
Boston University

OpenBU http://open.bu.edu

Boston University Theses & Dissertations Boston University Theses & Dissertations

2023

FPGA-based range-limited molecular

dynamics acceleration

https://hdl.handle.net/2144/46688

Downloaded from DSpace Repository, DSpace Institution's institutional repository

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

FPGA-BASED RANGE-LIMITED MOLECULAR DYNAMICS

ACCELERATION

by

CHUNSHU WU

B.S., Dalian University of Technology, 2016
M.S., Brown University, 2018

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2023

© 2023 by
CHUNSHU WU
All rights reserved except for chapter 4, which is
©2021 by IEEE, chapter 5, which is ©2020 by
IEEE, chapter 6, which is ©2022 by ACM, chapter
7, which is ©2023 by ACM

Approved by

First Reader

Martin C. Herbordt, Ph.D.
Professor of Electrical and Computer Engineering

Second Reader

Richard C. Brower, Ph.D.
Professor of Electrical and Computer Engineering

Third Reader

Tali Moreshet, Ph.D.
Senior Lecturer and Research Assistant Professor of Electrical and
Computer Engineering

Fourth Reader

Tong Geng, Ph.D.
Assistant Professor of Electrical and Computer Engineering and
Computer Science
University of Rochester

Everybody is a genius. But if you judge a fish by its ability to climb a tree, it
will live its whole life believing that it is stupid. Albert Einstein

iv

Acknowledgments

I would like to express my deepest gratitude to all those who have supported and guided

me throughout my journey in completing this Ph.D. thesis. Their contributions and encour-

agement have been invaluable, and I am truly grateful for their unwavering support.

First and foremost, I am indebted to my supervisor, Prof. Martin C. Herbordt, for

his guidance, expertise, and patience. His insightful feedback, constant motivation, and

unwavering belief in my abilities have been instrumental in shaping this research work. I

am immensely grateful for his mentorship and for challenging me to reach new heights.

I extend my heartfelt appreciation to the members of my thesis committee, Prof.

Richard C. Brower, Prof. Tali Moreshet, and Prof. Tong Geng, for their valuable in-

sights, constructive criticism, and suggestions. Their expertise in their respective fields has

immensely enriched this work and broadened my horizons.

I would like to express my special thanks to Prof. Tong Geng at University of Rochester

and his family. Their substantial support in both research and life means a lot to me, espe-

cially in my early PhD career when I had little knowledge of high performance computing.

I am grateful to Dr. Ang Li at Pacific Northwest National Laboratory, for providing

necessary resources and valuable advice to carry out this research. His commitment to

excellence and dedication to fostering knowledge have been truly inspiring.

I am indebted to all my colleagues and friends, both within and outside our research

group. For my current CAAD lab mates, Pouya Haghi, Anqi Guo, Sahan Bandara, Robert

Mufano, Reza Sajjadinasab, Hafsah, Shahzad, and Zaid Tahir, thank you all for creating a

harmonic and joyful research environment. For those who already graduated, Zihao Yuan,

Chen Yang, Tianqi Wang, Anthony Ducimo, and Pierre-François Wolfe, they generously

dedicated their time and efforts to help me conduct this research. Their camaraderie and

encouragement have made this journey more fulfilling and enjoyable.

I am grateful to my family for their unwavering love, understanding, and constant sup-

v

port throughout this journey. Their belief in me and their sacrifices have been the driving

force behind my accomplishments. To my parents Ying Zhang and Qinghong Wu, I owe

my deepest gratitude for instilling in me a love for learning and for always being my pillars

of strength.

I would like to take a special moment to express my deepest gratitude and appreciation

to my wife, Yuqing Wang. Her patience, sacrifices, and belief in me have been the driving

force behind my perseverance. Thank you, my dear wife, this achievement would not have

been possible without you.

Lastly, I would like to express my heartfelt gratitude to all the authors, researchers, and

scholars whose works have been referenced in this thesis. Their contributions to the field

have been instrumental in shaping my research and expanding my knowledge.

To all those who have played a part, big or small, in the completion of this Ph.D. thesis,

please accept my heartfelt appreciation and gratitude. Your support has been invaluable,

and I am truly honored to have had the opportunity to work with and learn from each and

every one of you.

The research that forms the basis of this dissertation has been partially funded by the

NSF through Awards CCF-1618303/7960, CCF-1618303, and CCF-1919130; by the NIH

through Award R44GM128533; by grants from Microsoft and Red Hat; by Xilinx and by

Intel through donated FPGAs, tools, and IP; by the U.S. Department of Energy, Office of

Science, Office of Advanced Scientific Computing Research, ComPort: Rigorous Testing

Methods to Safeguard Software Porting, under Award Number 78284. The Pacific North-

west National Laboratory is operated by Battelle for the U.S. Department of Energy under

Contract DE-AC05-76RL01830.

vi

FPGA-BASED RANGE-LIMITED MOLECULAR DYNAMICS

ACCELERATION

CHUNSHU WU

Boston University, College of Engineering, 2023

Major Professor: Martin C. Herbordt, PhD
Professor of Electrical and Computer Engineering

ABSTRACT

Molecular Dynamics (MD) is a computer simulation technique that executes iteratively

over discrete, infinitesimal time intervals. It has been a widely utilized application in the

fields of material sciences and computer-aided drug design for many years, serving as a

crucial benchmark in high-performance computing (HPC). Numerous MD packages have

been developed and effectively accelerated using GPUs. However, as the limits of Moore’s

Law are reached, the performance of an individual computing node has reached its bottle-

neck, while the performance of multiple nodes is primarily hindered by scalability issues,

particularly when dealing with small datasets.

In this thesis, the acceleration with respect to small datasets is the main focus. With the

recent COVID-19 pandemic, drug discovery has gained significant attention, and Molec-

ular Dynamics (MD) has emerged as a crucial tool in this process. Particularly, in the

critical domain of drug discovery, small simulations involving approximately ∼50K parti-

cles are frequently employed. However, it is important to note that small simulations do

not necessarily translate to faster results, as long-term simulations comprising billions of

MD iterations and more are essential in this context.

In addition to dataset size, the problem of interest is further constrained. Referred

vii

to as the most computationally demanding aspect of MD, the evaluation of range-limited

(RL) forces not only accounts for 90% of the MD computation workload but also involves

irregular mapping patterns of 3-D data onto 2-D processor networks. To emphasize, this

thesis centers around the acceleration of RL MD specifically for small datasets.

In order to address the single-node bottleneck and multi-node scaling challenges, the

thesis is organized into two progressive stages of investigation. The first stage delves ex-

tensively into enhancing single-node efficiency by examining various factors such as work-

load mapping from 3-D to 2-D, data routing, and data locality. The second stage focuses

on studying multi-node scalability, with a particular emphasis on strong scaling, bandwidth

demands, and the synchronization mechanisms between nodes.

Through our study, the results show our design on a Xilinx U280 FPGA achieves

51.72× and 4.17× speedups with respect to an Intel Xeon Gold 6226R CPU, and a Quadro

RTX 8000 GPU. Our research towards strong scaling also demonstrates that 8 Xilinx U280

FPGAs connected to a switch achieves 4.67× speedup compared to an Nvidia V100 GPU1.

1A100 is outperformed by V100 because it runs at lower frequency (1410 MHz vs. 1530 MHz); more
GPUs result in even worse performance compared to 1 GPU.

viii

Contents

1 Introduction 1

2 Background 10

2.1 The Physical Model of Range-Limited Forces 10

2.1.1 RL Force Features . 10

2.1.2 Force Integration . 12

2.1.3 Periodic Boundary Condition . 13

2.2 MD Data Structure . 13

2.2.1 Neighbor List vs. Cell List . 14

2.2.2 Filtering . 15

2.2.3 Neighbor Data Importing Layout 16

2.3 FPGA Background . 17

2.3.1 FPGA Architecture . 17

2.3.2 FPGAs in Molecular Dynamics 19

2.3.3 FPGAs in High Performance Computing 21

3 High-Level Methodologies 22

3.1 Space Decomposition . 22

3.1.1 Assumptions and Parameter Declaration 23

3.1.2 The Model . 24

3.1.3 Quantitative Analysis for the Import Volume 26

3.1.4 Latency Estimation . 27

3.2 Memory to PE Mapping Schemes . 29

ix

3.2.1 All PEs Work on the Same Reference Particle 30

3.2.2 All PEs Work on the Same Home Cell 32

3.2.3 Each PE Works on a Different Cell 33

3.3 Data Format . 34

3.3.1 Position Data Format . 34

3.3.2 Force-Related Data Format . 37

3.4 Summary . 38

4 Single-FPGA Architectures 40

4.1 Introduction . 40

4.2 Baseline Architectures . 42

4.2.1 Design 1: Particle Centric . 42

4.2.2 Design 2: Cell Centric . 44

4.2.3 Design 3: Uniform Spread . 46

4.2.4 Motion Update and Particle Migration 48

4.3 Optimized Designs . 49

4.3.1 Optimized Design 1: Transposed Memory Blocks 50

4.3.2 Optimized Design 2: On-chip Ring Network 54

4.3.3 General Summary of the Optimized Designs 66

4.4 Evaluation . 67

4.4.1 Experiment Setup . 67

4.4.2 Performance and Comparison . 67

4.4.3 Evaluating Design Options . 71

4.4.4 Benchmarking . 73

4.4.5 Hardware Utilization . 76

4.5 Related Work . 76

4.6 Conclusion . 77

x

5 Bandwidth Analysis of FPGAs on a 3-D Torus 78

5.1 Introduction . 78

5.2 Multi-chip baseline design . 80

5.2.1 Prior-art Single-chip Design . 80

5.2.2 Baseline Multi-chip Design . 80

5.2.3 Communication Bottlenecks of Baseline 82

5.3 Optimized Multi-chip Design . 83

5.3.1 Neighbor Data Caching . 84

5.3.2 Routing Configuration . 86

5.3.3 Motion Update Conflict . 90

5.4 Evaluation . 91

5.4.1 Evaluation of Routing Configuration 92

5.4.2 Evaluation of Neighbor Data Caching 94

5.4.3 Overall Performance Evaluation 95

5.5 Related Work . 96

5.6 Conclusion . 96

6 Optimized Mappings for Symmetric Force Calculations on FPGAs 98

6.1 Introduction . 98

6.2 Design . 101

6.2.1 Logical Topology . 101

6.2.2 Corner Caches and Overlapping Position Caches 103

6.2.3 The Modified Manhattan Method 103

6.2.4 Cell Cache Partitioning and Corner Particle Pre-checking 104

6.2.5 Architecture . 105

6.2.6 Memory Misalignment . 108

6.2.7 Multi-chip Solution . 109

xi

6.3 Evaluation . 110

6.3.1 Performance . 111

6.3.2 Filtering Rates . 112

6.3.3 Position Input Ring Latency . 112

6.3.4 Motion Update Ring Latency . 113

6.3.5 Multi-FPGA Data Transfer . 114

6.3.6 Hardware Resource Usage . 116

6.4 Related Work . 116

6.5 Conclusion . 117

7 FASDA: An FPGA-Aided, Scalable and Distributed Accelerator for Range-
Limited Molecular Dynamics 118

7.1 Introduction . 118

7.2 Scalable Architecture . 122

7.2.1 Hyperring-like Communication Topology 122

7.2.2 Cell ID Conversion . 124

7.2.3 Communication Interface . 125

7.2.4 Chained Synchronization . 126

7.2.5 PE Scaling . 128

7.2.6 CBB Scaling . 130

7.3 Evaluation . 132

7.3.1 Experimental Setup . 132

7.3.2 Overall Performance . 132

7.3.3 Utilization Breakdown . 135

7.3.4 Communication Intensity . 136

7.3.5 Resources Consumption . 138

7.3.6 Energy Conservation . 139

xii

7.4 Related Work . 139

7.5 Conclusion . 140

8 Conclusions and Future Work 142

8.1 Conclusions . 142

8.2 Future Work . 143

References 145

Curriculum Vitae 162

xiii

List of Tables

4.1 FPGA-O2 performance compared to FPGA-O1, GPU, and CPU with up to

32 threads. 74

4.2 FPGA-O2 performance of large simulation spaces compared to FPGA-O1,

GPU, and 32-thread CPU. 75

4.3 Hardware Utilization of FPGA-O2 with spatial configurations. 76

5.1 Bandwidth Demand - Pillar (Unit: wd f) 87

5.2 Bandwidth Demand - Block (Unit: wd f) 88

5.3 Throughput of a 2×2×2 FPGA cluster. The design runs at 350 MHz fre-

quency, with 50 particles in each cell. Particle: Liquid Argon. Cutoff

radius: 8.5 Å. Number of ports: 6. Bandwidth of each port: 100 Gbps.

Data size per packet: 120 bits . 94

6.1 Hardware Costs . 116

7.1 Hardware Utilization of All Design Variations 138

xiv

List of Figures

2·1 Fundamentals of Rc and the cell list method. (a) The cutoff regions of four

particles. Only A and B interact with each other. (b) A simulation space

divided into 3×4×4 cells with side length the same as Rc. (c) The home

cell of particle A and 26 adjacent cells unfolded from (b). The green cells

are regarded as neighbor cells. 11

2·2 The 2-D illustration of two filtering methods and the criterion. 16

2·3 The mechanism of the traditional Manhattan method shown in 2-D. The

particle pairs are evaluated by the processor located in orange cells for

3 particle pair scenarios: (a) both in same cell; (b) in neighboring cells

sharing a boundary; (c) in neighboring cells sharing a corner. 17

3·1 Neighbor cells in 2-D. 25

3·2 Import volume in 3-D. A/B/C: face/edge/corner. 25

3·3 A variation of Gauss Circle Problem. 26

3·4 Latency analysis with respect to cell granularity. 28

3·5 High level memory-to-PE mapping schemes. (a): particle-centric, all PEs

work on a single reference particle at a time. (b):cell-centric, all PEs work

on a same cell at a time. (c): uniformly-spreaded, each PE works on a

separate cell. 31

xv

3·6 The data format and precision analysis. Top: The fixed-point position for-

mat. (a) and (b): Two methods of computing the displacements of particles.

(c) and (d): Error analysis of the two methods with different numbers of

bits. 36

3·7 The interpolation method. α is a positive integer too large for r−α to be

computed. In our case, α is 8 or 14. The small r region is excluded due to

non-physical high energy. 38

4·1 The baseline designs and detailed distributor architectures. (a)-(c): baseline

design layouts. (d)-(g): details of position and force distributors. 45

4·2 Particle migration handling methods. (a): directly searching for empty

slots. (b): the one-pointer method. (c): double buffering. 49

4·3 The optimized architecture for the first mapping scheme. (a): the data

flow in force evaluation. For simplicity, arbiters and force computational

units are abstracted as entire blocks, and the forces read from force caches

for accumulation are omitted. (b): the new memory layout compared to

baseline. (c): particle migration handling in motion update. P is the particle

being migrated from cell 2 to cell 3. 51

4·4 RL dataflow in brief with rings. Yellow: Memory blocks; orange: Routing

rings; blue: computing units. 55

4·5 The ring routing path. Position input ring: from position caches to PEs.

Force output ring: from PEs to force caches. Motion update ring: from

motion update units to position caches and velocity caches. 55

4·6 Example cases of (a) high filter pass rate, (b) low filter pass rate in 2D

illustration. 58

xvi

4·7 The optimized design for the third mapping scheme. (a): The data path of

a single force computation pipeline. (b): Particle dispatching layout with

duo registers. AR: Active Register; BR: Backup Register. (c): The partial

force caches and force aggregation, where the two PEs work on a same

home cell, and the purple paths are to resolve the conflict when two force

output rings are used. 59

4·8 (a): The 1st level filtering in a position input ring node. Dashed line: planar

filter criterion. (b): The flowchart of a position input ring node. 61

4·9 The out-of-order broadcast method. Gray boxes: Empty slots. Boxes with

“x”: Marked as used. (a) The 1st cycle. (b) The 5th cycle. (c) The 8th

cycle. (d) the 9th cycle. Red arrows: home particle position; blue arrows:

neighbor particle position. 62

4·10 Particle migration on a linked list with a table showing the pointer values.

PT points at the last particle, LT points at the last slot of the list, and NT

points at the next unused slot to be allocated. 63

4·11 The solution to the problems emerge in large scale simulations. We intu-

itively use 4×4 2-D cells with eight PEs for example. (a): blue cells: the

cells currently being processed; orange cells: the extra cells whose data

are required to process the blue cells. In practice, particles from cell A are

broadcast to all B cells through a position input ring for particle pairing.

(b): the memory structure used to achieve higher memory utilization. The

two red cells are sharing the same memory block at different address do-

mains. (c): the double buffers are restored to avoid unnecessary memory

traversal. Two neighbor particles (NP1 and NP2) require data from differ-

ent cells. 65

xvii

4·12 The performance in cycles per iteration of three baseline and two opti-

mized designs. We show results for four different cubic cell structures in

the simulation space to show scalability. The y-axis is scaled to x3 for a

better illustration of linearity. The dashed line is to split the designs with

substantial scalability differences. 69

4·13 The PE utilizations of three baseline and two optimized designs. The re-

sults for four different cubic cell structures in the simulation space are pro-

vided. B1∼B3: baseline designs; O1 and O2: optimized designs. The

dashed lines are used to split the designs with substantial scalability differ-

ences. 70

4·14 The performance comparison of the original O2 and O2 with hierarchical

filters for four representative cell spaces. 73

4·15 The performance of the original and hierarchical O2 for four representative

cell spaces with different numbers of rings equipped. 74

5·1 Architecture of the single-chip design. (a): The general architecture of the

iterative force evaluation and motion update. (b): Architecture of force

evaluation pipelines . 81

5·2 Force output buffers are re-located to prevent high latency caused by data

dependency. The scheduling buffer is added in case the bandwidth bottle-

neck is met. 82

5·3 Position reading and force writing architecture (only 2 position caches in

2 nodes are shown for demonstration). (a): Baseline position reading. (b):

New position reading. (c): Baseline force writing. (d): New force writing.

