The abundance of HOMs in an MMF creates 

a significant challenge to exciting and propagating specific modes. The modal dispersion 

of MMFs thus becomes detrimental to the signals. Although the demand for fibers with 

large effective areas and low nonlinearity (primarily for fiber laser applications) has 

sparked attention towards multimode fibers (Ramachandran et al., 2006; Abedin et al., 

2019), the focus has predominantly revolved around eliminating HOMs to achieve 

effective single-mode guidance. This has been accomplished through the use of specialized 

fibers such as photonic-bandgap fibers (Cregan et al., 1999), anti-resonant fibers (Benebid, 



 

 

14 

2002), or leakage channel fibers (Dong et al., 2007). 

For a considerable period, it was commonly believed that all modes within a highly 

multimode fiber inevitably mix, which proved advantageous for applications in MIMO 

DSP (Fontaine, 2018), spectrometry (Redding et al., 2013), and imaging (Cizmar et al., 

2012). Notably, this mode mixing could be attributed to impure mode excitation or in-fiber 

mode coupling. With the advancement of mode excitation and characterization techniques, 

the independent utilization of HOMs and their interactions has become possible, rekindling 

interest in multimode fibers in recent years. This powerful toolbox provides many more 

degrees of freedom to manipulate, with each HOM having a characteristic phase and group 

velocity, group-velocity dispersion, and modal area. Consequently, a range of applications 

has emerged, including dispersion engineering (Ramachandran et al., 2001; Gnauck et al., 

2000), tailored Raman/Brillouin scattering (Rishoj et al., 2019; Russell et al., 1990), third-

harmonic generation (Omenetto et al., 2001), expanded supercontinuum generation 

(Efimov et al., 2003), power-scalable source engineering (Demas et al., 2017), and novel 

forms of quantum sources (Cruz-Delgado et al., 2016). Moreover, the ability to control 

specific HOMs offers a plethora of additional spatial channels (Bozinovic et al., 2013; 

Ingerslev et al., 2018), holding promise for alleviating the impending capacity limitations. 

Therefore, the objective of this chapter is to obtain the eigenmodes within the fiber 

and elucidate their fundamental properties. Starting from the classic wave equation, we 

derived the conventional scalar modes. The degeneracy of scalar modes is lifted due to 

spin-orbit interactions, leading to exact eigenmode solutions that can be mathematically 

expressed in the OAM and vectorial bases. Through a thorough review of the essential 
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properties of these modes within a generate context, this chapter establishes the theoretical 

framework that serves as the foundation for the subsequent chapters of this thesis. 

2.1. Total Internal Reflection and Waveguiding 

Since its demonstration by Colladon, Babinet and Tyndall more than 150 years ago, total 

internal reflection (TIR) has been the primary means for waveguiding. As shown in the in 

Fig. 2.1, a light ray is totally internally reflected only if 

  0 ≤ 𝜃𝑧 ≤ 𝜃𝑐                                                            (2.1) 

where 𝜃𝑐 is the complement of the critical angle given by  

 𝜃𝑐 = cos 
−1 (

𝑛cl
𝑛co
)                                                       (2.2) 

where 𝑛co and 𝑛cl are the refractive index of the core and cladding, respectively.  

 

Figure 2.1: Schematic of light guidance in a step-index planar waveguide. The refractive 

index of the core (nco) is higher than that of the cladding (ncl). 𝜃𝑧 is the angle between the 

wavevector k and the z axis. The blue and yellow rays are totally internally reflected in 

the waveguide, whereas the red ray is unbound because its 𝜃𝑧 is too large. kT and 𝛽 are 

the transverse and longitudinal component of the wavevector k. 

The ray picture is valid only if the wavelength of light is much smaller than the size 

of the waveguide. Otherwise, only discrete values of 𝜃𝑧  are permitted for a given 

wavelength of light. The transverse component of the wavevector k, kT, must meet the the 
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transverse resonance requirement. Each discretized 𝜃𝑧  represents to a mode. The 

longitudinal (z) component of the wavevector k is given by  

𝛽 = 𝑛co𝑘0 cos 𝜃𝑧                                                       (2.3) 

where 𝑘0 = 2𝜋/𝜆 is the free-space wavevector of light with wavelength 𝜆. 𝛽 is also known 

as the propagation constant of a mode. The phase shift of each mode is thus given by 𝛽𝑧. 

The 𝛽 of bound modes is given by the TIR condition (Eq. 2.1 & 2.2) as 

𝑛cl𝑘0 ≤ 𝛽 ≤ 𝑛co𝑘0                                                          (2.4) 

Usually, 𝛽 of a mode is represented by its effective refractive index as 

𝑛𝑒𝑓𝑓
 =

𝛽

𝑘0
 =

𝜆

2𝜋
𝛽                                                           (2.5) 

Under this representation, the phase shift of each distinct zig-zag light path in a waveguide 

with core index nco is equivalently considered as the phase shift of a longitudinal light path 

in a waveguide with core index 𝑛𝑒𝑓𝑓
 . The TIR condition represented by 𝛽 (Eq. 2.3) thus 

can be rewritten as  

𝑛cl < 𝑛𝑒𝑓𝑓
 < 𝑛co                                                            (2.6) 

In contrast, a mode is cut off when 𝛽 < 𝑘0
 𝑛𝑐𝑙
 , which translates to  

𝑛𝑒𝑓𝑓
 < 𝑛𝑐𝑙

                                                               (2.7) 

2.2. Scalar Modes 

The electromagnetic method can provide more general and rigorous analysis of modes in 

optical fibers. The wave equation of the electrical field 𝓔 in inhomogeneous media can be 

directly derived from Maxwell equation as (Ghatak and Thyagarajan, 1998) 
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∇2𝓔 + ∇(
1

𝑛2
∇𝑛2 ∙ 𝓔) − 𝜖0𝜇0𝑛

2
𝜕2𝓔

𝜕𝑛2
= 0                                     (2.8) 

where 𝜖0 is the permittivity of free space, 𝜇0 is the free space magnetic permeability, 𝑛 

is the refractive index. The electrical field 𝓔  have components in three orthogonal 

polarization that they are coupled with each other.   

In a circularly symmetric fiber, the refractive index depends only on the radial 

coordinate 𝑟: 

𝑛2 = 𝑛2(𝑟)                                                                  (2.9) 

By substituting it into Eq. (2.8) in cylindrical coordinates, one can see that the time, 

the longitudinal coordinate z, and the azimuthal coordinate  parts can be separated. 

Therefore, the solution of the first equation can be written in the form of  

𝓔 = 𝓔𝑟(𝑟)𝑒
𝑖𝐿𝜑𝑒𝑖(𝜔𝑡−𝛽𝑧)                                                          (2.10) 

where 𝜔  is the angular frequency, 𝐿  is the azimuthal quantum number as 𝐿 =

0,±1,±2,±3, 𝑒𝑡𝑐, 𝛽 is the propagation constant of a mode. 

In a simple and common step-index fiber  

𝑛(𝑟) = {
𝑛co;   𝑟 < 𝑎   𝑐𝑜𝑟𝑒

𝑛cl;   𝑟 > 𝑎   𝑐𝑙𝑎𝑑𝑑𝑖𝑛𝑔
                                                (2.11) 

where 𝑛𝑐𝑜 ≈ 𝑛𝑐𝑙, which allows the well-known weakly guiding approximation or the scalar 

wave approximation.  It is valid for common practical fibers with extremely low index 

contrasts. The light propagating in such a fiber is approximated to a free-space beam with 

transverse electric and magnetic field so it can have an arbitrary state of polarization. In 

other words, the polarization and field distribution are decoupled. The scalar field 

distribution can be written as  
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Ψ = 𝐹(𝑟)𝑒𝑖𝐿𝜑𝑒𝑖(𝜔𝑡−𝛽𝑧)                                                      (2.12) 

where 𝐹(𝑟) is the field distribution in the radial direction.  

Substituting Eq. (2.12) into Eq. (2.8) and using cylindrical coordinates, we obtain 

𝑑2𝐹(𝑟)

𝑑𝑟2
+
1

𝑟

𝑑𝐹(𝑟)

𝑑𝑟
+ (𝑘0

2𝑛2 − 𝛽2 −
𝐿2

𝑟2
)𝐹(𝑟) = 0                   (2.13) 

which is the classic Bessel’s equation. Given the convergence requirement at 𝑟 = 0 and 

𝑟 → ∞, we obtain the solution as 

𝐹(𝑟) =

{
 

 
𝐴

𝐽𝐿(𝑈)
𝐽𝐿 (
𝑈𝑟

𝑎
) ;   𝑟 < 𝑎

𝐴

𝐾𝐿(𝑊)
𝐾𝐿 (

𝑊𝑟

𝑎
) ;   𝑟 > 𝑎

                                            (2.14) 

where 

𝑈 = 𝑎(𝑘0
2𝑛1
2 − 𝛽2)

1
2                                                         (2.15) 

𝑊 = 𝑎(𝛽2−𝑘0
2𝑛2
2)
1
2                                                         (2.16) 

Both U and W take real values for all the bound modes with 𝑛𝑐𝑙
 < 𝑛𝑒𝑓𝑓

 < 𝑛𝑐𝑜
 . 𝐽𝐿(𝑥) is 

the Bessel function of the first kind, which oscillates like sine function but with a 

reducing amplitude. 𝐾𝐿(𝑥) is the modified Bessel function of the second kind, which has 

an asymptotic form as  

𝐾𝐿(𝑥̃)
𝑥̃→∞
→  (

𝜋

2𝑥̃
)

1
2
𝑒−𝑥̃                                                     (2.17) 
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where 𝑥̃ =
𝑊𝑟

𝑎
.  Hence, the field decays with increase radius at an exponential rate in the 

cladding. For a given L, there will multiple solutions yielding discrete 𝛽𝐿,𝑚
 , where m is 

the radial quantum number (m=1,2,3…). The solutions can be obtained by considering 

continuous derivative of the field at 𝑟 = 𝑎. Effectively, the fields are stationary waves in 

the radial direction, with (m − 1) signifying the number of intensity nulls. For cutoff 

mode with 𝑛𝑒𝑓𝑓
 < 𝑛𝑐𝑙

 , W becomes imaginary, so that the field in the cladding shows 

oscillating distribution according to Eq. (2.17). 

Other than the complex representation 𝑒𝑖𝐿𝜑, a more conventional solution of the 

azimuthal dependence is in the sinusoidal form as sin 𝐿𝜑 or cos 𝐿𝜑, where L usually take 

positive integer (equivalent to the negative ones). These two representations are 

mathematically equivalent from Euler’s theorem. One set of solution can be decomposed 

into the combination of the another. Note that this equivalency also applies to the wave 

function depended on time and z, while the exponential representation 𝑒𝑖(𝜔𝑡−𝛽𝑧) is more 

convenient to handle. In the form of sinusoidal representation, the transverse dependence 

of the modal field can be written as  

𝜓(𝑟, 𝜑) = 𝐹|𝐿|,𝑚(𝑟) [
cos(𝐿𝜑)

sin(𝐿𝜑)
]                                         (2.18) 

which is well known as the linearly polarized (LP) mode. The even (cos (𝐿𝜑)) and odd 

(sin (𝐿𝜑) modes are degenerate in 𝛽. Accounting for two orthogonal polarizations, there 

can be four degenerate modes for a given combination of 𝐿 (non-zero) and m.  
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[
 
 
 
 
LP𝐿,𝑚,𝑥

𝑒𝑣𝑒𝑛

LP𝐿,𝑚,𝑥
𝑜𝑑𝑑

LP𝐿,𝑚,𝑦
𝑜𝑑𝑑

LP𝐿,𝑚,𝑦
𝑒𝑣𝑒𝑛

]
 
 
 
 

= 𝐹𝐿,𝑚(𝑟)

[
 
 
 
𝑥̂ cos(𝐿𝜑)

𝑥̂ sin(𝐿𝜑)

𝑦̂ sin(𝐿𝜑)

𝑦̂ cos(𝐿𝜑)]
 
 
 

                                      (2.19) 

For 𝐿 = 0, it possesses a two-fold degeneracy as  

[
LP0,𝑚

𝑥

LP0,𝑚
𝑦 ] = 𝐹0,𝑚(𝑟) [

𝑥̂  

𝑦̂  
]                                                 (2.20) 

These degenerate modes continue to be orthogonal in transverse fields (i.e. their 

overlap integrals between either two modes are zero). Orthogonality is defined in terms of 

field distribution, whereas degeneracy is defined in terms of 𝛽 (or 𝑛𝑒𝑓𝑓
 ). Notice that the 

fourfold degeneracy is only true under the scalar wave approximation and is no longer valid 

for high-|L modes in a fiber with a relatively large index contrast (as shown in Sec 2.3). 

Figure 2.2 depicts the intensity distribution of several even LP modes with different 

L and m combinations. The field with L=0 and m=1 is the well-known fundamental mode 

of a single-mode fiber (SMF). 



 

 

21 

 

Figure 2.2: Intensity patterns of representative LP even modes with various combination 

of radial order m (1-5) and azimuthal order L (0-5).  

 The spatial distribution of the electric field determines the effective area (𝐴𝑒𝑓𝑓) of 

a certain mode, given by (Agrawal, 2019) 

𝐴𝑒𝑓𝑓 =
(∫|𝜓|2𝑑𝐴)2

∫|𝜓|4𝑑𝐴
                                                   (2.21) 

where 𝑑𝐴 is the spatial element. The effective area is a critical metric in fiber nonlinearity. 

Large 𝐴𝑒𝑓𝑓 is particularly advantageous for improving the nonlinear resistance of a fiber. 

The aforementioned modal characteristics assume a fixed wavelength. Yet, a mode 

is naturally dispersive – 𝑛𝑒𝑓𝑓
  decreases monotonically with increasing wavelength. The 

chromatic dispersion of a certain 𝑛𝑒𝑓𝑓
  follows the same trend as the silica dispersion but 
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the slope is more steep. Thus, each mode has a cutoff wavelength (c) beyond which the 

𝑛𝑒𝑓𝑓
  become lower than the cladding (silica) index, such that the mode is cut off (Eq. 2.7). 

Figure 2.3 illustrates the 𝑛𝑒𝑓𝑓
  distribution of modes in a step-index fiber with index 

contrast (∆𝑛 
 = 𝑛𝑐𝑜

 − 𝑛𝑐𝑙
 ) equal to 0.035 and core diameter equal to 10 m. Various modes 

have varied cutoff wavelengths due to their distinct 𝑛𝑒𝑓𝑓
   curves (i.e. modal dispersion). 

Note that two modes with distinct L and m value can be “accidentally degenerate” at a 

wavelength where the two 𝑛𝑒𝑓𝑓
   curves intersect (e.g., LP02 & LP31 at ~1000nm). This can 

result in strong mode coupling, as covered in Chapter 4. 

 

Figure 2.3: 𝑛𝑒𝑓𝑓
  distribution of all the modes in a step-index fiber with index contrast 

equal to 0.035 and core diameter equal to 10 m. Solid, dash, dash-dot color lines represent 

modes with m=1, m=2, m=3. The black dashed line is the refractive index of silica. 

Due to chromatic dispersion, the group velocity of a light pulse traveling through a 

fiber is different from its phase velocity. Similar to the relationship between phase velocity 

and effective index, group velocity is dictated by the group index, given by 
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𝑛𝑔
 = 𝑛𝑒𝑓𝑓

 − 𝜆
𝑑𝑛𝑒𝑓𝑓

 

𝑑𝜆
                                                            (2.22) 

The pulse broadening is characterized by the group-velocity dispersion (GVD) 

𝐷 = −
𝜆

𝑐

𝑑2𝑛𝑒𝑓𝑓
 

𝑑𝜆2
                                                                 (2.23) 

In addition to linear polarization, a scalar mode can exhibit an arbitrary state of 

uniform polarization due to the degeneracy of two orthogonally polarized LP modes. 

Similarly, it is also possible to have circularly polarized (CP) modes, which represent 

spatially uniform circular polarization distributions: 

[
 
 
 
 
CP𝐿,𝑚,+

𝑒𝑣𝑒𝑛

CP𝐿,𝑚,+
𝑜𝑑𝑑

CP𝐿,𝑚,−
𝑜𝑑𝑑

CP𝐿,𝑚,−
𝑒𝑣𝑒𝑛 ]

 
 
 
 

= 𝐹𝐿,𝑚(𝑟)

[
 
 
 
𝜎̂+ cos(𝐿𝜑)

𝜎̂+ sin(𝐿𝜑)

𝜎̂− sin(𝐿𝜑)

𝜎̂− cos(𝐿𝜑)]
 
 
 

                                            (2.24) 

where 𝜎̂± = 𝑥̂ ± 𝑖𝑦̂, representing left- or right-handed circular polarization, respectively. 

Again, it becomes two-fold degenerate for L=0: 

[
CP0,𝑚

+

CP0,𝑚
− ] = 𝐹0,𝑚(𝑟) [

𝜎̂+

𝜎̂−
]                                                     (2.25) 

Figure 2.4 shows the intensity profiles of two representative modes, with 𝐿 = 0, 

and m = 1 and 3, respectively. Both m = 1 and 3 modes can exhibit either linear or circular 

polarization. Note that m = 1 modes have a flat phase front, as contrasted with high-m 

modes where each adjacent intensity ring of the mode accumulates a  phase shift and 

hence their fields are flipped.  Linear combinations of the modes in any polarization bases 

yield modes in another bases. Circular polarization modes can be represented as linear 

combinations of the two orthogonal linear polarization modes, as illustrated by the lines 
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along with the +i and -i signs connecting modes of the different bases. Conversely, linear 

polarization modes can be decomposed into two orthogonal circular polarization modes as 

well. The linear and circular polarizations are thus equivalent, forming the typical mutually 

unbiased bases (MUB), which are commonly used to transmit quantum information (Durt 

et al., 2010). Generally, the fundamental mode of SMFs and the entire class of 𝐿 = 0 

modes are two-fold degenerate (in polarization) and any arbitrary polarization state of these 

modes propagates similarly in a fiber. 

 

Figure 2.4: Intensity distributions for 𝐿 = 0 modes with either linear (straight arrows in 

top row) or circular (circular arrows in bottom row). The relationship between linear and 

circular polarizations are shown for the (a) 𝑚 = 1 and (b) 𝑚 = 3 modes. The colored lines 

indicate linear combination and the +i or –i terms represent a /2 or –/2 phase shift. 

Circular polarization representations where the arrowhead is on the top portion of 

respective circles is  phase-shifted from those in which they are on the bottom of the circle.  

2.3. OAM and Spin-Orbit Interaction 

As mentioned above, the sine and exponential representations of the azimuthal function are 

mathematically equivalent. In other words, they are mutually unbiased bases and one can 

be represented as a combination of the other. In either base, there are four degenerate modes 
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for a given |L| including two independent polarizations. However, it is under the assumption 

of weakly guided approximation which is only valid for modes with low |L|. For high-L 

modes, only one of them is the set of eigenmode bases and the four-fold degeneracy is 

lifted. 

It was demonstrated by Allen in 1992 (Allen et al., 1992) that a beam with helical 

phase 𝑒𝑖𝐿𝜑  carries orbital angular momentum (OAM), different from conventional spin 

angular momentum (SAM) carried by circularly polarized light. The OAM of light is a new 

degree of freedom and has gained a lot of attention since then given that it theoretically 

allows unlimited scalability for both classical and quantum communications.  

Figure 2.5 shows the intensity distribution of a few representative OAM modes 

with various combination of the L and m.  

 

Figure 2.5: Intensity patterns of representative OAM modes with various combination of 

radial order m (1-5) and azimuthal order L (0-5). 
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Depending on the signs of OAM and SAM, there are four combinations, thus four 

near-degenerate modes for a given |L|. They can be classified into two categories: Spin-

Orbit aligned (SOa) modes whose signs of  𝜎̂,  and L are the same and Spin-Orbit anti-

aligned (SOaa) modes whose signs of  𝜎̂,  and L are the opposite. Under weakly guiding 

approximation, all these four modes for a given |L| are degenerate in the propagation 

constant β and hence the 𝑛𝑒𝑓𝑓
 . This degeneracy is lifted due to spin-orbital interaction 

(SOI), which arises from the anisotropy of the fiber’s refractive index distribution (Leary 

et al., 2009, Vitullo et al., 2017).  It is analogous to the atomic spin-orbit interaction that 

splits the degeneracy of electronic energy level. The degree of SOI depends on the 

alignment of spin and orbital angular momentum. In other word, the SOa and SOaa have 

different propagation constant. Therefore, the electrical field (of |𝐿| > 1 ) now become  

𝑬𝐿,𝑚 =

[
 
 
 
 OAM+𝐿

+ 𝑒𝑖𝛽𝐿,𝑚
′ 𝑧

OAM−𝐿
− 𝑒𝑖𝛽𝐿,𝑚

′ 𝑧

OAM+𝐿
− 𝑒𝑖𝛽𝐿,𝑚

′′ 𝑧

OAM−𝐿
+ 𝑒𝑖𝛽𝐿,𝑚

′′ 𝑧]
 
 
 
 

                                                 (2.26) 

where  

 

[
 
 
 
OAM+𝐿

+

OAM−𝐿
−

OAM+𝐿
−

OAM−𝐿
+ ]
 
 
 
= 𝐹𝐿,𝑚(𝑟)

[
 
 
 
𝜎̂+ exp(𝑖𝐿𝜑)

𝜎̂− exp(−𝑖𝐿𝜑)

𝜎̂− exp(𝑖𝐿𝜑)

𝜎̂+ exp(−𝑖𝐿𝜑)]
 
 
 

                                        (2.27) 

Note that we leave aside the case of |𝐿| = 1, which contains TE and TM mode and has its 

own peculiar behavior (Ramachandran et al., 2013).  
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The splitting of effective index between the SOa and SOaa modes ∆𝑛𝑒𝑓𝑓
  can be 

written as (Snyder and Love, 1983, Ramachandran et al., 2005). 

∆𝑛𝑒𝑓𝑓
 =

𝐿

𝑘2𝑎2𝑛𝑐𝑜
2
∫ |𝐸(𝑟)|2

𝜕∆𝑛(𝑟)

𝜕𝑟
𝑑𝑟

∞

0

                                  (2.28) 

where r is the radial coordinate, E(r) is the normalized electric field for the unperturbed 

mode, a is the size of the fiber core, k is the free-space wave vector defined as k = ω/c, 

where ω is the angular frequency, ∆n(r) is the refractive index profile relative to the index 

of the infinite cladding, and nco is the maximum refractive index. 

Immediately apparent is that the ∆𝑛𝑒𝑓𝑓
  increases with L. Also, the 𝛿𝑛𝑒𝑓𝑓

  is larger 

for higher modal intensity at the core/cladding interface and steeper index slope which can 

be enhanced by using step-index fiber with high ∆𝑛. As it is not clear whether the integral 

on the interaction of the field with fiber index gradients has an analytical solution, we 

numerically calculate this (using a standard scalar mode solver with details shown in the 

Appendix B) in various step-index fiber with ∆n=0.035 and core diameter ranging from 

15um to 40um.  

The ∆𝑛𝑒𝑓𝑓
  is plotted with respect to L2 and L3, and shown in Fig. 2.6a and 2.6b, 

respectively. We found ∆𝑛𝑒𝑓𝑓
 ∝ 𝐿2  only for small-size step-index with core diameter 

around 15m while it becomes ∆𝑛𝑒𝑓𝑓
 ∝ 𝐿3 for core diameter ≥ 20𝜇𝑚 and the coefficient 

of determination R2 become higher for larger fibers.  

Also shown in Fig. 2.6 is that the 𝑛𝑒𝑓𝑓
  for the bound mode with highest-|L| 

become smaller for larger fibers. This is due to lower intensity at the interface in a fiber 

with weaker confinement.  
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Figure 2.6: ∆𝑛𝑒𝑓𝑓
 

  versus (a) L2 and (b) L3, calculated in step-index fibers with size from 

15um to 40um. The R2 is used to evaluate the fitting. 

The corresponding group index difference can be derived from ∆𝑛𝑒𝑓𝑓
  and also 

follows the similar trend of similar dependence as ∆𝑛𝑒𝑓𝑓
  that the ∆𝑛𝑔  scales as 𝐿2  for 

small-size fiber (core diameter ~15m) and scales as 𝐿3 for fiber with core diameter ≥

20𝜇𝑚, as shown in Fig. 2.7. 

∆𝑛𝑔 = 𝑐
𝑑(𝑘∆𝑛𝑒𝑓𝑓

 )

𝑑𝜔
 

= −
𝑐2𝐿

𝜔2𝑎2𝑛𝑐𝑜
2
(∫ |𝐸(𝑟)|2

𝜕∆𝑛(𝑟)

𝜕𝑟
𝑑𝑟

∞

0

− 𝜔
𝑑

𝑑𝜔
∫ |𝐸(𝑟)|2

𝜕∆𝑛(𝑟)

𝜕𝑟
𝑑𝑟

∞

0

)                (2.29) 
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Figure 2.7: ∆𝑛𝑔
 

  versus (a) L2 and (b) L3, calculated in step-index fibers with size from 

15um to 40um. The R2 is used to evaluate the fitting. 

Such dependence of the group index on the OAM order L is demonstrated by 

directly measuring the arrival time of different L’s in a ring-core fiber with 16-m core 

diameter using a single-pixel camera. Note the modal fields primarily locate at the outer 

core/cladding interface, especially for high-L modes with sufficiently higher ∆𝑛𝑒𝑓𝑓
  (details 

in Chapter 4) to separate the two near-degenerate modes. Therefore, both ∆𝑛𝑒𝑓𝑓
  and ∆𝑛𝑔

  

of high-|L| modes have the similar dependence on L in a ring-core fiber. 

Figure 2.8 is a plot of the difference in arrival times over a 200-m ring-core fiber, 

versus square of mode order L2, for the modes whose temporal separation was measurable 

in the experiment (Johnson et al., 2019). The excellent match with a straight line fit (linear 

regression R2 coefficient 0.999) of the data clearly indicates that the modes in this fiber 

follow the splitting as dictated by the spin-orbit interaction of light and the associated 

polarization correction. 



 

 

30 

 

Figure 2.8: Time delay difference of OAM modes in a 200-m-long ring-core fiber with 

16-um ring diameter.  

 

2.4. Vector, OAM and Scalar Modes 

Actually, a more conventional bases of representing these degeneracy-lifted (not scalar) 

modes are the vector modes (HE/EH modes) (Snyder and Love, 1983). Their field 

distribution (for 𝐿 > 1) can be shown as follows  

𝑬𝐿,𝑚 =

[
 
 
 
 
 HE𝐿+1,𝑚

𝑒𝑣𝑒𝑛 𝑒𝑖𝛽𝐿,𝑚
′ 𝑧

HE𝐿+1,𝑚
𝑜𝑑𝑑 𝑒𝑖𝛽𝐿,𝑚

′ 𝑧

EH𝐿−1,𝑚
𝑒𝑣𝑒𝑛 𝑒𝑖𝛽𝐿,𝑚

′′ 𝑧

EH𝐿−1,1
𝑜𝑑𝑑 𝑒𝑖𝛽𝐿,𝑚

′′ 𝑧 ]
 
 
 
 
 

                                               (2.30)                                                

where 

[
 
 
 
 
HE𝐿+1,𝑚

𝑒𝑣𝑒𝑛

HE𝐿+1,𝑚
𝑜𝑑𝑑

EH𝐿−1,𝑚
𝑒𝑣𝑒𝑛

EH𝐿−1,𝑚
𝑜𝑑𝑑 ]

 
 
 
 

≅ 𝐹𝐿,𝑚(𝑟)

[
 
 
 
𝑥̂  cos(𝐿𝜑) − 𝑦̂ sin(𝐿𝜑)

𝑥̂  sin(𝐿𝜑) + 𝑦̂  cos(𝐿𝜑)

𝑥̂  cos(𝐿𝜑) + 𝑦̂ sin(𝐿𝜑)

𝑥̂  sin(𝐿𝜑) − 𝑦̂  cos(𝐿𝜑)]
 
 
 

                          (2.31) 
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For 𝐿 = 0   modes in most weakly guided fibers, the vector modes HE1,𝑚
  are almost 

identical to the scalar modes (with higher index contrast, this approximation breaks down, 

but, to first order, the field distributions remain the same, with only a small modification 

to β). In contrast, vector modes with 𝐿 > 0  have spatially non-uniform polarization 

distributions, distinct from their scalar counterpart. We leave aside the case of |𝐿| = 1 

associated with TE and TM modes (Ramachandran et al., 2013), which have peculiar 

behaviors compared with HE/EH modes.  

The relationship between vector and OAM modes is given by 

[
 
 
 
OAM+𝐿

+

OAM−𝐿
−

OAM+𝐿
−

OAM−𝐿
+ ]
 
 
 
=

[
 
 
 
 
HE𝐿+1,𝑚

𝑒𝑣𝑒𝑛 + 𝑖HE𝐿+1,𝑚
𝑜𝑑𝑑

HE𝐿+1,𝑚
𝑒𝑣𝑒𝑛 − 𝑖HE𝐿+1,𝑚

𝑜𝑑𝑑

EH𝐿−1,𝑚
𝑒𝑣𝑒𝑛 − 𝑖EH𝐿−1,𝑚

𝑜𝑑𝑑

EH𝐿−1,𝑚
𝑒𝑣𝑒𝑛 + 𝑖EH𝐿−1,𝑚

𝑜𝑑𝑑 ]
 
 
 
 

                              (2.32) 

These vector and OAM modes are illustrated in Fig. 2.9, where the lines along with the +i 

and -i signs show the linear combinations that rotate modes from one basis to another. The 

aforementioned SOI leads to the degeneracy lifting of the 𝛽 for SOa and SOaa modes. 

Correspondingly, in the vector basis, the 𝛽 of the HE and EH modes differ. As in the case 

of the 𝐿 = 0 modes shown in Fig. 2.4, the SOa OAM modes and HE vector modes are 

linear combinations of one another, thus forming a pair of mutually unbiased bases 

(MUBs). Similarly, the SOaa OAM modes and EH vector modes form a separate pair of 

MUBs.  
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Figure 2.9: Intensity and polarization patterns of LP (first row), vector (second row), OAM 

modes (third row) and CP (fourth row) with azimuthal index |𝐿| = 2 and radial index 𝑚 =
1. Colored lines show linear combinations between groups. The +i or –i terms represent 

a /2 or –/2 phase shift in the linear combinations. Azimuthal shifts of the arrows on the 

OAM modes indicate an azimuthal phase shift. The propagation constant is 𝛽2,1
′  for SOa 

modes (and the corresponding HE modes), and 𝛽2,1
′′  for SOaa modes (and the 

corresponding EH modes).  

These intensity and polarization pattern of the scalar mode with LP and CP 

designations are also illustrated in the Fig. 2.9. Again, lines along with the + and - signs 

show how a LP or CP mode can also be represented as a linear combination of two vector 

or OAM modes. In terms of the transverse field distribution, the scalar modes are 

mathematically equivalent to vector/OAM modes. However, SOI lifts the degeneracy of 

the real eigenbasis – OAM/vector modes. Thus, a scalar mode for |𝐿| > 1 becomes a 
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mixture of two OAM or vector modes of different 𝛽s, leading to the accumulation of 

different phases along propagation. This phase difference directly results in power 

oscillation between two odd and even scalar modes, suggesting that scalar modes are no 

longer the real eigenmodes even in a strictly straight, perturbation-free fiber. In this regard, 

the scalar wave approximation is only valid when SOI is weak enough that 𝛽2,1
′  and 𝛽2,1

′′  

become nearly identical – in a fiber with low index contrast or for modes with low |L| 

(according to Eq. 2.28). 

The SOI-induced degeneracy-lifting start to manifest in high-|L| modes of fibers 

with relatively high index contrast. Consider the LP61 mode in the previously mentioned 

15-um step index fiber with 0.035 index contrast. Given that the 𝑛𝑒𝑓𝑓
 

 is up to 10−4, the 

length required for the phase difference between modes with 𝛽 
′ and 𝛽 

′′ to accumulate  is 

10 
4𝜆=7.25 mm (at 1550nm), which is the length over which the power oscillates between 

odd and even LP mode. It is analogous to the oscillation between two polarization modes 

in a polarization-maintaining fiber. In such a case, it would be highly imprecise to use 

scalar modes as the eigenmodes of a circularly symmetric fiber. Due to this inherent 

instability, their employment necessitates pre- or post-processing, optically or 

electronically, for information recovery. 