Red arrows: Reference data paths. Blue arrows: Neighbor data paths. . . . 85

xviii

5·4 Workload distribution patterns in a cuboid simulation space. Grey: The

cells evaluated on other nodes. Blue: Cells in which particle pairs are

formed without external memory involved. Yellow: Cells in which data

from a neighboring FPGA are needed or delivered (1 hop). Orange: 2

hops. Red: 3 hops. (a): Slab distribution. (b): Pillar. (c): Block. 87

5·5 Reconfigurable force data forwarding pattern examples for the pillar dis-

tribution. Yellow and orange arrows represent the 1st hop and 2nd hop,

separately. Blue node: Home FPGA node. Grey node: Neighbor FPGA

node. 88

5·6 Reconfigurable force data forwarding pattern examples for the block distri-

bution. Yellow, orange and red represent the 1st hop, 2nd hop and 3rd hop

separately. Blue node: Home FPGA node. Grey node: Neighbor FPGA

node. 89

5·7 The port utilization due to the best routing configuration (Max Util) and

the average utilization (Avg Util) of all routing configurations for 3 typical

pillar distribution cases. Error bar: Standard deviation 92

5·8 The port utilization due to the best routing configuration (Max Util) and

the average utilization (Avg Util) of all routing configurations for 4 typical

block distribution cases.Error bar: Standard deviation 93

xix

6·1 Cells, spatial partitioning methods, and filtering. Rc: Cutoff radius. (a):

the cutoff radius of particles. The force A-B is valid, and A-C and B-C

forces are too small and neglected. (b): the import volume of the half-shell

method. (c): the spread layers of (b), where the orange cell at the center

interacts with 13 blue cells and itself; the middle slice also shows the 2-D

import volume. (d): 2-D import volume of the Manhattan method. (e):

planar filtering method. dx and dy are the distance components between

two particles; particles outside the octagon are not paired with the particle

at the center. 99

6·2 The overall layout of the design. (a): cell ID numbers are calculated from

their x, y, and z coordinates in space. (b): the topology of 8 ring cores (RC)

and 4 motion update units (MUs) for example. 101

6·3 The overall layout of the design with more details. (a): the internals of a

ring core. (b): the internals of a MU. 101

6·4 The rules of position cache overlapping and the modified Manhattan

method in 2-D. Yellow cells: cell caches. Green: corner caches. The yel-

low/green particles are cell particles/corner particles separately, where the

yellow particles are outlined in black. (a) and (b): the pair is evaluated if

the neighbor particle has greater Manhattan distance. (c): the brown SRs

should be included a yellow cache, otherwise the two particles shown will

never be paired. (d): SR overview. Dark brown: the SRs potentially need

to be accessed by green particles. (e): Only the green particles in the dark

green region can may be paired with the SPs in the yellow cell. 105

xx

6·5 The complete design with the Manhattan method. (a): the data flow with

respect to a single PE. (b): the green particles enter the position input ring

and are rotated to several destination PEs (c): two SR handling cases. Red

arrow: data traversal order; left: all SRs are requested; right: SR 1 is not

requested and is skipped. COP: corner particle. (d): the motion update

ring. Each MU on the ring directly updates several yellow/green caches.

(e): corner BRAMs store particle positions, cell IDs and the particle IDs

for force write back and memory misalignment handling. The same mech-

anism is applied on SPs. 107

6·6 2-D illustration of the data transfer pattern for 4 FPGA nodes. (a): half-

shell method; (b): the proposed position cache overlapping Manhattan

method. Yellow: cell region (SR omitted); Blue: data to be transferred;

Green: corner region. The arrows indicate the transfer directions of the

position data. For small data transfers at corners, the arrows are lightened. . 110

6·7 The performance and PE utilization versus the number of filters for 4 cell

geometries. 3 motion update rings and 3 force rings are used. For consis-

tency, we assume each cell is processed by 1 PE, and all 4 cases share the

same y-axis. Bar: cycle. Curve: utilization 111

6·8 Filtering rate and the number of cycles required for filtering for the two

methods. For 33, 43, 53 and 63 cell geometries, the filtering rates remain

the same. We assume each cell is only processed by 1 PE for consistency

against the scaling of the simulation space. 112

6·9 The latency of the position input ring of a single MD iteration. HS: half-

shell; CO: cache overlapping. 80, 100, 120: number of particles per cell.

The line plot indicates the percentage of latency reduced using the cache

overlapping method. 113

xxi

6·10 MU ring latency compared with ideal. Each MU is in charge of updating 8

yellow caches and 8 green caches. A cell contains 80 particles. 114

6·11 Data transfer per FPGA using the two methods. Each iteration (from force

evaluation to the next force evaluation phase) takes 100 µs, with 120 bits

per packet and 80 particles per cell. (a): the number of cells to be sent to

remote FPGAs. (b1): the estimated ideal bandwidth demand per FPGA for

a 3-D torus FPGA cluster. (b2): the estimated ideal bandwidth demand per

FPGA for 8 FPGAs connected as a ring. 115

7·1 Overview of FASDA. 120

7·2 The topology of inter-node connection and an example of cell-to-FPGA

mapping. 124

7·3 Two levels of cell ID conversion with examples. 124

7·4 Arriving/departing data processing. P2R/F2R: position/force to remote. . . 125

7·5 Details of data processing sub-modules. 125

7·6 Two synchronization methods for 4 FPGAs. In this example, each FPGA

only communicates with its neighbors. 127

7·7 The behavior of the chained synchronization between two FPGA nodes as

an example. Frc: force. Pos: position. 128

7·8 The architecture of a CBB with multiple PEs. 129

7·9 The architecture of an SCBB with 2 SPEs, where an SPE consists of 2 PEs

for example. AT: Adder Tree. HPC: Home Position Cache. 130

7·10 The weak scalability comparison. 1-F: 1× FPGA board. 1-SPE: Each

SCBB contains 1× SPE. 1-PE: Each SPE contains 1 PE. 133

7·11 The strong scalability comparison. 1-F: 1× FPGA board. 1-SPE: Each

SCBB contains 1× SPE. 1-PE: Each SPE contains 1 PE. 134

xxii

7·12 The utilization of key components for the design varieties. A: 1-SPE, 1-PE.

B: 1-SPE, 3-PE. C: 2-SPE, 3-PE. 137

7·13 The communication bandwidth demand for different design configurations. 137

7·14 The communication bandwidth demand breakdown for different design

configurations. 138

7·15 Energy Relative error with respect to OpenMM. 139

xxiii

List of Abbreviations

ACC Accumulation operation
ADD Addition operation
ALM Adaptive Logic Module on Intel FPGAs
ASIC Application-Specific Integrated Circuit
AT Adder Tree
BRAM Block Random Access Memory
BSP Bulk Synchronization Parallel
BUF Buffer
CBB Cell Building Block
CNN Convolution Neural Network
CONV Convolution layer
COTS Commercial Off the Shelf
CPU Central Processing Unit
F2R Force to Ring
FC Force Cache
FCU Force Computation Units
FF Flip-Flop
FIFO First In, First Out
FLOPS Floating Point Operations Per Second
FMC FPGA Mezzanine Card
FP Floating-Point
FPGA Field-Programmable Gate Array
FR Force Ring
FRN Force Ring Node
GAN Generative Adversarial Networks
GCID Global Cell ID
GCN Graph Convolutional Network
GNN Graph Neural Network

xxiv

GPU Graphics Processing Unit
HBM High Bandwidth Memory
HDL Hardware Description Language
HPC High-Performance Computing / Home Position Cache
HW Hardware
LCID Local Cell ID
LR Long Range
LUT Look Up Table
MD Molecular Dynamics
ML Machine Learning
MU Motion Update
MUR Motion Update Ring
MURN Motion Update Ring Node
N3L Newton’s 3rd Law
NN Neural Network
P2R Position to Ring
PC Position Cache
PE Processing Element
PR Position Ring
PRN Position Ring Node
RAW Read After Write
RCID Relative Cell ID
REG Register
RL Range Limited
RNN Recurrent Neural Network
RTL Register Transfer Language
SCBB Scalable Cell Building Block
SoC System on Chip
SPE Scalable PE
SUB Subtraction operation
URAM Ultra RAM
VAE Variational Autoencoder
VC Velocity Cache

xxv

1

Chapter 1

Introduction

Molecular Dynamics (MD) is a computational technique that employs physical laws to

simulate atomic movements and interactions. Its use is widespread throughout science

and engineering. The field of drug discovery has gained significant attention, particularly

in light of the COVID-19 pandemic, and MD has emerged as a vital tool for predicting

drug-target interactions and optimizing drug properties [Ganesan et al., 2017, Zhao and

Caflisch, 2015, Salo-Ahen et al., 2020, Liu et al., 2018]. However, the process of discov-

ering new drugs is typically time-consuming and expensive, requiring substantial invest-

ments and years of work [Mullard, 2014]. To mitigate these challenges, accelerating the

drug discovery process through MD simulations, especially for small particle sets (∼50K),

is crucial [Mortier et al., 2015, Aminpour et al., 2019, Salo-Ahen et al., 2020].

Despite the small dataset size, the execution of MD simulations is not necessarily sim-

ple. To ensure accuracy, MD simulations iterate over discrete time intervals, often on the

order of femtoseconds (10−15 seconds), resulting in billions of iterations for long timescales

(10−6 and beyond). However, due to data dependencies, parallelizing sequential iterations

poses a significant challenge, particularly for achieving strong scaling and accelerating lim-

ited workloads within a single iteration. Consequently, an approach that can maintain high

efficiency with numerous powerful computing nodes, each handling a small portion of data,

is necessary.

While there are several MD software packages available [Case et al., 2005, Phillips

et al., 2005,Eastman and Pande, 2010,Abraham et al., 2015,Thompson et al., 2022,Bowers

2

et al., 2006a], some of which support both CPUs and GPUs, CPUs generally exhibit lower

computational capabilities, resulting in lower performance compared to GPUs.

The real difficulty, however, is strong scaling: i.e., scaling performance (length of time

simulated per wall-clock time) while keeping the problem size constant. As the time

simulated per day increases into the microseconds and beyond, the wall-clock time per

iteration reduces through milliseconds down to 100s of microseconds and beyond. The

(well-known) challenge of strong scaling is that more nodes are required to more quickly

perform the computations, but these additional increase the complexity of the communi-

cation. Communication eventually dominates: it clearly makes no sense to simulate a few

thousand particles with a similar number of nodes. Any solution requires:

1. Maximally powerful nodes,

2. Minimum internode communication latency, and

3. Minimal overhead in interaction between computation and communication.

Their widespread availability, and (comparative) ease of use, makes GPUs the technol-

ogy of choice for throughput and weak scaling scenarios [Páll et al., 2020, Glaser et al.,

2015]. A typical throughput scenario is the testing of a large number of small molecules,

say, drug candidates, for a limited timescale, say, for a few hundred nanoseconds. In weak

scaling scenarios the problem size is large, say, many millions of particles, and compu-

tation remains dominant over communication. In the throughput scenario, an economical

computational alternative is a generic cluster with node-attached GPU accelerators. These

resources can also be accessed in commercial clouds such as AWS. In the weak scaling

scenario, a more powerful communication network is likely to be needed, but one that is

typically provided in a High Performance Computing (HPC) cluster.

However, in strong scaling scenarios, the second and third parts of the solution must

be upgraded. For small simulations GPUs configurations have so far failed to scale beyond

3

one to two processors. In fact the problem is regarded as being so difficult that the only

successful alternative (prior to this work) is created a fully custom supercomputer includ-

ing the building of Application Specific Integrated Circuits (ASICs). These systems are

remarkable achievements, offering exceptional performance exactly because they satisfy

all three conditions. For instance, Anton 3 can attain a simulation rate of ∼200 µs-per-day

for 10K particles with 512 nodes [Shaw et al., 2021]. Meanwhile, its predecessor, Anton

2, can achieve around 100 µs-per-day with the same number of nodes [Shaw et al., 2014].

However, their high cost, limited accessibility, and maintenance and upgrade issues hinder

their widespread adoption, thus offering limited contribution to the community.

The focus of this dissertation is FPGAs. Similar to ASICs, FPGAs provide hardware

flexibility without the same availability and maintenance concerns. Additionally, FPGAs

possess low-latency communication capabilities, making them well-suited for MD applica-

tions that involve frequent data exchange between multiple FPGA nodes. We note that this

low-latency is two parts. First, FPGAs are built so that they can be interconnects pin-to-pin

in low latency clusters with point-to-point latency of 100ns or less. And second, within

the FPGA the computation and communication logic can be integrated seamlessly so that

only a few cycles are needed to get from the application to the communication interface.

This combination of flexibility, low latency, and competitive computing power makes FP-

GAs an ideal choice for achieving strong scaling with commercial off-the-shelf (COTS)

components.

FPGAs have also evolved significantly over the years, with on-chip resources increas-

ing from hundreds to nearly a million logic blocks, enabling researchers and engineers

to program them for complex applications such as MD with high performance. Recent

FPGA-based MD studies have also demonstrated superior performance to GPUs of similar

generations, even on a single node [Yuan et al., 2022,Yang et al., 2019a,Wu et al., 2021b].

In MD simulations, a significant portion of the computation revolves around the eval-

4

uation of non-bonded forces, which can be divided into two components: N-body range-

limited (RL) forces with a cutoff and long-range (LR) force evaluation. RL forces constitute

the majority (approximately 90%) of the computation and are highly compute-intensive,

while LR forces are more focused on memory and communication aspects. These two

components can be treated as separate tasks due to their relatively independent data flow.

This thesis primarily focuses on the RL component, which has been the main subject of

initial studies on FPGA-based MD simulations [Azizi et al., 2004, Hamada and Nakasato,

2005, Gu et al., 2005a, Kindratenko and Pointer, 2006, Scrofano et al., 2008]. Specifically,

computation, communication, and memory access of RL are all studied in depth.

Having identified the operating platform and the specific problem at hand, our focus

shifts towards achieving strong scaling in Molecular Dynamics (MD). To fulfill our goal,

we must address two primary challenges in a sequential manner. Firstly, we need to de-

termine how to maximize the potential of a single FPGA, ensuring high efficiency in

MD computations. Subsequently, we must tackle the task of constructing a multi-FPGA

system that not only maintains the efficiency achieved on a single FPGA but also exhibits

strong scalability. By approaching these two high-level problems in a progressive order, we

can effectively advance towards our objective of achieving both high efficiency and strong

scalability in MD simulations.

To tackle the first challenge, an extensive examination is undertaken to thoroughly in-

vestigate three high-level 3-D to 2-D workload mapping schemes. These mapping schemes,

characterized by different levels of granularity in workload partitioning, offer distinct ad-

vantages in various scenarios. Among these schemes, two design variations are proposed,

both leveraging data locality while employing distinct data routing mechanisms. Through

this comprehensive exploration, we establish the methodologies necessary to attain high

efficiency on a single FPGA node.

The second challenge encompasses not only the need for an efficient design at the

5

single-node level but also demands efficient inter-node communication, synchronization,

and strong scaling. In terms of communication, the partitioning of workloads and the

interaction patterns among nodes play a crucial role. Thus, we conduct an analysis of the

bandwidth requirements and propose a method for balancing the bandwidth specifically

tailored for FPGAs. Additionally, recognizing the potential reduction in overall bandwidth

requirements through exploiting the force symmetry property, we introduce a modified

Manhattan method that significantly reduces data transfer by over 40%.

Addressing synchronization and strong scaling, we propose a completely distributed

and decentralized computing system with scalable processing elements (PEs). By elimi-

nating the need for a central authority, we simplify inter-node communication and reduce

latency. Furthermore, expanding the system by adding more nodes requires minimal addi-

tional effort. To ensure efficient synchronization, we incorporate a localized synchroniza-

tion mechanism that avoids the overhead associated with global synchronization methods

such as Bulk Synchronization Parallel (BSP). This localized approach effectively maintains

a fully distributed system, enabling optimal performance and scalability.

The establishment of the system owes much to the emergence of FPGAs in cloud com-

puting. Prominent cloud platforms such as Microsoft Azure [Zhang et al., 2017], Amazon

EC2 F1 [ama,], FAbRIC [uta,], Chameleon Cloud [Keahey et al., 2020], and Open Cloud

Testbed [Handagala et al., 2022] now provide accessible FPGA clusters. These platforms

allow for seamless access to FPGA resources, facilitating the deployment of FPGA-based

designs. As a result, we anticipate a rising trend in the development of FPGA applications

in the near future, driven by the availability and accessibility of FPGA clusters offered by

these cloud platforms.

Next, the specific work is listed with more detailed description.

1. Single-FPGA Design 1: Transposed Memory Blocks. This design stems from the

finest-grained among the three 3-D to 2-D workload mapping schemes, where all PEs pro-

6

cess the same particle at the same time. In conventional approaches, particles within a re-

gion are grouped together and stored sequentially in a memory block. However, in this de-

sign, the particles within a group are distributed across different memory blocks, enabling

parallel access. As a result, concurrent processing of a single particle becomes possible,

enabling high parallelism even for the most fine-grained workload mapping scheme.

2. Single-FPGA Design 2: Cell-based Workload Partitioning. This design is derived

from the coarsest-grained mapping scheme among the three 3-D to 2-D workload mapping

schemes. In this scheme, each processing element (PE) is responsible for processing a

group of particles within a specific region. While this approach necessitates the incorpora-

tion of a daisy chain data routing mechanism to mitigate fan-in and fan-out challenges, it

offers remarkable flexibility in parallelism and structured scaling in space. To further en-

hance efficiency, technologies such as hierarchical filters and out-of-order position broad-

cast are employed.

3. FPGAs on a 3-D torus: Bandwidth analysis and communication balancing. The 3-D

torus topology is a commonly employed network structure for 3-D applications, including

MD. This topology, utilized in systems like the Anton series, is well-suited for FPGAs,

given the availability of sufficient communication ports. In this study, a comprehensive

analysis is conducted on three different data partitioning patterns for FPGAs: slabs, pil-

lars, and blocks. However, it is observed that the latter two patterns result in imbalanced

communication intensity along different directions, leading to underutilized communica-

tion ports. To address this imbalance issue, we propose a static communication balancing

mechanism. This mechanism aims to optimize overall communication intensity by ef-

fectively redistributing the communication load, leveraging the available bandwidth to its

fullest potential. By implementing this approach, we achieve higher overall communication

intensity while utilizing the given bandwidth efficiently.