2.5. Summary and Discussion  

This chapter derives the scalar modes in a weakly guided step-index fiber and describe 

some critical properties, including cutoff, intensity distribution, degeneracy, dispersion, 

and polarization. The four-fold degeneracy is lifted due to spin-orbit interaction, which 

intensities for high-|L| modes. As a result, the OAM and vector modes turn out to be the 
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true eigenmodes rather than the conventional scalar modes whose power oscillates between 

odd and even modes along propagation. Finding the subset of modes that propagate with 

high linear stability is of paramount importance. The OAM and vector modes are 

mathematically equivalent bases but with subtle difference which will be elucidated in the 

following chapter. 
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Chapter 3  

3.  Mode Excitation and Characterization  

In the previous chapter, it was demonstrated that OAM and vector modes are the 

true eigenmodes, superseding the conventional scalar modes. Notably, these modes are 

mathematically equivalent, implying that any OAM mode can be decomposed into a 

combination of vector modes, and vice versa. In Chapter 4, we will delve into the stability 

of these modes; however, before that, let's focus on the mode excitation and 

characterization, with particular attention to OAM modes. There are two key reasons for 

this focus: (a) vector modes can be regarded as a linear combination of OAM modes, and 

(b) we will subsequently show in the next chapter that OAM modes are fundamentally 

more stable than vector modes. 

3.1. Mode Excitation of OAM modes in fibers 

To excite specific OAM modes in a fiber, we first generate the corresponding OAM 

mode in free space and then couple it into the fiber. The free-space OAM mode possesses 

the same topological charge as the desired OAM mode in the fiber. The coupling efficiency 

and modal purity of the excited OAM mode depend on the alignment between the free-

space OAM beam and the desired OAM eigenmode of the fiber. Due to slight differences 

in their radial intensity distributions, there is inevitably some coupling loss during this 

process. 

Among various methods to generate OAM modes in free space, the experiments in 

this thesis primarily rely on a spatial light modulator (SLM) for OAM generation, except 
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for specific sections (Sec. 4.2 & 4.3). SLMs offer exceptional controllability by spatially 

modulating a liquid crystal film, allowing near-arbitrary phase patterns to be imprinted on 

an incident optical field. This high level of control provides distinct advantages over other 

OAM generation techniques, such as q-plate or spiral phase plate. Additionally, our SLM-

based OAM generation involves not only imparting the helical phase front for OAM but 

also introducing (a) a grating to separate the OAM beam and unconverted Gaussian beam; 

(b) a combination of spherical and conical phase fronts to control the size and thickness of 

the ring-shaped beam; (c) amplitude sculpting to regulate the ringing effect of the radial 

intensity profile (Gregg, 2017). The specific SLMs used in these experiments are the 

Hamamatsu LCOS-SLM X10468-08 and the Santec SLM-200. The Hamamatsu SLM is 

used for mode excitation in Gen4 and Gen5 fibers, while the Santec SLM is employed for 

mode excitation in all other fibers, such as Gen6 fiber, HOM3, and GenX fiber. 

The experimental setup for mode excitation and characterization of OAM modes in 

fibers is shown in Figure 3.1. The input Gaussian beam is converted into an OAM beam 

using the SLM. A combination of a linear polarizer (LP) and quarter-wave plate (QWP) 

transforms the linear polarization into circular polarization, which is the polarization state 

carried by the OAM eigenmode. The circularly polarized OAM beam is then coupled into 

the fiber under test. The fiber end on the input side is positioned on a 6-axis stage (Thorlabs 

MAX601D), which not only enables us to adjust the transverse position of the fiber end 

but also its angle (specifically, yaw and pitch dimensions). Precise alignment is essential 

to effectively excite the desired fiber mode using the free-space OAM beam, necessitating 

adjustments in both lateral displacement and angle. 
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The output is characterized by the spatial interferometry (Sec. 3.2), time of flight 

(ToF, Sec. 3.3) and polarization binning (Sec. 3.4). The spatial interferometry utilizes a 

~1550-nm CW external cavity laser (ECL, HP 8168F), an InGaAs Allied Vision 

Technologies “Goldeye” camera, and polarization binning. The ToF measurement utilizes 

a ~1550-nm, 5-ps pulse laser (PriTel FFL), a fast detector (Thorlabs 30 DET08C), and an 

oscilloscope (Agilent Infiniium DCA with module 86109A). The polarization binning 

utilizes the ps laser, the polarization displacer and the InGaAs camera using image stitching.  

The power of all parasitic modes (m=1 modes with different L’s, high-m modes) is 

minimized to <−20dB by (a) optimizing the phase pattern on the SLM; (b) walking the 

input beam using mirrors M1 and M2; (c) adjusting the displacement and angle of the fiber 

input end. 

 

Figure 3.1: Experimental setup of mode excitation and characterization. 

3.2. Spatial Interferometry  

Each OAM mode has a distinct azimuthal phase distribution in the form of 𝑒𝑖𝐿𝜑. For a 

given OAM mode, its interference with different OAM modes shows different azimuthal 

fringes depending on the L between the two interfering modes. Therefore, the power ratio 

of each parasitic mode can be obtained by analyzing the spatial frequency of the 
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interference pattern in the azimuthal dimension on the ring. This method, referred to as the 

"Ring Method", relies on spatial interferometry and requires a coherent source as well as 

the assumption of a dominant mode. It is the primary means of measuring modal purity 

throughout the thesis. 

 

3.2.1 Principle of Ring Method 

Assuming interference between two OAM modes with 𝐿 = 𝐿0 and 𝐿 = 𝐿𝑖, we may write 

the total field as 

𝐸(𝑟, 𝜑) = 𝛾0
 𝐹0(𝑟)𝑒

𝑖𝐿0𝜑 + 𝛾𝑖
 𝐹𝑖(𝑟)𝑒

𝑖𝐿𝑖𝜑 = 𝐹0(𝑟)𝑒
𝑖𝐿0𝜑(|𝛾0

 |𝑒𝑖𝜑0 + |𝛾𝑖
 |𝑒𝑖𝜑𝑖𝑒𝑖∆𝐿𝜑)  (3.1) 

Where 𝛾0
  and 𝛾𝑖

  are the complex weights the modes, 𝐹0(𝑟) and 𝐹0(𝑟) are the radial 

distribution of the modal amplitudes,  ∆𝐿 = 𝐿𝑖 − 𝐿0, and we assume 𝐹𝑖 ≈ 𝐹0.  

The azimuthal intensity distribution can be obtained by taking the complex square as  

|𝐸|2 |𝐹0|
2⁄ = |𝛾0

 |2 + |𝛾𝑖
 |2 + |𝛾0

 ||𝛾𝑖
 |(𝑒𝑖𝜑0𝑒−𝑖𝜑𝑖𝑒−𝑖∆𝐿𝜑 + 𝑒−𝑖𝜑0𝑒𝑖𝜑𝑖𝑒𝑖∆𝐿𝜑) 

= |𝛾0
 |2 + |𝛾𝑖

 |2 + 2|𝛾0
 ||𝛾𝑖

 | cos(∆𝐿𝜑 − ∆𝜑𝑖,0)                                                                  (3.2) 

where ∆𝜑𝑖,0 = 𝜑𝑖 − 𝜑0. We can expand the cosine term as  

|𝐸 |2 |𝐹0|
2⁄ = |𝛾0

 |2 + |𝛾𝑖
 |2 + 2|𝛾0

 ||𝛾𝑖
 |(cos ∆𝐿𝜑 cos ∆𝜑𝑖,0 + sin ∆𝐿𝜑 sin ∆𝜑𝑖,0)        (3.3) 

such that it is in the form of the Fourier series 

|𝐸 |2 𝐹0
2⁄ =

1

2
𝑎0

 +∑[𝑎𝑗
 cos(𝑗𝜑) + 𝑏𝑗

 sin(𝑗𝜑)]

𝑛 

j=1 

                          (3.4) 

The Fourier coefficients are depended on the phase difference ∆𝜑𝑖,0 , which can be 

eliminated by defining a new coefficient  
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𝑔𝑗
2 = 𝑎𝑗

2 + 𝑏𝑗
2                                                       (3.5) 

So, we have 

𝑔∆𝐿
2 = 𝑎∆𝐿

2 + 𝑏∆𝐿
2 = 4|𝛾0

 |2|𝛾𝑖
 |2(cos ∆𝜑𝑖,0

2 + sin ∆𝜑𝑖,0
2) = 4|𝛾0

 |2|𝛾𝑖
 |2       (3.6) 

We assume 𝐸0
 = 𝛾0

 𝐹0(𝑟)𝑒
𝑖𝐿0𝜑 is the dominant mode, therefore 

𝑔0
 =

1

2
𝑎0

 = |𝛾0
 |2 + |𝛾𝑖

 |2 ≈ |𝛾0
 |2                                  (3.7) 

So, the power ratio 

𝜂∆𝐿 =
|𝛾𝑖
 |2

|𝛾0
 |2
=
𝑔∆𝐿
2

4𝑔0
 2
                                              (3.8) 

We have only examined a parasitic mode so far. In the following, we will take account all 

the parasitic modes with ∆𝐿 spanning from −𝑖 to +𝑖. Then Eq. 3.2 becomes 

|𝐸 |2 𝐹0
2⁄ = |𝛾0

 |2 + 

∑[|𝛾−𝑖
 |2 + |𝛾+𝑖

 |2 + 2|𝛾0
 ||𝛾+𝑖

 | cos(𝑖𝜑 − ∆𝜑𝑖,0) + 2|𝛾0
 ||𝛾−𝑖

 | cos(𝑖𝜑 + ∆𝜑−𝑖,0)]

𝑛

𝑖=1 

  (3.9) 

As most of the power is in the dominant mode 𝐸0
 , the coupling terms between parasitic 

modes have been neglected. Similarly, we have  

𝑔0
 ≈ |𝛾0

 |2                                                                   (3.10) 

|𝑔𝑖
 |2 = 𝑎𝑖

2 + 𝑏𝑖
2 = 4|𝛾0

 |2[|𝛾+𝑖
 |2 + |𝛾−𝑖

 |2 + 2|𝛾+𝑖
+ ||𝛾−𝑖

+ | cos(∆𝜑0,𝑖 + ∆𝜑0,−𝑖)]   (3.11) 

Therefore, the two parasitic modes with ∆𝐿 = ±𝑖  need to be considered together. Suppose 

the phase term can neglected, we have power ratio of the two as 

𝜂−𝑖,+𝑖
 =

|𝛾−𝑖
 |2 + |𝛾+𝑖

 |2

|𝛾0
 |2

=
𝑔𝑖
2

4𝑔0
 2
                                           (3.12) 
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The above spatial interferometry analysis is applicable only for scalar fields. Assuming 

that power exists in both orthogonal polarizations, the power ratio of parasitic modes with 

∆𝐿 = ±𝑖  in both polarizations is 

𝜂−𝑖,+𝑖
± = (

𝑔+𝑖
+
 

2

4𝑔0
+
 

2 +
𝑔+𝑖
−
 
2

4𝑔0
−
 
2) (𝑔0

+ + 𝑔0
−)⁄                                 (3.13) 

where the superscript + and − represent two orthogonal polarizations (e.g., left/right-

handed circular polarization). However, the phase difference in Eq. 3.11 can make a big 

difference to the calculated parasitic power. It can be averaged out by sweeping the 

wavelength to cover the whole 2 phase wrap. The phase term can be rewritten as  

∆𝜑0,𝑖 + ∆𝜑0,−𝑖 = [∆𝛽𝑖,0(𝜆) + Δ𝛽−𝑖,0(𝜆)]𝑧                                   (3.14) 

We may define a beating wavelength ∆𝜆 after which the phase term passes for 2 Thus, 

we have 

[∆𝛽𝑖,0(𝜆 + ∆𝜆) + Δ𝛽−𝑖,0(𝜆 + ∆𝜆)]𝑧 − [∆𝛽𝑖,0(𝜆) + Δ𝛽−𝑖,0(𝜆)]𝑧 = 2𝜋        (3.14) 

It can be calculated as   

∆𝜆 =
𝜆 
2

𝑧(∆𝑛𝑔,𝑖,0 + Δ𝑛𝑔,−𝑖,0)
                                                 (3.15) 

Figure 3.2 is an exemplary Ring Method analysis for an L=37 SOa mode out of a 25-m 

Gen6A3 ring-core fiber. A ~1550-nm CW external cavity laser (ECL, HP 8168F) is used 

to obtain mode images within a 3-nm range, recorded with an InGaAs Allied Vision 

Technologies “Goldeye” camera. The azimuthal intensity on the ring is taken for Ring 

Method analysis. The ∆𝐿 = 1 &2 contents exhibit periodic dependence on the wavelength, 

and their beating wavelengths correspond to their group indices. According to Eq. 3.15, 
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longer fiber results in more frequent beating, necessitating a smaller wavelength range for 

sweeping. 

 

  

Figure 3.2: L=1 and L=2 content within 3-nm range at 1550 nm for L=37 SOa in 25-m 

Gen6A3 fiber. The inset is the output image of the mode at 1550 nm using a CW laser. 

After averaging the power of the parasitic modes in the 3-nm wavelength range, we 

obtain the overall parasitic power for L=37 SOa mode as shown in Fig. 3.3. The dominant 

L=1 content (resulted from L=36 or 38) is <−20dB, indicating the mode purity of L=37 

SOa mode is >20dB. The ~−55dB noise floor is due to numerical artifact of the Ring 

Method, which is detailed below. 
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Figure 3.3: Wavelength-averaged power of parasitic modes for L=37 SOa input in 25-m 

Gen6A3 fiber. 

3.1.2 Numerical Artifact 

The dynamic range of the camera may limit the minimum paratactic power that may be 

measured using the Ring Method. Given that the parasitic modal power may drop below 

−40 dB/km (Chapter 8), it is essential to determine the measuring range of the Ring Method 

within the dynamic range of the camera. 

Specifically, the intra-|L| mode coupling occurs between near-degenerate modes 

with the same |L| but opposite signs (𝐿𝑖 = −𝐿0), or ∆𝐿 = 2𝐿0. As each pixel value is an 

integer and the cosine term ranges from −1 to 1, there is azimuthal variation in Eq. 3.2 only 

if  

2|𝛾0
 ||𝛾𝑖

 | ≥ 0.5                                                           (3.16) 

Therefore, the lowest parasitic power that can be detected theoretically is  
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𝜂𝑖
 =

|𝛾𝑖
 |2

|𝛾0
 |2
=

1

16|𝛾0
 |
4                                                       (3.17) 

The InGaAs camera has 12-bit dynamic range, indicating the max of pixel value can go up 

4095, so we can just assume |𝛾0
 |
2
= 4000. Therefore, the lowest parasitic power that can 

be detected theoretically is  

10log10
 (

1

16|𝛾0
 |
4) = −84𝑑𝐵                                         (3.18) 

In other words, the lowest power the parasitic can go down is in the order of the square of 

the dynamic range of the camera. 

Using L=40 as the dominant mode (𝐿0 = 40)) whose intensity (|𝛾0
 |2) is supposed 

to be 4000, we numerically confirm this noise floor limitation. If we take the unit pixel 

value (i.e., 1) as a reference, the pixel value 4000 corresponds to 36dB. The intensity of 

the parasitic mode L=−40 (|𝛾𝑖
 |2) varies from 26dB to 136dB lower than the dominant mode 

(equivalently 10dB to −100dB higher the unit pixel value). Before calculating the power 

weight using the Fourier coefficient, the intensity is rounded to an integer. Figure 3.4 shows 

the comparison between the actual ∆L=2L (L=−40) content and the one calculated from the 

Ring Method. As shown in Fig. 3.4, the ∆𝐿 = 2𝐿 content matches well with the actual one 

down to −82.6dB, close to the theoretical value −84dB. Note that the numerical parasitic 

power becomes infinitely small below this limit, therefore it not the cause of noise floor in 

Fig. 3.3. In any case, it is much lower than the noise floor of Ring Method using 

experimental images, which is ~−55dB (Fig. 3.3). 
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Figure 3.4: Comparison between the actual L=−40 (∆L=2L) content and the one calculated 

from the Ring Method. 

To fully replicate the Ring Method process and investigate the noise floor, it is 

necessary to begin with a 2-D mode image. The radial distribution of the intensity can be 

constructed using 

𝐹0(𝑟) = 𝑒
−(𝑟−𝑟0

 )
2
𝜔0
2⁄                                                         (3.19) 

where 𝑟0
  and 𝜔0

  determine the radius and thickness of the ring, respectively. Again, the 

dominant mode is 𝐿0 = 40  with intensity |𝛾0
 |2 = 4000 . The parasitic mode −𝐿0  has 

intensity |𝛾𝑖
 |2 varying from 26dB (Fig. 3.5a) to 136dB (Fig. 3.5b) lower than the dominant 

mode. The ring diameter (2𝑟0
 ) is fixed at 114 (pixels), which is also the size of the 

experimental images, constrained by the camera window.  
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Figure 3.5: The overall intensity pattern as a combination of a dominant L=40 and a 

parasitic L=−40 with power ratio (a) 26dB and (b) 136dB lower than the dominant. 

As shown in Fig. 3.6, the numerical L=−40 content of the 114-pixel-diameter ring 

remains at ~−60 dB regardless the actual L=−40 content. In addition, such noise floor is 

higher for smaller ring diameters (~−53dB for 56-pixel-diameter ring) and lower for larger 

ring diameters (~−73dB for 228-pixel-diameter ring). Prior to hitting the noise floor, each 

of the three numerical parasitic powers closely matches the real one. 

 

Figure 3.6: The numerical L=−40 content calculated from Ring Method in an aggregate 

ring pattern with various actual −40 content. The variation of the ring diameter leads to the 

variation of the noise floor. 

The variation in noise floor with ring diameter arises from imperfect azimuthal 

sampling during the transition from Cartesian to polar coordinates. As shown in Fig. 3.7a, 
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the azimuthal sampling exhibits a smoother pattern for larger ring diameters. This results 

in a decrease in the noise floor from ~−60dB to ~−75dB, as depicted in Fig. 3.7b. 

 

Figure 3.7: (a) pixel value versus azimuthal angle on the ring with two different diameters; 

(b) parasitic power versus L for two rings with different diameters 

The imperfect azimuthal sampling from Cartesian to polar coordinate also results 

in a broadening of the L=2L content, in contrast to a single peak calculated from the ideal 

1-D case (Fig. 3.8).  

 

Figure 3.8: Parasitic power versus L with different parasitic power calculated from 1D 

and 2D Ring Method.  
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3.1.3 Identification of high-m modes 

The Ring Method described above is only applicable for m=1 modes with similar radial 

intensity profile. As demonstrated in Fig. 3.9, the interference between modes with L and 

m differences causes intensity variations in both the azimuthal and radial directions. 

 

Figure 3.9: Schematic of different interference patterns with m=1 and m=2 modes using 

simulated modal fields. (a) interference between L=11, m=1 and L=16, m=1 modes result 

in |16-11| lobes; (b) interference between L=11, m=2 and L=16, m=1 modes result in |16-

11|-sided polygons. The double rings in the interference pattern indicates inference with an 

m=2 mode.  

Even though the Ring Method is inapplicable to calculate the parasitic power in this 

scenario, it is very beneficial to identify the parasitic high-m modes based on the azimuthal 

symmetry and the number of rings in the radial direction, as illustrated in Fig. 3.10. 
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Figure 3.10: Exemplary inference patterns with high-m modes. (a) L=16, m=1 × L=10, 

m=2 in 1.1km Gen5A3 fiber; (b) L=30, m=1 × L=20, m=3 in 500-m Gen6A3 fiber; (c) 

L=33, m=1 × L=16, m=4 in 500-m Gen6A3 fiber. 

3.3. Time Domain Analysis  

In a fiber, the pulse of each mode travels at a different group velocity and arrives at different 

times after propagating through a sufficient length of fiber. Given their time separation, 

their power ratio can be directly measured. This time-of-flight (ToF) measurement can be 

achieved by converting the optical pulse to an electrical signal to be measured on an 

oscilloscope.  

Figure 3.11 shows an exemplary ToF measurement for an L=32 SOa mode 

transmitted through a ~500m Gen6A3 ring-core fiber. We use a ~1550-nm, 5-ps pulse laser 

(PriTel FFL), a fast detector (Thorlabs 30 DET08C), and an oscilloscope (Agilent 

Infiniium DCA with module 86109A). The setup is detailed in Fig. 3.1. The pulse width of 

the ToF signal is determined by the detector's bandwidth, and the ringing observed after 

each peak is due to the detector's limited bandwidth (5 GHz). The ToF trace is an average 

of 256 signals to lower the noise floor, which can be further lowered by increasing the 

average time (Chapter 8). As shown in Fig. 3.9, most of the power is coupled to L=32 SOa, 

while the parasitic modes accidentally excited at the input are separated in time. Their delay 

difference corresponds to their group index difference. In this case, the parasitic powers 

are all below −20dB, indicating >20dB purity for L=32 SOa mode. ToF measurement is 



 

 

49 

especially valuable when dealing with the unintentional excitation of high-m modes 

featuring multiple rings. The Ring Method mentioned earlier, which assumes an identical 

radial distribution for all modes, cannot effectively measure the content of these high-m 

mode. Therefore, ToF measurements is a useful tool for real-time alignment during mode 

excitation processes. 

 

Figure 3.11: TOF signal for an L=32 SOa mode transmitting through a ~500m Gen6A3 

ring-core fiber at 1550nm. 

This undesirable excitation of parasitic modes is practically inevitable. When 

coupling a free-space OAM beam to an m-scale ring-core, a slight transverse 

misalignment or angle offset might result in the excitation of neighboring-|L| modes (ΔL=1). 

However, this issue is technical and has nothing to do with the fiber's inherent qualities. 

Free-space mode coupling necessitates precise control, which may be enhanced using an 

integration strategy in which the OAM generator is attached to the ring-core fiber. 

The aforementioned discrete peaks in ToF are caused by mode excitation rather 

than in-fiber mode coupling. If there is mode coupling between two modes within the fiber, 
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parasitic modes can be continuously generated, starting from the input side of the fiber. As 

a result, power is distributed in time between the two coupled modes, leading to a shoulder 

of the launched mode in the ToF measurement. The range of distributed coupling is again 

determined by the group difference between the two modes. The power coupled to the 

parasitic mode is calculated as the ratio of the integration of the shoulder (on a linear scale) 

to the integration of the peak. Figure 3.12 is the ToF measurement for an L=30 SOa, m=1 

mode transmitted through a ~500m Gen6A3 ring-core fiber at 1550nm. The L=30, m=1 

mode has accidental degeneracy with L=20, m=3 at 1550nm. Thus, the mode coupling 

between them is manifested as distributed coupling in ToF. In this case, the mode coupling 

is ~−20 dB. For the output image using ECL, this mode coupling is evident as as 

interference pattern between the two modes. 

 

Figure 3.12: TOF signal for an L=30 SOa mode transmitting through a ~500m Gen6A3 

ring-core fiber at 1550nm. Inset: output image using a 1550-nm ECL.  
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3.4. Polarization Binning  

The aforementioned spatial interferometry method is valid only for scalar field. However, 

OAM modes in fibers can have either left and right circular polarization (LCP/RCP). One 

must thus separate sperate the two circular polarizations prior to using the Ring Method 

analysis. Using a combination of a quarter-wave plate (QWP) and polarization beam 

displacer (PBD), which separates the horizontal and vertical polarizations, such separation 

between LCP and RCP can be equivalently achieved. The QWP is rotated at a 45-degree 

angle with regard to the PBD. On the input side, the QWP and linear polarizer (LP) are 

likewise calibrated with the PBD. 

 

Figure 3.13: Experimental setup for polarization binning. 

Due to the principle of OAM conservation, however, the two degenerate SOa or 

SOaa modes with opposing circular polarizations do not couple for high-|L| modes (Gregg 

et al., 2015). Given the maturity of the 2×2 MIMO technology, the separation of these two 

degenerate modes with orthogonal polarizations may not be crucial in telecommunication, 

but it may allow additional degrees of freedom for nonlinear intermodal interaction (Liu et 

al., 2021). It's important to note that this PER is determined by comparing the power ratio 

of two circular polarization bases, which are derived from two orthogonal linear 

polarizations in two specific directions (horizontal and vertical). This definition slightly 
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differs from the conventional PER calculation, which typically involves comparing two 

orthogonal linear polarizations with maximum and minimum power. 

The PER measurement of the fiber modes is limited by the PER of the PBD. It is 

can be directly measured using the laser beam and a power meter (Fig. 3.14). After passing 

through the PBD, the PER of the laser Gaussian beam reduces from 50dB to 35dB, 

indicating that the PER of the PBD is 35dB. 

 

Figure 3.14: Experimental setup for measuring the PER using power meter. 

While it is possible to calculate the PER by measuring the power of the two bins 

using a power meter, it is considerably more convenient and practical to directly measure 

it using the camera. This approach helps avoid any unnecessary system disruption and 

minimizes external perturbations, which is particularly crucial when characterizing a large 

number of modes. It is sufficient to just integrate the pixel values within the region 

containing the mode image for each bin and use this information to represent the power in 

each polarization. These mode images can be easily obtained during the Ring Method 

measurement. 

However, the maximum PER that can be determined using the picture is restricted 

by the dynamic range (12 bits) and camera noise Using the camera, the PER of the 

aforementioned Gaussian beam is reduced to 23dB, while the power meter measures 35dB. 

The dynamic range of the camera can be equivalently increased by imaging stitching.  

Intensity profiles at the output of the fiber are recorded as images with different exposure 
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times of the camera. As shown in the Fig. 3.15, the parasitic bin is buried under the noise 

floor for low exposure times as short as 100 s. By increasing the exposure time up to 

95559 s, the power of the parasitic bin finally surpasses the noise floor. After removing 

the saturated and near-saturated pixels, these two images (normalized for exposure time) 

are stitched together to obtain a final image with effectively much higher dynamic range. 

Consequently, the PER is enhanced to 35dB, which is close to the actual PER measured by 

the power meter. This approach is slightly different from the conventional image stitching 

technique (Demas et al., 2015), in which the final image is created by stitching together a 

sequence of images with continuous exposure times. 

 

Figure 3.15: Transverse distribution of the pixel value for Gaussian beams under 

different exposure time.   

Rotating a QWP placed between the LP and PBD alters the measured PER in order 

to compare the PER measured by image stitching and directly by the power meter (Fig. 

3.16). It turns out that the difference between the two is only 1dB, validating the accuracy 

of this approach for measuring the PER. 
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Figure 3.16: (a) Experimental setup for measuring the PER of the beam out of the ps 

laser; (b) PER versus QWP angle using power meter and imaging stitching 

3.5. Backward Mode Excitation 

By directing the output beam of each mode back into the same fiber, it is possible 

to excite the same mode in the reverse direction. This effectively extends the travel distance 

of the mode within the fiber. This technique is particularly beneficial when doubling the 

length of a 0.5-km fiber to 1 km, as demonstrated in Chapter 9. 

A straightforward approach to direct the output light back to the fiber is by adding 

a mirror at the output end. However, the sign of both L and  𝜎̂ flip after mirror reflections. 

Although it still remains as SOa or SOaa mode, the two degenerate modes are supposed to 

be independent channels. The utilization of all four modes of a certain |L| is critical for 

reaching high mode counts. No matter how many mirrors are added, there are always an 
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odd number of reflections which inevitably flip the sign of both L and  𝜎̂. Note that the sign 

of 𝜎̂ can be corrected by adding a QWP at the output but the mode is converted between 

SOa and SOaa as the sign of L also flips.  

The solution to achieve an even number of reflections is by using a Sagnac reflector, 

as shown in the grey box of Fig. 3.17. A beam splitter (BS2) splits the output light into two 

paths, each of which travels in a clockwise or counterclockwise direction, before merging 

them back into a single route that returns to the fiber. Both the clockwise and counter-

clockwise path undergo four reflections, and thus the sign of L remains unchanged. We 

note that this is identical, in nature, to the interferometers used in Gyroscopes (Post, 1967), 

and hence ignoring effects due to earth’s rotation, the clockwise and counter-clockwise 

paths are equivalent. Note that, in such a situation, the idle port of the BS2 experiences 

destructive interference while the returning port (back to the fiber) experiences constructive 

interference. Hence, the Sagnac reflector is theoretically lossless (similar to a mirror in this 

regard). A half wave plate (HWP) is used to correct the polarization rotation inside the 

Sagnac reflector. This polarization is due to the inevitable non-planar light path along 

which the Pancharatnam-Berry geometric phase accumulated (Ma et al., 2020).  The QWP2 

ensures linear polarization when light is reflected on the mirrors or BS in the Sagnac 

reflector to avoid polarization scrambling due to a phase shift between horizontal and 

vertical polarizations that is known to occur on mirrors. 



 

 

56 

 

Figure 3.17: Experimental setup with Sagnac reflector. The transparent mirror with dashed 

border inside the Sagnac reflector represents a flip mirror, used for diagnosis and alignment. 

CW laser is a 1550-nm external cavity laser with continuous wave output and ps laser is a 

1550-nm picosecond pulse laser. SLM: spatial light modulator; BS: beam splitter; QWP: 

quarter wave plate; HWP: half wave plate; L1, L2, L3 are lenses with focal lengths of 8 

mm, 8 mm and 40 mm, respectively. 

An additional lens, L3 (f=400mm), is added to construct an equivalent 8-f imaging 

system together with L2 (f=8 mm). The incorporation of this system is crucial in preserving 

the size of each modal beam as it exits the fiber facet and re-enters, effectively preventing 

the excitation of the m=2 mode during backward propagation. Subsequently, after 

travelling through the ~0.5-km fiber once more (resulting in a total fiber length of ~1 km 

equivalently), the light within each mode is detected on the opposite side following routing 

by the beam splitter, BS1. Note that other reflections in the system can inevitably mix with 

the desired light reflected by Sagnac reflector. The primary source of this undesired 

reflection is the Fresnel reflection at the fiber facet. To mitigate this issue, endcaps, 

commonly employed in fiber lasers (Limpert et al., 2006), are spliced to each end of the 

~0.5km fiber (Appendix B). This prevents the reflection from the fiber facet from 

interfering with the backward-excited modes, ensuring clean modal detection.  
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Figure 3.18: Exemplary ToF of L=32 SOa mode after transmitting through an equivalent 

1-km Gen6A3 fiber. The inset image is the corresponding output image using a ECL source.  

Figure 3.18 is an exemplary backward ToF signal for an L=32 SOa input, and the 

inset is the corresponding backward modal image obtained using an ECL. It clearly 

distinguishes between parasitic modes resulting from forward and backward excitation. For 

example, due to the doubled travel distance, the delay of parasitic L=-1 mode generated 

at the forward input is double that of the mode generated at the backward input. The 

forward and backward mode excitations are sequentially optimized until all parasitic power 

are below -20dB (with a few outliers up to -15dB). It suggests that the mode excitation is 

the same for both sides. The spatial interferometry reveals purity >20dB for the modal 

image from both the forward and backward side. Even though the spatial interferometry 

accounts for all the sources of impurity (e.g. mode excitation from both sides, in-fiber mode 

coupling), we know that this 20-dB purity is determined by mode excitation based on the 

ToF measurement.   
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Chapter 4  

4. Propagation Stability of Fiber Modes 

The propagation stability of fiber modes is crucial regardless of whether they function as 

independent spatial channels or are involved in inter-modal interactions. By definition, the 

transverse electric field of an eigenmode should remain unchanged along a cylindrically 

symmetric fiber. However, such an ideal fiber does not exist in the real world. A slight 

modification to the fiber structure changes the eigenmodes such that the original modes are 

no longer true eigenmodes and their power is decomposed into these new eigenmodes 

along propagation. Equivalently, these pseudo-modes mix with each other throughout 

propagation. An immediate example is the scaler modes discussed in the previous chapter. 

Due to strong SOI, the weakly guidance approximation is no longer valid for high-|L| 

modes in a high-index-contrast fiber. The phase difference between two near-degenerate 

OAM/vector modes manifests as oscillating power between odd and even scalar modes. 

Strictly speaking, one must re-solve the wave equation for the waveguide's new 

eigenmodes. Under common fiber perturbations (bends, twist, pressures, etc.) that slightly 

alter the fiber structure, one can still assume that the ideal eigenmodes are valid but should 

investigate how perturbations lead to the mixing of theoretically orthogonal modes. This 

mode mixing may result in a loss of signal purity or information. In fact, even SMF is two-

moded since it has two orthogonal polarization eigenmodes. Bend- or geometry-induced 

fiber birefringence can result in polarization-mode dispersion in classical communications 

links and entanglement-preservation loss in quantum links. Therefore, it is essential to 
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comprehend and evaluate mode coupling under common perturbations and to deduce the 

conditions under which modes remain stable so that each mode can be utilized 

independently.   

The fiber perturbations may be quite complicated and stochastic when accounting 

for the fiber imperfection (defect, interface roughness, etc.) that is highly dependent on the 

state of the art in manufacturing. Typically, these perturbations are benign, but they may 

readily accumulate across hundreds to thousands of kilometers of fiber and have a major 

impact. For some first-principles insight, this chapter concentrates on shorter fiber lengths 

ranging from a few meters to kilometers (lengths representing scales of fiber usage in the 

majority of applications, such as fiber lasers and amplifiers, data-center links, nonlinear 

devices, and sensors) and more tractable perturbations as the fiber bends. Prior to analyzing 

the mode coupling, it was assumed that each mode could be excited with sufficient purity. 