4. Multi-FPGA bandwidth demand reduction: The exploration of force symmetry. Deter-

7

mining the optimal mapping of particles and computations to memories and processors is

a complex task when parallelizing the computation of pairwise forces. However, achieving

this optimal mapping can lead to significant reductions in data movement and computa-

tion. For many years, the exploration of mappings on FPGAs has been relatively limited,

with the half-shell method being the preferred approach in prior studies. In this research,

we discover that the Manhattan method surprisingly aligns well with FPGA hardware. By

introducing the cache overlapping technique, we effectively address the requirement for

ultra-fine-grained data access imposed by the Manhattan method, even though the memory

blocks on FPGAs may not appear to be fine-grained enough. Eventually, our results show

that we achieve balanced communication and significantly reduce data transfer by 40% to

75% in typical multi-FPGA scenarios. This finding is particularly valuable in the cases

where communication bandwidth is limited, offering notable benefits in data transfer.

5. FASDA: An FPGA-Aided, Scalable and Distributed Accelerator for Range-Limited

Molecular Dynamics. Our research in MD RL is driven by the overarching goal of achiev-

ing high efficiency on a single FPGA node while also enabling strong scaling across mul-

tiple FPGA nodes. To achieve this, we recognize the significant advantages of employing

a completely distributed and decentralized computing system. By eliminating the need for

a central authority, our system simplifies inter-node communication, reduces latency, and

allows for seamless expansion of the system by adding more nodes with minimal additional

effort. In line with these objectives, we introduce FASDA, which, to the best of our knowl-

edge, is the first scalable and fully distributed RL N-body simulation system with a cutoff

that leverages the customizable nature and communication efficiency of FPGAs. Moreover,

FASDA is designed with a modular structure, enabling the integration of easily pluggable

components that can be adjusted based on user requirements and available resources with

minimal modifications.

In summary, this dissertation chronicles progress made in accelerating MD RL on FP-

8

GAs, beginning with the construction of single-node designs based on various 3-D to 2-D

mapping schemes, and culminating in a multi-FPGA design that leverages the efficiency

achieved in the single-FPGA designs, while enabling strong scaling in the meantime. Along

this journey, our research not only accelerates MD RL on FPGAs but also offers valuable

insights applicable to other applications that exhibit a localized data interaction pattern. By

documenting these advancements, we contribute to the broader understanding of FPGA-

based acceleration and its potential in optimizing performance for applications with similar

characteristics.

The overall contributions of this dissertation are as follows:

• Problem Definition and Methodology: The objective of our research is to accelerate

MD RL through a two-step approach. Firstly, we focus on optimizing the efficiency

of single-FPGA designs. Secondly, we expand our efforts to encompass multi-FPGA

configurations, aiming to achieve strong scaling.

• New Architectures: Our research has resulted in the development of a set of in-

novative hardware architectures that effectively enhance performance and minimize

bandwidth requirements in communication.

• Performance: Our research successfully demonstrates the efficacy of the proposed

methods, showcasing performance improvements of 4 to 5 times when compared to

relevant prior art.

• Advancing Computing Technology for MD: In our research, we leverage the emerg-

ing FPGA cluster platforms to map and implement our designs. Through our experi-

mentation and analysis, we provide compelling evidence that FPGA clusters are not

only competitive but also demonstrate superiority over other computing technologies

in terms of high-performance computing and strong scaling.

9

The subsequent sections of this dissertation are structured as follows. Chapter 2 pro-

vides the necessary background information and covers preliminary work in the field. Mov-

ing forward, Chapter 3 describes the high-level methodologies including space partitioning

and workload mapping. Chapter 4 delves into the details of the single-FPGA designs. The

subsequent three chapters focus on multi-FPGA solutions, each addressing a different as-

pect. Chapter 5 examines bandwidth analysis and communication balancing of FPGAs

within a 3-D torus topology. Chapter 6 explores the utilization of force symmetry to reduce

the demand for bandwidth. In Chapter 7, we present a scalable and fully distributed MD RL

accelerator implemented on an FPGA cluster. Finally, Chapter 8 concludes the dissertation,

summarizing the key findings and discussing potential future research directions.

10

Chapter 2

Background

This chapter serves to provide a comprehensive background on MD RL theories and al-

gorithms, as well as the fundamentals of FPGAs. Firstly, we delve into the underlying

physical model and algorithm that govern the calculation of forces and their relationship

to particle distances. Next, we discuss common physics-based optimizations and the cor-

responding data structures that arise from them. Lastly, we introduce the architecture of

FPGAs and their utilization in accelerating MD RL computations.

2.1 The Physical Model of Range-Limited Forces

This section briefly introduces the MD RL algorithm and the physical principles within.

2.1.1 RL Force Features

The RL forces in MD simulations comprise of two distinct components. Firstly, there is

the short-range term of electrostatic force, which is commonly computed using methods

such as Particle Mesh Ewald (PME) or similar techniques [Darden et al., 1993]. Secondly,

there is the force derived from the Lennard-Jones (LJ) potential, which contributes to the

overall RL force calculation. In this work, we refer to RL forces as only the latter to avoid

unnecessary LR discussions.

The LJ potential is a mathematical representation of the Van der Waals interaction ob-

served between electrically neutral particles. It describes the potential energy between two

particles, labeled as i and j, based on their distance ri j. The LJ potential equation is ex-

12

can be disregarded in A’s computation. As a result, the overall computational complexity

reduces to O(mN), where m represents the average number of neighboring particles for

each particle. Typically, m is much smaller than N.

Moreover, the total computation can be effectively reduced by half since the pairwise

forces between particles have an equal and opposite effect on each participating particle, in

accordance with Newton’s third law (N3L).

2.1.2 Force Integration

The MD procedure consists of two main phases: force evaluation and motion update,

which are iteratively executed. In the force evaluation phase, the pair-wise forces between

particles are computed using Equation 2.2 based on their current positions. These forces

are then accumulated to determine the resultant force acting on each particle. Once all

the forces are computed, the motion update phase begins. The resultant forces are utilized

to calculate the changes in velocity and position for each particle, following a specific

integration method. In this study, the Verlet Integrator is adopted due to its low hardware

cost and favorable numerical stability. The Verlet Integration method with an error of

O(∆t2) is introduced:

a(t) =
F(t)
m

(2.3)

v(t +∆t) = v(t)+
a(t)+a(t +∆t)

2
t (2.4)

r(t +∆t) = r(t)+v(t +∆t)∆t (2.5)

Compared to force evaluation, motion update is much less computationally intensive as

it is applied only once per particle.

13

2.1.3 Periodic Boundary Condition

Periodic boundary conditions are a commonly employed technique in solid-state physics

and computational physics when studying large or infinite homogeneous systems. This

approach allows for the modeling of a small system that is replicated to represent the entire

system. With periodic boundary conditions, particles that exit the small system on one side

re-enter from the opposite side with the same velocity, creating a seamless periodicity in

the simulation.

By applying periodic boundary conditions, important conservation properties of the

system are maintained. The number of particles, denoted by N, remains constant through-

out the simulation. The volume of the simulation space, represented by V , also remains

unchanged. Additionally, the total energy of the system, denoted by E, is conserved in

the absence of external energy input. These conservation properties make the simulation

compatible with a microcanonical ensemble (NVE ensemble), as if the system is isolated

from its surroundings.

In addition to the conservation of particle number, volume, and energy, periodic bound-

ary conditions allow for the determination of environmental parameters such as tempera-

ture. By performing simulations using periodic boundary conditions, it becomes possible

to study the thermodynamic behavior of the system and obtain information about its tem-

perature distribution. This is achieved by analyzing the kinetic energies and velocities of

particles within the simulation.

2.2 MD Data Structure

In this section, we first compare and analyze two commonly used data structures, and

analyze their pros and cons specifically for FPGAs. Second, we discuss a methodology for

optimizing memory efficiency on FPGAs by partitioning the simulation space. Finally, we

examine the communication patterns between FPGA nodes, particularly focusing on the

14

import volume associated with different spatial decomposition methods. In our case, only

on-chip memory is used to avoid the latency in off-chip data access.

2.2.1 Neighbor List vs. Cell List

Neighbor List. Conventionally, particle data is organized using neighbor lists and cell lists.

In the case of neighbor lists, a list of neighboring particles is created for each individual

particle in the simulation space. While this approach allows for fast data retrieval when

evaluating a particle, it has two main limitations. Firstly, it does not effectively exploit

data locality. A particle can appear as a neighbor in multiple neighbor lists with different

addresses, resulting in duplicated data and disordered data access. This can consume sig-

nificant memory capacity and bandwidth, particularly on FPGAs where on-chip memory

resources are limited. Secondly, maintaining neighbor lists can be challenging. When a

particle moves during an MD iteration, it needs to be removed from certain neighbor lists

and added to others. Identifying and updating these neighbor lists can be complex and

resource-intensive. Although the neighbor list method may be efficient in scenarios where

memory resources are abundant, it may not be ideal for FPGAs where memory can easily

become a bottleneck.

Cell List. In practice, the neighbor list method can be replaced by the cell list method

with hardware-based filtering in implementations. The cell list approach involves spatially

grouping particles before evaluation. As depicted in Figure 2·1(b), the simulation space is

divided into cubic cells, such as a 3×4×4 configuration, with a specific side length denoted

as Rc. Each cell contains a separate memory domain to store the particles assigned to it.

For instance, in the case of a 3×4×4 setup, a total of 48 memory regions are allocated for

particle storage, corresponding to each individual cell.

Suppose particle A is located within cell (1, 2, 2). In this scenario, only the particles

in the green neighboring cells (including the home cell itself) need to be checked for valid

particle pairs with particle A. By applying N3L, only 14 out of the 27 surrounding cells

15

need to be considered as neighbor cells, as illustrated in Figure 2·1(c) using the half-shell

method. Additional layouts for importing neighbor data are discussed in section 2.2.3.

The cell lists effectively categorize particles in a geometric manner, promoting high data

locality. Consequently, a particle can be broadcast to its neighboring cells for pairing.

However, it should be noted that only approximately 15% of the neighbor particles are

expected to form valid pairs with the reference particle, as indicated by the equation below:

P =
4
3πR3

c

27R3
c
= 15.5% (2.6)

The denominator in the equation represents the volume of the 3×3×3 cells surrounding a

home cell, which has a side length equal to the cutoff radius Rc. This justification will be

discussed in more detail in section 3.1. The numerator, on the other hand, corresponds to

the volume of a sphere with a radius of Rc. As a result, it is desirable to perform preliminary

particle pair filtering, where a force computing unit receives particle pairs from multiple

filters to ensure efficient utilization and avoid idleness.

2.2.2 Filtering

In hardware implementations, locality out-weighs resources. That is to say, rather than con-

structing precise neighbor lists, we leverage the locality introduced by the cell-list method

to minimize the number of data transactions per particle at the expense of deploying fil-

ters. Fortunately, the filtering process itself requires only a small amount of on-chip re-

sources [Chiu and Herbordt, 2009], particularly when employing planar filtering, which

utilizes low-precision integer comparisons.

Figure 2·2 provides an illustration of the two filter mechanisms. The full precision

filter involves 3 multiplications and 5 additions, while the planar filter requires only 5

additions. Due to the absence of multiplications, the planar filter can be implemented using,

for example, 8-bit fixed-point data, taking advantage of the linearity of the constraints. In

18

and communication [Hauck and DeHon, 2008].

1. DSP units are generally used to perform high-precision and high-performance multipli-

cation, addition, and multiply-accumulation operations.

2. Look-Up-Tables (LUTs) can be used to provide both flexible computation and high-

concurrency data storage.

3. Flip-Flops (FFs) are used as registers.

4. Block RAMs (BRAMs) provide tens of GByte on-chip storage.

5. Multi Gigabit Transceivers (MGTs) provide efficient inter-FPGA communication.

Each FPGA chip normally has hundreds of high-bandwidth (over 20Gb/s for each MGT)

and low-latency MGTs as I/Os. These I/Os can be directed connected to other on-chip

resources.

The hardware resources of FPGAs are organized in a hierarchical and programmable

on-chip interconnect network. This allows users to freely integrate these resources and tai-

lor them to their specific problem requirements by programming the interconnect network.

The inherent flexibility of FPGAs has positioned them as a highly competitive platform

widely utilized in High-Performance Computing (HPC) and machine learning accelera-

tion [Gokhale and Graham, 2005, Herbordt et al., 2007b, Herbordt et al., 2008a, VanCourt

and Herbordt, 2009, Benkrid and Vanderbauwhede, 2013].

FPGAs are often compared to GPUs, which are widely used for acceleration purposes.

While there are conceptual differences between the two, in practical usage, FPGAs often

exhibit similarities to GPUs. FPGAs typically incorporate a large number of parallel com-

puting units, similar to the streaming multiprocessors in GPUs. Each computing unit in an

FPGA consists of computation pipelines implemented using LUTs, DSPs, and FFs, as well

as local memories utilizing BRAMs and LUTs. BRAMs in FPGAs can also serve as global

scratchpad memory, similar to caches in GPUs, which are shared by all computing units.

However, FPGAs also possess distinct advantages and differ from GPUs in several as-

19

pects. The computing units in FPGAs can be customized to precisely match the specific re-

quirements of the target problem, enabling them to achieve near-optimal efficiency. More-

over, FPGAs offer a flexible and customizable interconnect, allowing the computing units

to be interconnected in a versatile manner. There are no restrictions on inter-computing

unit communication, apart from the physical limitations of the interconnect. This flexibil-

ity makes FPGAs well-suited for handling irregularity problems and provides them with

unique capabilities compared to GPUs.

Considering the exceptional communication capabilities of FPGAs, it is logical to con-

figure them in FPGA-centric clusters. Extensive research has been conducted to model and

construct such clusters, which involves determining the interconnect types used, such as

direct FPGA-to-FPGA communication or indirect communication through a router [Sheng

et al., 2015,Sheng et al., 2016,Sheng et al., 2017b,Sheng et al., 2017a,Putnam, 2014,Plessl,

2018, Boku et al., 2019].

2.3.2 FPGAs in Molecular Dynamics

The roots of using FPGAs in Molecular Dynamics lies perhaps in the Gravity Pipe

(GRAPE) project whose goal was to accelerate N-Body computations in cosmology

through ASIC-based systems [Ebisuzaki et al., 1993, Ito et al., 1991, Okumura et al.,

1992, Makino et al., 1994, Makino et al., 2003, Makino and Daisaka, 2012]. The work

was extended to molecular dynamics, [Fukushige et al., 1996,Komeiji et al., 1997,Narumi

et al., 2000,Sumanth et al., 2003,Narumi et al., 2006,Ohmura et al., 2014,Morimoto et al.,

2021] and later extended to FPGAs.

From 2003-2011 there was much work investigating use of CPU-attached FPGAs to

accelerate MD. The primary direction was to offload onto the FPGA the RL computation

while control, motion update, and the rest of the computations were performed on the

CPU [Azizi et al., 2004,Gu et al., 2005a,Gu et al., 2005b,Hamada and Nakasato, 2005,Gu

et al., 2006a, Gu et al., 2006c, Gu et al., 2006b, Scrofano et al., 2006, Kindratenko and

20

Pointer, 2006, Alam et al., 2007, Gu and Herbordt, 2007b, Gu et al., 2008, Chiu et al.,

2008,Chiu and Herbordt, 2009,Chiu and Herbordt, 2010a,Chiu and Herbordt, 2010b,Chiu

et al., 2011].

There were also investigations related to the LR force [Sasaki et al., 2005,VanCourt and

Herbordt, 2006a,Gu and Herbordt, 2007a] and a number of studies integrating MD into ap-

plications [VanCourt et al., 2004, VanCourt and Herbordt, 2006b, Sukhwani and Herbordt,

2008, Sukhwani and Herbordt,]. The next generation concentrated on demonstrating the

viability of FPGA clusters in LR and strong scaling [Humphries et al., 2014, Sheng et al.,

2014, Lawande et al., 2016, Sanaullah et al., 2016a, Sanaullah et al., 2016b, Sheng et al.,

2017b].

Moreover, the last few years have seen the first studies on the bonded force [Xiong and

Herbordt, 2017], integrated single FPGA solutions [Yang et al., 2019a], and studies related

to the current work [Yang et al., 2017, Yang et al., 2019b, Pascoe et al., 2020, Stewart

et al., 2021, Wu et al., 2020, Wu et al., 2021b, Wu et al., 2021a, Wu et al., 2022, Wu et al.,

2023]. Surveys can be found in [Herbordt, 2013, Khan et al., 2013, Schaffner and Benini,

2018, Jones et al., 2022]. Also of potential interest is work on MD using Discrete Event

Simulation [Model and Herbordt, 2007, Herbordt et al., 2008b, Herbordt et al., 2009, Khan

and Herbordt, 2011].

Other MD models and MD-related simulations studied on FPGA platforms are as fol-

lows. Based on the Dynamic Lattice Liquid (DLL) model, ARUZ, a massive FPGA cluster

consisting ∼26000 FPGAs, including Xilinx Artix and Zynq FPGAs, [Kiełbik et al., 2018]

has been developed to simulate particle diffusion. In [Yuan et al., 2022], a Tersoff Potential,

a three-body potential, has been applied, rather than the conventional pairwise potential. In

terms of MD-related simulations, researchers have implemented a cosmological-like MD

accelerator on multiple Intel Stratix 10 FPGAs with OpenCL [Menzel et al., 2021].

More related work is described in the later chapters with respect to specific studies.

21

2.3.3 FPGAs in High Performance Computing

Overall FPGAs have gained significant importance in HPC acceleration due to their afore-

mentioned advantages [VanCourt and Herbordt, 2004,VanCourt and Herbordt, 2005b,Van-

Court and Herbordt, 2007, Sanaullah et al., 2018c, Sanaullah et al., 2018a, Jamieson et al.,

2018]. While GPUs currently dominate the HPC landscape, FPGAs have demonstrated

their potential to become a key component of next-generation HPC systems. Researchers

have successfully showcased the efficiency and benefits of FPGAs in various scientific

computing applications beyond MD, including Adaptive Mesh Refinement [Wang et al.,

2019a,Wang et al., 2019b], Algebraic Multigrid [Haghi et al., 2020a], Bioinformatics [Her-

bordt et al., 2006, Herbordt et al., 2007a] and security-related tasks [Wolfe et al., 2020, Pa-

tel et al., , Patel et al., 2022a, Patel et al., 2022b]. The programmability of FPGAs has

often been considered a hurdle to their wider adoption in practical HPC systems. How-

ever, researchers have demonstrated that this challenge can be addressed through improved

design tools [VanCourt and Herbordt, 2005a, VanCourt and Herbordt, 2006c, Sanaullah

and Herbordt, 2018b, Sanaullah et al., 2018b, Sanaullah and Herbordt, 2018a, Sanaullah

and Herbordt, 2018c, Herbordt, 2019, Shahzad et al., 2022] and Middleware [Haghi et al.,

2020c, Haghi et al., 2020b, Xiong et al., 2020, Bandara et al., 2022]. In recent years, FP-

GAs have emerged as promising substrates, such as SmartNICs and Smart Switches, for

coordinating communication and processing offloaded data [Haghi et al., 2022, Guo et al.,

2022b, Guo et al., 2022a, Haghi et al., 2023, Guo et al., 2023]. FPGAs also find exten-

sive use in neural network acceleration, e.g., for training [Geng et al., 2018b, Geng et al.,

2018a,Wang et al., 2020], using CGRAs for QNNs [Geng et al., 2020b], GNNs [Geng et al.,

2020a,Geng et al., 2021c], and binarized NNs [Geng et al., 2019b,Geng et al., 2019a,Geng

et al., 2021a]. Researchers have proposed various model regularization approaches for

CNNs and RNNs, achieving efficient acceleration of regularized models with FPGAs [Shi

et al., 2020]. See also [Geng et al., 2021b] for a survey.

22

Chapter 3

High-Level Methodologies

This chapter focuses on three key aspects of the dissertation: A space decomposition

method, workload mapping schemes, and data format choices.

Firstly, a thorough quantitative analysis is conducted to justify the selection of the cell

size as the cutoff radius (Rc). The analysis demonstrates that choosing the cell size as the

cutoff radius is balanced in terms of cost-effectiveness.

Next, the mapping of cells to processing elements (PEs) is discussed in detail, following

the determination of the cell size. Three mapping schemes, varying in workload granularity,

are comprehensively explored, providing options for efficient workload distribution.

Finally, the fundamental data format is determined. By utilizing fixed-point position

and single-precision floating-point force data formats, the dissertation achieves several ad-

vantages. Firstly, it reduces the usage of Block RAMs (BRAMs) on FPGAs by 33%.

Additionally, it avoids the need for complex and expensive force computations, replacing

them with a convenient force look-up mechanism. These data format choices contribute to

improved performance and resource utilization in the dissertation’s framework.

3.1 Space Decomposition

As mentioned in Chapter 2, the cell-list method is adopted in our work. Specifically, the

simulation space is partitioned into cubic cells with Rc as the side length. In order to justify

this selection, an analytical model is established.

23

3.1.1 Assumptions and Parameter Declaration

This model is based on several assumptions to form an analytical standard. The assump-

tions are listed below:

Assumption 1. Particles are uniformly distributed. Physically speaking, particles in

a simulation space tend to move around to fill empty spaces, especially in water environ-

ment. This assumption is to avoid tedious error terms involved.

Assumption 2. Perfect scheduling. We assume no bubble exists in the process, all

filters start and finish at the same time.

Assumption 3. No data duplication or caching. In other words, for the evaluation of

each pair of particles, the position of each particle needs to be read from the memory, and

the positions read out are discarded after the evaluation.

Assumption 4. Each cell is mapped to a memory block. In this model, m cells are

instantiated, and a cell only supports one read operation per cycle.

The following parameters and variables are only used in this section.

m Number of cells
p Number of filters
ρ Particle density of the simulation space
V Volume of the simulation space
Nn Number of neighboring cells with respect to a cell
Np Number of particle pairs to filter in total
T Time required for position reading and filtering
Tp Time required for filtering
Tm Time required for position reading
Rc Cutoff radius
ω Cutoff radius normalized to cell edge length, ω = Rc 3

√m
V

µmp min(m, 2p)

24

3.1.2 The Model

In a simulation space, there are a total of ρV particles, and each particle is paired with all

the particles in its neighboring cells. The number of neighbor particles associated with a

single particle is NnρV
m . Therefore, the total number of particle pairs that need to be filtered

can be calculated as follows:

Np =
Nnρ2V 2

2m
(3.1)

Note that the factor 2 in the denominator is from the force symmetry in N3L. Because

perfect scheduling is assumed, it can be inferred the total time required for filtering is:

Tp(m, p) =
Np

p
=

Nnρ2V 2

2mp
(3.2)

Following assumption 3, the total time required for position reading is:

Tm(m) =
2Np

m
=

Nnρ2V 2

m2 (3.3)

Consequently, the total time for both position reading and filtering can be represented as

the maximum of Tp and Tm:

T (m, p) =
Nnρ2V 2

m
max(

1
m
,

1
2p

) (3.4)

We can observe that the number of cells and filters match at m= 2p. Let µmp =min(m, 2p),

T is translated as:

T (m, p) =
Nnρ2V 2

mµmp
(3.5)

It can be observed that all the variables needed to calculate T can be determined, except

for the number of neighbor cells Nn. As discussed in Chapter 2, when the side length of a

cell is equal to the cutoff radius, Nn is equal to 27. However, the situation becomes more

complex when dealing with varying cell sizes. For example, a slight decrease in cell size

may introduce a lot more cells to evaluate, drastically increasing the import volume. This

27

To obtain Nn, we harness the existing solution to the Gauss circle problem (GCP).

The original GCP is about finding the number of integer lattice points (see the points in

figure 3·3) inside a circle centered at a grid point. Equation 3.8 is one of the analytical

solutions [Hilbert, 1952] to the original GCP.

Considering the simulation space is filled with the lattice of cells, we first convert GCP

into the problem of finding the number of cells in a circle as figure 3·3 shows:

Let C be a circle in R2 with radius r ∈ R+ centered at (x0, y0) ∈ Z2, for all points

(x, y) ∈ Z2 satisfying (x− x0)
2 +(y− y0)

2 ≤ r2, the point (x = x0, y = y0) contributes 4×

to the number of cells, and points (x = x0, y ̸= y0) or (x ̸= x0, y = y0) contribute 2×, and

points (x ̸= x0, y ̸= y0) contribute 1×. The contributions are depicted by the black arrows.

Here we skip the rigorous proof as it is obvious in the figure.

With the above analysis of grid point contribution, we can easily derive that the number

of cells in a 2-D circle is the edges is 3+4⌊ω⌋+Nc(ω), where the 3+4⌊ω⌋ term represents

the extra contribution done by the center grid point and . It is also clear that all edge regions

in Figure 3·2 contain 3(3+4⌊ω⌋+Nc(ω)) cells, as the edges are essentially three cylinders

with thickness of 1 cell. This results in the 3Gc(ω) term in Equation 3.6.

For the remaining corners, we observe that the number of cells in a sphere is equivalent

to the number of cells in several layers of circles (see figure 3·3) with radius r =
√

ω2 − l2,

where l is the layer ID with l ∈ N0, l ≤ ω. This corresponds to the sum of Gc(
√

ω2 − l2)

term. If we only consider the layers of a hemisphere, each layer contributes 2× to the

number of cells, resulting in the leading factor 2 in Equation 3.6. The final form of Nn

shows that Nn monotonically non-decreases with ω and m.

3.1.4 Latency Estimation

Latency Analysis. This analysis aims to discuss the relation between T and m= ω3V
R3

c
under

several scenarios, where m reflects the cell granularity with given V and Rc. We notice

T ∝
Nn

mµmp
in Equation 3.5, and we therefore plot the curves of f (m) = Nn

m2 and f (m) = Nn
2mp

28

that dominate T in figure 3·4.

p = 80, = 0.01
V

Rc³

= 0.01
V

Rc³

(c)(a) (b)

0 40 80 120
m

160 2000 40 80 120
m

160 200 0 40 80 120
m

160 200
10-3

10-2

10-1

100

101

102

10-3

10-2

10-1

100

101

102

10-3

10-2

10-1

100

101

102

p = 10, = 0.01
V

Rc³

p = 20,

ω=1

= 0.02
V

Rc³

p = 20, = 0.05
V

Rc³

p = 20, = 0.02
V

Rc³

ω=√2

Figure 3·4: Latency analysis with respect to cell granularity.

Figure 3·4(a) shows that f (m) = Nn
mµmp

, the key factor to T , is a splicing of two curves.

We take p = 20 and R3
c

V = 0.02 for example, and two sharp leaps are observed on the curve.

The splicing occurs at m= 2p, where the number of cells matches the number of filters. The

gray curve below the black curve represent the discarded portions of function f (m) = Nn
m2

and f (m) = Nn
2mp . We can easily notice the two leaps on the curves. These leaps correspond

to m = 49 and m = 141, where the former leads to ω = 0.993 ≈ 1, right before reaching the

edge length of a cell, and the latter leads to ω = 1.413 ≈
√

2. This observation reveals that

the boundary effect (drastic increase in Nn with slight ω increase) results in a significant

amount of performance loss.

Figure 3·4(a) depicts the function f (m) = Nn
mµmp

in black, which is a splicing of two

curves. The splice point occurs at m = 2p, where the number of cells aligns with the

number of filters. The gray curve, located below the black curve, represents the discarded

portions of the functions f (m) = Nn
m2 and f (m) = Nn

2mp . For example, we consider the case

of p = 20 and R3
c

V = 0.02. We can clearly observe that the f (m) = Nn
mµmp

curve exhibits two

distinct sharp leaps. Specifically, the first leap occurs at m = 49, which corresponds to

29

ω = 0.993 ≈ 1, just before reaching the edge length of a cell. The second leap occurs at

m = 141, leading to ω = 1.413 ≈
√

2. This observation highlights the impact of boundary

effects, where a slight increase in ω results in a significant rise in Nn, leading to a notable

performance loss.

Figure 3·4(b) compares two cases with different cutoff-to-volume (R3
c

V) ratios. The ratio

reflects the relative size of a simulation space with respect to cutoff. In the case of a smaller

space (R3
c

V = 0.05), it is clear that the leap occurs when there is a smaller amount of cells,

and the performance loss is much greater at the first leap compared to the R3
c

V = 0.02 case

(note the log scale of y axis). We also observe that the first leaps are the most crucial among

all the leaps with the greatest performance loss.

Figure 3·4(c) shows increasing p only leads to the vertical shift of f (m) = Nn
2mp without

affecting the leap properties. The shift is also obvious from its equation form.

To summarize, to conserve the on-chip memory resources while maintaining high per-

formance, a cost-effective way is to let the normalized cell size right above the cutoff, i.e.,

ω = lim
δ→0+

(1−δ) (3.9)

such that any leap in the latency T is avoided. In the remaining sections of this dissertation,

Rc is always chosen as the cell side length unless further noticed.

3.2 Memory to PE Mapping Schemes

In this section, we explore three distribution schemes that enable the mapping of work from

cells to processing elements (PEs). A PE refers to a force computing unit along with its

associated logic, which includes filters and accumulators. The particle data within cells is

stored in various memory components, namely, HC (position caches in home cells), NC

(position caches in neighbor cells), and Force Caches (containing forces of particles within

individual cells). For the sake of simplicity, we disregard the data paths related to motion

30

update units, as they solely read from force caches in cells and write to position and velocity

caches within the same cells, contributing minimal complexity.

3.2.1 All PEs Work on the Same Reference Particle

Algorithm 1 High Level Mapping 1
1: for each cell hcell in all cells as the home cell do ▷ Home cell loop
2: for each particle p in hcell do ▷ Home particle loop
3: for each cell ncell in neighbor cells do parallel ▷ Neighbor cell loop, parallel
4: for each particle q in ncell do parallel ▷ Neighbor particle loop, parallel
5: fpq =ComputeForce(rp,rq)
6: end for
7: end for
8: end for
9: end for

In Figure 3·5(a), one single reference particle from the home cell is broadcast to all

filters in all PEs. The workflow is abstracted in Algorithm 1. In the meantime, the particles

from neighbor cells are sent to filters to pair with the reference particle.

This mapping approach enables the accumulation of partial forces of the reference par-

ticle using an adder tree before storing them in the force cache. This reduces the data traffic

involved in storing the force back to the force cache. Additionally, the partial forces of the

neighbor particles are accumulated individually into the force caches using the adders as-

sociated with their respective cells. This method ensures workload balance at the particle

pair level.

However, the disadvantages are obvious. First, the cost for maintaining data locality is

high. Although the neighbor particles fetched can be reused for all the particles broadcast

from the home cell, the number of neighbor particles is too high (∼1000, assuming we

have enough PEs, ∼150) for the particles to be cached in registers for concurrent reading.

Second, all the neighbor force fragments are returned to only 14 neighbor cells, which

requires tremendous bandwidth per cell to perform the accumulation without conflict.

32

3.2.2 All PEs Work on the Same Home Cell

Figure 3·5(b) shows that the home cell broadcasts multiple particles to the filters. Mean-

while, each neighbor cell only needs to broadcast one particle to the filters.

Algorithm 2 High Level Mapping 2 Original
1: for each cell hcell in all cells as the home cell do ▷ Home cell loop
2: for each particle p in hcell do parallel ▷ Home particle loop, parallel
3: for each cell ncell in neighbor cells do parallel ▷ Neighbor cell loop, parallel
4: for each particle q in ncell do ▷ Neighbor particle loop
5: fpq =ComputeForce(rp,rq)
6: end for
7: end for
8: end for
9: end for

In this mapping scheme, instead of evaluating neighbor particles concurrently with a

single reference particle at the same time, we evaluate home particles concurrently with a

neighbor particle from each neighbor cell instead as Algorithm 2 suggests. As a result, the

spatial locality is achieved for both home and neighbor cells as every particle is used in

multiple filters, and the demand for force write-back bandwidth is drastically decreased.

Algorithm 3 High Level Mapping 2 Reordered
1: for each cell ncell in neighbor cells do parallel ▷ Neighbor cell loop, parallel
2: for each particle q in ncell do ▷ Neighbor particle loop
3: for each cell hcell in all cells as the home cell do ▷ Home cell loop
4: for Home particle p in hcell do parallel ▷ Home particle loop, parallel
5: fpq =ComputeForce(rp,rq)
6: end for
7: end for
8: end for
9: end for

In practical scenarios, the locality of neighbor particles is more significant than that of

home particles since a home cell typically involves more neighbor particles in its evalu-

ation. By improving the locality of neighbor particles, we can increase the opportunities

33

for accumulation before force write-back, resulting in bandwidth savings. One simple ap-

proach to enhance the locality of neighbor particles is by reordering the loops, as demon-

strated in Algorithm 3. This algorithm caches the neighbor particles in registers and does

not require fetching any new neighbor particles until the current set of neighbor particles

has been processed with all home cells. This allows for the accumulation of neighbor

forces, reducing the number of fine-grained neighbor force fragments and further conserv-

ing bandwidth during force write-back.

Still, only 14 cells are evaluated and the rest of the cell storage remains idle, unless

an expensive memory interleaving method is applied for dynamically changing memory

contents. Also, a heavy bandwidth requirement persists in the broadcast of the home cell

position.

3.2.3 Each PE Works on a Different Cell

Algorithm 4 High Level Mapping 3 original
1: for each cell hcell in all cells as the home cell do parallel ▷ Home cell loop, parallel
2: for each cell ncell in neighbor cells do parallel ▷ Neighbor cell loop, parallel
3: for each particle p in hcell do ▷ Home particle loop
4: for each particle q in ncell do ▷ Neighbor particle loop
5: fpq =ComputeForce(rp,rq)
6: end for
7: end for
8: end for
9: end for

Figure 3·5(c) shows two individual PEs, unlike the former cases where the PEs are

blended. In this case, a PE only works on one single home cell, which broadcasts only one

particle to all the filters in one PE at a time, while each of the 14 neighbor cells sends one

particle to a filter in the PE. In fact, a neighbor cell broadcasts the single particle to 13 other

home cells as well. For instance, NC1 and NC2’ in Figure 3·5(c) may correspond to the

same cell in the simulation space.

34

Algorithm 5 High Level Mapping 3 reordered
1: for each home cell hcell in all cells do parallel ▷ Home cell loop, parallel
2: for each cell ncell in neighbor cells do parallel ▷ Neighbor cell loop, parallel
3: for each particle q in ncell do ▷ Neighbor particle loop
4: for each particle p in hcell do ▷ Home particle loop
5: fpq =ComputeForce(rp,rq)
6: end for
7: end for
8: end for
9: end for

This mapping method addresses both the bandwidth and the memory idle problems.

First, at most one particle is broadcast from any cell, allowing concurrent position reading

without requiring a large number of BRAMs per cell. Second, now that multiple home

cells can be evaluated, the PEs can operate simultaneously across the simulation space for

optimal memory utilization. Third, similar to the second mapping scheme, the force write-

back data transfer rate can be further reduced by switching the inner and outer loops to

enhance neighbor particle locality, as shown in Algorithms 4 and 5.

3.3 Data Format

In this section, we explain the the fundamental data formats used in our work, as well as

the merits brought by the choices of data formats. In this dissertation, a 23-bit fixed-point

data format is adopted for position storage, while the 32-bit single precision floating point

format is applied to velocity and force data throughout the designs.

3.3.1 Position Data Format

The 23-bit fixed-point position in our system is normalized to the cell edge width with the

cell edge width defined as 1. The normalized position represents the offset from the bound-

ary of a cell. This normalization ensures that the decimal point is fixed right before the 23

bits. Through this normalization process, the 23 bits achieve the similar level of accuracy

35

as single-precision floating-point numbers. The 23 bits correspond to the 23-bit mantissa

in floating-point numbers (with the ghost bit set as 0 instead of 1, potentially losing 1-

bit information), equivalent to fixing the 1-bit sign and the 8-bit exponent to constants in

floating-point.

As position is a three-dimensional quantity, the fixed-point format requires 69 bits,

while the floating-point format demands 96 bits. This difference in data width is significant,

especially when considering the storage requirements on FPGAs. For example, an Intel

M20K Block RAM has a width of 40 bits, while a modern Xilinx FPGA Block RAM

typically has a width of 36 bits. With the fixed-point format, only 2 BRAMs side-by-side

are needed for storage, whereas the floating-point format requires 3 BRAMs. Here 23

instead of 24 bits are used because the remaining 3 bits for Xilinx BRAMs can be used to

encode particle type.