This chapter will also show that the 3D redirection of light, which is a typical 

perturbation encountered by an optical fiber, can lead somewhat counter-intuitively to the 

failure of using one set of modes (namely, the vector modes) as the real eigenmodes while 

the other mathematically equivalent one (the OAM modes) remains valid. This directly 

contributes to the instability of vector modes, similar to the oscillation of power between 

odd and even scalar modes discussed in the previous chapter. In contrast, the circularly 

polarized OAM eigenbasis represents the most stable set of modes for light transmission. 

Therefore, the question raised in the preceding chapter, which is about the real eigenmodes 

in a fiber, can be fully answered. 
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4.1.  Mode Coupling and Fiber Perturbation 

Instead of resolving the eigenmode equations, it is common practice to assume that the 

eigenmodes stay unchanged and to examine how the eigenmodes interact with one another 

under these perturbations. The mode coupling can be well explained and characterized by 

the coupled mode theory (Marcuse, 1991). 

Consider the mode coupling between two modes 𝑬𝟏(𝑟, 𝜑) and 𝑬𝟐(𝑟, 𝜑). The total 

field at any value of z can be written as a linear combination of the two: 

𝑬(𝑟, 𝜑, 𝑧) = 𝐴1(𝑧)𝑬𝟏(𝑟, 𝜑)𝑒
−𝑖𝛽1𝑧 + 𝐴2(𝑧)𝑬𝟐(𝑟, 𝜑)𝑒

−𝑖𝛽2𝑧                       (4.1) 

where 𝐴1(𝑧) and 𝐴2(𝑧) are the amplitudes of the two modes. Ideally, two eigenmodes are 

orthogonal with each other. However, under a variety of ever-present perturbations 

(manufacture imperfection, bending, twisting), they exhibit a non-zero coupling coefficient 

𝜅 given by the combined overlap integral that accounts for the transverse deformation term 

𝑷𝒑𝒆𝒓𝒕(𝑟, 𝜑)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿ : 

𝜅 =
𝜔𝜖0
4𝑖
∬𝑬𝟏(𝑟, 𝜑)𝑷𝒑𝒆𝒓𝒕(𝑟, 𝜑)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿ 𝑬𝟐

∗(𝑟, 𝜑)𝑑𝐴                              (4.2) 

where the perturbation term 𝑷𝒑𝒆𝒓𝒕(𝑟, 𝜑)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿̿  is a matrix, accounting for the fact that the fields 

here are vector instead of scalar quantities. In other words, perturbation may also be 

accompanied by birefringence in the form of an off-diagonal matrix element that combines 

orthogonal polarizations. Here, it is assumed that the transverse perturbation is decoupled 

from the longitudinal one, which will be considered later. 

Under such perturbation, the electric field of one certain eigenmode is projected 

onto that of the other one. A simple example is the projection between two orthogonal 
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linear polarizations due to bend-induced birefringence. Even if this birefringence is 

minimal, the effect will accumulate throughout propagation since the two degenerate 

polarization modes are inherently in phase along the fiber. In other words, this mode 

coupling is the highest for modes that are degenerate in 𝛽 . Even under mild transverse 

deformation, the coherent accumulation may therefore make a considerable difference. 

This explains why bend easily causes polarization mixing between the two degenerate SMF 

with identical field distribution but orthogonal polarizations.  

However, non-degenerate modes with distinct 𝛽  exhibit a continually varying 

phase difference during propagation. Consequently, the coupled electric field is mostly 

canceled out. In order for these coupled field to add up coherently, a phase-matching 

wavevector K is required. The z-dependent amplitudes of the two modes are given by the 

coupled mode equations: 

𝑑𝐴1
𝑑𝑧

= 𝜅𝐴2𝑒
𝑖Γ𝑧                                                         (4.3) 

𝑑𝐴2
𝑑𝑧

= −𝜅𝐴1𝑒
−𝑖Γ𝑧                                                   (4.4) 

where 𝛤 = 𝛽1 − 𝛽2 − 𝐾. One can thus solve the amplitude and the power in each mode 

along the fiber. Suppose all the power is only in mode 𝑬𝟏, the z-dependent power in each 

mode is given by 

𝑃1(𝑧)

𝑃1(0)
= 1 −

𝜅2

𝛾2
 𝑠𝑖𝑛2 𝛾𝑧                                              (4.5) 

𝑃2(𝑧)

𝑃1(0)
=
𝜅2

𝛾2
 𝑠𝑖𝑛2 𝛾𝑧                                                     (4.6) 
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where 𝛾2 = 𝜅2 + 𝛤2/4, 𝑃1(0) is the power launched into mode 𝑬𝟏 . Part of the power 

oscillates between two modes along the z direction. Only if the phase matching condition 

is satisfied as 𝛤 = 0, or ∆𝛽 = 𝛽1 − 𝛽2 = 𝐾, can there be a full exchange of power between 

the two modes. In this case, the oscillation frequency is determined by the coupling 

coefficient 𝜅. 

A constant additional wavevector is typically provided by a grating with 

periodically varying perturbation along the z-axis, which corresponds to a strong Fourier 

component in momentum space. In many cases, the perturbation results in a spectrum of 

additional wavevectors of which the dominant Fourier component (if any) is typically 

considered. 

A most common perturbation is fiber bends. As a general rule, a bent fiber 

comprises a wavevector 𝑒
𝑖2𝜋

𝐿𝑐 , where 𝐿𝑐 is a correlation length representing characteristic 

beat lengths for the perturbations. Hence, to achieve ∆𝛽 ≫ 𝐾  to mitigate the mode 

coupling, one should have ∆𝑛𝑒𝑓𝑓 ≫
𝜆

𝐿𝑐
 , at least by an order of magnitude. Typically, 𝐿𝑐 ~ 

1mm to 1cm, and hence it is easy to see that ∆𝑛𝑒𝑓𝑓  between modes of ~10−4 to 10−3 

typically minimizes the mode coupling.  

4.1.1 Degenerate Mode Coupling  

Modes degenerate in 𝛽 are mostly likely to couple with each other as they are in phase all 

along the fiber (therefore no need for additional wavevector for phase matching). As 

previously described for coupling between two degenerate modes with orthogonal 

polarization, this explains why LP0,𝑚 modes seldom maintain polarization in a bent fiber. 
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Given that the two orthogonally polarized LP0,𝑚 modes have identical amplitude patterns, 

only birefringence is required of the perturbation. Since the cylindrical symmetry of an 

optical fiber implies that all modes have, at least, two-fold (polarization) degeneracy, one 

would expect this mixing to be commonly encountered, as in SMF or LP0,𝑚 modes.  

However, there is also accidental degeneracy between modes with different L and 

m as mentioned in the preceding chapter. This degeneracy exists regardless of the 

polarization, so there is no need for birefringence. Figure 4.1 is an exemplary 𝑛𝑒𝑓𝑓 

distribution illustrating the accidental degeneracy between L=6, m=1 and L=2, m=2 modes 

in a ring-core fiber with a ring diameter of ~16um (Gregg et al., 2016). The L=6 SOaa, 

m=1 mode is excited at various wavelengths using a CW laser and the corresponding output 

images are recorded at the output of the ~1m fiber (setup in the Fig. 3.1). The strongest 

mode coupling occurs at the wavelength where two 𝑛𝑒𝑓𝑓 ’s intersect. The four-fold 

symmetry of the interference pattern reveals the L between the two modes and the double 

rings indicate m=2 for the accidentally degenerate mode (Sec. 3.1.3). Such mode coupling 

goes away at least ~40nm from the crossing wavelength for sufficiently large 𝑛𝑒𝑓𝑓 

separation. This mode coupling disappears at a wavelength where the 𝑛𝑒𝑓𝑓 separation is 

sufficiently large, at least 40 nm away from the crossing wavelength. Thus, the mode 

coupling range extends to ~80nm. This mode coupling range in a ~1km fiber increases to 

~210nm (1430-1690nm) because of the core-diameter variation along the length of the 

fiber. Due to the difference in dispersion between these two modes, the change in fiber size 

(equivalent to a change in the wavelength) alters the 𝑛𝑒𝑓𝑓 of the two modes differently, 

causing a shift in the degenerate wavelength. In fact, the different wavelengths of 
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accidental degeneracy are observed in various fiber sections. This accidental degeneracy 

completely disables the desired m=1 mode in the mode coupling range, resulting in a 

decrease in the number of spatial channels for multiplexing. 

 

Figure 4.1: Accidental degeneracy between L=6, m=1 and L=2, m=2 in a 16-um ring-core 

fiber. The inset images are the outputs of the 1-m fiber when a L=6 SOaa, m=1 mode is 

launched at various wavelengths using a CW laser. Using polarization binning method (Sec. 

3.4), the two opposing circular polarizations are separated in each output image.  

The L=6 SOaa mode is degenerate with the L=-6 SOaa mode, which has the 

opposite circular polarization, as detailed in Chapter 2. Yet, Fig. 4.1 demonstrates that there 

is no coupling between the two polarizations at the wavelength where accidental 

degeneracy is absent. This polarization-maintaining property remains even in a ~km scale 

fiber due a general OAM conservation principle (Gregg et al., 2015). It is distinct from 

degenerate mode coupling for the aforementioned L=0 and also low-|L| modes. It differs 

from the aforementioned L=0 and low-|L| modes, which suffer from degenerate mode 

coupling.  

If the radial and azimuthal components of the perturbation can be decoupled, the 

coupling coefficient in the OAM bases may be rewritten as 
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𝜅 =
𝜔𝜖0
4𝑖
∬𝑬𝟏(𝑟)𝑷𝒑𝒆𝒓𝒕(𝑟)̿̿ ̿̿ ̿̿ ̿̿ ̿̿ ̿𝑬𝟐

∗(𝑟)𝑒𝑖(𝐿1−𝐿2−𝛿𝑙)𝜑𝑑𝐴                          (4.7) 

where 𝛿𝑙 is the extrinsic OAM that can be provided by various kinds of perturbations. 

Intuitively, fiber twist is capable of yielding such extrinsic OAM (Zhao et al., 2019; Wong 

et al., 2012). Yet, a twist that is excessively strong can lift the degeneracy between the two 

degenerate modes (Alexeyev et al., 2004; Alexeyev et al., 2012). Besides, simple bend 

perturbation has a matrix element of the form 𝑒𝑖𝛿𝑙𝜑 that spans all 𝛿𝑙, but |𝛿𝑙| = 1 is often 

the strongest component (Gregg et al., 2015). However, coupling between the degenerate 

counterparts involves changing OAM order from +𝐿 to −𝐿, i.e., by |∆𝐿| = |2𝐿|. Hence, 

this degenerate coupling of higher-|L| OAM modes require larger extrinsic OAM provided 

by the perturbation. In addition, such a perturbation must provide sufficient birefringence 

to concurrently couple two orthogonal polarizations. Thus, degenerate states with high |L| 

OAM modes do not mix in fibers with the proper design. In other words, even in strictly 

circular fibers, select modes can be polarization maintaining. 

4.1.2 Degeneracy Lifting  

Due to its complex and stochastic nature, leveraging transverse deformation as a means of 

controlling mode coupling is not a practical solution. Instead, a commonly employed 

strategy for mitigating mode coupling is to lift the 𝑛𝑒𝑓𝑓 degeneracy of the modes, which 

can be accomplished through appropriate fiber design or by selecting a suitable subset of 

modes. 

In general, the coupling efficient 𝜅 between modes with |∆𝐿| = 1  (and the same 

polarization) appears to be the highest, as common fiber bends can readily provide extrinsic 
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OAM |𝛿𝑙| = 1. Thus, they need a sufficiently high 𝑛𝑒𝑓𝑓 to mitigate mode coupling. Figure 

4.2 schematically shows the 𝑛𝑒𝑓𝑓 for select modes with indices 𝐿 and 𝑚 in select index-

guided fiber designs. Early HOM-based dispersion compensation (Ramachandran et al., 

2001, Gnauck et al., 2000) efforts involved “W” fiber designs that separated the 𝑛𝑒𝑓𝑓 of 

the desired LP0,2 mode from the LP2,1 and  LP1,2 modes (∆𝑛𝑒𝑓𝑓 denoted as red arrows in 

Fig. 4.2) by ∆𝑛𝑒𝑓𝑓 > 10
−3.  This enables the stable propagation of the desired LP0,2 mode 

for dispersion control designs. Simple step index fibers have a naturally mode-separating 

feature, where ∆𝑛𝑒𝑓𝑓 between a desired LP0,𝑚 and the undesired LP1,𝑚 or LP1,𝑚−1 modes 

monotonically increase with radial order m (green arrows in Fig. 4.2) (Ramachandran et 

al., 2006). This feature has been used for scaling the A𝑒𝑓𝑓 of fiber modes (Ramachandran 

et al., 2008), and stable modes with A𝑒𝑓𝑓~6000𝜇𝑚
2 and yet ∆𝑛𝑒𝑓𝑓 > 5 × 10

−4 have now 

been demonstrated (Nicholson et al., 2012) for fiber laser applications.  

As mentioned in Sec. 2.3, SOI lifts the degeneracy between SOa and SOaa modes 

(or, equivalently, HE and EH modes) and the ∆𝑛𝑒𝑓𝑓 can reach the order of > 5 × 10−5 for 

high-|L| modes in a fiber with high index contrast (blue arrow in Fig. 4.2) (Brunet et al., 

2014, Ramachandran et al., 2015). The large ∆𝑛𝑒𝑓𝑓 inhibit the coupling between SOa and 

SOaa modes with the same |L| (thus the name intra-|L| modes coupling). Hence, both SOa 

and SOaa modes can propagate stably, yielding OAM mode stability in fibers. The ring-

core design helps minimize the number of other radial order modes that might be 

accidentally degenerate (and hence inadvertently mix) with the desired OAM modes 

(details in Chapter 5).  
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Intra-|L| mode coupling requires extrinsic OAM |𝛿𝑙| = 2|𝐿|  or sufficient 

perturbation-induced birefringence. Hence, its coupling coefficient 𝜅 is lower than that of 

|∆𝐿| = 1 inter-|L| mode coupling under common bend perturbation. On the other hand, the 

Intra-|L| Δ𝑛𝑒𝑓𝑓’s (~10−4) of available modes are typically an order of magnitude lower than 

the |∆𝐿| = 1 inter-|L| Δ𝑛𝑒𝑓𝑓’s (~10−3). Given the scholastic and phenomenological nature 

of the transverse deformation in practical fibers, particularly over longer length (e.g. ~1km), 

it is expected that the ∆𝑛𝑒𝑓𝑓 plays a predominating role in the mode coupling. Hence, mode 

mixing between modes separated by |Δ𝐿|=1 between them is always less than intra-|L| mode 

coupling. Furthermore, at long fiber lengths of up to ~1km, the mode coupling may not be 

solely dependent on Δ𝑛𝑒𝑓𝑓 due to the presence of numerous fiber imperfections. For 

instance, the intra-|L| mode coupling for a mode with Δ𝑛𝑒𝑓𝑓 ~5×10−5 (L=5) is around -

10dB/km in the prior benchmark Gen4 fiber (Gregg et al., 2016), while it is around -

15dB/km for a mode with similar Δ𝑛𝑒𝑓𝑓 in the Gen5B fiber (L=14) described in Chapter 4. 

Admittedly, this mode coupling is not insignificant, but it is much lower than that of 

conventional MMFs, and it is just adequate for achieving sufficiently low Bit Error Rates 

(BER) in telecommunications.  
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Figure 4.2: 𝑛𝑒𝑓𝑓 distributions for select modes with indices 𝐿 and 𝑚. For visual clarity, 

not illustrated are polarization degeneracies of any of the modes or the 𝑛𝑒𝑓𝑓  degeneracies 

of any except for the |𝐿| = 5  mode. Orange arrows leading to representative mode images 

for corresponding fiber designs (grey shaded features) describe mode separations 

(quantified by ∆𝑛𝑒𝑓𝑓) for a select class of modes in their respective fibers. The 𝑛𝑒𝑓𝑓 of the 

𝐿𝑃0,2 mode can be separated from 𝐿𝑃2,1 and 𝐿𝑃1,2 modes (red arrows) by using the class of 

“W” shape fiber designs. The 𝑛𝑒𝑓𝑓 splitting of |𝐿| = 5 OAM modes (blue arrow) can be at 

least 5 × 10−5 in ring-core fiber designs. The 𝑛𝑒𝑓𝑓 splitting between 𝐿𝑃0,8 and its nearest 

neighboring 𝐿𝑃1,𝑚 modes can be larger than 5 × 10−4 in simple step-index fibers (green 

arrows). 
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4.2. Out-of-Plane Redirection and Geometric Phase 

4.2.1 Circular and Linear Polarizations 

The eigenmodes obtained in Chapter 2 are only applicable to a perfectly straight, 

perturbation-free fiber. As shown in Sec 4.1, they can be corrected in the presence of 

common fiber perturbations. However, the light path was assumed to be in a plane under 

these perturbations. In contrast, a slow, adiabatic redirection of light in 3D space (out of 

plane) would have non-trivial effects. After all, this is a rather common perturbation 

encountered with a flexible fiber. This geometrical transformation adds up an extra phase, 

which is distinct from the more common propagating phase associated with 𝛽𝑧 of a beam 

of light.   

The sign of this phase depends on the handedness of the circular polarization of a 

photon. Each degenerate mode in the CP0,1 basis acquires a geometric phase ∅𝑔 of sign 

opposite to that of its polarization ( 𝜎̂± ). Thus, an LP0,1  mode, which is the linear 

combination of two orthogonal CP0,1 modes, rotates under such geometric perturbations. 

The fact the power oscillates between two linear orthogonal polarization suggest that LP 

modes doesn’t satisfy the definition eigenmodes under such 3D redirection, in contrast to 

CP modes that remain unchanged in the transverse electrical field while pickup an 

additional phase. Hence, the linear and circular polarizations no longer form a pair of 

MUBs any more in the presence of geometric phase. Actually, such geometric phase 

associates with 3D redirection manifest even for free-space light. 
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Fundamentally distinct from the conventional dynamic phase (which includes, 

birefringence, angular momentum exchange, etc., discussed earlier) with dependence on 

propagation length, the geometric phase stores “memory” of the evolution (like geometry 

of the pathway) of a lightwave (Berry, 1990, Anandan, 1992).  

A carefully constructed experiment with SMF showed that a fiber, configured to 

traverse a 3D route in space, acquired phase that was dependent only on the solid angle 

subtended by the fiber-path in momentum (wavevector) space. The ray trajectory can be 

continuously deformed into any shape without changing the geometric phase as long as the 

solid angle remains unchanged, pointing to the topological nature of the effect.  

The discovery and exposition of this geometric phase, radically different from the 

propagating dynamic phase, dates back to the seminal report by S. Pancharatnam in 1956 

(Pancharatnam, 1956). It took ~30 years for its significance to be appreciated, awaiting the 

generalization of this concept in quantum mechanics by M. Berry (Berry, 1984).  This 

concept is intimately related to the idea that light carrying circular polarization denotes 

photons carrying spin angular momentum (SAM), and that a 3D path of light imparts 

extrinsic angular momentum to it. The aforementioned spin-redirection phase (Tomita et 

al., 1986) is one important manifestation of this concept. 

The composite effect of (bend-induced) birefringence as well as geometric 

perturbations on SMFs is illustrated in Fig. 4.3. The first section of the fiber illustrates only 

a 3D path (geometric transformation — the fact that the fiber is lifted out of plane is 

schematically illustrated by a shadow it subtends, in-plane). This adds phase in the CP0,1 

basis, hence a single CP0,1  mode merely acquires a phase. In contrast, the LP0,1  mode 
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rotates in polarization orientation. Following that, the second section of the fiber illustrates 

a conventional bend that induces birefringence, which serves to convert both the CP0,1 as 

well as LP0,1 modes into modes with arbitrary elliptical polarization states.  

 
Figure 4.3: The effect of nonplanar and birefringent perturbations on the polarization of 

light launched into SMF, illustrated as a flexed grey cylinder. Solid red arrows represent 

linear polarization states of light in the fiber at different positions along the propagation 

direction, with the dashed arrows denoting the state it possessed just prior to propagating 

to that position. Similarly, arrows on red circles represent circular polarization states and 

ellipses denote arbitrary elliptically polarized states. Mode transformations described 

below assume that light enters the fiber at the upper left end. The first section (I) represents 

an out-of-plane path (schematically illustrated by a shadow it subtends in plane) that is of 

large bending radii and hence free from fiber birefringence.  The second section (II) 

represents an in-plane path that has strong birefringence. For a fundamental CP0,1 mode 

with right-hand circular polarization, the nonplanar path imparts an extra phase ∅𝑔 due to 

geometric effects arising from Pancharatnam-Berry phases, but otherwise does not perturb 

the polarization state. This extra phase is illustrated by an azimuthal shift of the arrowhead. 

A mode with left circular polarization would behave similarly but accumulate an opposite 

phase ∅𝑔. In contrast, a fundamental LP0,1 mode with horizontal polarization, being a linear 

combination the two orthogonal circular polarizations, is rotated by an angle ∅𝑔 along the 

nonplanar path. The subsequent bend of section II induces birefringence, and hence 

transforms any LP0,1  or CP0,1  mode into arbitrary elliptically polarized states, with 

ellipticity and handedness controlled by the strength of the bend-induced birefringence. 
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4.2.2 OAM and Vector modes 

The preceding analysis was restricted to the fundamental mode of SMF, i.e. the L 

= 0, m = 1 mode (though similar behavior is expected for higher-m LP0,𝑚
 CP0,𝑚

 ⁄  modes). 

In these modes, the only contribution to angular momentum arises from the polarization 

(𝜎̂±). This concept is extendable to beams carrying OAM in addition to SAM, and the 

resultant geometric phase is given by (Bliokh, 2006): 

∅𝑔(C) = −(σ + 𝐿)Ω(C)                                                   (4.8) 

where C represents the path-contour, Ω(C) represents the solid angle subtended by this path 

in momentum space, and 𝜎 represents the handedness of circular polarization or amount of 

SAM, taking values of ±1 for light with 𝜎̂±, and all other quantities have been previously 

defined. As is evident, geometric phase is enhanced for OAM modes, and depends on the 

total angular momentum (TAM) of a photon.  

Observing this effect has historically been obscured by the fact that fiber modes 

experience all aforementioned dynamic and geometric perturbations simultaneously. One 

report (Abdulkareem et al., 2016), describing the strength of a so-called optical Magnus 

effect, showed that the speckle pattern out of a multimode fiber rotates when changing the 

sign of circular polarization, with the effect being proportional to the solid angle subtended 

by the fiber coil in the momentum space. A fiber in which low |𝐿| OAM or vector modes 

were excited showed the rotation of polarizations pattern to be explicitly dependent on 

mode order 𝐿 (Huang et al., 2018). Unfortunately, concurrent birefringent and angular 

momentum coupling implied that the experimentally observed rotation did not match the 

theory well, since the SOa and SOaa modes also coupled due to bends and birefringence. 



 

 

73 

In fact, the first experiment with SMF (Tomita et al., 1986), described earlier, emphasized 

the need for short fibers and large bending radii to observe the effect with reasonable 

fidelity.  

The advent of ring-core fibers greatly aids the study of geometric phase because of 

the ability to isolate the effects of the disparate perturbations described in Sec. 4.2.1. As 

described earlier, the ring core fiber minimizes coupling within the mode group – i.e., 

coupling between the SOa and SOaa pairs of modes (Fig. 4.2), and the angular momentum 

conservation effect forbids coupling between degenerate states for high enough |𝐿|.  

Figure 4.4 shows the experimental setup (Ma et al., 2018) used for studying the 

mixing of two degenerate OAM or vector modes, in a 4-m long ring-core fiber (Gregg et 

al., 2015) supporting stable propagation (i.e. without SOa-SOaa mixing) of high-|𝐿| modes 

(|𝐿| = 5, 6, 7). The incoming Gaussian beam at 1550nm from an external cavity laser (ECL) 

is converted into the desired OAM or vector mode using a Pancharatnam–Berry optical 

element called a q-plate (Marrucci et al., 2011, Gregg et al., 2015). A q-plate with 

topological charge q can project circular polarization onto OAM modes of order |𝐿| = |2𝑞|, 

with the spin-orbit alignment dependent on the sign of q (Eq. 4.9).  

A𝜎̂+ + B𝜎̂−
     𝑞    
→   A𝜎̂−𝑒𝑖2𝑞𝜑 + B𝜎̂+𝑒−𝑖2𝑞𝜑                                    (4.9) 

where the arrow denotes the transformation induced by the q-plate and A and B are mode 

amplitudes. 
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Figure 4.4: Experimental setup used for studying the mixing ratio of two degenerate OAM 

or vector modes. For the OAM basis, the quarter-wave plate (/4) is rotated to an angle 

such that the fast axis is 45º with respect to the axis of polarizer to generate circularly 

polarized light, which is converted to OAM modes by the q-plate. In contrast, for the vector 

basis, the fast axis of the quarter-wave plate is aligned with the axis of the polarizer, such 

that linearly polarized light can be projected on to corresponding vector modes; A 

reciprocal setup at the fiber output converts the modes back to Gaussian beams, with the 

power in each polarization bin being proportional to the power of the individual degenerate 

(OAM or vector) modes at the fiber output. For the vector mode measurement, the output 

quarter-wave plate is removed. When measuring OAM mode stability, the input was a ~15-

dB pure 𝐿 = −7 𝜎̂+ mode, whereas, during the vector mode stability measurements, the 

input was a ~10-dB pure 𝐸𝐻6,1
𝑒𝑣𝑒𝑛mode. 

In the following representative experiments we used 𝑞 =
7

2
, which causes Gaussian 

beams of two circular polarizations 𝜎̂+ and 𝜎̂− to be converted into two degenerate SOaa 

OAM modes of 𝐿 = +7 𝜎̂− , and 𝐿 = −7 𝜎̂+ , respectively. The purity of OAM modes 

excited in the fiber is confirmed to be greater than 15dB via spatial interferometry (Sec. 

3.2). The output of the ring-core fiber is then converted back to a fundamental Gaussian-

shaped free-space mode using an identical q-plate. Thereafter, with appropriate 

polarization optics, the two orthogonal polarization components of the output beam can be 

spatially separated and projected onto a camera. Therefore, the power ratio between 

polarization bins on the camera represents the mixing ratio of two degenerate OAM modes 

in the fiber. By launching a pure mode into the fiber, its stability within the fiber can be 

deduced by measuring the relative power scattered into its degenerate counterpart. The 

combination of q-plate and wave plates can not only generate two degenerate OAM modes, 

but also any of their linear combinations. Since linear polarizations are linear combinations 
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of circular polarizations and vector modes are linear combinations of OAM modes, 

Gaussian beams with two orthogonal linear polarizations can be mapped onto two 

degenerate vector modes (A = ±B in Eq. 4.9). Reciprocally, measuring the power ratio in 

the two linearly polarized bins yields the mode-mixing ratio between the two degenerate 

vector modes. By switching the polarization between circular and linear using quarter-

wave plates (or their lack, thereof), we are able to switch between the OAM and vector 

modal bases with ease while maintaining all other experimental (perturbative) conditions. 

Representative experimental results on propagation stability in the presence of in-plane and 

out-of-plane bends are shown for the |𝐿| = 7 SOaa OAM modes and the corresponding 

mathematically rotated basis of EH6,1
  odd and even modes. 

The plots in Fig. 4.5(b) and (c) show the measured power fluctuations between two 

degenerate OAM and vector modes, respectively, as the fiber is bent, in plane, as illustrated 

in Fig. 4.5(a). When the input is an OAM mode (𝐿 = −7 𝜎̂+), a negligible amount of power 

(around −12dB) is scattered to its degenerate counterpart. This is consistent with earlier 

observations that high |L| OAM modes are stable, even between degenerate modes, in ring-

core fibers (Gregg et al., 2015). For a vector mode input (EH6,1
𝑒𝑣𝑒𝑛), the power of parasitic 

degenerate mode (EH6,1
𝑜𝑑𝑑) remains mostly low, at the −10dB level. Some power jumps to 

around −7 dB are evident. This is due the experimental inability of maintaining a strictly 

in-plane perturbation. Later, we will describe the origin of this discrepancy, but a higher-

level summary of these two experiments is that OAM and vector modes remain robust to 

degenerate mode coupling in the presence of in-plane bend perturbations. Given that OAM 

mode stability was already known, this was to be reasonably expected, given that its 
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mathematically equivalent counterpart, the vector modes, would also possess similar 

stability. The plots in Fig. 4.5(e) and (f) show the mode mixing between two degenerate 

OAM modes and vector modes as the fiber is moved out of plane, as illustrated in Fig. 

4.5(d). Again, for the OAM mode input (𝐿 = −7 𝜎̂+), the power of parasitic degenerate 

mode remains at a very low level (~14dB). In contrast, when the input is the EH61
𝑒𝑣𝑒𝑛 mode, 

the two degenerate modes completely mix with each other with 3D fiber perturbations.  

 

 
 

Figure 4.5: (a) Schematic of fiber loops being bent in-plane to varying degrees, during the 

measurement. Part of the fiber loops (radius ~12cm) are gradually bent into radius ~4cm, 

and then return back to the original; (b) Plot of relative power in the two degenerate OAM 

modes ( 𝐿 = ∓7 𝜎̂±)   under the application of perturbations as shown in (a); (c) 

Corresponding plot of relative power in the two degenerate 𝐸𝐻6,1
  modes for in-plane 

perturbations; (d) Schematic of fiber partly (2 out of 4 fiber loops) being lifted out of plane 

to different heights during measurements. The plane of lifted fiber is moved to the plane 

perpendicular to the original and then moved back; (e) Plot of relative power in the two 

degenerate OAM modes (𝐿 = ∓7 𝜎̂±)  as the fiber is moved out of plane, as shown in (d); 

(f) Corresponding plot of relative power in the two degenerate 𝐸𝐻61
  modes for out-of-

plane perturbations. OAM modes remain stable to bend as well as 3D perturbations, while 

the vector modes are completely mixed by 3D path redirections of the fiber. 
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This curious result, of two mathematically identical sets of modes behaving 

differently under 3D perturbations, is a manifestation of the geometric phase discussed in 

section 4.2.1. An OAM mode traversing a nonplanar path (modified mode represented as 

𝑂𝐴𝑀̃) obtains an extra phase factor compared with the input (Eq. 4.10). As two degenerate 

OAM modes have opposite sign of L and 𝜎, the geometric phases they accumulate, as per 

Eq. 4.8, have opposite signs. The vector modes under such a perturbation (𝐸𝐻̃6,1
𝑒𝑣𝑒𝑛) remain 

a linear combination of perturbed OAM modes, but they are now projected onto two 

degenerate vector modes EH6,1
𝑒𝑣𝑒𝑛 and EH6,1

𝑜𝑑𝑑, as shown in Eq. 4.11. Hence, out-of-plane 

geometric perturbations fundamentally lead to mode mixing in the vector basis but not in 

the OAM basis. Note that this result follows previous experiments on geometric phases 

(Huang et al., 2018), but here, realistic lengths of fibers could be used, in contrast, because 

the ring-core fiber design and use of high |L| modes helped avoid the competing effects of 

mode coupling due to bends and birefringence. While the length of fiber used in this 

experiment was only 4 m, OAM stability in ring core fibers has been observed up to 13.4 

km propagation lengths (Gregg et al., 2016). 

{
𝑂𝐴𝑀̃+𝐿

− = OAM+𝐿
− 𝑒𝑖∅𝑔

𝑂𝐴𝑀̃−𝐿
+ = OAM−𝐿

+ 𝑒−𝑖∅𝑔
                                                  (4.10) 

{
𝐸𝐻̃𝐿−1, 1

𝑒𝑣𝑒𝑛 =  
1

2
(𝑂𝐴𝑀̃+𝐿

− + 𝑂𝐴𝑀̃−𝐿
+ ) = cos∅𝑔 ∙ 𝐸𝐻𝐿−1,1

𝑒𝑣𝑒𝑛 − sin∅𝑔 ∙ 𝐸𝐻𝐿−1,1
𝑜𝑑𝑑

𝐸𝐻̃𝐿−1, 1
𝑜𝑑𝑑 =

1

2𝑖
(𝑂𝐴𝑀̃+𝐿

− − 𝑂𝐴𝑀̃−𝐿
+ ) = sin∅𝑔 ∙ 𝐸𝐻𝐿−1,1

𝑒𝑣𝑒𝑛 + cos∅𝑔 ∙ 𝐸𝐻𝐿−1,1
𝑜𝑑𝑑

        (4.11) 
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4.3. Geometric Phase Control 

To quantitatively study the effect of geometric phase on high |L| modes, we configure the 

fiber into a uniform helix shown in Fig. 4.6 (a). Input and output OAM and vector modes 

are shown schematically, for visual clarity. Although both feature a donut-shaped intensity 

profile, the illustrations here show spiral patterns for OAM modes, obtained when an OAM 

mode is interfered with an expanded Gaussian (with the number and orientation of 

parastiches denoting 𝐿  and its sign, respectively). Likewise, vector modes are 

schematically illustrated by their projection patterns, obtained when they are imaged 

through a polarizer (with the number of “beads” being |2𝐿|). Figure 4.6 (b) shows that the 

k-vector of light in a helical path encloses a solid angle, Ω . As the fiber helix is compressed, 

the solid angle increases accordingly, resulting in an extra geometric phase of the beam 

traveling in the fiber, without changing the path length of the light (and hence its dynamic 

phase). This solid angle is related to the period of the helix Λ, by Ω = 2π (1 −
Λ

𝑙
), where 𝑙 

represents the length of fiber in one loop. This helical arrangement is realized by loosely 

inserting the fiber into a Teflon tube with 1-mm inner diameter to minimize any torsion, 

stress or stretching during winding. This Teflon tube is then adhered to a metal spring, with 

which solid angle Ω can be controllably varied. This level of care is not needed for the 

OAM mode, which is stable, but is required for the vector mode, which, as shown in Fig. 