Apart from storage savings, the fixed-point format also presents opportunities for filter-

ing. As discussed earlier, planar filters take advantage of the reduced number of bits. With

75% fewer bits (if from 32 to 8) involved, the planar filters allow 3% more pairs to pass

through. In the fixed-point format, obtaining the 8 leading bits is straightforward. In prac-

tice, the cell position information is padded before the 8 bits, resulting in approximately 10

bits in the planar filters, as described in the subsequent discussion.

While the leading bits can also be obtained from a single-precision floating-point num-

ber normalized to 1, the floating-point format has a major disadvantage in terms of particle

interactions across cells. In the fixed-point format, when two particles are from different

cells, their relative positions can be directly padded before the fixed-point bits. For in-

stance, if particle A has a position of 1.5 along the x-axis and particle B has a position of

2.4, where 1 and 2 before the decimal points represent the padded cell locations along the

x-axis. However, when padding cell information to a floating-point number, the exponent

component needs to change, making the application of planar filters more challenging.

37

compared to the 23 bits. After the conversion, the position differences dx, dy, and dz are

obtained through floating-point additions, and r2 can be computed accordingly. Impor-

tantly, this conversion is only performed for particle pairs that pass the filters, and each

force evaluation unit requires only one converter.

On an Intel Stratix 10 FPGA, the converter in the second method consumes approxi-

mately 15 ALMs, while the first method requires around 170 ALMs. The converter in the

second method also improves latency, taking only 1 cycle compared to approximately 5

cycles in the first method. However, the second method requires three additional DSPs per

force evaluation unit.

In Figure 3·6(c) and (d), the normalized relative error results for computed forces with

interpolation (the interpolation method will be discussed in the following section) are com-

pared to 64-bit floating-point forces directly computed, utilizing 3 bits of cell indices. The

absolute relative error typically varies with interpolation parameters and system parame-

ters such as σ and is on the order of 10−5. The 32-bit floating-point result, starting with a

cell index of 0 instead of 1, is slightly more accurate than using the 24-bit offset since the

mantissa actually represents 24-bit precision with the ghost bit.

3.3.2 Force-Related Data Format

Single-precision floating-point data format is adopted for forces and r2. This comes with

two main reasons. First, the format naturally emphasizes the precision of small r2, which

contributes to large forces that are significant. Second, the force exhibits a wide data range,

making it hard for fixed-point numbers to represent.

First, during force computation, instead of computing the r14 and r8 terms directly at

high hardware cost, we utilize a force table-lookup technique as described in equation 3.10-

3.12 and figure 3·7. In order to get the value of r−α, we use linear interpolation method as

Equation 3.10 shows, where a and b are lists of parameters indexed by two indices s and b

introduced in Equation 3.11 and 3.12. Since r2 is a floating point number, the range of data

38

Excluded Out of RangeS0 S1 S2

r²0 Rc

...r -α

Figure 3·7: The interpolation method. α is a positive integer too large for r−α to be
computed. In our case, α is 8 or 14. The small r region is excluded due to non-physical
high energy.

covered by r2 is divided into ns sections denoted as S0, S1, etc. based on the exponent bits

of r2. Furthermore, each section is split into nb regular-sized bins based on the mantissa

bits of r2. That being said, the indices s (section) and b (bin) are obtained accordingly. It

is also obvious in the figure that the precision is adaptive to the force significance, i.e., the

resolution is higher for smaller r2, which is subsequently translated to a higher resolution

in larger forces.

r−α = aα(s,b)r2 +bα(s,b) (3.10)

s = ⌊log2(r
2)⌋+ns (3.11)

b = ⌊(2ns−sr2 −1)nb⌋ (3.12)

Second, the r14 and r8 terms directly lead to a much wider range of forces compared

to r2. In order not to miss either large forces or small forces, floating-point is considered a

better choice compared to fixed-point, due to the use of exponent bits which significantly

extends the data range it expresses.

3.4 Summary

The above theoretical analysis of cell size, and the high-level memory-to-PE mapping

schemes establish the foundation of the hardware architectures to be discussed in the fol-

lowing chapters.

39

Except for the architecture discussed in Chapter 6, where a modified Manhattan method

is employed instead of the previously discussed half-shell method, the cell edge length of

Rc is utilized in all other architectures. In Chapter 6, although the cell shape becomes

irregular, it is still based on the Rc cell edge length.

The mapping schemes presented in this section will be further explored in the subse-

quent chapter along with their corresponding architectures. Specifically, the first and third

mapping schemes will be emphasized as two contrasting approaches. The first scheme is

particle-centric and focused on depth, while the third scheme is characterized by a more

uniform distribution and breadth. The second scheme serves as an intermediate method,

between the first and third schemes.

40

Chapter 4

Single-FPGA Architectures

This chapter begins by presenting the baseline architectures, which are derived from the

three mapping schemes discussed in Section 3.2. Subsequently, we introduce two op-

timized architectures that align with the first and third mapping schemes, namely, the

particle-centric and uniformly-spread architectures.

4.1 Introduction

The mapping schemes brings us to the essence of the single-FPGA (or ASIC) scalability

problem: after the high-level mapping scheme is determined, how can a scalable data path

from memory to PEs be constructed. Directly connecting memory to PEs in a 3-D appli-

cation that is mapped to a 2-D FPGA fabric leads to a complex interconnect between PEs

and memory, resulting in a significant decrease in frequency. For instance, in the 512-node

(8×8×8) Anton 2 machine, even with its direct 3-D torus topology to deploy such a 3-D

application, the longest connection between two nodes is still almost two meters [Towles

et al., 2014]. On the other hand, in a single FPGA, it is not practical to directly map the

3-D application to the 2-D FPGA structure due to space and wiring constraints. Therefore,

a transposed memory block method and ring routing are proposed and proven adequate for

RL force evaluations (as shown in the following discussions section 4.3).

However, the routing method in the ring architecture requires more cycles and can lead

to network congestion, resulting in reduced throughput. To address this issue, we have de-

veloped several techniques. Firstly, a data caching method has been implemented to min-

41

imize data transfer demands and improve data locality (see Section 4.3.2). Additionally,

instead of relying on bulk synchronization, we propose a novel dynamic data dispatching

method to allow the processing elements (PEs) to work continuously without frequent syn-

chronizations (see Section 4.3.2). Moreover, an out-of-order data broadcast mechanism

has been devised to dynamically fill empty slots in the ring and eliminate bubbles in the

network (see Section 4.3.2). These techniques collectively aim to enhance the performance

and efficiency of the system.

An important consideration in these designs is to ensure compatibility with a third stan-

dard optimization technique: prefiltering particle pairs within neighboring cells to eliminate

pairs where the mutual force is negligible, similar to the concept of neighbor lists in CPU

implementations [Chiu and Herbordt, 2010a]. In theory, for uniformly distributed parti-

cles, the average pass rate for a filter is approximately 15.5%, and around 17% for a planar

filter [Chiu and Herbordt, 2009]. In our work, we enhance the conventional filters by in-

troducing hierarchical filters (see Section 4.3.2). This approach not only increases the pass

rate to 25%, but also helps alleviate the data transfer pressure.

To summarize this introduction:

a new generation FPGA-based MD RL accelerator is proposed with the following major

contributions.

• An optimized FPGA-based MD RL accelerator with several design variations that

can process 50K particles without off-chip memory.

• On system-level, three particle/cell to PE mapping schemes are proposed and evalu-

ated in depth.

• The ring routing method is studied to match the 3-D to 2-D mapping of the up-scaling

number of PEs on a single FPGA chip. With an out-of-order data broadcast mech-

anism and a data caching mechanism applied, the latency and concurrency problem

introduced by the ring are solved.

42

• Other optimizations, for example, the hierarchical filtering method and memory recy-

cle mechanism are proposed; they reduce hardware consumption and improve hard-

ware efficiency.

4.2 Baseline Architectures

In this Section, we introduce the detailed baseline designs corresponding to the high level

memory-to-PE mapping schemes discussed in section 3.2.

4.2.1 Design 1: Particle Centric

The particle-centric design follows the first high level mapping scheme, where all PEs focus

on a single reference particle at a time.

The design layout is illustrated in Figure 4·1(a). We assume there are m cells in the

simulation space, each equipped with a set of block RAM-based caches, including a posi-

tion cache, a force cache, and a velocity cache. These caches store particle information at

consecutive addresses based on particle IDs.

The force evaluation phase begins with the position caches, where neighbor particle

positions are distributed to individual filters for pairing with a reference particle. This

distribution is carried out by a position distributor (Figure 4·1(d)), which selects particle

position data from 14 specific position caches corresponding to the neighbor cells. The

filters are partitioned into 14 groups, with each group only receiving neighbor particles

from a single neighbor cell. Upon receiving a neighbor particle, it is stored in a chain of

registers as indicated by the blue arrows. Once all the neighbor particles are pre-loaded

into the registers, the filtering process begins. The reference particles in a cell are streamed

and broadcast to all the filters. The streaming reference particles are then paired with the

registered neighbor particles. If a reference-neighbor particle pair falls within the cutoff

radius, it passes the filter and is buffered for force computation.

43

As explained in Section 3.2.1, the system is equipped with approximately 1000 filters,

enabling the evaluation of a reference particle in a single cycle. Typically, a cell contains

fewer than 80 particles, such as hydrogen with a Van der Waals radius of 0.12 nm, while

the cutoff radius is typically around 1 nm. Consequently, the 14 neighboring cells collec-

tively contain approximately 1000 particles, aligning with the number of filters available.

Based on equation (2.6), a force computing unit can process particle pairs from seven filters

simultaneously to maintain a consistent workload. In cases where the number of filters is

insufficient to accommodate all the neighbor particles, it may require two or more cycles

to evaluate a reference particle.

The force outputs from the force computing units are fed into two sets of adders. Firstly,

the partial forces of a reference particle (reference forces) are accumulated using an adder

tree and then stored in a force cache. The adder tree processes one reference particle at

a time, resulting in bubbles between the evaluations of two reference particles. In the

worst-case scenario, it requires seven cycles to evaluate a reference particle when all seven

upstream filters of a force computing unit have the reference-neighbor particle pairs that

pass the filtering process. Secondly, the forces applied to neighbor particles (neighbor

forces) are registered and accumulated in separate adder groups (Figure 4·1(e)) during the

evaluation of all the reference particles in a cell, and then accumulated into their respective

force caches. In other words, the neighbor forces are accumulated into larger force chunks

before being written to the force caches. Nonetheless, there are still approximately 1000

neighbor force chunks in total that need to be accumulated into 14 force caches. To address

the mismatch between the force throughput and the force cache bandwidth, additional force

caches can be employed if there are available block RAM resources. For example, a cell

may be equipped with multiple force caches to achieve higher bandwidth. However, the

key problem lies in the fact that there are m force caches available, but only 14 of them are

utilized at any given time.

44

The motion update mechanism remains the same for all three baseline architectures and

is therefore to be discussed after the descriptions of the baselines.

4.2.2 Design 2: Cell Centric

The cell-centric design corresponds to the second high-level mapping scheme, where all

PEs are dedicated to a reference cell as the home cell. The design is illustrated in Figure

4·1(b), which shares a similar architectural layout with Figure 4·1(a), but demonstrates

notable differences in its operation. We will describe the workflow by emphasizing the

contrasts between this design and the previously discussed particle-centric design.

Firstly, the exploitation of position data locality differs between the two designs. In

Design 1, neighbor particles are cached in a sequence of registers to optimize neighbor

position locality, while reference particles naturally exhibit good locality as they are broad-

cast to all filters. However, in the current baseline design, the locality of reference particles

is compromised, as the focus is on all reference particles within a cell rather than a single

particle. As a result, neighbor locality is enhanced, as a neighbor particle is concurrently

utilized in multiple filters.

Secondly, a difference lies in the filter grouping method. In Design 1, all filters are

divided into 14 groups, with each group potentially containing tens of filters. However, in

the current baseline design, a filter group consists of precisely 14 filters. Starting from a

position cache, reference particles are sequentially broadcast to the filter groups and stored

in registers. Each filter group is specifically designed to receive particle position data from

14 neighbor cells. Unlike Design 1, where neighbor particle positions are processed within

each filter group, in the current design, the neighbor particle positions flow through the

filters and are paired with the registered reference particles. More specifically, a neighbor

particle is utilized in all filter groups to be evaluated with multiple reference particles from

the home cell.

Thirdly, the force accumulation is modified accordingly. Since multiple reference par-

46

ticles are now being processed simultaneously, the adder tree used in Design 1 is replaced

with individual regular adders for each reference particle. Specifically, each adder is ded-

icated to accumulating the forces of a single reference particle in a filter group. The ref-

erence forces are first accumulated, and then directed and integrated into the force caches

through the partial force distributor. In terms of the neighbor forces, a neighbor particle is

shared among multiple filters at the same time, allowing for the accumulation of neighbor

forces before being written to their respective force caches. Consequently, adder trees are

required to manage the high throughput of the neighbor forces in coordination with the

limited number of force caches.

Lastly, synchronization is demanded for neighbor partial forces in the adder trees. To

ensure that the input forces to an adder tree come from the same neighbor particle, stalls

are introduced to prevent the dispatch of neighbor forces from other particles before the

previous forces are fully processed. This means that the neighbor particles are organized

into batches, with each batch consisting of 14 particles corresponding to the 14 neighbor

cells. It is essential to complete the evaluation of a batch before allowing the partial forces

of the next batch to enter the adder trees. This mechanism is similar to the data handling in

the adder tree in Design 1, as the goal is to prevent forces of different particles entering the

adder tree at the same time.

4.2.3 Design 3: Uniform Spread

In this design, our focus shifts from processing a single reference particle or reference cell

at a time to simultaneously handling all cells. The key distinctions lie in the specific aspects

we will discuss in this section.

Firstly, there are significant differences in data locality compared to the previous two

designs. In Figure 4·1(c), we assume m cells, and each of the m position caches broadcasts

a reference particle from a home cell to its designated filter group. Unlike the previous

designs, this uniform spread design eliminates the need for particle pre-loading, effectively

47

reducing latency overhead. Each reference home cell particle serves a single filter group,

similar to Design 2, but now with multiple home cells involved. On the other hand, the

locality of neighbor particles is reduced compared to Design 2. A neighbor particle is only

used in 14 filters within different filter groups corresponding to 14 home cells, whereas in

Design 2, a neighbor particle is used in all filter groups.

Secondly, the position distribution method differs from the previous two designs. After

the reference particles are registered, the position caches start distributing neighbor parti-

cles to the filters in streams. Figure 4·1(f) illustrates the position distribution mechanism,

where the key difference lies in cell usage. In Design 1 and 2, only 14 cells are utilized

at a time, while in the current design, all cells are utilized. Once all the current refer-

ence particles are evaluated, the position caches dispatch the next reference particles to the

processing elements.

Thirdly, synchronization methods vary. Synchronization in Design 1 and 2 primarily

stems from the adder trees, whereas in the current design, no adder tree is required. How-

ever, synchronization is necessary in the filters. Firstly, the position broadcast mechanism

requires all processing elements to receive particles with the same ID, which facilitates

starting with the same particle ID for all processing elements, thus necessitating global

synchronization in case the position caches have different numbers of particles. Secondly,

the reference position is not stored in filter buffers (between filters and arbiters, not shown

in the figures), but in a register shared by all the filters and force computing units. Con-

sequently, the reference position cannot be discarded until all related operations are com-

pleted.

Lastly, the force accumulation mechanism varies. The reference particles exhibit good

temporal locality, allowing for direct accumulation of reference forces into their respective

force caches using adders. On the other hand, the neighbor forces are highly fragmented

and flood into force caches for accumulation. Adder trees are not utilized due to limited

48

resources, as all cells are processed simultaneously. The force distribution mechanism

(Figure 4·1(g)) is also adjusted from the previous designs.

4.2.4 Motion Update and Particle Migration

All three baseline designs utilize a cell-based cache data structure and employ the same

motion update method.

After the force evaluation phase, the motion update units simultaneously request po-

sition, velocity, and force data from individual caches. Once requested, the force data is

transmitted to the motion update units while the original entries in the force caches are

erased to prepare for the next force evaluation phase.

However, when dealing with particle migration, simply sending the updated position

and velocity data back to overwrite the cache contents is not feasible. This limitation is

illustrated in Figure 4·2(a), where a particle being migrated out from Cache 1 leaves an

empty slot in the cache. Without further optimization, a migrating particle would need to

search for an empty slot over multiple cycles.

A more sophisticated approach involves using a pointer to track the previously evalu-

ated particle, as depicted in Figure 4·2(b). In this method, the local particles are updated

first, while the migrating particles are temporarily stored in a FIFO buffer. As the 3rd

particle migrates away, the pointer points to the vacant slot, allowing the 4th particle to be

updated in the 3rd slot, with the pointer shifting to the 4th. Consequently, the non-migrating

local particles are compactly stored in the cache. Subsequently, the migrated particles are

read from the FIFO buffer and integrated into the cache in the correct order.

However, the advanced method using a FIFO buffer incurs additional hardware costs

that are comparable to implementing another cache itself. Therefore, a simpler and more

efficient approach is to employ two caches to address this issue, as demonstrated in Figure

4·2(c). When a particle migrates in, the local update process is paused, and the new particle

is written to Cache 2 in a sequential manner. Eventually, all updated particles are stored

50

tiveness of the system.

4.3.1 Optimized Design 1: Transposed Memory Blocks

The Optimized Design 1, is derived from Design 1, where a single reference particle is

paired with all its neighbor particles. The complete architecture of Optimized Design 1 is

presented in Figure 4·3(a). While storing particles by cell, as employed in Baseline Design

1, is an effective approach for organizing data, it is not well-suited for the workload map-

ping scheme adopted in this optimization. In the particle-centric scheme, only 14 cells are

active at any given time, and the performance is constrained by the throughput of the par-

ticle data caches. Therefore, the objective of this optimization is twofold: maximizing the

utilization of available caches to meet the data bandwidth requirements, while maintaining

the organization of particles.

The key solution lies in the transpose of the original block RAM arrays, as depicted

in Figure 4·3(b). Instead of storing particles by cells, the block RAMs now store parti-

cles based on their particle ID, with the entries representing different cell IDs (assuming

there are m cells). This transpose allows for improved data access patterns, enabling better

utilization of the caches while preserving the organization of particles.