4.5(f), is sensitive to 3D fiber movement. Part of a 3.4-m-long segment of a ring-core fiber 

of length is wound into a uniform helix of 6.5 loops (light propagating in and out of fibers 

are in opposite directions). The length of each loop l is 16.3 cm. Note that the k-vector of 
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the mode in the fiber, with magnitude  (its propagation constant), is well approximated to 

be parallel to the axis of the fiber under the weakly guiding approximation. Therefore, the 

solid angle subtended by the k-vector is approximately equal to the solid angle spanned by 

the fiber’s physical path, which follows that of the metal spring. As the spring is 

compressed, the pitch period Λ  decreases from 2.3cm to 0.2cm, and the solid angle 

correspondingly increases from 1.72 to 1.96. The total geometric phase acquired for a 

mode in this setup is equal to the geometric phase acquired in one loop multiplied by the 

number of loops N, as shown in Eq. 4.12:  

∅𝑔(C) = −𝑁(σ + 𝐿)Ω(C)                                               (4.12) 

For an OAM mode with  𝐿 = −7 𝜎̂+  the extra geometric phase results in a 

counterclockwise rotation of the beam. This rotation angle is equal to the additional phase 

divided by OAM order 𝐿, or  Θ =
∅𝑔(C)

𝐿
. Similarly, an OAM mode with 𝐿 = +7 𝜎̂− would 

obtain an extra geometric phase of the same amount but with opposite sign. As the signs 

of both OAM order and geometric phase are flipped, the beam rotation would have the 

same magnitude and direction. Therefore, the vector modes (EH61
  odd/even), which are 

the combinations of the two degenerate OAM modes, rotate counterclockwise with the 

same angle (shown schematically on the output patterns of Fig. 4.6(a)). However, this 

rotation would lead to power oscillation between the odd and even degenerate vector modes, 

since they are not rotationally invariant.   
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Figure 4.6: Systematic control of Pancharatnam-Berry phases in optical fibers. (a) An 

OAM mode supporting ring-core fiber, inserted in a loose Teflon tube, is attached to a 

flexible spring to configure a helical with variable period. A combination of two degenerate 

OAM modes (𝐿 = −7 𝜎̂+ and  𝐿 = +7 𝜎̂−) is launched into the fiber. For visual clarity, 

the OAM modes are illustrated with spiral patterns that arise from their interference with 

an expanded Gaussian beam. The corresponding projection of this superposition state into 

𝑥̂  and 𝑦̂ polarization-bins yields petal patterns, illustrated at the bottom left hand side of (a). 

The mode illustrations on the right side of the helical arrangement show the corresponding 

modes at the output of the fiber, all of which are rotated counterclockwise due to the 

geometrical transformation; (b) Geometric illustration of the solid angle 𝛺 enclosed by the 

k-vector of the light path in this helical arrangement. The illustration in orange depicts the 

higher 𝛺 obtained from compressing a spring from its original state, depicted in the black 

illustration; (c) Measured power fluctuations between even and odd modes for 𝐸𝐻61
 , using 

the reciprocal mode transmission setup of Fig 5(a), when the spring was compressed (pitch 

period Λ decreases from 2.3cm to 0.2cm). The uneven periodicity results from the uneven 

speed with which the spring was compressed; (d) Geometric phase, measured from vector 

mode power ratios, versus solid angle, for two degenerate OAM modes 𝐿 = −7 𝜎̂+ and  

𝐿 = +7 𝜎̂−  as the helical spring is compressed. The red line is a linear fit of the 

experimental data (solid circles). Near-linear relationship shows exclusive influence of 

fiber path on geometric phase, and hence relative mode amplitudes. 
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Figure 4.6 (c) shows the measured power fluctuations between even and odd modes 

as the spring is gradually compressed, for an input comprising a pure EH6,1
𝑒𝑣𝑒𝑛 mode. As 

with the previous experiment of Fig. 4.5 (f), the two degenerate vector modes mix 

completely. The main difference is that the oscillation is now periodic and systematic, since 

the geometric phase is accumulated monotonically, in a controlled fashion, with the helical 

arrangement. Based on the rotation angle of the vector modes, the accumulated geometric 

phase of the OAM modes can be calculated. As shown in Fig 4.6 (d), the geometric phase 

shows a linear relationship with the solid angle, which matches the theoretical prediction 

(Eq. 4.12) of a linear relationship between these parameters. It clearly shows that image 

rotation, and hence mixing, of vector modes is linearly proportional to the solid angle 

enclosed by the k-vector of light. 

We repeat this experiment on five other pairs of modes that are stable in this ring-

core fiber. As shown in Fig 4.7 (a), the geometric phase shows a linear relationship with 

the solid angle in all cases. As evident, image rotation, and hence vector mode instability, 

increases as the TAM (equal to 𝐿 + 𝜎) of participating modes increases. Figure 4.7 (b) 

shows that the slopes for each pair of OAM modes is linearly proportional to the TAM of 

the corresponding OAM modes. The magnitude of this slope (i.e. slope of the slopes vs. 

TAM), which is, effectively the number of loops N (per Eq. 4.12), is 6.2, which is close to 

the expected value of N = 6.5. The lack of a better match may be due to the fact that input 

mode purity was only 10 dB, but even so, this confirms that the perturbations experienced 

by these modes predominantly arise from the experimentally induced geometric, and not 

inadvertent bend or birefringence, perturbations  



 

 

82 

While the controlled experiments helped rigorously verify the influence of different 

kinds of perturbations on an optical fiber and, especially, their influence on different modes, 

the results of Fig. 4.7(a) also point to applications towards a novel type of shape sensor, 

with sensitivity controlled by the OAM content of light in a fiber. One key distinction from 

other types of interferometric sensors that depend on the conventional dynamic phase of 

light is that this depends only on geometry. As mentioned earlier, dynamic phase arises 

from 𝑒𝑖𝛽𝑧, which is strongly wavelength dependent. In contrast, there is no wavelength 

dependence in geometric phase, meaning that its sensitivity does not depend on the 

bandwidth of the source, facilitating the use of low-cost sources even in high-sensitivity 

applications. Likewise, the lack of dynamic phase dependence also makes such sensors 

robust to ambient perturbations, such as temperature or pressure induced changes of the 

refractive index of the fiber.  

To demonstrate its independence to wavelength, we conduct the same helix 

experiment with |L|=7 SOa modes (𝐿 = ±7 𝜎̂±) using light sources of different bandwidths. 

Figure 4.7(c) shows the measured geometric phase as a function of solid angle, just as in 

Figs. 4.6(d) and 4.6(a), when employing sources of varying bandwidths. ECL denotes a 

narrow-linewidth (100 kHz) source at 1550 nm; “ps laser” is a picosecond laser at 1550 

nm with ~0.5nm bandwidth; the LED has a bandwidth ~35 nm around 1525 nm; and 

“superK” represents a supercontinuum source with 3-dB bandwidth of ~250 nm centered 

at ~1475 nm. The spatial interferometry method used to previously guarantee mode purity 

does not work with broadband sources (because it utilizes dynamic phase). Hence, the 

purity of OAM modes is adjusted to be higher than 15 dB using the ECL, as before, and 
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then the light source is carefully switch to other broadband sources without disturbing 

alignment, expecting minimal changes in mode purity. The geometric phase shows a linear 

dependence on solid angle regardless of the bandwidth of light source, as shown in Fig. 

4.7(c). However, the slopes obtained with the broadband sources differ from that obtained 

with the ECL by up to 12%. The mismatch probably arises from the lack of our ability to 

maintain high-purity excitation with the broadband sources, a problem easily solved in the 

future with the plethora of emerging mode-conversion technologies for OAM fiber modes 

Nevertheless, the results point to a novel means of developing low-cost shape sensors that 

are insensitive to environmental perturbations such as temperature, pressure, mechanical 

vibrations and bends, while maintaining high sensitivity.  

 

Figure 4.7: (a) Geometric phase versus fiber path solid angle for 6 distinct pairs of OAM 

modes. The colored lines are linear fits of the experimental data (black solid circles). All 

modes show a clear linear relationship; (b) The slope of each trace (for each mode) shown 

in (a) versus the 𝑇𝐴𝑀 = 𝐿 + 𝜎 of the respective modes. The high degree of linearity as 

well as the slope of this line match well with theory that accounts only for geometric effects; 

(c) Geometric phase versus solid angle for two degenerate OAM modes 𝐿 = ±7 𝜎̂± (as 

shown earlier in (a)), using multiple light sources. ECL is a narrow linewidth (100kHz) 

source at 1550nm; ps laser is a picosecond laser at 1550nm with ~0.5nm bandwidth; the 

LED has a bandwidth ~35nm around 1525nm; superK represents a supercontinuum source 

with 3dB bandwidth up to ~250nm at around 1475nm. Similar slopes for all these sources 

demonstrates weak dependence of wavelength on geometric phase. 
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4.4. Summary and Discussion  

We have studied how ideal HOMs interact with each other under in-plan or out-of-plane 

perturbations and found the linear stability is intimately connected to properties of the 

modes themselves (their angular momentum content, and even the mathematical basis used 

to describe them) as well as the form of perturbations a fiber encounters.  

Considering the two most common fiber perturbations – bends, which induce 

birefringence as well as OAM transfer, and light’s path-memory, manifested in the 3D 

trace that light follows – we arrive at the following conclusions related to modal stability 

for HOMs (illustrated in Fig. 4.8).  The commonly used LP modes are actually linear 

combinations of eigenmodes of dissimilar phase velocities, and thus they are not 

translationally invariant even in a perfect, straight fiber. On the other hand, the vector and 

OAM modes, as two mathematically equivalent bases for mode representations, remain 

stable in an unperturbed fiber. However, when their modal index |𝐿| is low, they mix 

completely with their degenerate counterpart in a fiber that is bent (in-plane), because of 

birefringent coupling that couples polarizations in SMFs too. High-|𝐿| vector and OAM 

modes are, in contrast, stable even across (in-plane) bent fibers, because of inherent OAM 

conservation rules. Finally, when a fiber is not only bent, but also lifted out-of-plane, even 

high-|𝐿|  vector modes become unstable, in that their polarization distributions rotate, 

because of the Pancharatnam-Berry phase that light accumulates in 3D paths.  



 

 

85 

 
Figure 4.8: Summary of the propagation stability of optical fiber modes of different classes 

when the fiber is deployed with commonly encountered perturbations. The illustration 

depicts modes launched at the left end of a perfectly circular fiber, and all modes are 

schematically illustrated at four positions (black dashed lines) along the fiber propagation 

axis. From left to right: The input comprises pure modes in all the classes; the second 

position represents propagation through a straight fiber without any perturbations; this is 

followed by a position after propagation through a fiber that is bent only in plane; and, the 

final position represents propagation through a fiber that experiences an out-of-plane (3D) 

redirection as well. The modes from bottom to top represent LP modes (𝐿𝑃2,1
 ), low order 

vector modes (𝐸𝐻3,1
𝑒𝑣𝑒𝑛), low order OAM modes (𝐿 = 2 𝜎̂+), high order vector modes 

(𝐸𝐻6,1
𝑒𝑣𝑒𝑛), and high order OAM modes (𝐿 = 5 𝜎̂+ ). After propagating through the straight 

fiber section, LP modes mix between orthogonal modes of the same class, while all the 

other modes remain stable. As such, LP modes, designated at this point with an orange 

cross, are not illustrated across subsequent perturbations, having failed to propagate 

through the most elementary arrangement. In-plane fiber bends easily couple a low order 

vector (𝐸𝐻3,1
𝑒𝑣𝑒𝑛) or OAM (𝐿 = 2 𝜎̂+) mode with its degenerate counterpart, while it doesn’t 

impart enough angular momentum to couple a higher order OAM mode 𝐿 = 5 𝜎̂+ or the 

corresponding vector mode 𝐸𝐻61
𝑒𝑣𝑒𝑛  to their respective degenerate counterparts. Again, 

therefore, no further depiction of low |𝐿| vector or OAM modes is illustrated (as indicated 

by the orange cross). After propagating through the 3D trace, a higher order vector mode 

𝐸𝐻6.1
𝑒𝑣𝑒𝑛 mixes completely with its degenerate counterpart, while the corresponding OAM 

mode 𝐿 = 5 𝜎̂+ merely acquire a common geometric phase and remains remarkably stable. 

Hence, across all perturbations, only the high |𝐿| OAM mode survives without coupling, 

to its degenerate or non-degenerate counterparts. 
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In contrast, a high- |𝐿|  OAM mode remains remarkably stable, except for 

accumulating a common phase. Hence, as mode propagation is studied across a range of 

perturbations, starting from none (straight fiber) to bends, to, finally, 3D paths, modes of 

the same 𝐿  and 𝑚  indices, but represented in different mathematical bases are not, 

somewhat counterintuitively, identical.  

Considering all these perturbations, OAM modes of sufficiently high |𝐿| are the 

most stable eigenmodes of a circularly symmetric optical fiber. A few important 

clarifications are in order: this stability is observable only once a fiber is designed such that 

𝑛𝑒𝑓𝑓 splittings between pertinent non-degenerate modes is maximized, and this analysis 

ignores very long (>> km) length propagation, where higher order effects of bends and 

twists may play a role. In such cases, one would expect modes of any class to mix, although 

the fundamental nature of the effects described here suggest that even in conditions where 

all modes mix, the circularly polarized OAM modes will likely be more robust compared 

to others. In addition, the OAM eigenbasis yields a stable platform in which to exploit path-

memory effects arising from geometric transformations (Pancharatnam-Berry phases), 

which while studied extensively in free space, may now lead to new opportunities for 

wavelength-agnostic or wavelength-insensitive phase control with fibers. We expect that 

these findings will help inform the optimal modal basis to use in the variety of applications 

that envisage using higher order modes of optical fibers. 
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Chapter 5  

5. Scaling OAM Mode Count in Fibers 

As demonstrated in the preceding chapter, the OAM bases is fundamentally the most stable 

eigenbasis in fibers. In addition, by enhancing the SOI, one can lift the four-fold 

degeneracy of a certain |L|, which results in a large amount of spatially efficient stable 

modes for unmixed SDM. This provides great advantages in using OAM mode for SDM. 

Since the first generation of OAM fiber in 2011 (Bozinovic et al., 2013), there has 

been significant progress in scaling the OAM mode count, which goes up to 12 over a km 

fiber (Gregg et al., 2016). This benchmark is the Generation-4 OAM fiber, the one used 

for illustrating the properties of OAM mode in Chapters 2 & 3. Even though it achieves 

the maximum number of unmixed modes in multimode fiber, its channel count and 

crosstalk are not comparable with the MCF technology (Sasaki et al., 2017). The lowest 

crosstalk (determined by intra-|L| coupling) is fundamentally limited by the index contrast 

achieved in fiber manufacture. However, channel count has a more significant effect. As 

the capacity scales linearly with the channel count while logarithmically with overall SNR 

(Eq. 1.2), we may still benefit from scaling the OAM mode count, especially for device-

length applications. Therefore, in this chapter, we aim to investigate the scalability of OAM 

modes conventionally bound in a fiber. 

As we have discussed in Chapter 1 & 4, mode coupling is the primary concern in a 

multimode fiber. There are two main causes of mode coupling for desired m=1 OAM 

modes: intra-|L| mode coupling among desired m=1 mode and accidental degeneracy with 
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high-m modes. In the following sections, we will describe our efforts to address these 

concerns by sculpting the refractive index profile of the fiber. We will also show the 

characteristic of the resultant ring-core fiber and discuss the challenges of utilizing this 

approach for mode count scaling. 

5.1. Fiber Design 

5.1.1 Mitigation of Intra-|L| Coupling  

As described in the Chapter 4, the intra-L coupling can be mitigated by increasing the neff 

between SOa and SOaa modes. We have also concluded that the neff criterion is around 

5×10-5 regarding bend resistance. Such ∆𝑛𝑒𝑓𝑓 is associated with -10dB/km crosstalk in the 

previous benchmark Gen4 fiber over ~1km, thus accounting for various perturbations. 

Hence, we tentatively set it as the criteria.  

Now the question is how many modes satisfy this criterion. As demonstrated in 

Chapter 2, the intra-|L| ∆𝑛𝑒𝑓𝑓  scales with L but the maximum ∆𝑛𝑒𝑓𝑓  becomes smaller for 

larger fiber with the same index contrast. Figure 5.1 is a re-plot of Fig. 2.6 with respect to 

the relative topological charge L-Lc, where Lc is the topological charge last bound mode, 

guided conventionally by TIR, before cutoff. Note that the index contrast is set as 0.035, 

which is the same as the benchmark Gen4 fiber. The high refractive index is realized by 

doping Germanium (Ge) into silica and thus is fundamentally limited by the amount of Ge 

that can be doped.  

As shown in Fig. 5.1, while the maximum value of ∆𝑛𝑒𝑓𝑓 (for L=Lc) decreases with 

the core diameter, the ∆𝑛𝑒𝑓𝑓 at the lower-(L-Lc) end rises for larger fibers, resulting in a 





 

 

90 

  

Figure 5.2: Index profile and modal intensity distribution of the design fiber with optimal 

core diameter. 

5.1.2 Avoidance of Accidental Degeneracy 

Another problem is the accidental degeneracy of the high-m modes. Such modal 

degeneracies are the primary reason behind speckle patterns resulting from multimode 

fibers, and hence loss of signal fidelity, no matter how well the input mode launch is 

optimized. This is also one of the main reasons behind the current lack of progress in 

scaling optical fiber mode counts using conventional TIR-based bound modes. Strictly 

speaking, such accidental degeneracy only occurs at a specific wavelength where the 𝑛𝑒𝑓𝑓 

of the m=1 mode and high-m mode cross. However, as shown in Chapter 4, the 

wavelengths at which such mode coupling can be significant can be up to ±40nm away 

from the wavelength of modal degeneracy, even in a 1m fiber, as the 𝑛𝑒𝑓𝑓  difference 

between the modes needs to be large enough to reduce the coupling. Given the much 

smaller bandwidth (35nm) of the conventional C-band (1530nm–1565nm), it is critical to 

move the 𝑛𝑒𝑓𝑓 crossing point much further away otherwise we lose the 4 channels (of the 

same |L|) provided by the desired m=1 modes. Based on that 80-nm coupling bandwidth, 
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the 𝑛𝑒𝑓𝑓 crossing wavelength needs to be at least 40nm away from the C-band. Considering 

diameter fluctuations and manufacture inaccuracies in longer fibers, it is advisable to 

design the crossing wavelength to be much larger than 40nm than this 40-nm span 

(e.g., >110nm in Gen4 fiber). 

This accidental degeneracy with undesired high-m modes is much more detrimental 

for SDM applications than intra-|L| mode coupling. The aforementioned engineering of the 

intra-|L| ∆𝑛𝑒𝑓𝑓 was driven by the intention of avoiding high-order MIMO. Also, the ∆𝑛𝑒𝑓𝑓 

criterion can be loosened to have more available modes in certain circumstances where 

fibers experience weaker perturbations or lower mode purity is allowed. As the last resort, 

the intra-|L| mode coupling can be disentangled by 4x4 MIMO (Amin et al., 2011) as they 

are all the desired channels. However, the coupling to the undesired high-m mode results 

in irrevocable loss of information. Also, such mode coupling is wavelength dependent 

which makes the WDM even more incompatible.  

This high-m coupling is the main culprit for the mode mixing inside conventional 

step index fiber. Thus, it is critical to restrict the number of high-m modes that can couple 

with the desired m=1 modes. This can be achieved by making the guiding core into ring 

shape. In other words, it can reduce the number of modes in the radial direction. One radical 

solution to the high-m coupling issue is making the ring core super thin such that it only 

supports m=1 modes. However, in such strong guidance regimes, the eigenmodes become 

the peculiar spin-orbit-coupled modes (Gregg et al., 2019) that are very complicated to 

excite and characterize. Also, such strong confinement may also induce high loss due to 

strong interface scattering. Finally, as discovered, this regime of fiber design may make 
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the modes susceptible to coupling between modes separated by L=2. This increases the 

problem of managing mode spacings while increasing mode count. Therefore, we tune the 

ring thickness such that m=3 modes are cutoff in the C-band while m=2 modes are still 

guided so the weakly guided approximation with SOI corrections is still valid. Furthermore, 

we design the fibers such that only the m=2 modes, besides the desired m=1 modes, reside 

in the fiber in the spectral range occupied by the C-band. The ring radius and thickness are 

carefully tuned to move wavelength of accidental degeneracy away from the C-band.  

 

Figure 5.3: Schematic of the refractive index profile of the designed ring-core fiber. 

Figure 5.3 shows the schematic index profile of the designed ring-core fiber. The 

high-index ring region is doped with Ge and the low-index center region is doped with 

Fluorine. Apart from sweeping the ring radius and thickness, the Fluorine-doped index can 

also be tuned from 0 to -0.005, which also moves the wavelength of the accidental 

degeneracy a bit. The critical metric is x defined as the wavelength separation between 

the crossing point of the m=1 and m=2 modes on either spectral range outside the C-band. 

Note that there can be multiple x’s for all the desired m=1 modes, and so the overall 
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avoidance of the accidental degeneracy is evaluated by the minimum of them – x,min. 

The x,min of all the fibers are shown in the Fig 4.4. Note that the sweep was 

initially on the inner radius of the ring-core, which results in the blank region at both sides 

when plotted in terms of the outer radius. The x,min is assigned zero for the cases where 

(a) there is  𝑛𝑒𝑓𝑓 crossing between m=1 and m=2 mode or (b) m=3 modes is not cutoff in 

the C-band. The max x,min is only ~80nm (good for 1m fiber but not enough for 1km 

according to the phenomenological metrics for accidental degeneracy developed for Gen4 

fiber; see Sec. 4.11). Moreover, this value was found to be very sensitive to parameter (core 

index, waveguide dimensional) changes.  

 

Figure 5.4: x,min of ring-core fibers with various combinations of outer ring radius and 

ring thickness. x,min is assigned to zero for the following cases (i) there is 𝑛𝑒𝑓𝑓 

degeneracy between m=1 and m=2 modes in the C-band; or (ii) m=3 modes are not cutoff 

in the C-band. 

Note that the inner interface of the ring core can also make a difference to the ∆𝑛𝑒𝑓𝑓. 

According Eq. 2.28, the ∆𝑛𝑒𝑓𝑓 is dependent on the integral of the whole modal field profile 
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and index gradient profile. In the step index fiber, only the outer interface makes a 

contribution. However, given the inverse gradient of the inner interface of the ring core, its 

contribution to the ∆𝑛𝑒𝑓𝑓 actually has an opposite sign as the that from the outer interface. 

Hence, the overall ∆𝑛𝑒𝑓𝑓 in the ring-core fiber is smaller than that in a step-index with 

identical outer diameter. Actually, given the lack of the opposite slope of the ring core at 

the inner ring interface, step index fiber determines the highest ∆𝑛𝑒𝑓𝑓. As a results, the 

maximum number |L|’s free from intra-L coupling (∆𝑛𝑒𝑓𝑓 > 5 × 10
−5) decreases to 4 for 

all the aforementioned ring-core fibers, rather than 5 in the initial step-index design. 

5.1.3 Other Criteria  

The aforementioned consideration of the x,min doesn’t take the intra-L ∆𝑛𝑒𝑓𝑓  into 

account. Actually, some combination of the outer ring diameter and ring thickness can 

result in relatively small ∆𝑛𝑒𝑓𝑓, resulting in the maximum number |L|’s free from intra-L 

coupling (∆𝑛𝑒𝑓𝑓 > 5 × 10
−5) even smaller than 4.  Figure 5.5 shows the x,min of all the 

swept fiber with 4 |L|’s (or 16 unmixed modes) thus the range of choices is much narrower.  
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Figure 5.5: x,min of various ring-core fibers with various combinations of outer ring 

radius and ring thickness. x,min is assigned to zero for following cases (i) there is 𝑛𝑒𝑓𝑓 

degeneracy between m=1 and m=2 modes in the C-band; (ii) m=3 modes are not cutoff in 

the C-band; (iii) the number of good |L|’s (∆𝑛𝑒𝑓𝑓 > 5 × 10
−5) is less than 4. 

Another criterion is how far the 𝑛𝑒𝑓𝑓 of the highest-L bound mode is away from 

the cladding index (silica), which theoretically has effect on its loss especially in the 

presence of bend perturbations. Figure 5.6 shows the nL,si defined as the difference 

between the 𝑛𝑒𝑓𝑓 of the highest-L modes and the refractive index of silica at the longer end 

of C-band (1565nm) when such 𝑛𝑒𝑓𝑓 difference is the smallest.  
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5.2). According to Eq. 28, for large 𝑛𝑒𝑓𝑓 splitting to occur, the field's intensity at the outer 

interface ought to be sufficiently high. 

 

Figure 5.7: Index profile of the designed fiber and the intensity distribution of all the 

modes. The available modes with L=12-15 are represented with solid curves while the 

others are shown with dashed curves.  

5.2.  Generation-5 Ring-Core Fiber  

The preform from which the fiber is drawn is fabricated using modified chemical vapor 

deposition (MCVD) by our collaborators at OFS Fitel ApS. When scaled appropriately (by 

choice of fiber draw conditions), it matched the design as closely as possible, as shown in 

Fig. 5.8. The draw down ratio was tuned (as a final adjustment) to optimize the crossing 

wavelength as x,min = 63nm, which is close to that of the design. However, the drawn 

fiber turned out to be very different. Overall, the refractive index is higher due to drawing 

tension (Yablon et al., 2004), such that the n become 0.04 rather than 0.035. The index 

profile was measured using an interferometry-based fiber profiler (IFA-100 Interfiber 

Analysis) at 633 nm. This fiber is referred to as Gen5A3.   
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Figure 5.8: Refractive index profile of the design fiber, the final preform scaled to optimal 

size and the final drawn fiber. Inset: the cross-section image of the drawn fiber. 

The fact that the drawn profile is distinct from that designed, changes the 𝑛𝑒𝑓𝑓 

distribution dramatically. As shown in the neff distribution in Fig. 5.9, the Lc becomes L=16 

(as opposed to Lc=15, as was the case for the designed fiber). The two panels are the output 

images of the corresponding modes over a 1.1km and 100m using a ECL source (setup in 

Fig. 3.1). As is evident, the accidental degeneracy become very different from the design. 

As shown in the output images over both the 1.1km fiber and 100m, L=16 and L=12 have 

high-m couplings. The aforementioned fine tuning of index profile turns out to be pointless 

given such a big mismatch between the designed and drawn fiber. Even the modal output 

images of the L=14-15 modes out of the 1.1km fiber show a slight defect on the ring image, 

although they are much clearer of a 100m-long fiber. This is likely due to OD fluctuations. 

Interestingly, L=17 and L=18 also show non-negligible transmission out of the 100-m-long 

fiber, though they are too lossy for propagating over a 1.1km-long fiber. We will discuss 

this unexpected behavior, of the observation of modes that should have been cutoff, based 



 

 

99 

on waveguide calculations, in the next chapter. Also, another problem is the mismatching 

of the wavelength of accidental degeneracy between simulation and experiment. It’s likely 

due to measurement error of the index profiler (resolution ~0.5um) or the lack of accurate 

knowledge of the Sellmeier coefficients of silica, which causes errors in determining the 

index profile at the wavelength of operation (~1550 nm) from a measurement conducted at 

the wavelength of operation of the index profiles (633 nm).  

 

Figure 5.9: Left panel: 𝑛𝑒𝑓𝑓 distribution of select modes in Gen5A3 ring-core fiber. Right 

panel: modal images over a 100-m and 1.1-km Gen5A3 fiber using a 1550-nm ECL source. 

The range of high-m coupling for L=16, m=1 is found out by recording output 

images while sweeping the wavelength using a ~1m Gen5A3 fiber. As shown in Fig. 5.10, 

such wavelength range is ~10nm out of a 1m fiber. The L=5 content from Ring Method 

can be used to evaluate the relative content of the L=11, m=2 mode. Note that the center 

degenerate wavelength varies from sections to section due to the variation of the core 
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diameter all along the fiber, resulting in a much wider high-m coupling range of 120 nm 

(1440-1560 nm) over the 1.1km fiber. The core-diameter variation inevitably comes from 

the insufficient control of the fiber size when drawing the fiber with relatively low speed. 

Nevertheless, such solid ring-core fiber greatly ease the fiber manufacture compared with 

the one with air hole which also introduce strong perturbation, thus the such high-m 

coupling wavelength range in Gen5A3 is much narrower that that encountered in air core 

fibers (Sec. 4.1.1). 

 

Figure 5.10: Accidental degeneracy between L=16, m=1 and L=11, m=2 in the Gen5A3 

ring-core fiber. The inset images are the outputs of the 1-m fiber when a L=16, m=1 mode 

is launched at the input using a 1550-nm ECL. 

Figure. 5.11 shows the intra-|L| mode coupling over the 100-m and 1.1km measured 

by time of flight (ToF) (Sec. 3.3) using a New Focus 1444-50 InGaAs fast detector with 

~20ps rise time. The ∆𝑛𝑒𝑓𝑓for each mode is shown on the right axis. Excluding the outlier 

of L=13, the intra-|L| couplings over 1.1km is around ~-10dB. Such intra-|L| coupling is ~-
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20 dB over the 100-m. The intra-|L| coupling is slightly higher than that of Gen4 fiber (-

8.5 dB to −17dB) where the modes have similar ∆𝑛𝑒𝑓𝑓.  

 

Figure 5.11: Intra-|L| mode coupling and ∆𝑛𝑒𝑓𝑓 in the Gen5A3 ring-core fiber 

Another benefit we gain from the silica center is the absence of water absorption. 

The Figure 5.12 is the transmission loss in a spectrum of 1300-1600nm using a 

supercontinuum source. The high transmission loss of the air-hole ring-core Gen4 fiber 

suggests that there is likely water inside the air hole given the resonance wavelength of -

OH bond around 1400 nm.  
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Figure 5.12: Transmission spectrum of the Gen5 and Gen4 fibers with ~1.1km long. 

Figure 5.13a shows the cutback loss of L=13-16 SOa (SOaa modes have similar 

loss) measured using the 1.1km Gen5A3 fiber. L=16 SOa has sightly higher loss than the 

others due to coupling with high-m modes. Overall, the loss is slightly higher that of Gen4 

fiber (~1.0 dB/km) despite the fact that this fiber doesn’t suffer from excess loss due to 

water absorption, mentioned above. The aforementioned cutoff modes (L>=17) are too 

lossy to survive over a 1.1km, thus they are measured using a 100-m-long fiber, as shown 

in Fig. 5.13b. Even though their losses are indeed much higher compared with that of L=14-

16, they are still much lower than what we expect of cutoff modes. As mentioned earlier, 

this effect will be discussed in the next chapter.  
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Figure 5.13: Cutback loss versus L in measured in (a) 1.1-km and (b) 100-m Gen5A3 fiber. 

In summary, the number of good modes free from accidental degeneracy is around 

3×4=12 over a 1-km Gen5A3 fiber. Its mode count is similar to that of the Gen4 fiber while 

the intra-|L| coupling and loss in Gen5A3 are slightly worse. The improvement includes 

narrower high-m coupling bandwidth and absence of excess loss due to water absorption, 

which are likely inherent benefits of a solid ring-core, as opposed to ring-core, design.  

The loss in a high-index fiber primarily comes from the core-clad interfacial 

scattering which can be alleviated by increasing the draw tension (Line, 1984, Wandel, 

2005). Therefore, we redrew the preform using higher tension (300g) in contrast to the 

standard draw tension (100g) used for Gen5A3 fiber. Equivalently the draw stresses are 

20.7 kg/mm2 and 6.9 kg/mm2 for the two fibers, respectively. The high-tension/stress fiber 

is referred to Gen5B3. The comparison of their refractive index profile is shown in Fig. 

4.13a. As is evident, the higher drawing tension raises up the refractive index further more. 

Such a change of the index profile barely changes the ∆𝑛𝑒𝑓𝑓 of the modes.  
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Figure 5.14: Comparison between Gen5A3 (draw stress 6.9 kg/mm2) and Gen5B3 (draw 

stress 20.7 kg/mm2) in terms of (a) refractive index profile and (b) intra-|L| ∆𝑛𝑒𝑓𝑓; (c) 

measured intra-|L| mode coupling and (d) measured cutback loss at 1550nm.  