Optimized Data Paths

One key improvement lies in the reorganization of the position data distribution path to

filters. In the physical sense, the number of particles per cell is typically fewer than 80,

which means that the required number of block RAMs is limited. With each cache now

responsible for storing particles with the same particle ID from different cells, it becomes

possible to load all neighbor particles related to a reference particle into the registers above

the filters in just 14 cycles. This is a significant improvement compared to the baseline

design, which requires approximately x cycles due to the limited active position caches (x

is the number of particles per cell, typically ∼60 in water environment). Moreover, these

52

plex data routing. However, in Optimized Design 1, a filter group only evaluates neighbor

particles with the same particle ID. As a result, each neighbor force produced by a filter

group can be directly accumulated into its designated force cache, eliminating the need for

intricate data routing. It is worth noting that the mapping ratio of seven filters to one force

computation unit is maintained, ensuring efficient utilization of resources.

Furthermore, the design exploits the locality of reference particles to enhance perfor-

mance. In baseline 1, the adder tree used for force accumulation could introduce bubbles

and negatively impact performance. To mitigate this issue, a buffer array is inserted be-

tween the adder tree and the force computation units in Optimized Design 1. Unlike the

force caches, all n buffers store reference forces from the same cell, identified by particle

ID. Once a reference particle is evaluated and its reference force fragments are fully accu-

mulated into the buffers, the accumulated reference force chunks are sent to the adder tree

for an all-reduce operation. The resulting reference force is then accumulated into a force

cache. By using buffers, the force computation process for a single reference cell can be

pipelined without stalls. During the evaluation of a reference cell, the buffers are gradually

cleared with the all-reduce operations conducted in the adder tree. The evaluation of the

next reference cell begins once all the buffers have been cleared.

Another optimization is employed during data referencing. In Optimized Design 1, the

buffers attached to the filters now only store neighbor cell IDs, which are much lighter

in weight compared to particle positions. When a pair is selected by an arbiter, the cor-

responding neighbor cell ID is sent to the position cache to retrieve the required position

data. This data is then transmitted to the force computation unit for further processing. This

optimization reduces the amount of data transmitted and improves the overall efficiency of

data referencing in the design.

53

Particle Migration Handling

The transposed caches in Optimized Design 1 offer new possibilities compared to the

double-buffering migration handling method. Let’s consider the example of four trans-

posed caches shown in Figure 4·3(c). Initially, the last two caches are empty to ensure

that no particles are lost due to migration. In practice, a slightly higher number of caches

(around 25% more) are used for reservation purposes.

Suppose particle P is moving from Cell 2 to Cell 3. It checks the empty slot ID available

from the empty slot ID FIFO of Cell 3 and moves to the corresponding slot. Simultaneously,

the vacant slot ID is pushed into the empty slot ID FIFO. It is important to note that particle

P may undergo further updates in Cell 3 during parallel motion update, but the data is not

harmed because the force acting on particle P is 0, in other words, the corresponding force

in the force cache is 0. The empty slot ID FIFOs required for this process are relatively

small and can be implemented using a few registers.

As multiple iterations of the MD simulation progress, vacancies similar to the one cre-

ated by particle P begin to populate the caches and are scattered among them. Surprisingly,

these vacancies turn out to be advantageous rather than detrimental. Initially, the reserved

empty caches have no workload to distribute to their filters or force pipelines downstream,

leading to idle computing units. However, as the vacancies spread and migrate, the empty

caches gradually fill up with migrating particles. Consequently, the workload becomes

more balanced as the simulation proceeds, ensuring better utilization of computing re-

sources.

High Spatial Capacity

The hardware resource requirements of the optimized design show minimal increase when

scaling to a larger number of cells, even when scaled up to approximately 500 cells. In con-

trast to baseline 1 and baseline 2, where the complexity of wiring and resource consumption

54

is largely determined by the number of cells, the memory block transpose method enables

easy scalability of the cell count. When a new cell is added to the simulation space, the

particles within it are evenly distributed to the caches. With each cache having a depth of

512, this data structure can handle up to 512 cells effectively.

If the number of cells exceeds 512, the design layout remains intact. The caches can be

extended by incorporating additional block RAMs as the depth of a block RAM is normally

512, and minor adjustments can be made to the cell selection logic to accommodate the

higher cell count. This scalability feature allows the optimized design to flexibly adapt to

simulations with a larger number of cells without significantly increasing the complexity

of the hardware resources or wiring.

Summary

To conclude, the Optimized Design 1 exhibits multiple advantages over the Baseline De-

sign 1, including simplified and less entangled data path, more localized neighbor particle

distribution, effective particle migration handling that automatically balances the workload,

and the capability and flexibility in scaling of the simulation space.

4.3.2 Optimized Design 2: On-chip Ring Network

This architecture represents an advancement over the 3rd mapping scheme, where each

processing element (PE) is assigned to a different cell. In Baseline Design 3, as the number

of PEs increases, the wiring complexity escalates significantly. Furthermore, the neighbor

particle data exhibits poor locality, with neighbor positions not being reused and neighbor

forces not being aggregated before integration into force caches.

To address the routing challenge, we introduce a ring-based structure to replace the

original direct connections. However, the utilization of a ring introduces longer latency

and data life within the network, which can lead to congestion. In this section, we present a

solution that minimizes data transfers within the network by localizing the neighbor particle

55

Position
Input
Ring

PEs
Force
Output
Ring

Motion
Update
Units

Force
Caches

Motion
Update

Ring
Position
Caches

Velocity
Caches

Figure 4·4: RL dataflow in brief with rings. Yellow: Memory blocks; orange: Routing
rings; blue: computing units.

Network
Node 1

Data
Destination 1

Data
Source 2

Data
Source 1

Network
Node 2

Data
Destination 2

Data
Source N

Network
Node N

Data
Destination N...

...
Figure 4·5: The ring routing path. Position input ring: from position caches to PEs. Force
output ring: from PEs to force caches. Motion update ring: from motion update units to
position caches and velocity caches.

data. This approach effectively reduces congestion, minimizes bubbles in pipelines, and

decreases the number of invalid particle pairs.

Additionally, we discuss a method that reduces design redundancy. The double buffers

previously employed in the motion update process are replaced with linked lists, resulting

in a 50% reduction in memory usage for the position and velocity caches. This optimization

enhances the efficiency and resource utilization of the architecture.

Memory-PE Interconnect

To address concerns regarding frequency degradation, we introduce a daisy-chain-based

uni-directional ring interconnect system, as shown in Figure 4·4, to replace the direct inter-

connects depicted in Figure 3·5. The choice of a 1-dimensional (1-D) topology is based on

its cost-effectiveness and the ability to hide the long latency associated with this configura-

56

tion (as discussed later in this section). The routing rings are utilized for three types of data

transfer: position caches to processing elements (PEs), PEs to force caches, and motion

update units to position and velocity caches.

Ring Behavior: Each of the three rings exhibits different behavior. A position packet

is broadcast to multiple destinations and remains within the ring until it reaches its final

destination. In contrast, a force or motion update packet has a single destination. It is

important to note that particles may migrate to other cells after each iteration, necessitating

a ring for motion update packet routing. The motion update ring experiences much less

congestion compared to the other rings due to the relative rarity of particle migration, thus

requiring fewer details.

Figure 4·5 illustrates the interconnect of the ring nodes. Each ring node has two data

sources and two destinations. New data from a source can only be injected into the network

when the node is not occupied. A packet within the network is discarded once it reaches its

final destination; otherwise, it is forwarded to the next node.

Ring Configuration: The mapping from 3-D cells to the 1-D ring is yet to be described.

A straightforward mapping method is as follows:

Ir = Ny
cellN

z
cell(x−1)+Nz

cell(y−1)+ z (4.1)

Here, Ir represents the index shown in Figure 4·5, ranging from 1 to N, Nx
cell denotes the

number of cells along the x-axis, and x represents the coordinate of cells in the x direction,

ranging from 1 to Nx
cell . While finding the optimal mapping from 3-D cells to 1-D rings

can be a complex task, we utilize the aforementioned mapping method as it significantly

reduces the average packet lifetime.

Another parameter to consider is the number of rings. Although routing within the rings

overlaps with force evaluation, the latency may not be entirely hidden when there are too

many cells or too few particles per cell, particularly for the force output ring. To maximize

57

latency hiding, the concurrency of the rings is adjusted according to the dataset, allowing

multiple data slots to be deployed on a single network node.

Data Caching

By removing the direct connections, we merge the specific datapaths for cell-PE pairs into

the narrow rings. As a consequence, the desired throughput cannot be satisfied. To tackle

this problem, we develop a two-fold data caching method in order to reuse the input position

data and to effectively aggregate the force fragments.

Neighbor Particle Caching: The algorithmic explanation of this method is outlined in

Algorithm 3 and 5, while the hardware description can be found in Figure 4·7(a). Instead

of directly retrieving neighbor particle data from neighbor caches as previously done, the

neighbor data is now cached in registers located on top of the filters. This means that

instead of traversing the neighbor particles for a single home cell particle (caching only

one particle), we now traverse the home cell particles for multiple neighbor cell particles

(caching multiple particles). This approach significantly reduces the data transfer pressure

from position caches to force pipelines. For instance, if two neighbor particles are evalu-

ated together with the home cell, it requires 50% fewer transfers compared to the previous

method.

An additional advantage of the neighbor particle caching method is a more balanced

workload distribution among the force computation units. Figures 4·6(a) and (b) depict

two different scenarios related to the filtering rate. When traversing neighbor particles with

respect to a single reference particle, situations (a) and (b) may arise, resulting in highly

imbalanced filtering. However, in the current scheme, multiple neighbor particles act as

reference particles, significantly reducing the chances of filtering imbalance.

To complete the design, the neighbor force data are cached in registers (at the bottom

of Figure 4·7(a)). The locality of neighbor particles is taken advantage of and the neighbor

forces are accumulated before being sent to the force output ring. As a result, the payload

60

memory cost is demanded in the form of additional filter buffers.

To determine if a neighbor particle has completed filtering, the home particle ID is

recorded upon the arrival of the neighbor particle. The filtering process is considered com-

plete when the same ID is observed again as the home particles are traversed repeatedly. A

filter buffer can store up to two home particle IDs, or only one if only the AR is being used.

Partial Force Caches

Due to the difficulty of caching home particle forces in this design, these forces are di-

rectly accumulated into force caches without passing through a force output ring (refer to

Figure 4·7(a) bottom and Figure 4·7(c)). When multiple force pipelines are operating on

a single cell (as shown in system designs (b) and (d) in Figure 3·5), more than one force

cache is required to match the throughput of the force pipelines.

The forces received from the rings are accumulated in a dedicated force cache, as de-

picted in Figure 4·7(c). If multiple force output rings are deployed to achieve higher con-

currency, the forces are buffered and arbitrated in a round-robin manner before being ac-

cumulated into the same force cache. This approach works effectively because the arrival

rate of forces through the rings is much lower than that of the forces from the processing

elements (PEs).

The force caches, which hold partial forces, are properly aligned in memory based on

particle IDs. It is not necessary to aggregate the forces until the motion update phase begins.

Consequently, only a small number of adders are required to perform the aggregation of

the partial forces. Since motion update is not computationally intensive, and the number

of motion update units is relatively small compared to the number of force pipelines, the

resource demand for the aggregation process remains manageable.

64

modified to 2. To prepare for the arrival of the next particle, slot 2 points to slot 4, which is

the next slot to be allocated, as indicated by NT. When the next particle migrates in, slot 4

is filled and points to the subsequent slot to be allocated.

The method of particle read during force evaluation is not significantly affected by this

linked list implementation. The particles can be traversed either by following the linked

list or by using slot indices. If the hardware supports data streaming such that a throughput

of one particle per cycle can be achieved with the linked list, the performance remains

uncompromised. Otherwise, when traversing by slot indices, only a few empty slots are

encountered since the variation in the number of particles per cell is typically small.

Supporting Larger Simulations

The discussions presented so far have been based on the assumption that the number of

processing elements (PEs) is equal to or greater than the number of cells in the molecular

dynamics (MD) simulation. However, what if the simulation space is large and consists of,

let’s say, a thousand cells? In such cases, it becomes necessary for PEs to work on multiple

cells simultaneously. However, several challenges arise in this scenario.

Firstly, with more cells involved, storing the additional data on-chip becomes a chal-

lenge due to the limited resources of BRAM. Secondly, the latency in the routing rings be-

comes overwhelming when more ring nodes are added to support a larger number of cells.

And thirdly, for each simulation step, the number of cells accessed remains greater than the

number of PEs due to the absence of periodic boundary conditions (see Figure 4·11(a), the

orange cells are to be processed in the next step but still need to be accessed).

As a BRAM typically has 512 entries in depth and a cell has <80 particles per cell,

most BRAM entries are wasted if a BRAM only contains the particle data from a single

cell. To address the issue of data storage, a solution is to partition the BRAM into multiple

interleaved cell regions. Each region contains the particle data from separate cells that are

to be processed in different steps (as shown in Figure 4·11(b)). This approach allows for

66

4.3.3 General Summary of the Optimized Designs

The two designs, optimized design 1 and optimized design 2, exhibit distinct strengths and

weaknesses in the context of their application.

Optimized design 1, derived from high-level mapping scheme 1, offers a straightfor-

ward approach to the molecular dynamics (MD) process with convenient scaling in space

and automatic workload balancing mechanism. However, it faces two significant chal-

lenges. Firstly, the design struggles to be extended to multiple FPGA chips. In an intuitive

sense, each FPGA chip is responsible for evaluating a specific region within the simulation

space, and data exchange is primarily required among a few boundary cells. Neverthe-

less, due to the scattering of particles from a single cell among all caches, all caches on a

single chip are uniformly involved in inter-FPGA communications. Consequently, this in-

tensifies the complexity of communication and poses difficulties for multi-chip extension.

Secondly, in this design, the neighbor particles need to be reloaded after the evaluation of

each reference cell, leading to an overhead of approximately 20% in the overall processing

time.

On the other hand, optimized design 2 offers advantages in terms of multi-chip exten-

sion. It maintains the storage of particles by cell, effectively localizing particles in space.

This characteristic facilitates the distribution of workload across multiple FPGA chips.

However, it requires additional resources for constructing the routing rings, which serve as

the communication infrastructure. Moreover, the scalability of this design on a single chip

is relatively weak compared to optimized design 1. This is primarily because optimized de-

sign 2 relies on a more sophisticated mechanism to support larger-scale simulations, which

may strain the available resources on a single chip.

67

4.4 Evaluation

4.4.1 Experiment Setup

The implementations of the designs are conducted on a Xilinx Alveo U280 acceleration

card, which offers ample resources for the computations. The card provides 1065K CLB

(Configurable Logic Block) LUTs, 2134K CLB registers, 1490 block RAMs, 960 ultra

RAMs, and 8490 DSPs within the dynamic region.

In the simulations, it is assumed that each cell initially contains 64 particles, which

aligns with physical considerations. Additionally, all designs are equipped with eight mo-

tion update units, ensuring that the time spent on motion update is negligible compared to

the force evaluation phase.

The baseline designs 1 (B1) and 2 (B2), as well as the optimized design 1 (O1), have a

fixed number of processing elements (PEs). B1 and B2 employ 128 PEs, while O1 utilizes

160 PEs, with 20% of the PEs reserved to handle particle migration. On the other hand,

baseline design 3 (B3) and optimized design 2 (O2) have a number of PEs equal to the

number of cells in the simulation space, providing a more flexible and scalable approach.

For the purpose of performance comparison, the hierarchical filters in O2 are temporar-

ily disabled. The impact of various configurations and settings is discussed in greater detail

in Section section 4.4.3.

4.4.2 Performance and Comparison

To comprehensively analyze all five designs, we conduct evaluations both vertically and

horizontally. The vertical comparison focuses on assessing the performance of each design

with a variety of simulation size spaces, while the horizontal comparison evaluates the PE

efficiencies of the designs within the same simulation space. The vertical comparison aims

to show the scalability of the designs as the simulation space scales up. However, directly

comparing the performance of the designs can be misleading due to the different scaling

68

patterns of the PEs in each design. Therefore, to ensure a fair and universal comparison, we

use PE utilization as the criterion in our horizontal comparison, which allows us to evaluate

the efficiency of PEs across different designs within the same simulation space.

It is important to note that the results for design O2 in the 6×6×6 cell space are obtained

through cycle-accurate simulation, as the available on-chip resources of the Alveo U280

card are not sufficient to map all 216 PEs. Results for the 6×6×6 space with 108 PEs will

be presented in a subsequent section to provide a comprehensive analysis of the design’s

performance.

Vertical Comparison

Scaling results are given in Figure 4·12. The performances of the three designs on the left

with fixed number of PEs scale linearly with the increasing space size. This shows there is

no extra overhead involved as the simulation space scales up. From another perspective, O1

is suitable for evaluating a limited number of cells on a single chip, i.e., strong scaling. The

performance is not down-graded with a larger number of PEs working on a small number

of particles/cells.

Ideally, for the designs on the right, the number of PEs scales linearly with the number

of cells, and the bars in the figure should have the same height. However, the results are

clearly influenced by the increasing number of cells. In B3, as discussed above, traversing

all neighbor particles for a single reference particle leads to an imbalanced filtering rate.

This situation deteriorates as the number of PEs increases as the highest and the lowest

filtering rates are farther apart. In O2, the poor scaling is due to the extended rings (all bars

should be with same height for perfect scalability). Long rings result in long latency and

congestion in the rings. The slots in the rings are occupied by the packets still in transit,

preventing the new packets from entering the rings. This suggests O2 also works well

with a limited number of cells. In contrast with O1, however, O2 has more potential to be

extended to multi-chips (see discussion in section 4.3.3).

69

5
0

10
15
20
25
30
35
40
45
50

3

3

3

3

3

3
3

3

3

3

5
0

10
15
20
25
30
35
40
45
50

3

3

3

3

3

3
3

3

3

3

3x3x3

N
um

be
r o

f C
yc

le
s (

sc
al

ed
 to

 x
3)

Cell Structures

Baseline 1 Baseline 2 Op�mized 1

Baseline 3 Op�mized 2
Cell Structures

Cell Structures

Cell Structures

Cell Structures

4x4x4 5x5x5 6x6x6 3x3x3 4x4x4 5x5x5 6x6x6

3x3x3 4x4x4 5x5x5 6x6x6

3x3x3 4x4x4 5x5x5 6x6x6

3x3x3 4x4x4 5x5x5 6x6x6

Figure 4·12: The performance in cycles per iteration of three baseline and two optimized
designs. We show results for four different cubic cell structures in the simulation space to
show scalability. The y-axis is scaled to x3 for a better illustration of linearity. The dashed
line is to split the designs with substantial scalability differences.