As shown in Fig. 4.13(c)&(d), both the intra-|L| coupling and loss in the high-

tension Gen5B3 are much better than those of Gen5A. Increasing the stress from 6.9 

kg/mm2 to 20.7 kg/mm2 decreases the loss from ~1.3 dB/km to ~0.4 dB/km (Fig. 5.14d). 

This is similar to the loss achieved in commercial dispersion compensating fiber (DCF) 

with a similar index contrast (Akasaka et al., 1996). Note that modes with accidental 

degeneracy are not plotted in these figures. The accidental degeneracy of L=16 in Gen5B3 

is away from 1550nm while L=13 becomes accidental degenerate with a high-m mode at 
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1550nm. In contrast with the intra-|L| 𝑛𝑒𝑓𝑓  splitting, the accidental degeneracy is very 

sensitive to slight changes of refractive index profile, as we also found during the fiber 

design process.  

5.3. Summary and Discussion   

We have attempted to further increase the OAM mode count by sculpting the refractive 

index profile (primarily the ring core radius and thickness) to mitigate the two main issues 

one encounters while attempting to scale unmixed mode counts in optical fibers – intra-|L| 

couplings and high-m couplings. However, both of the two induce fundamental constraints 

in scaling the mode count even in an ideal fiber. Using the index contrast of the previous 

benchmark Gen4 fiber with 12 unmixed modes, we ended up designing an optimized ring-

core fiber with 16 unmixed modes which are barely free from accidental degeneracy with 

undesired high-m modes.  

However, the drawn fiber still experiences high-m mode coupling for one |L| given 

that its index profile is inevitably very different from the design and also the accidental 

degeneracy is very sensitive the fiber structure as we learned from the design process. As 

a result, the mode count remains the same despite of so many efforts. By careful calibration 

and more trials, we may be able to fabricate a ring-core fiber without accidental degeneracy 

for all the desired 16 modes in ~1km fiber, but admittedly it is not a great improvement 

compared with Gen4 benchmark. Simply put, there is fundamental bottleneck for scaling 

the number unmixed OAM bound modes.  

Nonetheless, we found that high drawing stress and reductions in intra-L mode 

coupling from these designs helped decrease transmission loss to record value of ~0.4 
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dB/km. Also, the solid fiber provides us a few benefits over the previous air-hole designs 

for (a) eliminating excess loss problems arising from water absorption; (b) easing the fiber 

manufacturing process, potentially decreasing the cost of a future fiber deployment using 

these designs; and (c) obtaining smaller spectral ranges over which accidental degeneracies 

exist, likely due less fiber diameter fluctuations. Interestingly, in our experiments, we 

found that there are some cutoff modes that survive over a ~100m-long fiber even though 

their losses are too high over a ~1km-long fiber. We will unveil the fundamental 

mechanism behind the observation of modes that should have, otherwise, been completely 

attenuated, and point out a new direction for scaling mode counts in the next chapter.  
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Chapter 6  

6. Topologically Confined Modes 

6.1.  Light Guidance Beyond Cutoff  

In the previous chapter, it was concluded that there exists a limitation to scaling the OAM 

mode count. However, the analysis only considered the modes that were not cut off (i.e., 

bound modes). The assumption that modes do not survive beyond cutoff per TIR was 

considered common sense (Sec. 2.1). The possibility of using these cutoff modes for spatial 

channels was not previously considered until we experimentally observed them in the 

laboratory. Referring to the previously mentioned Gen5 ring-core fiber, a few additional 

modes existed beyond the cutoff. Despite the fact that these modes had comparatively 

higher loss and could not survive km-scale transmission, their losses were significantly 

lower than expected compared to other conventionally known cutoff modes (e.g., LP11 in 

SMF28). The guidance of these cutoff modes is a fundamental effect enabled by their high 

OAM.  

The concept of OAM-induced confinement is schematically depicted in Fig. 6.1. 

An exemplary fiber comprises a high-index core 𝑛𝑐𝑜, surrounded by a low-index cladding 

𝑛𝑐𝑙. Three representative OAM modes have different topological charges but identical 

effective index below the cladding index (𝑛𝑒𝑓𝑓<𝑛𝑐𝑙). Due to violation of TIR, the low-|L| 

mode radiates away from the fiber (Sec. 2.1), resulting in a high confinement loss. This 

confinement loss is exactly zero for conventional bound modes and it is distinct from losses 

caused by material absorption and scattering effects (detailed in Sec. 6.3 and 6.6). The 
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confinement loss of unbound, radiative modes decreases as the mode’s topological charge 

increases. The confinement loss of the high-|L| modes become negligible, and therefore 

they behave as bound modes. In other words, light’s topological charge enables 

confinement for itself. Thus, we refer to this phenomenon as topological confinement, and 

the corresponding modes as topologically confined modes (TCMs).  

 

Figure 6.1: Light guidance beyond cutoff enabled by high OAM. The propagation of three 

cutoff OAM modes with different 𝐿’s but identical 𝑛𝑒𝑓𝑓 in an exemplary step index fiber. 

Select OAM modes in this fiber are illustrated as spiral patterns for visual clarity, with 

number of spiral arms equal to |𝐿|. Confinement loss of these modes decreases as |𝐿| 
increases, as their transverse wave vectors 𝑘𝑇  become progressively more azimuthally 

oriented. 

The OAM-enabled topological confinement can be intuitively understood by 

analyzing the transverse wavevector 𝑘𝑇. As shown in Fig. 6.1, the transverse wavevector 

kT becomes increasingly oriented in the azimuthal rather than the radial direction as |L| 

increases. Heuristically, these higher-|L| modes tend to resonate azimuthally (thus being 

confined) as opposed to “escaping” radially. More specifically, high-|L| modes correspond 

to skewed rays as opposed to meridian rays (detailed in Sec. 6.6). These tunneling leaky 

rays (Snyder & Love, 1984) satisfy TIR partially and the loss decreases as the ray align 

more closely with the tangent of the curved surface. In the wave picture, even though the 
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|L|-dependent loss of the leaky modes can be solved using Maxwell equations (Snyder & 

Love, 1984), the physics intuition for the OAM-dependent loss is unclear. Notably, this 

effect also manifests in a larger proportion of modal power in the core at the cutoff for 

high-|L| modes (Gloge, 1971). 

6.2. Centrifugal Barrier  

The concept of centrifugal barrier can be used to explain TCMs validly, while also offering 

intuitive physics insight for the OAM-dependent confinement loss. The scalar eigenmode 

equation (Eq. 2.13) can be rewritten as  

𝑑2𝐹(𝑟)

𝑑𝑟2
+
1

𝑟

𝑑𝐹(𝑟)

𝑑𝑟
+ [𝑘0

2 (𝑛2(𝑟) −
𝐿2

𝑘0
2𝑟2
) − 𝛽2] 𝐹(𝑟) = 0            (6.1) 

By absorbing the OAM term, one can rewrite the refractive index term as  

𝑛𝑂𝐴𝑀
2 (𝑟) = 𝑛2(𝑟) −

𝐿2

𝑘0
2𝑟2
                                                  (6.2) 

where the second term with r-2 dependence induces an index trench at the core-cladding 

interface which deepens as |L| increases. This treatment of the refractive index is analogous 

to how the effective refractive index is obtained (Sec. 2.1). The effective index 𝑛𝑒𝑓𝑓
  

absorbs the linear momentum (corresponding to 𝛽) while the topologically modified index 

𝑛𝑂𝐴𝑀
  absorbs the orbital angular momentum. Under this representation, a mode with non-

zero OAM order L in a fiber with index profile 𝑛 (𝑟) is equivalently considered as a mode 

with zero OAM order L in a fiber with index profile 𝑛OAM(𝑟). 

Figure 6.2 schematically shows the topologically modified profile 𝑛OAM(𝑟) 

experienced by the three modes with non-zero 𝐿’s depicted in Fig. 6.1. Their 𝑛𝑒𝑓𝑓
  is below 
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ncl, so they are cut off according to TIR. The OAM-induced index trench for low-|L| modes 

is relatively shallow and has little effect on the radiation of cutoff modes. L=0 represents 

the most extreme case for low |L|, in which the topologically modified profile 𝑛OAM(𝑟) is 

identical to the real index profile 𝑛(𝑟). A mode with a sufficiently high |L| induces a deep 

index trench below the 𝑛𝑒𝑓𝑓
 , thereby satisfying TIR at the core-cladding interface. Given 

that the topologically modified index returns to ncl at large radii, there can be a certain 

amount of the loss due to the tunneling effect. But this confinement loss becomes 

progressively smaller as the trench depth increases with higher |L|. The OAM-induced 

index trenches acts as centrifugal barriers that prevent light from leaking out, therefore 

topologically confining the light. Although the mode is no longer strictly bound by TIR (so 

it no longer experiences zero theoretical loss), its loss strongly depends on |𝐿|. For a high-

|L| mode with sufficiently deep index trench, the confinement loss become negligible and 

this cutoff mode behaves like bound modes because of the centrifugal barrier light’s OAM 

creates for itself. This topological confinement is thus distinct from conventional light 

guidance mechanism enabled by solely sculpting the refractive index profile of the fiber 

via TIR or photonic bandgap. A simple step-index fiber is used to illustrate the TCM 

principle but it can apply to any fiber with similar outer core boundary (for similar index 

contrasts) given that the intensity profiles of high-|L| modes reside at the outer core 

boundary (Sec. 4.1; Sec. 6.5.1). 

The fact that light is guided by the centrifugal barrier that light’s OAM creates for 

itself justify the nomenclature “topological confinement”. It only enables guidance beyond 

the conventional TIR cutoff, but also differs from other guidance mechanisms such as 
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photonic bandgap or anti-resonance. All these guiding mechanisms are based on the fiber's 

refractive index (that is, "physical confinement") rather than the topological property of 

light itself. 

 

Figure 6.2: Topologically modulated refractive index profile for the three cutoff OAM 

modes shown in Fig. 6.1. Higher |𝐿| induces a deeper index trench, creating a “centrifugal 

barrier” that prevents the cutoff modes from leaking out. 

This centrifugal barrier effect has been well-known for decades in nuclear physics 

(Blatt and Weisskopf, 1952). The OAM-induced centrifugal barrier prevents the particle 

from leaving the nucleus (Fig. 6.3). Therefore, high OAM increases the lifetime of a 

nucleus, manifested by the extended half-lives of proton radioactivity. This inspired our 

understanding of TCMs in regard to the centrifugal barrier (credit to Dr. Poul Kristensen).. 

By drawing an analogy between energy potential and the refractive index of fibers, we gain 

valuable insights into the behavior of TCMs. 
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 Figure 6.3: Potential barriers inside and outside the nucleus (Blatt and Weisskopf, 

1952). R is the nucleus radius. The Coulomb potential is negligible (V=0). The potential 

inside the nucleus (governed by strong force) is approximately a constant. 

Note that a system with short-range quantized potential is required for the angular 

momentum term to become dominant, leading to the counter-intuitive manifestation of the 

centrifugal barrier effect. In contrast, a continuous r-2-dependent potential (e.g., 

gravitational or Coulomb potential) always dominates at the equilibrium point when 

interacting with angular momentum. In these systems (e.g., binary-star systems), the 

centrifugal barrier effectively keeps the two bodies apart. Actually, the short-range strong 

interaction dominates the central potential in a nucleus, while the Coulomb potential is 

negligible. Even though the Coulomb potential is known as continuous, the potential 

between the nucleus and electron becomes short-range in a short pulse regime, leading to 

the manifestation of the centrifugal barrier such that electrons with higher OAM needs 

higher ionization energy (Freeman et al., 1991). Similar short-range potential occurs in 

Feshbach molecules where the OAM-induced centrifugal barrier increases the 

metastability of high rotational states (Knoop et al., 2008), as shown in the schematic of 

Fig. 5.3. 
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Figure 6.4: Illustration of a long-lived metastable Feshbach molecule in a high rotational 

state. A large centrifugal barrier prevents direct dissociation of the molecules (Knoop et al., 

2008). 

For light, centrifugal barriers provide intuitive insights into the long lifetimes of 

photons (i.e., high quality factor) of high-OAM states in large whispering gallery cavities 

(Chiasera et al., 2009). Note that this effect can also be attributed to lower bend loss 

(Bogaerts et al., 2011). Distinct from a cavity where the spectral and spatial modes are 

coupled, a fiber permits the presence of multiple states for a specific wavelength or OAM. 

Moreover, the propagation constant allows for the propagation of TCMs over long 

distances with low loss, thus significantly enlarging its range of applications.  

6.3. Demonstration of TCMs  

Due to OAM-induced centrifugal barrier, it was anticipated in the preceding section that 

the confinement loss of TCMs with identical 𝑛𝑒𝑓𝑓
  decreases with increasing |L|. This is due 

to the deeper index trenches induced by higher |L|’s. However, at a particular wavelength, 

the 𝑛𝑒𝑓𝑓
  also decreases with |L| (Fig. 2.3) – that is, the 𝑛𝑒𝑓𝑓

  of high-|L| TCMs becomes 

farther away from the cutoff (𝑛𝑐𝑙
 ). In this regard, the mode violates the TIR condition even 

more and is more likely to leak out. Whether the overall loss increases or decreases depends 
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on which index reduction is greater – the 𝑛OAM(𝑟co) or the 𝑛𝑒𝑓𝑓
  of high-|L| TCMs. The latter 

case typically prevails, as evidenced by the higher losses for high-|L| modes in Gen5A3 

fiber at 1550nm (Fig. 5.12).  

In order to demonstrate the OAM-dependent TCM effect, 𝑛𝑒𝑓𝑓
  of each TCM 

(which is below 𝑛𝑐𝑙
 ) must be maintained at a similar level. This can only be achieved by 

measuring the loss each mode at a distinct wavelength. Regarding the material dispersion 

of silica, it is the relative 𝑛𝑒𝑓𝑓
  (i.e., 𝑛𝑒𝑓𝑓

 /𝑛𝑐𝑙
 ) that should be held constant. Measuring the 

𝑛𝑒𝑓𝑓
  of a mode can be difficult and laborious. Alternatively, controlling relative 𝑛𝑒𝑓𝑓

  in 

measurements can be achieved by comparing the measured wavelength m with the cutoff 

wavelength c of each mode. The cutoff wavelength c (defined in Sec. 2.2) for a mode is 

calculated as the wavelength at which its effective index equals the refractive index of the 

cladding. By ignoring the dispersion difference between distinct modes within the range of 

c and m (validity shown below), it is reasonable to assume that 𝑛𝑒𝑓𝑓
 /𝑛𝑐𝑙

  equals to m/c. 

In other words, 𝑛𝑒𝑓𝑓
  is held at a similar level below 𝑛𝑐𝑙

  by holding m/ c constant for each 

mode.  

We use the Gen5A3 ring-core fiber to demonstrate the OAM-dependent 

confinement loss of TCMs (detailed setup in Fig. 3.1). The modal loss was always 

measured at a wavelength m such that (m−c)/ c=15.27% for each mode.  For the modes 

tested, ranging from OAM L=19 to 42, c ranges from 1363 nm to 675 nm, as show in Fig. 

6.4. Measurement with the L=42 mode is conducted with ~100 m lengths of fiber using a 

~780-nm ECL, those for the L=30, 31, 32 modes use ~25-m lengths with a ~1064-nm ECL, 
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and the L=19, 20, 21 modes are measured with ~10-m lengths of the same fiber using a 

~1550-nm ECL. Different lengths are used to ensure measurement accuracy given that 

attenuation varies significantly with mode order. The mode purities analyzed via spatial 

interferometry (Sec. 3.2) is around 15 dB, no less than 13 dB. The high purity ensures that 

measuring power of one mode is not affected by the parasitic light in another. The 

attenuation of each mode is measured by cutback normalized for material loss (deduced by 

measuring cutback loss for the LP01 mode in this fiber). 

 

Figure 6.5: The 𝑛𝑒𝑓𝑓  distribution for the measured modes. The black dashed line is the 

refractive index of the silica cladding. Color solid lines indicate the mode are TIR-bound 

while the 𝑛𝑒𝑓𝑓  in the TCM regime is represented by color dashed lines. Each dashed 𝑛𝑒𝑓𝑓 

line is ended by a color dot indicating the measured wavelength, which is 15.3% away from 

the cutoff wavelength of each mode. The measured loss of each mode at this wavelength 

is written below the corresponding 𝑛𝑒𝑓𝑓  and a few representative output mode images 

show clear ring shape indicating pure mode excitation. 

The L-dependent loss is summarized as plotted in Fig. 6.5(a), showing that the 

measured loss decreases substantially with 𝐿, reaching 0.039 dB/m for 𝐿=42, even though 

it is 100 nm beyond the cutoff wavelength for this mode (Fig. 6.4).  The overlaid dashed 

line is the simulated confinement loss from a scalar mode solver incorporating a standard 
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phase-matched layer (PML) model (Appendix A). Similar decreasing trend of L-dependent 

loss was ascertained by the simulated confinement loss, which matches well with the 

experimental ones for L~20 but becomes even lower for high-L modes. Same measurement 

was attempted on the more familiar LP11 mode in SMF-28, but the loss was too high to 

measure at 15% relative wavelength past its cutoff. In fact, the simulated confinement loss 

for the LP11 mode in SMF-28 at 15% relative wavelength past its cutoff is higher than 1000 

dB/m.  As is evident, losses of measured TCMs shown in Fig. 6.5(a) are orders of 

magnitude lower than what conventional wisdom posits for “cutoff” modes, validating the 

idea that centrifugal barriers greatly aid light transmission for modes that are supposed to 

be radiated away. The measured losses of TCMs shown in Fig. 6.5(a) are significantly 

lower than the conventional LP11 mode, indicating that centrifugal barriers effectively aid 

light transmission for radiated modes. The lower losses for higher |𝐿| modes promise the 

utilization of high order modes for low loss guidance. 

 

Figure 6.6: Experimental (open circles) and simulated (dashed curve) loss versus L in 

Gen6A3 ring-core fiber with ~30 μm ring diameter, at a wavelength 15% beyond the cutoff 

wavelength of each mode in (a) linear and (b) log scale. 
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Figure. 6.5(b) is the log-scale version of Fig. 6.5(a). While the simulated 

confinement loss and the measured loss match well for L~20 modes, their difference 

increases by orders of magnitude for high-L modes. In contrast to the slow decrease of 

measured loss, which is flattened at ~10−2 dB/m, the simulations predict exponentially 

decaying confinement loss down to ~10−10 dB/m for 𝐿 = 42. This discrepancy suggests the 

presence of a noise floor in the measured loss, arising from absorption and scattering losses 

that become dominant when confinement loss is negligible. In telecom-grade single-mode 

fibers (SMF) where confinement loss is zero, the measured loss is minimized at ~10−4 dB/m 

around 1550nm. The noise floor (~10−2 dB/m) of this measure loss is much higher than 

that of the standard SMF due to unoptimized fiber manufacturing and shorter wavelength 

(detailed in Sec 6.6). Only L~20 modes were measured at the telecom wavelength 

~1550nm, while higher-L modes were measured at shorter wavelengths (L~30 at ~1000nm 

and L=42 at 780nm, as shown in Fig. 6.4) where both absorption and scattering losses are 

much higher. Hence, any confinement loss below ~10−2 dB/m becomes impossible to 

measure. On the other hand, the simulation promises further decreasing the confinement 

loss to negligible by increase topological charge L.  

6.4. Mode-Count Scalability  

As discussed in Sec. 2.3, the intra-|L| ∆𝑛𝑒𝑓𝑓 increases monotonically with |L|. Given the 

guidance beyond cutoff, the ∆𝑛𝑒𝑓𝑓  of all TCMs exceeds that of the highest bound mode at 

L=Lc, and surpasses the mode-stability threshold criterion of 5×10-5. As a result, TCMs 

can provide additional modes that exhibit large ∆𝑛𝑒𝑓𝑓  to inhibit intra-|L| coupling.  
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It is true that the TCM effect in Gen5A3 fiber at 1550 nm is not very significant 

because none of the TCMs have propagation losses low enough to cover a km distance, 

and there is limited number of TCMs that can survive for over a 100-m fiber. On the other 

hand, the exponential dependence of the confinement loss (depicted in Fig. 6.5b) leads to 

negligible confinement loss of L~42 (at ~780nm), even at the wavelength 100nm away 

from the cutoff wavelength. Even though the confinement loss still rises with L at a 

particular wavelength, it is still possible for there to be a large number of modes with 

reasonable loss.  In fact, increasing the fiber size is mathematically equivalent to decreasing 

the wavelength. Therefore, obtaining modes of higher |𝐿| at a fixed, desired wavelength of 

operation, could be practically achieved by increasing waveguide core diameter.  

Figure 6.6 shows the simulated loss versus relative topological charge (𝐿−𝐿𝑐,) at 

1550 nm for six different step-index fibers with core diameters ranging from 15 m to 

75 m. Also shown with a dashed line is the overall loss (~0.2 dB/km) for conventional 

transmission fibers (e.g., SMF-28). The number of modes that have theoretical confinement 

loss lower than the overall loss of SMF-28 increases with 𝐿𝑐. This yields a crucial design 

criterion for realizing fibers that scale mode count with TCMs. Any fiber with a discrete 

index step at its outer core boundary that guides, via conventional TIR, sufficiently high-

|L| modes, has a large ensemble of even higher-|L| cutoff modes that also experience 

negligible loss, and the number of available TCMs simply increases with TIR bound mode 

count. It also clarifies why cutoff modes have not previously been considered as viable 

candidates for photon transport – the 15-m core fiber (with 𝐿𝑐=7) has no cutoff modes 
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that are low loss, and the theoretically simulated confinement loss for the first mode past 

cutoff (|𝐿|=1) in SMF-28 is as high as 103 dB/km.  

 

Figure 6.7: Simulated loss at 1550 nm versus relative OAM order 𝐿 − 𝐿𝑐, in five step 

index fibers with the same index contrast but different core sizes. 𝐿𝑐 is the OAM order of 

the last TIR bound mode (𝐿𝑐 = 7, 16, 25, 35 and 45 for fiber core sizes of 15, 30, 45, 60 

and 75 m, respectively). Dashed line represents the loss (0.2 dB/km) of SMF-28. 

6.5. Generation-6 Ring-Core Fiber 

6.5.1 Enhanced Topological Confinement 

To enhance the TCM effect, the preform used to draw the Gen5A3 fiber was redrawn into 

a larger ring-core fiber, referred to as Gen6A. Its ring core has double the diameter of the 

Gen5A3 fiber. The preform was drawn into three fibers with identical sizes – Gen6A1, 

Gen6A3 and Gen6A5, under stresses of 20 kg/mm2, 10.2 kg/mm2 and 5.5 kg/mm2, 

respectively. Each fiber is around 500-m long. In this section, the benchmark Gen6A3 fiber 

will be described first, followed by the discussions of the problems associated with the 

other two Gen6A fibers.  
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Figure 6.8: Modal intensity profiles and refractive index profiles of the Gen6A3 ring-core 

fiber (Inset: cross-sectional fiber facet image). 

Figure 6.7a right axis shows the refractive index profile of the Gen6A3 fiber and 

the inset is a microscope image of the cross-section of the fiber facet. Note that the fiber 

size of the 57-m ring-core fiber is expanded by 2% in the simulation for better 

correspondence with the accidental degeneracy and loss measured in the experiment. This 

adjustment is consistent with commonly employed modifications of simulated parameters 

necessitated by the lack of accurate knowledge of the Sellmeier coefficients of silica. 

Figure 6.7a left axis shows the intensity profiles of all modes of interest in the ring-core 

fiber (Lc=33). The similarity of their intensity profile promises gain-equalized optical 

amplification of all modes with a common, shared pump. In addition, all these intensity 

profiles reside at the outer core boundary, even in a conventional step-index fiber (Fig. 

6.7b). Hence, the concept and scalability of TCMs described with the aid of step-index 

fiber in Fig. 6.6 can apply to any fiber with similar outer core boundary (for similar index 

contrasts). Despite its functional similarity to a step-index fiber, a ring-core fiber is used in 

the experiments mainly due to its advantage of ease of manufacturing and lower cost (less 
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dopant materials need to be deposited in regions where negligible optical power of the 

modes reside).  

The modal loss at 1550nm in Gen6A3 fiber are measured by cutback using a 480-

m long fiber (setup in Fig. 3.1). Figure 6.8(a) shows the cutback loss of all SOa and SOaa 

modes with 𝑚=1, |𝐿|∈[25,43]. The bound modes and low-loss TCMs are shaded by grey 

boxes. The average loss of conventional bound modes is around 1.4 dB/km. The red crosses 

represent modes accidentally coupled to undesired high-m mode (Sec. 4.1.1), leading to 

strong mode mixing which makes it impossible to measure their losses. The TCMs with 

L=34-41 have an average loss around 5.1 dB/km, after ignoring high-loss outliers outside 

the grey shaded box (detailed in Sec. 7.1). Starting from L=42, the confinement loss of 

TCMs surpasses all other losses and becomes the dominant one. This abrupt increase of 

the TCM confinement loss is also reflected in the simulation, which are depicted by the 

black dashed curve. As is evident, the TCM effect is significant enhanced by merely 

doubling the fiber size. There are around 26 TCMs in Gen6A3 with sufficiently low loss 

to propagate over a ~1km fiber, while none of the TCMs in Gen5A3 can survive a km-

scale fiber.  

At the high-|L| where the confinement loss is dominant (L=42 & 43), the losses of 

the SOa mode are higher than those of the SOaa mode. This is expected since the SOa 

mode has lower 𝑛𝑒𝑓𝑓 's and is farther away from cutoff than the SOaa mode. This difference 

in confinement loss likely occurs for lower-|L| modes as well. For lower-|L| modes, the 

confinement losses are much lower than the absorption and scattering loss (which has 

nothing to do with the modal 𝑛𝑒𝑓𝑓) to manifest, so most of them have the same measured 
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loss for SOa and SOaa modes. However, the difference in confinement loss between SOa 

and SOaa mode likely occurs for these lower-|L| modes as well. 

Figure. 6.8(b) is the log-scale version of Fig. 6.8(a). The confinement loss is 

supposed to be zero for bound modes (|L|<=33) but it fluctuates around 10−7 dB/km due to 

the noise floor of the PML mode solver. For mode with |L|<42, the confinement losses are 

orders of magnitude lower that the measured loss. It suggests that the measured loss is 

again due to abortion and scattering. The scattering loss is expected to be substantially 

reduced by manufacturing optimizations (detailed in Sec. 6.5.2). 

 

Figure 6.9: Experimental and simulated loss of Gen6A3 ring-core fiber at 1550 nm in (a) 

linear scale and (b) log scale.  

6.5.2 Loss Analysis  

The mechanism of the topological confinement is only associated with confinement loss 

but has nothing to do with loss due to material absorption and scattering effects. By going 

to larger topological charge, the confinement loss of TCMs (|L|<42) is substantially 

reduced such that they have little contribution to the measured loss. However, even though 
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we demonstrate record low loss for TCMs in the Gen6A3 ring-core fiber, we do observe 

TCM losses are higher than that of the bound modes for |L|=34-41 where the absorption 

and scattering losses are dominant. So, the questions arise as whether the absorption and 

scattering loss are also affected by TCM (assuming the prediction of the confinement loss 

is correct). In addition, the loss of both TCMs and bound modes needs to be significantly 

reduced for any long-haul transmission achieved by SMFs or MCFs (with ~0.2dB/km loss). 

Hence, it is critical to understand the loss mechanism better.  

Loss in a high-index fiber is highly phenomenological and has resisted accurate 

theoretical predictions over decades. Nevertheless, trends can be ascertained by delineating 

different causes of losses.  In this section, we use the model described in (Wandel, 2005) 

as their model gives good prediction to the experimental loss and the thesis also provides 

a complete review to the literature. The field profiles of all the modes look similar except 

for slight changes in the radius (Fig. 6.7; we’ll discuss how the different field radius can 

result in different loss in the following), without any abrupt change between bound modes 

and TCMs. This is why we believe that the aforementioned model based on bound modes 

(in SMF) can also apply to TCMs. Note that the confinement loss is not considered in this 

section, given that TCMs have confinement losses as low as ~10-6 dB/km, making high 

OAM cutoff modes as viable as bound mode with zero confinement losses. Other losses 

are due to the material absorption and scattering effects, which can be broadly classified as 

Urbach absorption loss, Rayleigh scattering loss, and anomalous (or abnormal, excess; 

nomenclature varies in papers) scattering loss. 

The Urbach absorption loss is given by (Wandel, 2005) 
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𝛼𝑈𝑉 ∝ Δ𝑛 exp[𝑔(𝐸 − 𝐸0)]                                           (6.3) 

where Δ𝑛 is the index difference between the core and the cladding, g is a constant that 

depends on temperature and E0 is a constant independent of the Ge-concentration. The 

Rayleigh scattering loss is given by  

𝛼𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ ∝
(1 + 𝐶𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ𝛥𝑛 )

𝜆
                                    (6.4) 

where 𝐶𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ is a constant that will be determined during the calibration of the model. 

These two kinds of losses are well studied in fibers, and depend primarily on 

Germanium mole fractions, glass fictive temperatures and viscosities. So, these loss 

contributions depend primarily on the index a mode experiences – since Fig. 6.7 shows that 

all the modes (regardless of bound or TCMs) – reside in regions of substantially similar 

indices, this contribution to loss should be identical for all modes. Furthermore, this 

contribution to TCM loss should be identical, after manufacturing optimizations (e.g., draw 

temperatures), to that of commercial dispersion-compensating fibers (DCF) since they 

feature similar index contrasts. 

In contrast to the ubiquity of the other two losses mentioned above, the abnormal 

loss is prominent only in high-index-contrast fiber (e.g., n~0.04).  

𝛼𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 ∝ 𝛥𝑛 
2 𝛾2

𝑑𝑐𝑜𝑟𝑒𝜆
3(𝛾 + 2)2

𝑇𝑑𝑟𝑎𝑤
𝐹𝑑𝑟𝑎𝑤

𝑓(𝛥𝑛 )                     (6.5) 

where γ is the exponent of the core profile, 𝑑𝑐𝑜𝑟𝑒 the core diameter, 𝐹𝑑𝑟𝑎𝑤 the draw tension, 

𝑇𝑑𝑟𝑎𝑤  the temperature, and 𝑓(𝛥𝑛 )  is a confidential function of the core index. As is 

evident, depends on both the fiber profile’s index and its gradient. The intensity of the 

scattering is proportional to modal power at the core-clad interface of the fiber. Thus, we 
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refer to it as interfacial scattering loss in this thesis. Wandel modifies the model for 

anomalous loss to have a much better prediction for the experimental loss.  

𝛼𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠 ∝
𝛥𝑛 

2

𝑑𝑐𝑜𝑟𝑒𝜆
3

𝑇𝑑𝑟𝑎𝑤
𝐹𝑑𝑟𝑎𝑤

𝑓(𝛥𝑛 )∫ 𝑓[𝜂(𝑟), 𝑛(𝑟), 𝐸(𝑟)]𝑟𝑑𝑟
𝑟

−𝑟

                (6.6) 

where 𝑓 is a confidential function, 𝜂(𝑟) the viscosity profile, 𝑛(𝑟) the index profile and 

𝐸(𝑟)] the mode field distribution. The abnormal loss is proportional to the integral of a 

function of the viscosity profile, index profile and the mode field distribution. The viscosity 

is usually the highest the core-cladding interface especially in a step-index fiber, as shown 

in Fig. 34 in (Wandel, 2005). Therefore, such loss is the highest at the interface where the 

modal intensity plays a critical role, as shown in Fig. 33 in (Wandel, 2005). 

 Because this loss depends on mode intensity at a core-cladding interface (where 

index gradients are high), one surmises, from Fig. 6.7, that this loss would simply increase 

with OAM mode order (because higher order modes are pushed closer to the ring-core 

boundary); hence this loss contribution has no bearing on whether the mode is conventional 

TIR-bound or a TCM. While TCMs in a given fiber feature higher OAM orders than TIR 

modes, note that interfacial scattering depends on a mode’s interaction with an index 

boundary/step, and not on the waveguiding mechanism.  

We see evidence for the primacy of this interfacial scattering loss in Gen6A3 fibers 

mentioned above in– Fig. 6.9 is a replot of Fig. 6.7, but with a trend line showing a smooth, 

adiabatic loss increase with OAM order. This replot circles out two regions of outlier data 

that do not fit this narrative. The second outlier comprises the modes |L|=42 & 43, which 

have high loss because they are no longer topologically confined in the first place – so it 



 

 

126 

makes sense to remove their consideration from an analysis on interfacial scattering loss. 

The justification for not considering the other set of “transition” outliers is related to the 

dynamics of mode mixing — we will discuss that further in Chapter 7, and proceed, here, 

with the observation that the trend line shows an adiabatic increase in loss with OAM order, 

suggestive that the primary loss we encountered in these fibers was interfacial scattering 

loss. 

 

Figure 6.10: Loss versus |L| in Gen6A3 ring-core fiber. The dashed line is a fitting 

excluding the outliers.    