70

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
3x3x3 Cells in Space 4x4x4 Cells in Space

5x5x5 Cells in Space 6x6x6 Cells in Space

PE
 U

�l
iz

a�
on

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

PE
 U

�l
iz

a�
on

B1 B2 B3O1 O2 B1 B2 B3O1 O2

B1 B2 B3O1 O2 B1 B2 B3O1 O2
Figure 4·13: The PE utilizations of three baseline and two optimized designs. The results
for four different cubic cell structures in the simulation space are provided. B1∼B3: base-
line designs; O1 and O2: optimized designs. The dashed lines are used to split the designs
with substantial scalability differences.

Horizontal Comparison

We define PE utilization as the average number of valid force pairs evaluated per PE divided

by the overall working cycles in an MD iteration. This metric provides insights into the

hardware efficiency of the designs since the majority of hardware resources are dedicated

to force computation.

The results, illustrated in Figure 4·13, reveal several observations. Firstly, B1 and B2

exhibit significantly lower PE utilization, ranging from 15% to 20%. This can be attributed

to the global synchronization mechanism implemented to prevent forces from different ref-

erence particles from entering the adder trees. Additionally, B1 suffers from the overhead

71

introduced by the neighbor particle pre-loading process.

In contrast, O1 demonstrates a considerable improvement in utilization, surpassing the

baselines by over 30%. By employing buffers above the adder tree, O1 only allows forces

from the same reference particle to enter the adder tree, eliminating the need for global

synchronization. However, the presence of reserved PEs and the overhead of neighbor

particle pre-loading still impose limitations on PE utilization.

For the 3×3×3 cell space, both B3 and O2 achieve higher PE utilizations. These de-

signs benefit from fully streaming particles without the need for pre-loading. However, B3

experiences a lower PE utilization compared to O2 due to the overhead caused by global

synchronization in a 3×3×3 cell space. On the other hand, O2 encounters a drop in utiliza-

tion for larger simulation spaces due to the elongated rings, particularly the force output

ring, which experiences heavy congestion.

It is worth noting that all baseline designs face challenges with complex data routing

paths, as depicted and discussed in Figure 4·1(d). This results in unacceptable frequency

degradation. In contrast, the optimized designs generally achieve frequencies exceeding

200 MHz, while the baselines can only operate at 70 MHz or lower for simulation spaces

larger than 4×4×4 cells. Thus, both optimized designs represent significant improvements

over the baselines from a frequency perspective as well.

4.4.3 Evaluating Design Options

In this Section, several further optimizations of Design O2 are evaluated, First, the hierar-

chical filtering mechanism is evaluated. The hierarchical filtering enhances the filtering rate

of planar filters from 17% to 25% without introducing redundant particle pairs. Second,

the number of rings can be configured to compensate for the limited throughput of rings.

72

Hierarchical Filtering

The hierarchical filtering mechanism not only improves the pass rate of filters in a PE but

also eliminates the need for PEs to compute zero forces. In the absence of hierarchical

filtering, every force register in Figure 4·7(a) must undergo zero checking before injecting

forces into a force output ring. Without this checking, the load on the force output rings

would increase due to unnecessary transfers. Although only eight exponent bits per dimen-

sion per register (24 bits in 3-D) need to be checked, the hardware cost can be significant

considering the potentially massive number of force registers in Figure 4·7(a). In our eval-

uation, we compare the original O2 design without zero force checking to the modified O2

design with hierarchical filters.

Figure 4·14 illustrates the performance of the two O2 configurations. In the case of a

3×3×3 cell space, the hierarchical version reaches equilibrium at four filters, whereas the

original version reaches equilibrium at six filters. For larger cell spaces, they both reach

equilibrium at a similar number of filters but with varying performance. This is because

the performance bottleneck lies in the force output and/or position input. The rings reach

their maximum capacity, and adding more filters does not improve their performance. As

discussed earlier, the hierarchical version reduces force output traffic without the need for

zero checking, resulting in better performance, especially in heavily congested force output

rings.

Number of Rings

Given that the rings become the bottleneck with larger cell spaces, higher ring bandwidths

are expected. We intuitively add more rings to the system to tackle the problem. We inspect

the number of force rings from one to four with up to two position input rings. The results

are given in Figure 4·15.

The number of rings are denoted as [number of position input rings, number of force

75

Table 4.2: FPGA-O2 performance of large simulation spaces compared to FPGA-O1,
GPU, and 32-thread CPU.

Cell # 6×6×6 8×8×8 12×8×8
Particle # 13824 32768 49152

Performance ns/day speedup ns/day speedup ns/day speedup
FPGA-O1 1602 1.87/1.021 680.4 1.13 455 1.12
FPGA-O2 2997/1637 1.00 765.9 1.00 511 1.00

GPU 1542 1.94/1.06 801.8 0.96 619 0.83
CPU-1× 11.1 271/148 5.26 146 3.49 146
CPU-2× 18.7 160/87.5 8.82 86.8 5.78 88.3
CPU-4× 31.4 95.4/52.1 16.0 48.0 10.6 48.4
CPU-8× 49.2 60.9/33.3 20.9 28.4 17.6 29.0

CPU-16× 53.1 56.4/30.8 28.5 26.8 21.5 23.7
CPU-32× 52.7 56.8/31.0 33.2 23.1 27.1 18.9

1 216 PEs (estimated) / 108 PEs, where the former assumes sufficient resources
are provided on an FPGA chip.

within a day), and all FPGA designs are run at a frequency of 200 MHz. FPGA-O2 is de-

signed with a sufficient number of rings to ensure that the bottleneck lies elsewhere, and

the number of rings is provided in the subsequent section.

Table 4.1 displays the results for the first set of simulation spaces. For small cell spaces,

such as 3×3×3 and 4×4×4, FPGA-O1 exhibits significant speedup compared to the other

designs due to its straightforward scaling capability, utilizing all available PEs in a small

cell space. It achieves a speedup of 4.18× compared to the GPU on a 3×3×3 cell space.

On the other hand, FPGA-O2 demonstrates consistent performance scaling with increasing

cell space size and delivers substantial speedup compared to the GPU, with improvements

of up to 74%.

The second set of results is presented in Table 4.2. It includes the 216-PE version

and the 108-PE version for a 6×6×6 cell space. The former demonstrates the hardware’s

scalability, while the latter showcases the capability of handling larger simulation spaces.

The on-chip resources enable us to simulate approximately 50,000 particles in total, with

performances comparable to those of the GPU.

76

4.4.5 Hardware Utilization

In order to investigate the suitability of different configurations of O2, Table 7.1 presents the

utilization of hardware resources for the performance evaluation of O2 in the representative

cell spaces evaluated above. The number of position rings and force rings are carefully

optimized to ensure that the performance is not compromised by congestion in the rings.

To accommodate the limited number of BRAMs, some of the buffers are implemented

using logic as LUTRAMs.

Note that the resource utilizations for the 8×8×8 and 8×8×12 cell spaces are nearly

identical. This is because the cache is not fully utilized in terms of depth, allowing it to

store data from multiple cells without incurring additional memory cost. Moreover, since

the number of PEs remains unchanged, only a negligible amount of additional resources is

required to adapt to the larger space size.

Table 4.3: Hardware Utilization of FPGA-O2 with spatial configurations.

Cell Space 3×3×3 4×4×4 5×5×5 6×6×6 8×8×8 8×8×12
Particle # 1728 4096 8000 13824 32768 49152

PE # 27 64 125 108 128 128
Position Ring # 1 1 2 1 2 2

Force Ring # 1 2 2 2 3 3
LUT 16% 38% 73% 65% 85% 85%
FF 9% 22% 41% 38% 51% 51%

BRAM 13% 33% 63% 55% 74% 74%
URAM 17% 40% 78% 68% 80% 80%

DSP 16% 39% 74% 64% 84% 84%

4.5 Related Work

Accelerating MD with FPGAs has been studied for many years [Azizi et al., 2004, Gu

et al., 2005b, Hamada and Nakasato, 2005, Scrofano and Prasanna, 2006, Gu et al., 2006a,

Kindratenko and Pointer, 2006, Alam et al., 2007, Schaffner and Benini, 2018, Jones et al.,

2022]. As resources per chip have multiplied, so has the number of compute units to

77

the point where thousands of elements need to be sourced and sinked every cycle. MD

is fundamentally a data movement problem: even with standard optimizations (cell lists

and Newton’s third law) data are necessarily used and updated simultaneously by many

compute units. With the previous routing solutions no longer viable, maintaining high

efficiency has required several design innovations. On ASIC implementations, although

both Anton [Young et al., 2009,Shaw et al., 2007] and MDGRAPE-4 [Ohmura et al., 2014]

adopted the ring-based mechanism, we had no a priori reason to believe that this mechanism

would be applicable to FPGAs.

4.6 Conclusion

In this study of FPGA-based range-limited MD work, we present multiple 3D-to-2D work-

load mapping schemes: three baseline designs based on distinct, and, at a high level, ex-

haustive mappings, and two optimized designs. The two optimized designs have scalability

in two directions. The first design scales easily with the size of a simulation space with a

constant number of PEs, while the second allows the number of PEs scale with the size of a

simulation space to obtain sustained performances. We also analyze several configurations

of the 2nd optimized design, and the effectiveness of the configurations is highlighted.

The overall motivation for using FPGAs for MD computation is that FPGA-based clus-

ters fill a vital niche: scalable COTS-based systems that provide long timescales on problem

sizes crucial to both drug discovery and basic science. The necessary condition is for the

per-device performance to be comparable to that of the accelerator alternatives. That has

been demonstrated here in multiple applicable scenarios. For example, optimized design 2

achieves a 1.74× speed-up for 8000 particles, and optimized design 1 achieves 4.18× for

1728 particles. While these simulations are a small fraction of tens of thousands typical in

production runs, they are exactly the workload per device when these runs are partitioned

over 8 or 32 devices, respectively.

78

Chapter 5

Bandwidth Analysis of FPGAs on a 3-D Torus

5.1 Introduction

The scalability challenge in Molecular Dynamics (MD) simulations is well-known, particu-

larly concerning the global communication involved during the long-range force computa-

tion (LR). This global communication poses a strong scaling problem in classical MD,

where increasing the number of processors to reduce iteration time ultimately leads to

increased communication time dominating the overall performance. ASIC- and FPGA-

centric clusters have proven effective in addressing this issue by employing dedicated chip-

to-chip communication that can transfer data quickly (in less than 100 nanoseconds) and

at high bandwidth, directly at the application-layer level with minimal additional over-

head [Young et al., 2009, George et al., 2016, Sheng et al., 2015, Sheng et al., 2017b].

While the mapping of LR onto FPGA-based clusters has been extensively studied, the

mapping of RL, which accounts for 90% of the FLOPs in MD and involves a larger amount

of data transfer [Gu et al., 2006b, Gu et al., 2008, Khan and Herbordt, 2012, Herbordt,

2013], has received less attention. The local nature of RL communication may have initially

made the problem seem straightforward, particularly for small clusters [Grossman et al.,].

However, our research has revealed that the reality is quite the opposite.

The transition from a single-chip RL design to a multi-chip design introduces several

scalability challenges. Despite the considerable transceiver bandwidth available on com-

mercial FPGA boards, we have found it to be insufficient due to poor data locality in typical

MD layouts. If we were to directly inherit the data transmission design from the single-chip

79

version, achieving significant scalability would require transceiver bandwidth on the order

of terabits per second (Tbps), or else most of the scalability potential would be lost. To

overcome this, we propose a neighbor data caching method that leverages data locality for

improved data reuse, resulting in negligible hardware overhead.

Another challenge arises from the irregularity of the inter-board communication pattern,

which leads to imbalanced loads on different transceiver ports. To optimize bandwidth uti-

lization, we exploit the underlying MD-RL particle interaction topology. Specifically, par-

ticles only interact with other particles within a halo, and the half-shell method is employed

to leverage Newton’s 3rd law [Shaw, 2005, Chiu and Herbordt, 2009, Chiu and Herbordt,

2010a,Chiu and Herbordt, 2010b,Chiu et al., 2011]. Considering this specific topology, we

investigate various workload distributions (slab, pillar, and block) and their corresponding

data transfer patterns. To address the communication imbalance, we propose a routing con-

figuration technique that improves inter-chip bandwidth utilization for all three workload

distributions.

The major contributions of this work are as follows. We propose

• a communication-efficient multi-chip MD-RL design;

• a neighbor data caching technique that improves neighbor particle data reuse for

reduced data movements for inter-node communication; and

• a routing configuration technique for improved inter-chip bandwidth utilization.

• Also, experimental results show the performance of the proposed design provides at

least 10× speedup comparing with the baseline design.

In the following sections, we first briefly recap on the architecture of a prior art single-

chip design [Yang et al., 2019b] based on the uniform-spread mapping scheme discussed

in Section 3.2.3. Second, we propose a multi-chip direct extension of this design which we

refer to as the baseline; in Section 5.3, we compare the baseline with our optimized multi-

80

chip designs. Finally, we present the communication bottleneck of the baseline design and

discuss the causes and solutions for it.

5.2 Multi-chip baseline design

5.2.1 Prior-art Single-chip Design

The prior art single-chip MD architecture is illustrated in Figure 5·1. The particles in a sim-

ulation space are partitioned into N cells. The force, position, and velocity information of

the particles in each cell are stored in 3 caches (force, position, and velocity), respectively.

Force Computation Units (FCU) are in charge of force calculation. Each FCU evaluates the

force applied on the particles in a unique cell. To evaluate forces, the filters above FCUs

first read position data from position caches and then identify valid particle pairs. Sub-

sequently, the partial forces of particle pairs are computed and sent to accumulation units

through an arbitration network and so complete the force computation. Newly accumulated

force results update the force caches until all the complete forces are calculated.

5.2.2 Baseline Multi-chip Design

We enhance the single-chip design mentioned earlier to support multi-chip configurations

with necessary modifications for inter-chip data exchange. In the baseline design, both po-

sition data forwarding and force write back involve inter-board communication. In the case

of position data forwarding, the broadcast of neighbor particle position data can potentially

occur across FPGA boards. Similarly, the destination cells for force write back can be

located on other FPGAs within the system.

Inter-board transactions for force data can be frequent, resulting in a high data produc-

tion rate compared to the low data consumption rate. In the baseline design, it is common to

send data less frequently when the available bandwidth is insufficient, leading to increased

latency and performance degradation. To mitigate the impact of long communication la-

83

as Uz = 100%), it is common to observe a scenario where Ux = 78% and Uy = 59%. This

leads to an overall port utilization of 80%, indicating that 20% of the data transmission op-

portunity is lost due to imperfect utilization. It is important to address this issue to achieve

a more balanced workload distribution among different directions, especially considering

that the situation may worsen with a different number of ports on the board.

5.3 Optimized Multi-chip Design

In this section, we present an optimized multi-chip design that effectively addresses the

communication bottleneck observed in the baseline architecture. Our approach focuses on

alleviating two key challenges identified in Section 5.2.3: the data reuse problem and the

load imbalance problem.

To tackle the data reuse issue, we propose the utilization of remote neighbor data

caching. This technique enables the caching of neighbor particle position data at the receiv-

ing end, allowing for efficient reuse of the data without the need for repeated transmission

from neighboring cells. By leveraging this caching mechanism, we significantly reduce the

demand for bandwidth and mitigate the strain on inter-chip communication.

Furthermore, we address the load imbalance problem through routing configuration. By

carefully configuring the routing paths and distributing the workload more evenly among

different directions, we ensure a more balanced utilization of ports on the FPGA boards.

This approach maximizes the available data transmission opportunities and minimizes the

performance loss caused by imbalanced port utilization.

Additionally, we briefly discuss the motion update process, which also involves inter-

chip data exchange. By considering the requirements and challenges associated with mo-

tion update, we ensure that the optimized multi-chip design effectively handles the neces-

sary data exchanges while maintaining overall system performance and efficiency.

84

5.3.1 Neighbor Data Caching

In the baseline design, the continuous broadcasting of neighbor particles and frequent force

write-back operations impose significant demands on inter-chip data transmission. While

a high-end FPGA board can support data rates of up to several hundreds of Gbps, our

baseline design requires a much higher rate of Tbps.

To address this challenge, we propose a solution that involves trading the temporal lo-

cality of reference particles for the temporal locality of neighbor particles. By prioritizing

the efficient transmission of neighbor particle data and optimizing the force write-back

process, we aim to reduce the overall bandwidth requirements and alleviate the strain on

inter-chip communication. This trade-off allows us to better utilize the available data trans-

mission capacity and meet the demanding data transfer needs of our design.

Neighbor Particle Position Caching

For the data reusability optimization, instead of traversing neighbor particles for reference

particles, reference particles are traversed for incoming neighbor particles, as Figure 5·3(b)

illustrates, where the neighbor particles are cached in registers on destination nodes. The

position reading architectures are compared in Figures 5·3(a) and (b). In the new design,

neighbor position data only need to be transmitted once a few cycles due to the enhanced

locality.

Neighbor Particle Force Caching

In the baseline design, the accumulation of partial forces applied to a reference particle

is performed prior to the read-modify-write process at the force caches. However, in the

modified design, where the reference particle changes every cycle, it is no longer feasible

to accumulate the reference forces beforehand. As a result, the accumulator on the red

path in Figure 5·3(c) is removed in Figure 5·3(d). Instead, the reference force fragments

86

the corresponding force caches. This approach allows for efficient accumulation of neigh-

bor forces while maximizing data reuse and minimizing conflicts.

5.3.2 Routing Configuration

Different data and workload distributions exhibit distinct data transfer patterns. In this

context, we explore three fundamental scenarios: slab, pillar, and block. Each of these

distributions has its own characteristic data transfer pattern, and these patterns can be inde-

pendently adjusted to different extents. However, such modifications can potentially result

in workload imbalances.

To overcome this issue, we propose a software-based approach that automatically con-

figures routing paths based on the distribution of cells and the number of available ports. By

analyzing the cell distribution and considering the port configuration, this approach aims

to mitigate workload imbalances and ensure efficient data transfer across the system.