This anomalous loss is a strong function of fiber draw stress (Eq. 6.5 & 6.6). Figure 

6.10 shows measured loss versus for the Gen6A3 drawn with 10.2 kg/mm2 and the 

Gen6A5 drawn with lower stress (5.5 kg/mm2), with annotations of loss reductions due to 

increasing draw stress. Doubling the fiber draw tension for the same preform gave us two 

distinct fibers in which bound modes’ loss reduced by ~2 dB/km, whereas TCM losses 

went down by ~4-5 dB/km. This is expected, since the influence of draw stress in reducing 

losses primarily pertains to this scattering mechanism of loss, and this increasingly affects 
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modes with progressively higher intensities at core-cladding interfaces (Fig. 6.7). 

Therefore, we expect even higher draw stress can further reduce the TCM loss even more. 

 

Figure 6.11: Loss versus |L| for fiber drawn with stress 5.5 kg/mm2 (Gen6A5) and 10.2 

kg/mm2 (Gen6A3). The loss reduction ranges from ~2 dB/km for low-L modes to ~5 

dB/km for high-|L| modes.    

As shown in Fig. 5.14d, increasing the stress from 6.9 kg/mm2 (Gen5A3) to 20.7 

kg/mm2 (Gen5B3) decreases the loss from ~1.3 dB/km to ~0.4 dB/km. Similar attempt of 

increasing the drawing stress was applied to Gen6A1 drawn with stress 20 kg/mm2. 

However, the fiber is cracked on the ring core, shown as a few lines in the radial direction 

(Fig. 6.12). It may be due to the dramatically high drawing tension (1000 g) needed to 

achieve such high drawing stress in such a large fiber. Any uneven distribution of the 

tension on the cross-section can result in over stress at a local region. Actually, the 

core/cladding interface already has very high tension due to discrepancy of the material. 

Hence, further attempts would include reducing the cladding thickness and releasing the 

core/cladding stress (e.g., by curing) to make the fiber able to sustain higher stress. Actually, 



 

 

128 

fibers with standard 125-um cladding diameter can be drawn with up to 40-kg/mm2 stresses 

(500-g tension), that are 4× higher than that of the benchmark Gen6A3 fiber. Therefore, 

there is a great room for loss reduction using higher draw stress. In terms of how low the 

measured loss can be reduced to, it is likely to come down to ~0.4 dB/km, which is (a) 

demonstrated in the aforementioned Gen5B3 ring-core fiber with the same index contrast 

and index gradients (b) the loss in commercial dispersion compensating fibers with similar 

index contrasts and index gradients (which have, over decades, been optimized to have 

such low loss levels).  

 

Figure 6.12: (a) Cracks on the fiber (Gen6A1), in comparison with (b) good fiber facet 

without cracks (Gen6A3). 

Apart from draw tension/stress, there are also various ways of reducing the 

abnormal loss, such as matching the viscosity, increasing the draw temperature. In addition, 

we may also want to use lower-index fiber to reduce the loss from all three loss 

contributions. Actually, the TCM guidance is not primarily depended on the high index 

contrast, but rather on the topological charge of light. In other words, even in a fiber with 

lower index contrast, as long as the Lc is high enough (e.g., in a large fiber), the centrifugal 

barrier effect can manifest (Fig. 6.2). 
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We note that several other demonstrations of new fiber guidance mechanisms have 

had the same progression. Total-internal-reflection-based optical fibers had 20 dB/km loss 

in the 1970s, and are at 0.145 dB/km today. The first demonstration of hollow-core 

photonic bandgap fibers (Knight et al., 1998) was so lossy that it wasn’t even measured 

over the 5cm of experimentally demonstrated fiber, but has losses of ~1 dB/km today. The 

first demonstration of anti-resonant fibers (Benabid et al., 2002) had losses of 1000 dB/km, 

and is now ~0.22 dB/km. TCMs are a new light transport mechanism guiding light below 

the light line, as in the case of bandgap and anti-resonant fibers, but the physics involves 

not structuring the waveguide, but rather the (topological) structure of the mode itself. 

Actually, the main loss contribution in hollow-core fibers that was brought down from the 

100s to 1000s dB/km at their first demonstration to ~1 dB/km today was due to 

manufacturing optimizations to reduce the same interfacial scattering phenomenon. 

In summary, the loss experienced by the ring-core fibers is dominated by interfacial 

scattering, and that the loss is not fundamentally higher for TCMs as opposed to bound 

TIR modes. It is promising to dramatically reduce the loss by various techniques, such as 

increasing the draw stress, matching the viscosity, increasing the draw temperature, or even 

using fibers with lower core index or gradient. There is no fundamental reason to prevent 

the measured loss from reducing to that of the commercial fibers with similar index contrast 

(~0.4 dB/km) by manufacture optimization. Nevertheless, the scattering loss is very 

complicated and not very predictable, and the loss reduction is involved with a lot of 

engineering problems which need further investigations to figure out.  
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6.6. Leaky Rays and Leaky Modes 

 The phenomenon of light guidance beyond the cutoff has been noticed and 

observed for decades. It was initially described in a conference paper by Snitzer in 1961 

and referred to as leaky or quasi-bound modes. Selective excitation of high-order modes 

was achieved by illuminating different portions of the fiber. Figure 6.13 illustrates the L=73, 

m=1 mode in a 25-m diameter fiber at 633nm. The highest bound mode is L=35 at 633nm. 

Alternatively, the L=73 mode “can propagate as true bound modes only in fibers with twice 

the measured core diameter for the wavelength used”. In other words, it is evident that the 

L=73 mode operates beyond the cutoff and is still transmitted with low loss. 

 

Figure 6.13: Either HE74,1 or EH 72,1 in a 25-m diameter fiber (Snitzer, 1961) 

It is mentioned that for fibers with a diameter larger than approximately 25 m, 

"the attenuation for the quasi-bound mode was not noticeably greater than that for the true 

bound modes in lengths of a few inches." However, the order of quasi-bound modes was 

not specified. Moreover, all the modes exhibit high losses, around 1 dB/m, without 

specifying the loss for each individual mode. Hence, there is no discussion regarding how 

the confinement loss of leaky mode decreases with increasing L. 

From the perspective of geometric optics, a mode comprises rays that impinge on 
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the waveguide boundaries at the same angle relative to the normal. These quasi-bound rays 

“strike the surface at an angle greater than the critical angle for total internal refraction”. 

As a result, "from a geometrical optics point of view, these modes would not be leaky at 

all." However, since their effective indices are lower than the cladding index, they are 

inherently unbound. This apparent contradiction is attributed to the “finite curvature of the 

core-cladding interface”. Therefore, “some light is ‘sprayed’ around by diffraction so that 

it strikes at less than the critical angle.” 

Although Snitzer made the pioneering discovery and observation of leaky modes, 

the experiment was preliminary, and the theoretical explanation remained unclear. This 

discussion of leaky modes was omitted in his subsequent journal paper and the concept 

was buried in the literature. It was then rediscovered in the 1970s by Snyder et al. at 

Australian National University and Marcuse at Bell laboratory, respectively.  

Snyder et al. categorize the rays in a step-index fiber as bound rays, tunnelling 

(leaky) rays, and refracting (leaky) rays (Fig. 6.13). A ray is only bound (i.e., has zero 

confinement loss) if its angle with the longitudinal axis is smaller than the critical angle's 

complement. Even though tunnelling leaky rays satisfy the TIR requirement locally, 

tunneling loss is always present. The refracting leaky rays fail to satisfy the TIR criterion 

locally or longitudinally. This range of tunnelling leaky rays between conventionally bound 

rays and refracting leaky rays (equivalent to cutoff modes in planar waveguide) is exclusive 

to |L|>0 modes in optical fiber. Specifically, the tunnelling leaky rays correspond to the 

TCMs whose 𝑛𝑒𝑓𝑓’s are lower than the cladding index but higher than the index trench 

provided by the centrifugal barrier.  
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Figure 6.14: Classification of rays on a step-profile fiber according to the angle of 

incidence at the interface (Love & Snyder, 1975) 

The loss of tunneling leaky ray was attributed to the failure of geometric optics in 

circular optical fibers, specifically the failure of ray tracing using Snell’s law and Fresnel’s 

coefficient on curved interfaces (Snyder et al, 1973). This loss can thus be obtained by 

solving the wave equation for its complex roots. Figure 6.14 shows the relationship 

between relative interval of V values and the azimuthal order L in a step-index fiber. This 

relative V value (inversely proportional to wavelength) is obtained by comparing the V 

value associated with a certain confinement loss to that at cutoff, analogous to how the 

relative wavelength is determined in Sec. 6.3. Therefore, it is evident that a mode tends to 

attenuate more slowly as the azimuthal order L increases. In the perspective of rays, under 

the same 𝜃𝑧 (corresponding to 𝛽 in the wave picture), the attenuation of tunnelling rays 

decreases exponentially as azimuthal angle increases, i.e., as it becomes more highly skew. 
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Figure 6.15: The growth of the relative interval of V values over which a HEl1 mode is 

weakly leaky as l increases. The V value is defined as 𝑉 =
2𝜋𝑎

𝜆
(𝑛𝑐𝑜
2 − 𝑛𝑐𝑙

2 )
1

2.  V= Vα1
co- 

Vl1
co, where Vl1

co is the cutoff value for mode HEl1, and is the value of V at which the 

product of the mode’s attenuation coefficient and the fiber’s radius equals to 0.01 

(Sammut et al., 1976). This attenuation is equivalent to 10 dB/m in a 100-m-radius 

fiber. The relative V in a certain fiber is equivalent to relative frequency.  

To analyze the partial TIR of tunneling leaky modes, Snyder et al. introduced a 

generalized Fresnel's transmission coefficient for curved interfaces (Love et al., 1975). 

However, this model cannot explain why skew bound rays exhibit complete TIR (with zero 

confinement loss) on curved interfaces. In contrast, Marcuse proposed an alternative 

explanation, that the loss of tunneling leaky modes occurs when the phase velocity of the 

mode's evanescent wave in the cladding exceeds the velocity of a plane wave (Marcuse et 

al., 1973). However, this model did not reveal any dependence of the confinement loss on 

the mode's azimuthal order L.  
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6.7. High-|L| and High-m Modes 

Although the term "high order modes" is often used generally, it's essential to distinguish 

between the azimuthal order L or the radial order m. The confinement loss decreases as the 

azimuthal order |L| becomes larger (thus, the mode becomes more confined) but increases 

with high radial order m (causing them to leak out). Figure 6.14 shows the |𝐿|-dependent 

simulated confinement loss for different m’s with the same 𝑛𝑒𝑓𝑓 beyond cutoff (1% below) 

in the same ring-core fiber Gen6A3. The loss of each 𝑚 mode decreases exponentially with 

|𝐿| due to the topological confinement effect, but for fixed 𝐿, it increases dramatically with 

𝑚. Hence the transmission characteristics of modes with 𝑚>1, follows conventional 

wisdom that higher order cutoff modes are too lossy for use in transporting signals. 
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Figure 6.16: Simulated confinement loss depended on |𝑳| and 𝒎 in the Gen6A3 ring-core 

fiber. The 𝑛𝑒𝑓𝑓 ’s of all the modes are held 1% below cladding index 𝑛𝑐𝑙 . Insets are 

simulated modal images of m = 1 and m = 4 modes. 

The difference between high-|L| and high-m modes is associated with the 

fundamental difference between circular fibers and planar waveguides.  It is clear that high 

order modes readily leak out beyond the cutoff in a planar waveguide due to violation of 

TIR. This understanding is applicable to fibers in the case of L=0 modes with varying m’s, 

or meridian modes (Snyder & Love, 1984). However, many conventional concepts on high-

m modes may not apply to high-|L| modes and can even be reversed when considering 

confinement loss and cutoff.  As mentioned in the previous section, for |L|>0, there is a 

range of tunnelling leaky modes (corresponding to the TCMs we are discussing) between 

conventional bound modes and refracting leaky modes (similar to cutoff modes in planar 

waveguide). With high OAM, these tunnelling leaky modes are no longer "leaky" and have 
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negligible loss, similar to conventional bound modes. Given increasing focus on the 

research of OAM modes, such distinctions have become increasingly critical.  

 

6.8. Summary and Discussion  

In summary, we have demonstrated light guidance beyond cutoff and its dependence on 

OAM. Light is guided by the centrifugal barrier created by the OAM of itself. The 

centrifugal barrier is a universal effect for a highly rotational object in a system with short-

range quantized potential. The effect has been well-known in nuclear physics for more than 

70 years, and later has been observed in experiments in the fields of atomic and molecular 

physics too. The centrifugal barrier also manifests in increasing quality factor in whispering 

gallery cavities. Even though this light propagation beyond cutoff was investigated 

theoretically as "tunneling leaky rays/modes" by Snyder & Love, the interpretation of 

centrifugal barriers is much more elegant and provides much more physical insight into the 

role of OAM (enabled by the elucidation of OAM in the 1990s). In this thesis, we discuss 

the discovery that TCMs also enable light propagation over long distances with low loss. 

The topological confinement is fundamentally a new regime of light guidance, 

distinct from conventional TIR-based waveguiding and other guidance mechanisms such 

as photonic bandgap or anti-resonance. At its current maturity, the measured loss of TCM 

is still relatively high compared with other guidance mechanism. This is primarily due to 

interfacial scattering while the fundamental confinement loss is orders of magnitude lower. 

Hence, the measured loss of the TCM-supporting fiber is expected to be substantially 
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reduced those of commercial high-index-contrast SMFs manufacturing optimizations (e.g., 

higher drawing stress). 

Note that the distinctive properties of TCMs hold for any fiber mode with 𝐿≠0, 

whether or not they carry OAM. This includes modes commonly described in fiber 

textbooks as linearly polarized (the approximate solutions shown in Sec. 2.2) or vector 

modes (the exact solutions shown in Sec. 2.4). The TCM effect holds for these modes even 

though they do not carry OAM, because each of them can still be expressed as linear 

combinations of modes carrying OAM of equal and opposite signs (see Fig. 2.9), and the 

TCM effect is agnostic to the sign of L. 

The topological confinement directly applies to scaling the mode count as spatial 

channels. We experimentally demonstrated the enhanced TCM effect by using a shorter 

wavelength or enlarging the fiber to reach a much higher |L|. We also demonstrate the first 

observation of cutoff modes propagating over fiber-lengths as long as ~0.5km.  

In the following chapters, we will show more unique properties of TCMs, which 

provides new capabilities for scaling mode counts in optical fibers. As a result, we 

dramatically increase the mode count and improve their performance, potentially leading 

to substantial enhancements in the information capacity of optical fibers of the future. 
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Chapter 7 

7. Suppression of Degenerate Mode Coupling  

7.1. Frustrated Coupling  

In the previous chapter, we demonstrate a novel light guidance mechanism and by 

enhancing this effect we obtain a large number of additional low-loss modes beyond cutoff. 

Actually, the significance and benefit of TCMs are not just limited to additional low-loss 

modes beyond cutoff. In the previous chapter, we aimed at reducing the confinement loss 

of TCMs to a negligible level comparable to those of bound modes. However, it is worth 

noting that mode-dependent loss plays a crucial role in mode coupling. For example, 

previous studies on long-period fiber gratings (LPFG) have shown that the coupling 

between core and cladding modes can be completely suppressed by increasing the loss of 

the cladding modes (Stegall et al., 1999). In this case, the degree of loss was determined 

by the refractive index of an outer layer outside the cladding, and therefore cannot be 

utilized as a modal property to suppress the coupling between guided core modes. In 

contrast, confinement loss of TCMs is an inherent property distinct for each guided mode 

and can significantly affect the intermodal interactions. Particularly, the desired m=1 

TCMs and accidentally degenerate high-m TCMs have different confinement losses, which 

can lead distinct mode-coupling mechanism compared with that of conventional bound 

modes. 
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Figure 7.1: natural distortion immunity of TCMs. The left panel shows 𝑛𝑒𝑓𝑓  vs. 𝜆 for 

select modes. Solid colored lines are desired 𝑚 = 1 modes of different |𝐿|; dashed black 

lines represent undesired high-m modes. The solid black line shows the index of the silica 

cladding (conventional boundary between TIR bound and cutoff modes). Right panel: 

experimentally measured output images of LCP modes at 1550 nm out of a 480-m-long 

ring-core fiber. 

Figure 7.1a shows the 𝑛𝑒𝑓𝑓 distribution of select modes in the Gen6A3 ring-core 

fiber. The solid-colored lines represent 𝑚=1 modes of various |𝐿|’s and the dashed black 

lines represent high-𝑚 modes. The corresponding modal images right next to the 𝑛𝑒𝑓𝑓 of 

select modes are obtained out of a 478-m long fiber using a 1550nm ECL source (setup in 

Fig. 3.12). The bound mode L=33, m=1 is accidentally degenerate with L=16, m=4 around 

1550nm. Therefore, no matter how pure the mode excitation is, L=33, m=1 is easily 

coupled to L=16, m=4 along the fiber with ever-present perturbation to provide the 

coupling coefficient (Sec. 4.1). As a result, the interference of the two shows strong, 

distorted pattern. In contrast, dramatically distinct behavior is evident for TCMs (whose 
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𝑛𝑒𝑓𝑓 lie below the silica cladding index, depicted as a solid black curve in Fig. 7.1a). 

Although the 𝑛𝑒𝑓𝑓 of the 𝐿=39, 𝑚=1 is close to that of a high-𝑚 mode with 𝐿=25, the output 

image still shows a clear single ring image, with spatial interferometry measurements 

revealing mode purity as high as 25 dB.  

This avoidance of mode coupling is because of the orders of magnitude different 

confinement losses of two modes that are nearly degenerate, the desired 𝐿=39, 𝑚=1 mode 

and the parasitic 𝐿=25, 𝑚=4 mode, leading to frustration of phase-matched coupling in a 

manner similar to the effect described for LPFGs (Stegall et al., 1999). As mentioned in 

Sec. 6.7, the confinement loss is higher for lower L and higher m. Particularly, the L=25, 

m=4 mode has confinement loss up to 103 dB/km while the confinement loss of L=39, m=1 

is negligible. Such distinct loss equivalently suggests a distinct imaginary part of the 

propagation constant , as shown in Fig. 7.1(b). Actually, the phase matching condition for 

mode coupling necessitates matching the complex , not just the real one. The mode 

coupling process described in Sec. 4.1 assumes a lossless system that considers only the 

real part of  (corresponding to 𝑛𝑒𝑓𝑓 ). For mode with distinct confinement losses, 

compensation of an imaginary k vector is needed for the phase-matched coupling but it is 

not provided by common fiber perturbation. In other words, degeneracy is lifted in the 

complex space, leading to suppression of mode coupling between degenerate TCMs. 

7.2. Loss-Dependent Mode Coupling 

The frustrated coupling of degenerate TCMs mentioned above relies on the high 

confinement loss of high-m modes. However, the loss of high-m TCMs is not always as 

high as 103 dB/m. These high-m TCMs can also have negligible loss when their 𝑛𝑒𝑓𝑓’s are 
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not far beyond cutoff. The fact that they have higher m and lower L compared with desired 

m=1 modes just means that their loss grows faster with L at 1550nm. In other words, their 

centrifugal barrier effect is not sufficient. Similar to the Gen5A3 modes. What we just 

described above about frustrated coupling is a typical case where the confinement loss of 

high-m modes is very high. So, a question naturally arises as what the mode coupling will 

be when the loss difference is not that significant. 

Such loss-dependent mode coupling is well studied in LPFG (Stegall et al., 1999). 

When the loss difference between the two modes is not that significant, the mode coupling 

still happens, but the power of lossy mode is stripped off. Hence, there is some extra loss 

manifested for such mode coupling.  

Similar transition occurs for mode coupling between TCMs. Figure 7.2 shows the 

relative loss versus wavelength for five representative m=1 modes. Depended on the 

interaction with accidentally degenerate high-m modes, they can be classified into 

following three categories: 

1) The conventional bound modes such as |L|=30 SOaa, which couple readily with the 

undesired high-𝑚 modes, resulting in distorted output mode images at the degenerate 

wavelength. 

2) The intermediate TCMs such as |L|=33 & 35 SOaa, which partially couple with the 

undesired high-𝑚 mode, but this power is stripped off, since the high-𝑚 mode has high 

loss. Specifically, |L|=33 is a bound mode at 1550nm but it becomes TCMs at 1565nm (Fig. 

7.1), where its 𝑛𝑒𝑓𝑓 crosses with that of the accidentally degenerate high-m mode. The 

experimental degenerate wavelength is ~30nm longer than the degenerate wavelength 



 

 

142 

predicted by simulation. As the wavelength becomes closer to the degenerate wavelength, 

the extra loss become higher while the distortion also becomes weaker. In contrast, |L|=35 

SOaa is free from high-m distortion but with extra loss.  

3) The frustrated coupling TCMs such as L=39 & 41 SOaa, whose coupling with high-𝑚 

modes is completely frustrated. They don’t show any extra loss at the wavelength ~30nm 

longer than the simulated degenerate wavelength, except for a smooth rise at the long 

wavelength due to smaller 𝑛𝑒𝑓𝑓  (thus more way from the TIR-cutoff). Thus, in this 

frustrated-coupling regime, the coupling between 𝑚=1 and high-𝑚 modes are completely 

suppressed and the output 𝑚=1 mode shows neither distortion nor extra loss. 

 

Figure 7.2: Relative losses for three representative modes in the wavelength range 1500-

1580nm. The relative loss of each mode at each wavelength is obtained by comparing with 

the lowest loss of this mode in such wavelength range. The solid curves are measured 

relative loss for each mode while the vertical dashed line with the same color represent the 

simulated wavelength where the desired m=1 mode is degenerate with a high-m mode.  

Mode coupling of L=35 SOaa with high-m modes manifests as extra loss in terms while it 

is completely suppressed for L≥39. 
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These different mode-coupling behaviors are determined by the confinement loss 

of degenerate high-m modes, since the desired m=1 TCMs have negligible loss. To find 

out the loss threshold for frustrated coupling, we swept the wavelength between 1500-

1580nm to measure the extra loss of different desired m=1 TCMs interacting high-m modes. 

The confinement loss of the degenerate high-m mode is obtained from simulation. Figure 

7.3 shows the measured extra loss of m=1 modes versus the simulated confinement loss of 

high-m modes at the simulated degenerate wavelength. Our findings indicate that high-m 

modes must have a loss of over ~105 dB/km (L=39-41) for the frustrated coupling 

phenomenon to manifest.  

The loss threshold required for completely frustrated coupling is exceptionally high. 

However, for device length applications, the relatively higher loss can be tolerated, and we 

are more concerned about minimizing distortion. In particular, although L=35 SOa over a 

fiber length of 0.5 km exhibits a single ring image at the degenerate wavelength, the same 

mode over a fiber length of 25 m shows image distortion due to high-m coupling. In 

contrast, L=37 SOa yields clean ring images regardless of fiber length. Therefore, the loss 

threshold required for distortion-free transmission may be much lower. 

Further investigation is necessary to validate these loss threshold values. Since the 

measured degenerate wavelength is 0-50 nm longer than the simulated degenerate 

wavelength, it is possible that the exact high-m loss may be greater, leading to a higher loss 

threshold for frustrated coupling. Additionally, it would be more accurate to experimentally 

measure the high-m loss to consider the aforementioned numerical errors as well as bend 

loss.   
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Figure 7.3: Measured extra loss of m=1 mode versus the simulated high-m loss at the 

simulated degenerate wavelength 

7.3.  Mode-Count Scalability  

As discussed earlier in Chapter 5, high-m coupling is a primary obstacle to scaling the 

mode count. With the inherent property of mode-coupling suppression, TCMs offer a 

promising approach to overcome this bottleneck. Figure 7.4 is a replot of Fig. 6.8 (a) with 

a few representative modal images out of the 0.5-km Gen6A3 fiber. When interacting with 

high-m modes, bound modes are strongly distorted. Apart from L=33, there are also L=30 

& 28 experiencing high-m coupling and distortion at 1550nm (indicating by the red crosses) 

in the conventional bound-mode regime. In contrast, all desired m=1 TCMs (𝐿|≥34) show 

clean measured modal outputs, despite of extra loss for intermediate modes (L=35 SOaa, 

L=37 SOa &SOaa). Hence, operation in the TCM regime allows scaling mode count while 

decreasing the modal density of states that cause unwanted perturbative mixing. 
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As mentioned in Sec. 6.5, we gain 26 TCMs in Gen6A3 by merely doubling the 

size to enhance the TCM effect. These modes inherently possess large intra-|L| ∆𝑛𝑒𝑓𝑓 , 

which helps to mitigate near-degenerate mode coupling, one of the limitations to scaling 

the unmixed-mode count (Sec. 5.1). What’s more, these additional 26 TCMs are also free 

from high-m distortion. It is more advantageous to go to high L so that the accidentally 

degenerate high-m modes have higher loss for frustrated coupling to occur. The only 

limitation is the confinement loss which scales with L. Depending on the application, we 

can assign a loss cap to come up with a mode count. For fiber spanning ~km distances and 

suitable for data center applications, we select the good modes up to L=41 with a measured 

loss of ~7 dB/km, just before L=42 where the confinement loss starts to take off. The 

simulated confinement loss of L=41 is approximately 0.1 dB/km, indicating the potential 

to achieve low loss similar to commercial SMF (Sec. 6.5). Using the loss cap as ~7 dB/km, 

we have also eliminated the aforementioned intermediate TCMs with extra loss. In other 

words, the “good” low-loss TCMs are the mode in the orange shaded box in Fig. 7.4.  
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Figure 7.4: Experimental and simulated loss of Gen6A3 ring-core fiber at 1550 nm. The 

inserts are the output images of representative modes of the ~0.5-km ring-core fiber at 1550 

nm where the corresponding 𝑚=1 mode is accidentally degenerate with another high-𝑚 

mode. Such output mode images strongly distorted for bound modes while free from 

distortions in the TCM regime. The double vertical line represents the cutoff at 1550 nm 

To demonstrate the validity of each mode as an independent channel, we measure 

the transfer matrices for all the modes |𝐿|=25-41 with LCP and RCP in the ~500m Gen6A3 

fiber, as shown in Figure 7.5. Pure mode propagation (red) occurs for all modes except for 

|𝐿|=28, 30, 33 (deep blue). Less than −18dB power is scattered into modes of neighboring 

order, primarily due to misalignments in mode excitation. The average mode purity of all 

48 low-loss modes is 18dB, with average polarization extinction ratios (PER) of −13dB 

(Fig. 7.5b). The main mode coupling occurs between near-degenerate modes with same |𝐿| 

but of opposite sign (diagonal), which we’ll revisit in the next chapter.  
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Figure 7.5: (a) Transfer matrices of all the modes |𝐿|=25-41 with LCP and RCP and (b) 

polarization extinction ratios of all available modes in the 0.5-km Gen6A3 ring-core fiber. 

In device-length applications ranging from 10 to 100 m, slightly higher loss would 

be more tolerable. This length scale is of relevance to applications ranging from 

lasers/amplifiers and data-center connections to nonlinear optics and machine learning.  

The loss cap can be relaxed, for instance, up to 0.1 dB/m. As a result, the highest available 

mode can go up to L=44 (Fig. 7.6). Also, we can include the aforementioned distortion-

free TCMs (L=35 & 37) that exhibit clean output modal images but with extra loss.  

Similarly, the transfer matrices for all the modes |𝐿|=25-44 with LCP and RCP are 

measured at 1550nm in the ~25m Gen6A3 fiber. Again, each desired mode is illustrated as 

a red data point on the inverted diagonals with purity exceeding 19 dB. The interspersed 

black data points are OAM modes which show the aforementioned inadvertent mode 

mixing with high-m modes. Figure 7.6b shows that the PER of all the modes remains below 

~16dB. As results, the total mode count is up to 68 in a 25-m fiber favorable for device-

length applications. Due to accidental degeneracy primarily for the bound modes, the total 

mode count is reduced to 52 in the entire C-band (ascertained by sweeping the ECL in this 

spectral range).  



 

 

148 

 

Figure 7.6: (a) Transfer matrices of all the modes |𝐿|=25-44 with LCP and RCP and (b) 

polarization extinction ratios of all available modes in the 25-m Gen6A3 ring-core fiber. 

Further mode-coupling scalability is enabled by the inherent suppression of 

degenerate mode coupling for TCMs thus enable further mode-coupling scalability and 

such TCM effect can be scaled with higher OAM in larger fibers. Following this strategy 

from Gen5 to Gen6 fiber, we continued increasing the fiber size, resulting in an enlarged 

ring-core fiber with a 77-um ring diameter, as shown in Fig. 7.7. 

 

Figure 7.7: Refractive index profile of a ring-core fiber with 77-m ring diameter. The 

inset is the cross-section image of the fiber facet. 
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Figure 7.8 shows preliminary results of measuring L=30-70 SOaa modes in the 25-

m long fiber with an enlarged ring diameter of 77 m at 1550nm. Again, we observed that 

most bound modes exhibited high-m coupling, while most TCMs are free from modal 

distortion, with only two transitioning outliers. The large number of low-loss TCMs are 

due to high OAM. It suggests that 20 |L|’s are free from high-m distortion and have low 

loss (<0.1 dB/m), indicating that we may achieve a record mode count of up to 80.  As this 

trend continues, the total mode count is likely to increase further in a larger fiber.  

 

Figure 7.8: Cutback loss of representative SOaa modes in a 25-m ring-core fiber with 77-

m ring diameter at 1550nm. Red dots indicate modes distorted by high-m coupling while 

blue dots are modes with clean modal output. Modes in the orange band are TIR-bound 

while the green band indicates the TCM regime. 

7.4. Simple Step-Index Fiber 

As discussed in Chapter 5, the intention of sculpting the fiber core into a ring shape was to 

reduce the number of undesired high-m modes that can couple with desired m=1 modes. 
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The high-|L| m=1 modes have similar intensity profile in both ring-core and step-index 

fiber (Sec. 5.1, 6.5). Since high-m coupling can be suppressed in the TCM regime, we don’t 

necessarily need the ring core to restrict the high-m mode. Larger ring thickness introduces 

higher-m modes, which actually have much higher losses. In other words, even such simple 

conventional step-index fiber can transmit a more significant amount of uncoupled OAM 

modes without the need to manufacture other complicated fibers like the ring-core ones.   

Figure 7.9 shows the cross-section image and refractive index profile of a step-

index fiber that was initially designed for high-power nonlinear experiments (Rishoj et al., 

2019). It has similarly large index contrast (n ~ 0.04) as Gen6A3 but larger core size (core 

diameter ~70um). The fiber used in the experiment is 90-m long (setup in Fig. 3.1)  

 

Figure 7.9: Cross-section image and index profile of a 70-m step index fiber. 

The measured cutback losses of |L|=40-64 with both SOa and SOaa are shown in 

Fig 7.10. The measured loss remains relatively low up to 𝐿 = 63, way past the cutoff L=42. 

The black markers indicate clear modal output (representative modal images pointed by 

the black arrows) with average 18-dB purity using an ECL source while red marks indicate 

strong image distortion. Similarly, in the bound mode regime, only L=42 shows a clear 

ring-shape at 1550nm, while all the others dramatically mix with high-m modes, showing 
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speckle patterns. At the beginning of the TCM regime, the mode coupling is still present, 

because the losses of high-m modes in this region are not yet sufficiently high. Note that 

this transition regime is wider than that in the ring-core fiber, likely due to the existence of 

much more high-m modes in a step-index fiber. However, for modes with 𝐿≥51, a clean 

modal output is obtained regardless of whether or not it is degenerate with high-m modes, 

clearly illustrating the power of TCMs to naturally avoid mode mixing. 

 

Figure 7.10: Cutback loss of |L|=40-64 with both SOa and SOaa measured in the 70-m 

step-index fiber at 1550nm. Red markers indicate modes distorted by high-m coupling 

while black marker are modes with clean modal output. Modes in the orange band are TIR-

bound while the green band indicates the TCM regime. 

Overlaid in the plot is the simulated confinement loss which matches well with the 

experiment after L=63 where the confinement loss becomes large enough to dominate the 
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total loss. Before L=60 where the confinement loss starts to take off, the confinement loss 

is orders of magnitude lower than the measured loss, indicating that the measured loss is 

mostly due to interfacial scattering. Note that such scattering loss is much larger than that 

of the aforementioned Gen6A3 and it was not initially intended for long-haul telecom 

transmission. It was drawn with standard 100-g tension so the stress is as low as 4.5 kg/mm2. 

However, further investigation is needed to figure out what its scattering loss is still higher 

than Gen6A5 fiber drawn with similar stress. Nevertheless, the scattering loss has the has 

a great room of improvement by better fiber manufacturing, such as higher drawing tension 

(Sec. 6.5). If we pick 0.1 dB/m loss as a loss cap, the available mode can go up from L=42 

to L=63, most of which are mode-mixing free TCMs. 

Figure 7.11 shows a quantitative summary of this fiber’s modal performance. The 

purity of all modes with propagation loss < 0.1 dB/m (criterion set earlier) is deduced by 

using a narrowband tunable ECL in the 1550-nm range for mode excitation, and then 

employing spatial interferometry to quantify modal content. The transfer matrices shown 

in Fig. 6.10a illustrate that, for modes denoted with red squares, mode purity exceeds 15 

dB, with an average > 18 dB. The PER (Fig. 7.11b) average ~10 dB for all modes, but were 

substantially better (>16 dB) for more than ½ of the modes. Overall, we conclude that this 

fiber supports a record value of 60 OAM modes with high purity, PER and low loss. 
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Figure 7.11: (a) Transfer matrices of all the modes |𝐿|=40-64 with LCP and RCP and (b) 

polarization extinction ratios of all available modes in the 70-m step-index fiber with 90-

m long. 

This is the first instance of utilizing a standard, simple step-index multimode fiber 

for transmitting a large ensemble of uncoupled modes, hence pointing to the possibility of 

using legacy fiber for mode multiplexing. These interesting attributes were made possible 

by exploiting the TCM concept described earlier. 

7.5. Summary and Discussion 

In this chapter, we demonstrated the fundamental mode-coupling suppression between 

degenerate TCMs with distinct confinement loss. As such, we mitigate the issue of the 

high-m mode coupling that has been haunting for scaling the OAM mode count. This 

effectively decreases the density of states of low-loss propagating modes. As a result, we 

reach record unmixed mode count at 1550nm – 52 over a ~0.5km fiber and 60 over a 25-

m fiber. We also show preliminary results in a 77m ring-core fiber with potentially 80m 

unmixed modes. These point to a promising approach for scaling the mode count by 

enhancing the TCM effect by using a large fiber with higher-|L| mode. How far this simple 

scalability methodology can be extended remains to be further investigated, theoretically 
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and experimentally. Given the simplicity of the design, TCMs in step-index fibers can 

potentially increase the capacity using the current fiber infrastructure without drastic 

alterations.  
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Chapter 8  

8. Record Low Crosstalk of TCMs 

8.1. Crosstalk and Mode Coupling 

In the previous chapter, we achieved record mode count in an MMF enabled by TCMs. 

The benchmark is Gen6A3 with 50 low-loss pure modes. In addition to channel count, 

crosstalk is another critical parameter in SDM. As indicated by Eq. 1.2, crosstalk directly 

impacts the total SNR, thereby playing a significant role in determining the information 

capacity. More precisely, both channel count and crosstalk jointly determine the SDM 

capacity when assuming the same bandwidth. Furthermore, channel count and crosstalk 

are closely related, as elucidated in the subsequent discussion. 

To calculate the information capacity for a specific channel, it would be necessary 

to add the crosstalk from all other channels. Inter-channel crosstalk in MMFs refers to the 

inter-mode coupling discussed in Sec. 4.1, but in uncoupled single-mode MCFs, it 

corresponds to the inter-core coupling. Before discussing the MMF crosstalk, it would be 

beneficial to examine the MCF crosstalk briefly. In this chapter, "MCF" shall refer to 

uncoupled single-mode MCF for the sake of brevity. The MCF established the benchmark 

for crosstalk of unmixed SDM fibers, and MMF may use its analysis approach. In this 

chapter, we'll compare them closely. 

Inter-core coupling may be analyzed using the coupled mode theory outlined in 

Section 4.1. The inter-core spacing determines the transverse coupling coefficient. Inter-

core coupling in homogeneous MCFs, where the propagation constants of all cores are 
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identical, is primarily determined by the inter-core spacing. Typically, the MCF crosstalk 

is characterized by the crosstalk between the two nearest cores, since the coupling weakens 

exponentially with increasing inter-core spacing. For long-haul transmission, this inter-

core crosstalk is typically optimized to between -50 and -40 dB/km. Particularly, 40 dB/km 

crosstalk permits 100 km transmission using QPSK modulation (Tanaka, et al., 2017, 

Mizuno et al., 2017). There is a tradeoff between core count and inter-core crosstalk. In 

homogeneous MCF, the maximum number of cores in a fiber with a cladding diameter of 

260m is 22. 

Heterogeneous MCF has various propagation constants for nearby cores, which 

further reduces inter-core coupling. The core count in a 250-m MCF is maximized at 37 

(Sasaki et al., 2017). In contrast to homogeneous MCF, inter-core crosstalk must account 

for all possible combinations of heterogeneous cores. In other words, the closest pair is not 

always the one with the least amount of crosstalk, and the  difference also plays a 

significant role. On the other hand, even if the heterogeneous structure suppresses inter-

core coupling, it inevitably makes the crosstalk sensitive to macro-bends due to bend-

induced effective index variation (S. Matsuo et al., 2016, Saitoh et al., 2013).  

Similar to MCF, which encloses multiple channels in real space, MMF contains 

multiple channels in momentum space (k-space), i.e., in multiple modes with different 

propagation constants, or 𝑛𝑒𝑓𝑓. Due to this analogy, it is likely that we can only consider 

the mode coupling with the closest modes (in 𝑛𝑒𝑓𝑓) to represent crosstalk. Note, however, 

that the transverse coupling coefficient and 𝑛𝑒𝑓𝑓 are distinct for each mode. In other words, 

the closest pair in 𝑛𝑒𝑓𝑓  is not always the pair with the lowest mode coupling. This is 
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analogous to the heterogeneous MCF. Therefore, we may need to examine the mode 

coupling of each pair individually, or we may just need to consider the total mode coupling. 

However, a closer examination at the mode coupling can ease this analysis as shown in the 

following.  

As mentioned in Sec. 4.1, there are two kinds of distinct inter-mode coupling for 

an OAM mode: intra-|L| mode coupling with its nearly degenerate mode with the same |L| 

(between SOa and SOaa modes), and inter-|L| mode coupling with modes separated by 

L=1,2,3, etc. Note that the coupling between two orthogonal polarization states (e.g., 

between SOa and SOaa modes with same |L| but opposite polarization) is neglected since 

it can be disentangled by standard 2×2 MIMO technology. In terms of transverse coupling 

coefficient (Eq. 4.7), an extrinsic OAM needs to be provided by fiber perturbation, such as 

twisting or bending. The extrinsic OAM needed for intra-|L| coupling is L=2|L|, which 

scales with |L|. In contrast, the extrinsic OAM needed for inter-|L| coupling is L=1,2,3, 

etc, which has no dependence on |L| of the mode in consideration itself. Given the highest 

extrinsic OAM needed (L=2|L|), The intra-|L| coupling is the least probable to occur, 

followed by L=1 inter-|L| coupling, and then other high-L inter-|L| coupling.  In terms 

of 𝑛𝑒𝑓𝑓  separation, the closest pair is the intra-|L| one (~10-4), followed by L=1 inter-|L| 

one (~10-3). The 𝑛𝑒𝑓𝑓  separation of high-L inter-|L| pairs are roughly L| times of the of 

the L=1 𝑛𝑒𝑓𝑓 . Under perturbations with a certain range of wavevectors, the mode 

coupling with smaller 𝑛𝑒𝑓𝑓 are more likely to occur. 
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Whether intra-|L| or L=1 inter-|L| coupling are stronger depends on whether L or 

𝑛𝑒𝑓𝑓 plays a more dominant role. However, we can first be certain that L=1 inter-|L| 

coupling is orders of magnitude stronger than that of the high-L inter-|L| ones with larger 

𝑛𝑒𝑓𝑓. Therefore, crosstalk in the Gen6A3 fiber can be characterized by the intra-|L| and 

L=1 inter-|L| mode coupling.  

This chapter will focus on these two kinds of mode coupling to evaluate the 

crosstalk. We also compare the intra-|L| coupling with the inter-|L| mode coupling that 

occurs due to stochastic perturbations distributed throughout the fiber, which is 

differentiated from discrete inter-|L| coupling that might arise from mode excitation or fiber 

connections. Finally, we study the bend performance of these fibers, especially in the 

context of crosstalk.  

8.2. Intra-|L| and Inter-|L| Mode Coupling 

In this section, we will investigate whether intra-|L| or L=1 inter-|L| coupling in 

Gen6A3 fiber is stronger. As stated above, it depends on whether L or 𝑛𝑒𝑓𝑓 plays a more 

dominant role. Intra-|L| couplings are much stronger than inter-|L| couplings in both Gen4 

(Gregg et al., 2015) and Gen5 (Sec. 5.2) fibers. This may not be necessarily the case for 

Gen6 fiber, where the |L|’s of available modes are much higher than that of Gen4 and Gen5 

fibers, although the 𝑛𝑒𝑓𝑓’s are similar.  

The intra-|L| and the L=1 content can be quantified by the L=2L and the L=1 

content obtained from the analysis of the modal image using Ring Method (Sec. 3.1). Their 

contents were covered in the transfer matrix of a 0.5km Gen6A3 fiber measured in Sec. 
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7.2. Here we consider their parasitic power for a L=40 SOaa input as an illustrative example. 

As shown in Fig. 8.1 (a), the L=1 content is two orders of magnitude higher than that of 

the L=2L contents. However, it seems improbable that the L-dependent transverse 

coupling coefficient can make such a significant difference. Actually, the L=2L content 

varies substantially across modes. As shown in Fig. 8.1b, the L=2L contents decrease 

rapidly from −20dB to −40dB for the bound modes but remain at a significantly lower level 

(~−40dB) for the TCMs. In contrast to the L-dependence of the L=2L contents, the L=1 

content fluctuates around −20dB for all the L’s. Either the L-dependent 𝑛𝑒𝑓𝑓 makes no 

difference to the inter-|L| coupling, or such L=1 content comes from external source (with 

no dependency on the modal property) as opposed to in-fiber mode coupling.  

 

Figure 8.1: (a) Parasitic mode power spectrum for L = 40, RCP launched mode measured 

by spatial interferometry at 1550nm. Inset: launched mode image at fiber output; (b) The 

|L|=1 and |L|=2L content from Ring Method for all available modes. 

The external impurity primarily comes from mode excitation. As mentioned in Sec. 

3.2, the spatial interferometry based on output mode images is incapable of distinguishing 

between parasitic power from in-fiber mode coupling and input mode excitation. The 
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parasitic power from mode excitation is not associated with modes or fiber length, but the 

in-fiber mode coupling is typically mode-dependent (e.g., fields profile, 𝑛𝑒𝑓𝑓) and also 

accumulate while propagating in the fiber. The length-dependent parasitic power is thus 

one means for distinguishing impurities from the two sources. Figure 8.2 shows the output 

L=2L and the L=1 content for modes with +|L| and LCP across three different lengths 

of Gen6A3 fiber. We use LCP here as the L=2L contents for RCP are analogous (Fig. 

7.5). Note that the 1-km length is achieved by doubling the 0.5-km Gen6A3 fiber using a 

Sagnac reflector (setup in Fig. 3.17). The L=2L content becomes higher for longer length 

and lower |L| (Fig. 8.2a), while the L=1 content shows no clear relationship with either 

length or |L| (Fig. 8.2b). Actually, using the SLM-based setup, the inter-|L| parasitic power 

is around −20dB after purity optimization, independent of the fiber type (Gen4 or Gen5 or 

Gen6). Therefore, such L=1 content −20 dB is likely due to mode excitation at the input 

rather than the in-fiber mode coupling. 

 

Figure 8.2: Parasitic power versus length of Gen6A3 fiber for (a) L=2L and (b) L=1 

content. 



 

 

161 

Even though the −20 dB of L=1 content in Fig. 8.1 is dominated by mode 

excitation, the in-fiber L=1 coupling is unknown.  More importantly, whether it is higher 

or lower than the intra-|L| coupling may have a direct impact on the overall crosstalk. It can 

be measured by time of flight as described in the next section. On the other hand, the 

content of the L=1 inter-|L| coupling is also related to the understanding the low intra-|L| 

coupling – particularly, whether it is due to high-L or TCMs. As previously mentioned, 

the intra-|L| coupling seems a distinctive feature of TCMs. However, it is less persuasive if 

it solely applies to intra-|L| coupling and the inter-|L| coupling level stays higher than the 

intra-|L| coupling level. 

There is another concern other than the low-|L| content. The noise floor ~-50dB is 

not very much below the L=2L content, therefore their integration of can be substantial. 

As shown in the Sec. 3.1, the ~−50dB noise floor, together with the broadening of the 

Δ𝐿=2𝐿 spectrum, actually comes from the Ring Method defect (cartesian-to-polar 

coordinate conversion) rather than the real modal content. Therefore, it is reasonable to 

consider the intra-|L| mode coupling as the total crosstalk if we can demonstrate the in-fiber 

inter-|L| couplings are much lower.  

Figure 8.2(a) is an exemplary ToF signal from the ~0.5-km Gen6A3 fiber with an 

L=40 SOaa input (setup in Fig. 3.1). The majority of power is coupled to the dominant 

L=40 SOaa mode on the input side. Meanwhile, some parasitic modes are accidentally 

excited and appear as discrete spikes in the temporal trace. By integrating the power 

between the two corresponding spikes, the distributed coupling between the parasitic L=39 

mode and the main L=40 mode can be determined. At such a low level of parasitic power, 
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this integration may capture the noise from the detector. The relative noise floor is 

minimized by increasing the oscilloscope’s integration time (to 4096) and the input power 

to the maximum level the detector can sustain without encountering saturation.  In this case, 

the integration of the distributed L=39 is calculated to be negative (possibly due to the 

ringing of the signal), therefore we assign it a value of −46dB, which is the minimum 

parasitic power that our present ToF can detect. It indicates that the parasitic power is less 

than what our current equipment can measure. 

We use SOaa mode because, for a given |L|, SOaa mode has less time delay than 

SOa mode (due to lower group index of SOaa modes). Otherwise, while integrating the 

power between L=39 and L=40 using SOa mode, we will invariably pick up contribution 

form the SOaa mode. We did not measure the other SOaa mode (L=−40) since its ToF 

signal is similar to that of L=40. 

The L=1 distributed coupling of L=25-42 SOaa modes are shown in Fig. 7.2b. 

Modes strongly mixed with high-m modes are ignored (L=28, 30, 33). The L=1 

distributed coupling of all TCMs (>=34) is found to be below the measurement's noise 

floor (−46 dB). The outlier L=29 is a result of noise from the L=28 coupling strongly with 

high-m modes. The L=1 distributed couplings of bound modes show a general trend of 

rapid decrease with higher |L|, as indicated by the dashed fitting line. The L=1 discrete 

couplings are around the same level (~−20dB) as the L=1 content from the Ring Method 

(Fig. 8.1b). It clearly shows that ~−20dB L=1 content comes primarily from mode 

excitation but not in-fiber coupling.  
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Figure 8.3: (a) Time of flight trace of L=40 RCP launched mode at 1550nm; (b) The 

discrete and distributed |L|=−1 content from ToF for all available modes. 

As mentioned before, the mode coupling between modes separated by |Δ𝐿|=2,3,4 

should be much lower than that of |Δ𝐿|=1. Therefore, the high parasitic power of |Δ𝐿|=2,3,4 

in Fig. 8.1 for L=40 input also comes from mode excitation, as that of |Δ𝐿|=1, while their 

in-fiber mode coupling should be much lower than -46 dB. This assertion is hard to be 

experimentally verified because measuring integrated power shoulders for the |Δ𝐿|=2,3,4 

modes necessarily involves making assumptions on ignoring the intervening discrete peaks, 

which would yield large error bars in measuring a quantity that is already quite low. 

However, Fig. 8.3 provides a degree of confidence in this claim, since the distributed power 

between each discrete peak appears to be of the same order of magnitude as that between 

the L=39 and L=40 peaks, suggesting that this distributed crosstalk is also immeasurably 

low.  
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8.3. Record Low Crosstalk 

After successfully measuring the in-fiber L=1 inter-|L| mode coupling with the ToF, we 

can compare it to the intra-|L| mode coupling measured with the Ring Method. By 

comparing the two, we can determine which is stronger and calculate the overall crosstalk. 

As shown in Fig. 8.4, the intra-|L| mode coupling consists of all four modes for a certain 

|L|, while the inter-|L| mode coupling of the same |L| is represented by the mode with +|L| 

and RCP. 

The parasitic powers of almost all intra-|L| mode couplings are higher than those 

of the inter-|L| mode couplings. This finding aligns with what we have found in Gen4 and 

Gen5 fiber that intra-|L| coupling is more likely to occur than inter-|L| coupling under 

common fiber perturbations. This is due to the fact that ∆𝑛𝑒𝑓𝑓 associated with inter-|L| 

coupling is an order of magnitude larger than associated with intra-|L| couplings. Thus, we 

can conclude that intra-|L| mode coupling is the primary contributor to crosstalk. 

Ideally, intra-|L| and inter-|L| couplings should be combined to get the total 

crosstalk. Even though intra-|L| coupling is higher than inter-|L| coupling, they are roughly 

within the same order of magnitude. However, the measurement inter-|L| mode coupling 

of the TCMs is constrained by the noise floor −46dB of the ToF method. In the future, this 

inter-|L| mode coupling can be measured with more sensitive detector with a lower noise 

floor, or with long fiber where the accumulated crosstalk can be sufficiently higher than 

the noise floor. Therefore, we use the intra-|L| coupling to represent the crosstalk for the 

time being.  
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Since this measurement was conducted on a fiber with a length of ~0.5 km, 

crosstalk over 1-km fiber can be estimated by extrapolating this result, assuming similar 

length scaling laws for the growth of power in parasitic modes. Hence, a reasonable 

assumption is that the crosstalk of km-length fibers would be approximately 3-dB higher 

than the intra-|L| coupling measured from the 0.5-km fiber. Most TCMs exhibit crosstalk 

of <−40 dB/km, with some even achieving <−45 dB/km. There are a few outliers at the 

beginning of the TCM regime, where they transition from bound modes to TCMs. In 

comparison, the crosstalk for conventional TIR bound modes remains at ~−20 dB/km, 

which is the same as in previous investigations of MMFs. This indicates the inherent 

resistance of TCMs to mode mixing. 

 

Figure 8.4: Parasitic power for inter-|L| and intra-|L| coupling in Gen6A3 ring-core fiber 

at 1550nm. 

While high OAM may assist suppress intra-|L| coupling owing to larger L (=2L), 

the significant reduction in intra-|L| coupling in the TCM regime implies that it is 
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fundamentally related to the phenomenon of topological confinement itself.  As elucidated 

in the preceding chapter, the loss difference plays a crucial role in suppressing mode 

coupling from the desired m=1 mode to accidentally degenerate high-m modes. This 

mechanism may be applicable to desired m=1 modes as well. In Fig.6.8, the cutback loss 

of Gen6A3 shows that the confinement losses of the SOa mode are higher than those of the 

SOaa mode. This loss difference, and thus the  separation in complex space, is likely to 

suppress the intra-L mode coupling. In addition, the loss difference also occurs between 

inter-|L| mode pair, which can explain the rapid decrease of inter-|L| mode coupling from 

bound to TCMs as well. In other words, distinct losses lead to suppression of mode 

couplings between all desired m=1 modes in the TCM regime, resulting in record-low TCM 

crosstalk. 

TCMs make crosstalk of highly multimoded fibers on par with that of MCF for the 

first time. This low crosstalk allows long-haul transmission if the scattering loss can be 

reduced to that of commercial SMFs (Sec. 6.5.2). For example, –40 dB/km crosstalk results 

in –20dB crosstalk over a 100-km transmission. This crosstalk level permits QPSK 

modulation with 0.5 dB power penalty (Tanaka, et al., 2017, Mizuno et al., 2017). How 

crosstalk impacts capacity will be discussed in the next chapter. In addition, this low 

crosstalk is achieved via separation in k-space as opposed to real space, making it far more 

space-efficient than MCF. 

8.4. Bend Resistance  

As mentioned in Sec. 4.1, fiber bending is the most common perturbation in daily life. This 

perturbation introduces a wavevector for phase-matching coupling. Actually, it has a 
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significant impact on the heterogeneous MCF, which has 𝑛𝑒𝑓𝑓 variation across cores. The 

crosstalk deteriorates significantly (e.g., up to –20dB/km) around and below the threshold 

bending radius (~30 mm, depending on the inter-core index difference). Figure 8.5 shows 

the setup for examining the influence of bending. The bend is applied at the end of the 0.5-

km Gen6A3 fiber. The input mode excitation is maintained by observing the discrete peaks 

in the ToF measurement (Fig. 8.2a). 

 

Figure 8.5: Experimental setup for examining the influence of bending on Gen6A3 fiber. 

Figure 8.6 shows the intra-|L| mode coupling when the fiber is bent with 10 loops 

to radii of 3 mm, 6 mm, and 15 mm.  With 3-mm-radius bend, the crosstalk of all the modes 

decays. In comparison, with 6-mm-radius bend, the TCM crosstalk remains about –

40dB/km while some of the bound modes degrades, demonstrating the unique robustness 

of TCMs. Under the 15-mm-radius bend, only two representative modes (one bound mode 

and the other TCM) are measured, and the crosstalk remain roughly the same as in the 

absence of sharp bends. Hence, the extraordinarily low crosstalk for TCMs is maintained 

even under tight bends with 6-mm radius.  
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Figure 8.6: Intra-|L| mode coupling with and without sharp bends. The insets show 10 

loops of fiber bent with various bend radius. 

The different bend tolerance between bound modes and TCMs further affirms the 

inherent resistance to mode coupling for TCMs. As mentioned in the previous section, it is 

most likely owing to the separation of the complex propagation constants, which is unlikely 

to be compensated by an extra, real-valued wavevector provided by common fiber-bend 

perturbations. Thus, the TCM bend resistance significantly outperforms the robustness of 

heterogeneous MCFs (threshold bending radius ~30 mm) with similar or larger 𝑛𝑒𝑓𝑓 

separations (S. Matsuo et al., 2016, Saitoh et al., 2013). 

8.5. Summary and Discussion  

In this chapter, we investigated the crosstalk by considering the mode coupling in the TCM-

supporting fiber. With the aid of coupled mode theory, intra-|L| and L=1 inter-|L| mode 
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couplings are chosen for close examination since all other mode couplings are orders of 

magnitude lower. For the L=1 inter-|L| mode coupling, we use time of flight to 

differentiate the input mode excitation and in-fiber mode coupling. We demonstrate that 

the mode excitation is the dominant source of L=1 impurity, but the in-fiber mode 

coupling for TCMs is below the noise floor (-46dB) of the measurements. By comparing 

the L=1 inter-|L| and intra-|L| mode coupling, we concluded the intra-|L| mode coupling 

plays a dominant role and is used to represent the crosstalk. 

As such, we found that the crosstalk reach record low values (<-40dB/km) in the 

TCM regime, whereas the crosstalk of the bound modes remains around –20dB/km. The 

TCM crosstalk maintains even in the presence of sharp 6-mm-radius bends while some of 

the bound modes degrade. We suspect such suppression of intra-|L| coupling is 

fundamentally due the confinement-loss difference between SOa and SOaa modes, hence 

further lifting their degeneracy in the complex space. Further investigation is needed to 

confirm this hypothesis. We not only achieve the lowest crosstalk in MMFs but also make 

the crosstalk in a MMFs on par with that of MCFs for the first time. The low crosstalk 

potentially enables long-haul transmission using TCMs.  
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Chapter 9  

9. Scaling the Information Capacity by TCMs 

9.1. Capacity and Spectral Efficiency 

Topological confinement has proven to be an effective approach not only for achieving a 

high mode count (Chapter 7) but also for minimizing crosstalk (Chapter 8), which are two 

key parameters in space-division multiplexing (SDM) for scaling the information capacity. 

It is essential to determine the actual capacity increase enabled by TCMs and compare it 

with the benchmark MCFs to fully evaluate its potential. A system test with data 

transmission is required to measure the information capacity of the TCM-supporting fiber. 

However, conducting system tests is not possible at its current maturity due to time and 

technical constraints (detailed in Sec. 9.5). Therefore, we need to find an alternative way 

to estimate the capacity enhancement enabled by TCM. To do so, we will use the Shannon 

formula (Eq. 1.2) to make a reliable estimation of the potential capacity increase. 

The spectral efficiency (SE) is typically used in SDM to evaluate the information 

content transmitted over a given bandwidth in a communications system. It is given by the 

Shannon capacity (Eq. 1.2) divided by the bandwidth as   

SE =
𝐶

𝐵
=∑log2(1 + (SNR𝑖

−1 + XT𝑖)
−1)

𝑀 

 𝑖=1

                            (9.1) 

In the previous chapters, the channel count M (Sec. 7.3) and crosstalk XT (Sec. 8.4) of 

TCM-supporting fiber Gen6A3 at 1550nm have been presented. While one can assume 

that the maximum SNR is the same as that of a standard SMFs it is worth examining it 



 

 

171 

carefully given that nonlinear properties of distinct modes may differ (detailed in Sec. 9.4). 

Bandwidth is another important factor that needs to be considered. Although the 

bandwidth factor in Shannon capacity is eliminated by considering SE, it is crucial to verify 

that the SE remains stable across different wavelengths or determine the bandwidth within 

which the SE remains reasonably high. This is because the overall capacity of the system 

is a product of both the SE and the bandwidth. In other words, determining the bandwidth 

of SE is closely related to the compatibility with the well-established wavelength-division 

multiplexing (WDM) technique. It is imperative that the adoption of SDM should not come 

at the cost of sacrificing the benefits of mature techniques such as WDM, which is critical 

for realizing the full potential of spatial channels and gaining a capacity advantage over 

conventional non-SDM telecom systems. 

The choice of the spectral window to examine depends on the spectral window of 

the optical amplifier for WDM. The conventional telecom spectral window is the C-band, 

ranging from 1530nm to 1565nm, which is determined by the amplification window of the 

erbium-doped fiber amplifier (EDFA). However, recent developments in fiber amplifiers 

have enabled extension of the amplification window to the S-band (1460–1530nm) and to 

the L-band (1565–1620nm). This wideband amplification was achieved using a 

combination of discrete Raman amplifiers, a thulium-doped fiber amplifier (TDFA), and a 

conventional EDFA (Galdino et al., 2020). The implementation of all these three bands has 

been demonstrated in MCFs (Puttnam et al., 2021). To obtain the SE across this wideband, 

it is necessary to determine the mode count, crosstalk, and loss across the S, C, and L bands 

(Sec. 9.3). 



 

 

172 

In this chapter, we re-measured the transfer matrix of Gen6A3 but with length 

effectively around 1-km. Then, we measure the relevant properties of all the available 

modes in the telecom S, C and L band. We end this section by using the measured attributes 

to estimate the spectral efficiency of fibers featuring TCMs, and hence make predictions 

for the kind of data transmission systems in which it may find uses.  

9.2. Kilometer-Scale Transmission  

At its current maturity, the benchmark TCM-supporting fiber Gen6A3 only features 

around 0.5-km long. However, it would be ideal to investigate our fibers properties over 1-

km length scale. Even though such length is more than enough for device length (~10 m) 

applications, data center lengths are modulo km. In addition, it is a common practice to 

measure the 1-km fiber properties and estimation the long-haul (~100 km) transmission 

(37-core MCF).  Although the mode count may not change significantly and crosstalk can 

be estimated by adding 3dB (Sec. 8.4), it would be beneficial to evaluate transmission over 

1km to validate the attractive attributes of the fiber over length scales that may be of interest 

in applications. Given the current 0.5km length, the fiber length is effectively doubled by 

using a Sagnac reflector to guide the output light back to the fiber (Sec. 3.5). Figure 9.1(a) 

shows the full transfer matrix for all the modes |𝐿|=25−42 with both LCP and RCP over 1-

km Gen6A3 fiber. Similar to the 0.5-km transfer matrix (Fig. xx), the deep blue square 

markers along the diagonal are bound modes (|𝐿|=28,30,33) that experience mode mixing, 

and the majority of the power in the two off-diagonals adjacent to the launched mode are 

from mode-launch imperfections (~–20 dB), whereas fundamental, in-fiber crosstalk in 

these modes is immeasurably low (Sec. 8.3).  The good modes (red square markers) exhibit 



 

 

173 

crosstalk ~ −40 dB/km for TCMs and ~ −20 dB/km for conventional bound modes (based 

on measured power in the anti-diagonals), which confirms the crosstalk measured in the 

0.5-km fiber (Sec. 8.4). The total mode count is again 50 by excluding the distorted bound 

modes and outliers in the TCM regime that exhibit high loss > 10 dB/km (criteria detailed 

in Sec. 7.3). Also measured are the polarization extinction ratios (PER) (Fig. 9.1(b)), which 

increase with |𝐿| from ~10 dB to ~15 dB, overall, 3-dB less than that of the 0.5-km Gen6A3 

(Fig. 7.5). 

 

Figure 9.1: (a) Transfer matrices of all the modes |𝐿|=25-41 with LCP and RCP and (b) 

polarization extinction ratios of all available modes in the Gen6A3 ring-core fiber with 

equivalent 1-km length. 

Figure 9.2 displays the time-of-flight measurements obtained by transmitting 100-

GHz-bandwidth telecom-compatible pulses at 1550 nm over a distance of 1 km of fiber, 

indicating the potential for practical signal transmission. It suggests that future work can 

include incorporating the data into the pulse trains for system test to measure the 

information capacity. 
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Figure 9.2: Pulse propagation of select modes with LCP in 1-km Gen6A3 fiber. 

9.3. Wideband Demonstration 

To measure the bandwidth the system, we repeat the same measurement using an ECL at 

6 representative wavelengths (1460nm, 1505 nm, 1530nm, 1550nm, 1565nm, 1590nm) to 

cover the telecom S, C and L band, as shown in Fig. 9.3(a). The last part of the L band 

(1590-1620nm) is not covered due to the limited range of our ECL, but measured trends, 

described below, do not suggest any abnormal behavior in the spectral range we could not 

measure.  

We use the crosstalk as the metric for each mode at a certain wavelength as it 

directly determines the capacity that can be achieved. As mentioned in Chapter 7, we use 

the intra-|L| mode coupling to represent the crosstalk as it is the dominant in-fiber mode 

coupling and thus would represent the wavelength-dependent trend. The measurement of 

L=1 inter-|L| mode coupling was limited by the noise floor of the time of flight and other 

inter-|L| couplings are expected to be orders of magnitude lower. These inter-|L| mode 

coupling can be measured in the future with better measurement technique or longer fiber, 
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but they are likely to follow the spectral trend of the intra-|L| mode coupling shown here.   

Also, we only measure a quarter of all four modes for a given |L| as they have similar 

crosstalks and the total mode count is estimated by multiplying the measure mode count 

by four.  

As before, outlier modes with excessive mode mixing or loss were excluded in the 

plot. Red and blue curves of various shades denote TCM and TIR bound mode crosstalks, 

respectively. The crosstalk of modes depicted by other colors are typically for TIR bound 

modes that are close to cutoff, and hence modes that resemble TCMs as wavelength 

increases. Again, the average crosstalk of all TCMs lies between −40 dB/km and −45 

dB/km, whereas most bound modes appear pinned at a crosstalk of −20 dB/km, regardless 

of wavelength. Most interesting is the crosstalk of TIR bound modes close to cutoff, 

demonstrating that, as the guidance mechanism for light evolves from TIR to topological 

confinement, the crosstalk also improves by two orders of magnitude. Figure 9.3 (b),(c) 

depict the average crosstalk and mode count, respectively, demonstrating a 1-km-long 

MMF with record high mode counts of ~50 comprising ~20 conventional TIR bound 

modes with < −20 dB/km crosstalk and ~30 TCMs with crosstalks < −40 dB/km across 

three telecom spectral bands of interest.  

As shown in Fig. 9.3(d) the average losses for TCMs (~5.0 dB/km), bound modes 

(~1.4 dB/km) and all modes (~3 dB/km) remain at similar levels across the three telecom 

spectral bands. The average simulated confinement loss of TCMs (~0.1 dB/km) is an order 

of magnitude lower than the measured TCM loss. As discussed in greater detail in Sec. 6.5, 

the measured loss of TCMs and also the bound primarily come from interfacial scattering 
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loss, which is expected to decrease to ~0.4 dB/km by manufacturing optimizations. This 

would make these fibers suitable for substantially longer telecom links.  

 

Figure 9.3: (a) Crosstalk vs. λ of modes with +|L|, RCP in S, C and L telecom bands; (b) 

Average crosstalk (left) and mode count (right) vs. λ for TIR bound modes, TCMs, or their 

sum. (c) Average total loss vs. λ of good bound modes, TCMs and their sum. Dashed curve 

represents the average simulated confinement loss of TCMs. 

9.4. Maximum SNR and Fiber Nonlinearity 

As discussed in Sec. 1.1, the maximum SNR allowed in conventional SMF-based 

communication system is fundamentally constrained by the Kerr nonlinearity in fibers. Its 

manifestation can be described as the modification of the refractive index: 
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∆𝑛 = 𝑛2𝐼                                                                          (9.2) 

where n2 is the nonlinear refractive index determined by the material, and I is the optical 

intensity which the optical power per unit area. The fiber nonlinearity is proportional to the 

signal power, and can cause signal distortion when it exceeds a certain level. This limits 

the signal power and subsequently the SNR. Fibers with lower nonlinear indices are 

achieved based on new material (Dragic et al., 2012) or air-core guidance realized by 

photonic-bandgaps (Russel, 2003). However, none of these fibers has, to date, achieved 

telecom material losses and so we should stick with silica, at least for telecom related 

discussions.  

The limitation of SNR is the primary motivation to SDM. While the SE of a 

particular spatial channel is limited by SNR, increasing the number of channels allows for 

scaling the SE and therefore the capacity. In standard SMF, the maximum SNR for long-

haul transmission is approximately 30 dB (Essiambre et al., 2012), although this number 

may vary depending on the calculation model or application scenario. Although the same 

maximum SNR can be applied to TCM-supporting fiber, it would ignore the different 

nonlinearity properties. Typically, MMF has a larger effective area than SMF and therefore 

greater nonlinear resistance. We have increased the fiber size from Gen4 to Gen5 to Gen6 

primarily to enhance the TCM effect, but it may also provide a larger effective area that 

can potentially improve the SNR. 

The effective areas (𝐴𝑒𝑓𝑓) of available modes in Gen6A3 fiber is calculated based 

on recorded intensity profiles (setup in Fig. 3.1) using Eq. 2.21. The imaging stitching 

technique (Demas et al., 2015) is used to effectively increase the dynamic range of the 



 

 

178 

InGaAs camera.  It helps to capture the long tail of the radial intensity profile for accurately 

measuring the effective area. We use a 0.5-nm bandwidth ps laser in this measurement 

rather than the ECL to avoid interference that can result in small fluctuations of the 

measured intensity profile, which would result in large fluctuations in 𝐴𝑒𝑓𝑓 calculated. 

Figure 9.4a shows that the effective areas (𝐴𝑒𝑓𝑓) of these modes, measured at 1550nm, are 

an order of magnitude larger than those for SMFs or MCFs (80 m2). The overlaid dashed 

line is the simulated 𝐴𝑒𝑓𝑓 (calculated based on the simulated field profiles) which matches 

the measured 𝐴𝑒𝑓𝑓 well. Given that our ps laser source has limited bandwidth, but we would 

need 𝐴𝑒𝑓𝑓 values across the S, C and L bands for SE estimations, we use simulated values 

at the other 5 wavelengths (Fig. 9.4 (b)), which remains at similar levels, 10× larger than 

that of SMFs and MCFs. Therefore, the TCM-supporting fiber offers a significantly larger 

effective area while also providing additional benefits such as a large mode count and low 

crosstalk.  

  

Figure 9.4: (a) Measured and simulated 𝐴𝑒𝑓𝑓 at 1550nm vs. |𝐿|; (b) simulated 𝐴𝑒𝑓𝑓 vs. |𝐿|, 

at 1460nm, 1530nm, 1550nm, 1565nm and 1590nm, respectively. 
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Chromatic dispersion is also known to play an important role in the nonlinear 

behavior of propagating pulses in a fiber (Agrawal, 2019). Figure 9.5 illustrates the 

simulated dispersions at all the 6 wavelengths, which are also ~10 times greater than the 

SMF dispersion (16.8 ps/ns-km). 

  

Figure 9.5: Simulated chromatic dispersion at 1460nm, 1530nm, 1550nm, 1565nm and 

1590nm, respectively. Plots at these multiple wavelengths show that the high chromatic 

dispersion characteristics of these modes is retained across the S, C, and L bands, 

respectively. 

While the study of the influence of dispersion and 𝐴𝑒𝑓𝑓 on the nonlinear propagation 

of pulses in optical fibers is well established for short fiber lengths, the presence of multiple 

coherent and well as incoherent, spectrally diverse pulses in a telecom system, along with 

strong coupling long fiber lengths, significantly complicates nonlinear pulse propagation 

analysis. The effect of nonlinearity to SNR can be described by the noise added by the 

generation of nonlinear interference (NLI). For coherent transmission systems, a Gaussian 

model for the NLI power can be approximated as (Poggiolini et al., 2011) 

𝑃NLI ≃ (
2

3
)
2

𝑁s𝑁s𝛾
2𝐿eff𝑃Tx,𝑐ℎ

3
ln(𝜋2|𝛽2|𝐿eff𝐵WDM

2 )

𝜋|𝛽2|𝑅s
3 𝐵𝑛                      (9.3) 
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where 𝑃Tx,𝑐ℎ
  is per-channel power, 𝛽2=−𝜆2𝐷/(2𝜋𝑐) is related to chromatic dispersion D, 

𝐿𝑒𝑓𝑓=[1−exp(−𝛼𝐿𝑠)]/𝛼 is the effective length, 𝛾=2𝜋𝑛2/(𝜆𝐴𝑒𝑓𝑓) is the nonlinear coefficient, 

𝛼 is the power loss per unit length, 𝐿𝑠 is the span length, 𝑁s is the number of spans, 𝐵𝑛 is 

the noise bandwidth, 𝐵WDM
 = 𝑁ch

 𝑅s
  is the WDM bandwidth, 𝑁ch

  is number of WDM 

channels, 𝑅s
  the symbol rate.  

Therefore, we can calculate how much reduction of the NLI noise we may be able 

to obtain with the 10× higher 𝐴𝑒𝑓𝑓 and dispersion that are features of TCM fibers. 

Henceforth, the SNR enhancement can also be calculated. However, before proceeding 

with SE estimations, we need to consider ASE, which is another limiting factor for SNR. 

It comes from EDFAs that are essential in a practical long-haul communication system. 

The ASE is a fundamental quantum noise thus it is much simpler and more accurately 

predicted, in comparison to NLI. Assuming ideal filtering (noise bandwidth is equivalent 

to signal bandwidth) and the Nyquist limit of WDM (i.e., most efficient use of the available 

spectrum), ASE can be approximated as white Gaussian noise given by 

𝑃ASE = 𝑁s𝐹(𝑒
𝛼𝐿s − 1)ℎ𝜈𝐵n                                               (9.4) 

where F the EDFA noise figure, h the Planck’s constant, and ν the center frequency of 

WDM comb. 

Thus, without considering the crosstalk, the overall SNR is given by  

 SNR =
𝑃Tx,𝑐ℎ

𝑃ASE + 𝑃NLI
                                                          (9.5) 

Substituting Eq 9.4 & 9.5 into the Eq 9.3, we obtain the maximum signal-to-noise (SNR) 

ratio (in dBs) in a fiber without crosstalk (Hayashi et al., 2012) 
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SNR𝑆𝐶,𝑚𝑎𝑥,𝑑𝐵 

≈
1

3
[10log10(|𝛽2|𝐿𝑒𝑓𝑓) − 20log10(𝛾𝐿𝑒𝑓𝑓) − 2𝛼dB𝐿𝑠] + 10log10 (

𝐶system

𝑁s
)         (9.6) 

where the system term is given by  

𝐶system

𝑁s
= [ln(𝜋2|𝛽2|𝐿eff𝐵WDM

2 )]−
1
3 (
2

𝜋
)
−
1
3
𝑁s
−1(𝐹ℎ𝜈)−

2
3                    (9.7) 

When assuming moderately high |𝛽2| and adequately broad 𝐵WDM
 , the system term 

𝐶system

𝑁s
 

remains constant. For a standard SMF, the maximum SNR is ~27 dB after 100-km 

transmission in this model.  The maximum SNR of any fiber mode can thus be obtained by 

comparing its term in the square bracket in Eq. 9.6 with that of standard SMF. The three 

main factors that affect the performance of the system are Aeff, D, and loss, which are 80 

um2, 16.8 ps/nm-km and 0.19 dB/km for standard SMF. Fig. 9.6 shows the maximum SNR 

at 1550nm versus transmission distance for fundamental mode in standard SMF, as well as 

the L=25 & 40 SOaa in Gen6A3 fiber with measured loss and also loss of 0.43 dB/km that 

we predict may be feasible for TCMs. The two modes are representative of a bound mode 

and TCM and the justification for anticipating that the loss of these fibers would be as low 

as 0.43 dB/km was provided in Chapter 6, section 6.5.2.  

At short distances, the maximum SNRs for both L=25 & 40 are indeed 10 times 

higher than that of SMF due to 10x larger 𝐴𝑒𝑓𝑓 and D mentioned above. However, the high 

loss constrains the application to ~km scale. With an anticipated loss of 0.43 dB/km, the 

SNR advantage of these fibers, in comparison to SMF, is maintained up to ~50km. As 

expected, loss plays a more significant role for longer-distance transmission. On the other 
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hand, even though the anticipated loss in high-index-contrast fiber is higher than that in 

standard SMF, the 10x larger 𝐴𝑒𝑓𝑓 and D greatly enhance the SNR and enable potential 

long-haul transmission. 

It should be noted that the model presented here is for systems with distances 

typically exceeding 50 km, where EDFAs are necessary and introduces additional noise. 

Therefore, the results may not be directly applicable to short-range applications such as 

data centers or devices, where distances are typically around or below 1 km and EDFA is 

not required. Nevertheless, it can still be useful to see the trend and make comparisons 

between the TCM-supporting fibers and SMFs (and thus MCFs). 

 

Figure 9.6: Maximum SNR at 1550nm versus fiber distance for fundamental mode in 

standard SMF, L=25 & 40 SOaa in Gen6A3 with actual loss and also assumed loss 0.43 

dB/km.   
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9.5. Spectral Efficiency Estimation   

Using the estimated SNR (Fig. 9.6), along with the measured crosstalks and mode counts 

(Fig. 9.3a), we can calculate the SE for all modes at 1550nm, as illustrated in Fig. 9.7. Note 

that this SE estimation is based on several assumptions: (a) (de)multiplexers are readily 

available to fully utilize each spatial channel; (b) the associated device technologies have 

advanced sufficiently to minimize contributions to crosstalk; (c) there is no nonlinear 

interaction between modes; (d) 2×2 MIMO is implemented to fully exploit degenerate 

modes with opposite polarization; and (e) perfect modulation is achieved. 

With the current measured loss, the SEs of both TCM and all the modes decrease 

dramatically after ~10km (Fig. 9.7). Hence, under its current maturity, the TCM-supporting 

fiber would be suitable for fiber-device or data-center applications.  

Assuming a loss of 0.43 dB/km (Sec. 6.5.2), the aggregate SE reaches 211 bit/s/Hz 

over a 100-km long fiber link. In addition, TCMs account for the majority of the SEs, 

particularly over long distances. Even though the maximum SNR of the bound mode and 

TCMs are almost the same (Fig. 9.7), their different crosstalk may have a substantial impact 

on the SE. For example, a bound mode with –20dB/km crosstalk results in 0-dB total SNR 

after 100 km of transmission (thus zero SE), but a TCM with -40 dB/km crosstalk is 

possible to reach 20-dB total SNR (without considering the effect of maximum SNR and 

loss).  

Also plotted is the SE of the benchmark 22-core MCF which holds the record in 

SE, as of this writing, for uncoupled MCFs. Note that here we use the theoretical SE which 

is ~270 bit/s/Hz over a 50km fiber (Luis et al., 2017) while the experimental value is a bit 
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lower, at 211 bit/s/Hz after 30km (Puttnam et al., 2015). As is evident, TCMs enable the 

SE of MMFs to be on par with that of MCF.  A key distinction between the two fibers is 

the required fiber size. In contrast to the MCF, which requires a 250m cladding diameter, 

the TCM-supporting fiber supports all modes within a 56m diameter core. While the 

fibers we used in this thesis had 250m diameter (based not on any performance 

requirement, but on the diameter this particular fabricated fiber had), given that the entire 

signal occupies a spatial extent substantially defined by the 56m core diameter, these 

fibers could have been drawn with standard 125m claddings.  Hence, the spatio-spectral 

efficiency of the TCM-supporting fiber for which we conducted these calculations is four 

times that of the best performing MCF, as of this writing. More generally, TCM fibers 

share the attribute of MMFs that they are significantly more spatially efficient than MCFs.  

 

Figure 9.7: Spectral efficiency versus fiber distance with all available modes and only 

TCMs at 1550nm. It is calculated using the actual loss value and also the assumed loss 

0.43 dB/km. 
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Similarly, the SE of the remaining wavelengths shown in Fig. 9.3 can be calculated 

based on Eq. 9.1. The maximum SNR can be estimated using the simulated 𝐴𝑒𝑓𝑓 (Fig. 9.4b) 

and dispersion (Fig. 9.5). Again, 0.43 dB/km is anticipated as the loss to estimate the long-

haul SE. As shown in Fig. 9.9, the aggregate SE of all available modes across a 50-km 

fiber remains at ~300 bit/s/Hz in the S, C and L bands. This can enable WDM compatibility 

and hence result in high information capacity. 

  

Figure 9.8: Spectral efficiency of all modes and just TCMs over 50-km Gen6A3 fiber 

across S, C and L band. 

It is important to highlight that the crosstalk values used for the SE estimation are 

specifically for the intra-|L| coupling, which shows the best performance at approximately 

-45 dB/km for TCMs (Fig. 9.3a). As discussed in Chapter 8, the inter-|L| mode coupling is 

expected to be much lower than the intra-|L| coupling. Hence, a 4x4 MIMO configuration 

can be employed to disentangle the intra-|L| coupling and thereby further reduce the 

crosstalk by focusing solely on the inter-|L| mode coupling. As depicted in Fig. 9.6, the 

maximum SNR of the TCMs can reach approximately ~53 dB for ~1km fibers. Therefore, 
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by utilizing a 4×4 MIMO, it becomes possible to fully leverage the high maximum SNR 

and achieve an even higher capacity for the system.  

9.6. Summary and Discussion  

This chapter investigates the information capacity of an optical fiber enabled by TCMs. 

We achieved a 1-km transmission by doubling the 0.5-km Gen6A3 fiber using a Sagnac 

reflector. By repeating the measurement at 6 representative wavelengths across telecom S, 

C and L bands, we demonstrate that all the metrics remain stable in a 130-nm wideband. 

These metrics include the average crosstalk of both TCM and bound modes, the mode 

count and the average loss. Hence, we demonstrate a 1-km-long transmission with record 

high mode counts of ~50, comprising ~20 conventional TIR bound modes with < −20 

dB/km crosstalk and ~30 TCMs with crosstalks < −40 dB/km across telecom S, C and L 

bands. Using a model for coherent transmission systems, we estimated a 10-fold increase 

in SNR at a ~km distance as a result of 10× larger effective area and dispersion. This can 

enable long-haul transmission based on the anticipation that the measured loss can be 

optimized to ~0.43 dB/km as other high-index-contrast fiber. The overall spectral 

efficiency is estimated to be ~300 bit/s/Hz over a 50-km fiber across the S, C and L band. 

This would be comparable to the uncoupled MCF record. In addition, the spatial spectral 

efficiency would potentially be four times that of MCF.  

While the capacity estimation shows promising results, it is important to 

acknowledge that it relies on several assumptions. Some of these assumptions are 

reasonable and well-established, such as the utilization of 2×2 MIMO, which is a mature 

technique, and perfect modulation, which is commonly employed for capacity estimation. 
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Some assumptions pose technical challenges but are likely achievable, such as the 

development of a low-crosstalk MUX capable of simultaneous multiplexing of all ~50 

modes. However, certain assumptions remain uncertain or unknown. For example, the 

absence of inter-modal nonlinear interaction has not been well investigated and it is 

uncertain whether it can be achieved, although the large group velocity differences between 

the modes makes this a possibility. In addition, the anticipated loss of 0.43 dB/km may 

require further investigation and validation. In this regard, the most probable application 

in the near future may include fiber devices or data centers within 1-km range, rather than 

long-distance transmission. Furthermore, the suitability of the coherent transmission model 

for our specific case may require further examination. Ultimately, to obtain a definitive 

capacity value, it is necessary to conduct data-transmission system tests that validate the 

assumptions made throughout the estimation process. 
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Chapter 10 

10. Conclusion and Outlook 

10.1. Conclusion 

We have demonstrated topological confinement as unique regime of light guidance beyond 

conventional cutoff in optical fibers. We demonstrated that the confinement loss decreases 

with OAM order, leading to low-loss transmission in fibers of km length scales for these 

cutoff modes. The frustrated coupling of TCMs helps address the inevitable mode coupling 

that has posed a fundamental limit in scaling the number of unmixed bound modes in any 

type of multimode fiber.  As such, we are able to scale the mode count past the numbers at 

which scaling with conventional OAM bound modes has stagnated. The frustrated coupling 

of TCMs also enables record amount of unmixed OAM modes in a conventional step-index 

fiber in which all conventionally bound modes mix completely. Finally, we achieve up to 

50 low-loss modes with record low crosstalk over a ~1km ring-core fiber. Moreover, the 

130-nm bandwidth of these modes make this mode guidance regime compatible with 

WDM. Calculations of the spectral efficiency of these modes reveals that up to ~210 

bit/Hz/s may be achieved over 100km of propagation. This calculation was based on the 

SNR estimated from an ideal uncompensated system and by assuming that future 

manufacturing optimizations would bring the losses of these modes down to ~0.43 dB/km. 

The inherent scalability of TCMs also promises further scalability in mode counts and thus 

record information capacity, potentially making it the preferred choice for transmission 

links in future SDM systems. Apart from significantly increasing the information content 
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per photon for quantum or classical networks, TCMs have the potential to find applications 

in nonlinear signal processing and light-matter interactions, where having a large ensemble 

of independent orthogonal states of light may be beneficial. 

10.2. Outlook  

10.2.1 Classical Telecommunications   

Even though we have estimated the spectral efficiency for long-haul transmission, a central 

caveat to those calculations was that we assumed that mode losses would reduce 

considerably, compared to currently measured losses. In the shorter term, while the loss 

optimization goal is pursued, we expect that the TCM-supporting fiber may be especially 

useful in data-center and device length applications. We would need to confirm the 

estimated spectral efficiency and information capacity by system experiments in which we 

hope to use a ~1km Gen6A3 fiber replica rather than double-passing through a fiber, as 

was done in the experiments described in this thesis. To simultaneously demonstrate all the 

spatial channels, we would need to develop a 50-mode MUX to generate all available 

modes. Such high-mode-count MUX’es have been achieved, and among the variety of 

technologies that may be candidates for such devices, we expect devices made with MPLCs 

(Bade et al., 2018) to be especially promising. 

Among device-length applications, we expect a 50-mode amplifier would be most 

impactful given that shared-pump amplification can potentially save a lot of energy (Jung 

et al., 2020). In addition, the similarity in the intensity profiles of OAM mode also promises 

low differential modal gain. Furthermore, a core-pump scheme (Kang et al., 2015, Jung et 

al., 2017) could potentially increase the power efficiency even further. Preliminary 
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simulations conducted using the properties of the fiber described in this thesis show 

promise in this regard (Greenberg et al., 2023). 

We demonstrated wideband transmission with these fibers, which makes the 

scheme compatible with WDM. However, we need further account for inter-modal 

nonlinear effects that are likely to be strongly phase matched for channels with sufficient 

wavelength detuning (Ellis, et al., 2013, Rademacher et al., 2016). This can potentially lead 

to an increase in nonlinear crosstalk scaled with mode count and adversely affect the 

capacity. Hence, the SE estimation in Chapter 8 needs to further elaborated by taking all 

the impairments into account. Ultimately, a system test is needed to validate the capacity 

estimation.  

The OAM-enhanced TCM effect also points out a direction for further scaling the 

mode count by going to larger fibers that support bound modes with higher OAM values. 

Even though we already demonstrated record mode count, we expect it can be scaled even 

further. In addition, we expect such large number of unmixed modes can be primarily 

comprised by TCMs so we also benefit from the inherent low crosstalk provided by TCMs.  

Preliminary, unpublished results in this regard (see Sec. 7.3) provide confidence for this 

assertion. In contrast to the Gen6A3 fiber with ring core size of 57 m, with which we 

described all the detailed investigations in this thesis, we have found that a replica of this 

design drawn to a core size of 77 m already yields as many as 80 stable modes, with over 

80 % of them being TCMs. As such, as core size increases, we not only expect the overall 

mode count to increase, we also expect that the modes of utility will primarily comprise 

TCMs rather than conventional bound modes that have been used for every other SDM 
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application to date. 

For long-haul transmission, great effort needs to be made reduce the scattering loss. 

We point to a direction of increasing the drawing stress to reduce the loss down to ~0.4 

dB/km. However, we need to understand the mechanism of fiber cracks under high drawing 

stress/tension and seek ways to achieve the high drawing stress needed for low loss. The 

scattering loss may also be related to other drawing parameters including drawing speed, 

temperature, etc. (Wandel, 2005).  

Another interesting schematic in which TCMs could be deployed involves data 

transmission in mixed ensembles of the four modes of a given |𝐿|. Since inter-|L| crosstalk 

was below the noise floor of our measurement, a series of low-complexity 4×4 MIMO 

receivers would suffice to substantially enhance achievable SEs. For achieving this, we 

could potentially use conventional scalar LP modes as four modes of a given |L| that mix 

completely (Chapter 2). 

10.2.2 High-Dimensional Quantum communication  

Increasing the dimension of photonic entanglement has advantages over increasing the 

number of entangled photons which are very hard to manage and remain coherent for all 

of them. Apart from other convention dimensions as time, frequency, polarization, OAM 

promises another degree of freedom for high-dimensional entanglement (Mair et al., 2001). 

However, it has been a great challenge to stably transmit such high-dimensional entangled 

OAM states over fairly long fibers, which is especially desired for quantum key distribution 

(Sit et al., 2017). As discussed in Chapter 3, even two orthogonal polarizations (a common 

dimension for entanglement) completely mix in fiber under common perturbations. We 
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expect such large number of unmixed OAM modes would find favorable applications in 

high-dimensional entanglement of photons. A plethora of low-crosstalk modes potentially 

enables low crosstalk per superpositions of modes as well (Greenberg et al., 2020), even 

though a superposition over all 50 modes would a great challenge. Such supposition is 

required for quantum transport, thus effectively allowing high-dimensional encoding. In 

addition, generating high-dimensional entangled photons in a fiber (Cruz-Delgado et al., 

2016) is attractive as an integrated schematic compatible with optical fiber networks, and 

this should be eminently feasible by exploiting nonlinear wave mixing in TCM fibers. 

(Shahar et al., 2023; Liu et al., 2022). The next section further expands on the promise of 

using the TCM platform for enhanced nonlinear applications. 

10.2.3 Nonlinear Interactions   

OAM provides an alternative degree of freedom to control the nonlinear interactions of 

light in fibers. Particularly, the SOI-induced optical activity introduces exceptional phase 

matching in Raman (Liu et al., 2022) and Brillouin (Greenberg et al., 2022) scattering. The 

TCM supporting fiber demonstrated in this these not only provide modes with high OAM, 

but also a large ensemble of unmixed modes. This provides a great number of phase-

matching possibilities among available modes, which enables high selectivity for 

parametric four-wave mixing, thus leading to a promising platform for light sources at on-

demand power levels and wavelengths (Liu et al., 2021). The plethora of phase-matching 

possibilities also allows the generation of photon pairs with user-defined joint spectral 

densities at a variety of wavelengths (Liu et al., 2022). Note that the plethora of phase-

matching possibilities provided by the high mode count also poses a great challenge in 
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eliminating the undesired inter-modal interactions. 

 

Figure 10.1: D•𝐴𝑒𝑓𝑓 versus L in Gen6A3 fiber at various wavelengths. Dots on the curves 

marks the highest bound mode Lc for each wavelength. The highest-|L| TCMs have 

confinement loss <0.01 dB/m.  

Moreover, the large dispersion and effective areas of TCMs are also of great interest 

in scaling the energy of ultrafast soliton pulse propagation (Kabagoz et al., 2021). The 

energy of a soliton can be written as (Agrawal, 2019) 

𝐸 =
𝜆3𝑁2𝐷𝐴𝑒𝑓𝑓
2𝜋2𝑐𝑛2𝑇0

                                                           (10.1) 

𝑁 is the soliton number (usually set as one), and 𝑇0 is duration of the pulse. It is clear from 

the above equation that the soliton energy scales as 𝐷 • 𝐴𝑒𝑓𝑓 . Figure 10.1 shows such 

𝐷 • 𝐴𝑒𝑓𝑓 versus L in Gen6A3 fiber at various wavelengths.  The 𝐷 • 𝐴𝑒𝑓𝑓 values of TCM 

exceed 200 fs2, which is ~100 times that of conventional SMF mode. This is due to the fact 

that the dispersion and effective area of TCMs in this ring-core fiber are ~10 times of those 
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of standard SMFs (Sec. 9.4). Such energetic soliton with short pulse duration can be useful 

for various applications, e.g., machining, fusion, electron acceleration, particle acceleration 

and deep-tissue multi-photon microscopy. 
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Appendix A 

A.  PML Scalar Mode Solver 

To solve the TCMs with certain loss, one needs to put an absorbing layer at the end of 

cladding (Fig. A.1). Its impedance needs to be matched with the preceding index layers to 

avoid reflection s and hence properly emulate an infinite cladding in which light radiates 

away, thus the name perfectly-match layer (PML) (Berenger, 1994).  

 

Figure A.1: Schematic of the impedance matched absorbing layer. Dashed black curve is 

fiber’s refractive index profile and solid blue curve is the intensity profile of representative 

mode. 

The scalar modes in a fiber can be readily solved by a standard finite different 

method. Furthermore, the effective index of OAM/vector modes can be corrected by the 

polarization correction integral.  

The scalar wave equation for the radial field 𝐹(𝑟) 

𝑑2𝐹(𝑟)

𝑑𝑟2
+
1

𝑟

𝑑𝐹(𝑟)

𝑑𝑟
+ 𝑘0

2 (𝑛2 −
𝐿2

𝑘0
2𝑟2
)𝐹(𝑟) = 𝛽2𝐹(𝑟)               (𝐴. 1) 
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Using a one-dimensional mesh [r0, r1, r2 … rN-1, rN]  

Fi=F(ri), ni=n(ri), ri=ir, r=rcl/N,  i=0, 1, 2 … N 

𝑑𝐹(𝑟)

𝑑𝑟
=
𝐹𝑖+1 − 𝐹𝑖−1
2∆𝑟

                                                        (𝐴. 2) 

𝑑2𝐹(𝑟)

𝑑𝑟2
=
𝐹𝑖+1 − 2𝐹𝑖 + 𝐹𝑖−1

∆𝑟2
                                                (𝐴. 3) 

Therefore, the scalar mode equation becomes 

𝐹𝑖−1 (
1

∆𝑟2
+

1

2𝑟𝑖∆𝑟
) + 𝐹𝑖 (𝑛𝑖

2𝑘0
2 −

2

∆𝑟2
+
𝐿2

𝑟𝑖
2) + 𝐹𝑖+1 (

1

∆𝑟2
−

1

2𝑟𝑖∆𝑟
) = 𝛽2𝐹𝑖    (𝐴. 4) 

The boundary conditions are F0=0, FN+1=0; rN+1= rN for symmetric modes and rN+1= -rN 

for anti-symmetric modes. Based on Eq. A.4, the  and corresponding modal fields can be 

solved.  

For an 1D lossy layer in frequency domain 

𝜕𝐻

𝜕𝑟
= 𝑗𝜔𝜀̃𝐸                                                            (𝐴. 5) 

 
𝜕𝐸

𝜕𝑟
= −𝑗𝜔𝜇̃𝐻                                                        (𝐴. 6) 

where  

𝜀̃ = 𝜀 − 𝑗
𝜎𝑒
𝜔

                                                           (𝐴. 7) 

𝜇̃ = 𝜇 − 𝑗
𝜎𝑚
𝜔
                                                          (𝐴. 8) 

Impedance 

𝜂̃ = √
𝜇̃

𝜀̃
= √

𝜇 (1 − 𝑗
𝜎𝑚
𝜔𝜇
)

𝜀 (1 − 𝑗
𝜎𝑒
𝜔𝜀
)
                                              (𝐴. 9) 
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Impedance matching requires 

1 − 𝑗
𝜎𝑒
𝜔𝜀
= 1 − 𝑗

𝜎𝑚
𝜔𝜇

                                                      (𝐴. 10)  

Leading to  

𝜎𝑒
𝜀
=
𝜎𝑚
𝜇
                                                                 (𝐴. 11) 

For 2D cases, an anisotropic absorbing material (the complex permittivity and permeability 

become tensor) is required to match the impedance for all oblique incidence (and all 

frequency), which is the so-call “perfectly matched layer”. A more easy and general way 

is complex coordinate stretching: 

1

𝑠 

𝜕𝐻

𝜕𝑟
= 𝑗𝜔𝜀𝐸                                                              (𝐴. 12) 

1

𝑠 

𝜕𝐸

𝜕𝑟
= −𝑗𝜔𝜇𝐻                                                         (𝐴. 13) 

Or  

𝜕

𝜕𝑟
→
1

𝑠 

𝜕

𝜕𝑟
                                                                (𝐴. 14) 

where 

𝑠 = 1 − 𝑗
𝜎𝑒
𝜔𝜀
                                                              (𝐴. 15) 

To avoid the numerical reflections from discretization, the conductivity should be slowly 

varying, usually chosen as quadratic  
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𝜎𝑒(𝜌) = 𝜎max (
𝜌

𝑑
)
2

                                                          (𝐴. 16) 

𝑠 = 1 − 𝑗
3𝜆

4𝜋𝑛𝑑
(
𝜌

𝑑
)
2

ln (
1

𝑅
)                                               (𝐴. 17) 

where 𝜌 = 𝑟 − 𝑟𝑃𝑀𝐿, d is the thickness of PML, R is reflection coefficient, set as 10-16. 

The second derivative  

𝜕2

𝜕𝑟‘2
=
1

𝑠2
𝜕2

𝜕𝑟2
−
1

𝑠3
𝜕𝑠

𝜕𝑟

𝜕

𝜕𝑟
                                                  (𝐴. 18) 

where 

𝜕𝑠

𝜕𝑟
= −𝑗

3𝜆

2𝜋𝑛𝑑3
ln (
1

𝑅
) 𝜌(𝐷. 1)                                         (𝐴. 19) 

From  
𝜕

𝜕𝑟′
=
1

𝑠

𝜕

𝜕𝑟
, we have  

𝑟′ = ∫ 𝑠𝜕𝑟 = 𝑟 − 𝑗
𝜆

4𝜋𝑛
ln (
1

𝑅
) (
𝜌

𝑑
)
3

                                  (𝐴. 20)
 

 

 

𝑑2𝐹(𝑟′)

𝑑𝑟′2
+
1

𝑟′
𝑑𝐹(𝑟′)

𝑑𝑟′
+ 𝑘0

2 (𝑛2 −
𝐿2

𝑘0
2𝑟′2

)𝐹(𝑟′) = 𝛽2𝐹(𝑟′)             ( 𝐴. 21) 

Thus, the Eq. A.4 in FDM can be re-written as  

𝐹𝑖−1 (
1

(𝑠∆𝑟)2
+

1

2𝑟′𝑖𝑠∆𝑟
+
1

𝑠2
𝑑𝑠

𝑑𝑟

1

𝑠∆𝑟
) + 𝐹𝑖 (𝑛𝑖

2𝑘0
2 −

2

(𝑠∆𝑟)2
+
𝐿2

𝑟𝑖
′2)

+ 𝐹𝑖+1 (
1

(𝑠∆𝑟)2
−

1

2𝑟′𝑖𝑠∆𝑟
−
1

𝑠2
𝑑𝑠

𝑑𝑟

1

𝑠∆𝑟
) = 𝛽2𝐹𝑖                                  (𝐴. 22) 

Based on Eq. A.22, the complex  and corresponding modal fields can be solved.   
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Appendix B  

B.  Endcap for Ring-Core fiber 

An endcap is a piece of coreless fiber at the end of a fiber tip. It is widely used in high 

power fiber lasers and amplifiers to avoid Fresnel reflections at the fiber facet. In the ~km 

transmission experiment, the output beam is reflected back into the fiber and measured at 

the input (Chapter 9). To avoid reflections at the input and output side mixing with the 

desired modes, each side is spliced with a 340-m-diameter endcap.  

 

Figure B.1: (a) The intensity distribution of L=42 mode at the fiber facet (z=0) and after 

propagating for 400um; (b) The beam diameter versus propagation distance. The beam 

diameter is obtained based on evaluating how much the intensity goes down (20dB, 30dB, 

40dB, 60dB) compared with the peak. The black dashed is the diameter of the endcap 

(340m). 

The endcap should be long enough to avoid the reflection from mixing with the 

signal but it shouldn’t be too long to clip the beam. Thus, it is important to know the beam-

size dependence on the propagation distance before making the endcap. The field 

distribution after propagation is calculated using the Fresnel diffraction integral (Vasara et 
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to various lengths. An L=40 SOa mode is excited at the other side and the fiber facet with 

the endcap is imaged on a camera (setup same as Fig. 3.1). If the endcap is too long, the 

mode is clipped as illustrated by the apprearence of outer rings due to diffraction (Fig. 

B.2a). The length of endcap is esimmated by comparing it with the endcap diameter using 

the splicer iamge (Fig. B.2d). These diffraction ripples are eliminated when the endcap is 

poslished down to around 350um (Fig. B.2c). 
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