Workload Distribution

The workload is spatially distributed so that device memory only contains data from a

group of cells in Euclidean space. In this section, three typical distribution patterns are

studied and the theoretical total bandwidth usage is given.

Figure 5·4 illustrates slab, pillar and block distributions. For small simulation spaces,

slab and pillar are the first picks because of their advantage in local data access with fewer

neighbors, whereas the block holds the highest generality. If a slab of cells is assigned

to a node, the home FPGA only communicates with two FPGAs next to it. For the pillar

distributions, cells on the sides require or receive data that arrives after up to two hops.

For block distributions, corner cell communications are involved and requires data to be

transmitted three hops away.

90

directions.

For 2-hop data transmissions along the α direction, data on the sides with cell dimension

lβ and lγ can only be sent via neighbor nodes on the γ and β directions separately first, then

forwarded along the α direction. This behavior is abstracted into the 2nd and the 3rd term.

To achieve balance, the bandwidth bottleneck must be minimized as shown here

Bbottleneck = max({B1
port , ...,B

N
port}) (5.5)

where Bi
port is the bandwidth demand for the ith port, based on routing configurations. The

bandwidth is naturally balanced for a slab since data transmission workload can be uni-

formly distributed. However, slab and pillar distributions have scalability issues: they may

be overwhelmed by an oversized simulation space. Based on the distributions in Figure 5·4,

position and force bandwidth demands are decomposed by directions in Table 5.1 and 5.2.

1-hop data paths are not configurable since the destinations are just next to the origin.

In the 2-hop and 3-hop cases, however, the data transfer paths can be re-configured to

alternative directions. For example, in Figure 5·5, the 2-hop data can be forwarded along x

direction (Figure 5·5(a), or y direction (Figure 5·5(b), such that the bandwidth demand for

the 2-hop forwarding is included in total x+ bandwidth or y+ bandwidth. In other words,

the bandwidth demand on a direction can be traded for the bandwidth demand on another

direction. In the case of blocks, more freedom for configuration is granted since more path

combinations are available. In the evaluation section, we demonstrate that up to 30% more

data can be transmitted compared to average.

5.3.3 Motion Update Conflict

Motion update is comparably light-weighted than the position or force in terms of data

transmission. The number of cycles for motion update is exactly the number of particles N,

while for force evaluation, the number is αN
Np

, where α is the average number of neighbor

91

particles that can form valid pairs with a reference particle. Based on our assumption that

Np < Nc or Np ≈ Nc,
α

Np
≫ 1 (5.6)

is obtained. Amdahl’s law suggests that it is reasonable to deploy only a smaller number of

update modules than force evaluation modules in a single node. In our case, for the sake of

simplicity in demonstration, we assume only one motion update unit is equipped per FPGA

node.

Despite the smaller workload, the data conflict problem caused by particle migration

needs to be resolved. Same as the single-chip designs, throughout the motion update pro-

cess, a particle can migrate to another cell in another node. Rarely but possibly, the remote

update can cause a conflict with local motion update when they are being written to a same

cache. The solution is to pause the local update and let the remote update finish first. Given

the fact that all cells have a similar number of particles, the motion update units are almost

synchronized and the conflict between two remote updates is nearly impossible. If more

motion update units are added for more parallelism, the conflict becomes a problem and

extra input buffers can be deployed to resolve the conflict.

5.4 Evaluation

Within this section, our initial analysis revolves around independently assessing the advan-

tages brought forth by routing configuration and neighbor data caching. Subsequently, we

proceed to evaluate the comprehensive speedup achieved by our proposed communication-

efficient molecular dynamics (MD) design compared to the baseline. To gauge this im-

provement, we employ the metric of “execution time per MD iteration”.

94

Table 5.3: Throughput of a 2×2×2 FPGA cluster. The design runs at 350 MHz frequency,
with 50 particles in each cell. Particle: Liquid Argon. Cutoff radius: 8.5 Å. Number of
ports: 6. Bandwidth of each port: 100 Gbps. Data size per packet: 120 bits

Cell Space 8×6×4 8×4×4
Design baseline new baseline new

Force Evaluation Time (µs) 3784 76 2621 76
Overall Time per Iteration (µs) 3854 147 2573 123

Max Frequency Supported (MHz) 7.0 434 9.2 527
Communication-Computation Ratio 26.2 0.42 20.9 0.41

Cell Space 6×6×6 4×8×6
Design baseline new baseline new

Force Evaluation Time (µs) 3051 76 2586 76
Overall Time per Iteration (µs) 3130 156 2656 147

Max Frequency Supported (MHz) 8.7 502 10.3 595
Communication-Computation Ratio 20.1 0.34 18.1 0.30

available. The last case shows that the 6×6 distribution can be fully exploited for 10-port

boards, but not 4-port or 8-port boards. All those boards have significant weaknesses except

for 12-port boards, for they lack sufficient configurability. On the other hand, the highest

utilization possible exceeds the average by 3% to 9%, meaning that the data transmission

efficiency is boosted by these amounts for free.

Similar phenomena occur in block distributions, as Figure 5·8 shows. 6-port, 6 and

8-port, 8-port, and 10-port boards behave badly in those cases. It is worth noting that the

amount of data transmission can be increased by 10% to 30%, for multiple possible routing

paths can be taken, which gives more importance to the route configuration.

5.4.2 Evaluation of Neighbor Data Caching

The efficiency of neighbor data caching depends on the number of particles per cell. Since

the reference particles are traversed as in Figure 5·3(b), neighbor position data are cached

for the same number of cycles as the number of reference particles. Therefore, the band-

width demand reciprocally depends on the number of particles per cell. Assuming that each

particle participates in at least one valid pair,

Bnew =
Bbaseline

Nmax
(5.8)

95

where Nmax is the largest number of particles of a cell among all cells, as all position

broadcasts must be synchronized.

The neighbor data caching mechanism also brings the opportunity for routing config-

urations. The same amount of force data is sent in return for each piece of position data

received. Therefore, the symmetry of position reading and force writing is reserved, which

makes the routing configuration work for both position and force paths; i.e. the bandwidth

requirement is the same for both reading and writing. Otherwise, uncertainty occurs in

force packets’ return, since destinations of the packets are random.

5.4.3 Overall Performance Evaluation

To avoid too much overhead in synchronization, a 2×2×2 FPGA cluster is chosen to

demonstrate the overall speedup due to the optimizations. Each FPGA has six transceiver

ports (QSFP28). Table 5.3 illustrates the amount of time used in force evaluation per itera-

tion, and the time needed for an entire iteration for four different cell distributions (block).

For further improvements, the maximum supported frequencies are also listed, i.e. the

highest frequency at which the communication latency can be entirely hidden by compu-

tation. The communication-computation ratio is listed as well for more straightforward

comparison. In the baseline design, the communication latency exceeds the computation

latency by a factor of 10. Also, with a reasonable operating frequency, the communication

latency can be hidden completely.

For simplicity, the number of FCUs per node is set to be the same as the number of cells,

and only one motion update unit is used. Therefore, for our optimized design, the force

evaluation time remains unchanged. For all four cell distributions, the performance roofline

of the baseline design is data transmission, while the roofline of the optimized design is the

operating frequency (350MHz), which is below the maximum frequency supported. It

is evident that by solving the bandwidth problem alone, the overall performance can be

increased by a factor of 10, compared with the baseline.

96

5.5 Related Work

MD on FPGAs has been studied for many years [Azizi et al., 2004, Gu et al., 2006a, Scro-

fano and Prasanna, 2006, Kindratenko and Pointer, 2006, Alam et al., 2007, Cong et al.,

2016]. The first complete MD systems on FPGAs accelerated the Range-limited (RL)

force computations and used a CPU for the rest [Gu et al., 2005b,Kindratenko and Pointer,

2006, Scrofano et al., 2008]. Khan accelerated NAMD with four FPGAs, but they were

used as independent accelerators [Khan et al., 2013]; see [Pascoe et al., 2020] for a recent

four FPGA design.

When we broaden prior work to ASICs, a variety of spatial decomposition methods

have been studied more than a decade ago by D.E. Shaw Research [Shaw, 2005], where

zonal methods [Bowers et al., 2007] are discussed in detail. Among the zonal methods, the

neutral-territory method and, specifically, tower-plate method, is used in their first Anton

system [Larson et al.,] because of its low import volume. In this study, however, since

a large amount of resources are available on modern FPGA chips and most data can be

consumed locally, we chose half-shell decomposition so the data locality is naturally pre-

served.

Load balancing was further refined during the development of Anton 2 [Towles et al.,

2014] where data forwarding routes can be adjusted at runtime. We have chosen not to

use in-network reduction since an FPGA only exchanges data with nearby neighbors. As a

result, the force and position packets can be scheduled and the data forwarding route can

be determined offline.

5.6 Conclusion

This study showcases the data forwarding and communication patterns observed in the slab,

pillar, and block distributions within a RL MD system. The transmitted data is categorized

into three types: 1-hop, 2-hop, and 3-hop cases. Leveraging the inherent symmetry in data

97

flow, we demonstrate the possibility of reconfiguring the paths of 2-hop and 3-hop data

to achieve a balanced I/O bandwidth across FPGA nodes. Additionally, we establish that

by appropriately configuring the routing path and cell distribution, the efficiency of data

transmission can surpass the average by up to 30%. Furthermore, through the localization

of neighbor particles, the total bandwidth cost is significantly reduced. By effectively com-

bining both approaches, it becomes conceivable to achieve a potential tenfold increase in

overall performance compared to the baseline design, with the added benefit of completely

hiding communication latency.

98

Chapter 6

Optimized Mappings for Symmetric Force
Calculations on FPGAs

Thus far, we have discussed the single-chip designs and multi-chip communication pattern

configurations. In this chapter, we further focus on the communication of MD RL on

multiple FPGAs, but from a more fundamental angle compared to Chapter 5. Motivated

by force symmetry and prior ASIC work, a modified Manhattan method is proposed to

replace the half-shell method under communication-intensive circumstances, in order to

obtain drastic reduction in communication intensity.

6.1 Introduction

Exploiting physical symmetries to reduce computation is a fundamental method in Scien-

tific Computing. In Molecular Dynamics (MD), Newton’s 3rd law (N3L) results in the

force symmetry that reduces by half the computation in short range (or range-limited,

RL) force evaluation. The theory is straightforward, but, when coupled with the com-

monly used hard cut-off (range limit), the optimal computation-processor-memory map-

ping is dependent on the hardware model. N-body mapping has been the focus of several

high-profile studies [Snir, 2004, Bowers et al., 2007, Bowers et al., 2006b], where particle,

space, and force partitioning are justified. However, the models are not hardware-specific

and, in particular, the mapping model for FPGA-based MD [Azizi et al., 2004, Gu et al.,

2005b,Hamada and Nakasato, 2005,Kindratenko and Pointer, 2006,Alam et al., 2007,Scro-

fano et al., 2008, Chiu and Herbordt, 2010a, Yang et al., 2019a] remains to be established.

100

more fine-grained data access, but not suitable for FPGAs based on the discussion above.

Note that the advantages of larger boxes accrued in CPU implementations, where they re-

duce frequency of neighbor list recalculation [Phillips et al., 2005], are not applicable to

ASICs/FPGAs where particle filtering [Chiu and Herbordt, 2009] is used instead.

The cell size now being set, it is straightforward to evaluate a cell, with N3L applied,

with respect to the surrounding 14 cells (including itself) using the half shell method [Chiu

and Herbordt, 2010a] (illustrated in Figures 6·1(b) and 6·1(c)). The major downside, how-

ever, is the import volume; i.e., 13 external cells need to be imported. An alternative is

the Manhattan method used by the Anton 3 [Shaw et al., 2021]. Compared to the half-

shell method, it demands a much lower import volume, as Figure 6·1(d) suggests in 2-D

illustration. In the 3-D case, the import volume is reduced to the equivalent of about 7 cells.

Applying the Manhattan method to FPGAs, however, appears to require that cells be

further partitioned into fine-grained subboxes, with the disadvantages just described. To

tackle this problem, we

• propose a position cache overlapping method that maps our modified Manhattan

method onto FPGA hardware without reducing the size of cells;

• design a complete MD RL architecture with minimal additional resources cost com-

pared to the baseline half-shell design on FPGA;

• demonstrate that the Manhattan method used on multi-FPGA clusters can reduce the

data transfer by 40% - 75%, while balancing data transfers along all directions.

The practical consequence is that nearly 2× ∼ 4× the workload can be handled without

upgrading the network of FPGA connections. This is a critical finding given the relatively

limited bandwidth available in many common accelerator boards and the strong-scaling,

communication-bound, applications to which FPGA clusters are being applied.

102

The ring-shaped topology is inherited from the baseline design with minor modifica-

tions. To demonstrate the ring topology, we label each cell in space with a cell ID, which

follows the simple 3-D to 1-D mapping method:

CID = xDyDz + yDz + z (6.1)

where Dy and Dz are dimensions of the y and z directions. For example, in Figure 6·2(a),

Dy and Dz are both 2. Each cell is assigned a ring core (RC) to process the interactions

between the local particles in the cell and neighbor particles from other ring cores. The

ring cores possess the same IDs as their local cells. In Figure 6·2(b), the RCs are logically

connected as a ring corresponding to their IDs. This 3-D cell to 1-D ring mapping is both

simple and minimizes the data travel time in the ring. In the case shown in the figure, two

adjacent RCs share one motion update unit, and the motion update units are connected in a

ring to resolve particle migration (i.e., when a particle travels to another cell).

An RC block diagram is given in Figure 6·3(a). The position, velocity, and force data,

with respect to the particles in the local cell, are stored in cell cache, velocity cache, and

force cache, respectively. In distinction from the baseline design, a duplicate cell cache

is now a corner cache. A corner cache consists of ∼1/8 particles from the local cell and

particles from 7 other cells. The corner cache is a key concept in this work and is discussed

further in Section 6.2.2. The position input ring (i.e., the network of position routers from

RCs) and the force output ring forward data in opposite directions. Since the computed

forces are returned to the RCs where the position data originates, the effect is to reduce the

data travel time.

Figure 6·3(b) shows the functions of a motion update unit (MU). A MU gathers par-

ticles’ position, velocity, and force data and computes the particles’ position and velocity

after, say, 2 femtoseconds (2× 10−15s). If a local particle has moved to another cell, the

migration-check function passes the updated data to the router so the data is forwarded to

103

the target MU through the motion update ring. The router in the target MU recognizes that

the correct data have arrived and forwards it to the corresponding RC for update.

6.2.2 Corner Caches and Overlapping Position Caches

Figure 6·4 shows the principle of cell caches and corner caches. For conciseness in context,

we refer them as yellow caches and green caches, respectively. The particles in the caches

are named as cell particles (yellow particles) and corner particles (green particles). Both

yellow caches and green caches contain particle position information (i.e., both, unless oth-

erwise noted, are position caches, to be distinguished from the caches containing velocity

and force data. There are also velocity and force cell caches with the same spatial layout

as position cell caches, but there is no velocity or force corner caches.). A green cache

is overlapped with a quarter (an eighth in 3-D) of each yellow cache, and that overlapped

portion of position data is duplicated. The green caches cover the entire simulation space,

making the number of green caches equal to the number of yellow caches. At runtime,

execution proceeds with particles from a green cache successively being broadcast to all

adjacent cells to be evaluated with respect to all of the yellow particles.

Position cache duplication is also necessary in the half-shell baseline method for home

cell yellow particles caching in the force computation; otherwise the data locality is lost

and all of the particle position data would need to be stored in the buffers attached to the

filters.

6.2.3 The Modified Manhattan Method

In Figure 6·4, the green particle is a corner cell particle stored in the green cache and is sent

to all 4 neighboring yellow cells for pairing, while the yellow particles outlined in black

are stored in yellow caches. Each processing element (PE, as we will show in the following

context) is mapped to a yellow cell, and the pairing is done by local PEs associated with the

yellow cells. Now that the cached positions in the yellow caches and green caches overlap,

104

the traditional Manhattan method needs to be modified: because there’s no clear boundary

between a yellow cache and a green cache, we compare the Manhattan distances to the

green cell boundary instead of the boundary of two cells.

Figure 6·4(a) and (b) show the two common particle pair cases. Both cases indicate

that the pair should be evaluated when the green particle has greater Manhattan distance

(D2 > D1, opposite to the traditional), otherwise the pair may not be evaluated (the yellow

particles is never sent to the cell holding the top-left particle).

To better illustrate the handling of the irregularity for the modified Manhattan method,

we define two concepts: shadow region (SR) and shadow particle (SP). The SRs are the

brown areas in Figure 6·4(c) and the SPs are the particles located in SRs. As the figure

illustrates, the two particles are within the cutoff range and form a valid pair. However,

the yellow particle is outside the yellow cell area. If the green particle only interacts with

the particles in its four surrounding square cells (the closest cell to the yellow particle is

the yellow cell), then the yellow particle is never evaluated with the green particle and

vice versa. In other words, they are outside each other’s import region. Therefore, we

extend the size of the yellow cells to include the SRs, causing overlaps in yellow cells. If a

particle is updated into a new SR during motion update, it is then updated to more than one

destination.

6.2.4 Cell Cache Partitioning and Corner Particle Pre-checking

Figure 6·4(d) shows the total accessed area, including the SRs. Without optimization, 71%

more particles are accessed for a green particle in the 3-D scenario, leading to a drastically

decreased particle pairing rate. Although the size of SRs looks formidable, this situation

can be improved.

Fortunately, in Figure 6·4(d), only the dark brown areas may be needed for the particles

in the green cell at the center. Therefore the SPs can use the addressing spaces separated

from the normal particles in the yellow cell (e.g. normal particles are located at address

106

the position input ring as sketched in Figure 6·5(b), and each position has only 8 (instead of

14) destinations corresponding to 8 cells in 3-D. This also reduces the lifetime of packets

in the ring. For each cycle, a position packet stops at a force processing element (PE) to

check if a destination has been reached. Once there, the position packet is buffered and

dispatched to one of the filters by the dispatcher.

Before dispatching a green particle downstream, the particle is first pre-checked to de-

termine if any SR needs to be accessed based on its position. After pre-checking, the

requested SR ID is obtained. The ID is further used in SR access handling as Figure 6·5(c)

shows. For the left case, green particles 0 and 1 do not need to access SRs, but 2 and 3

request both SRs be accessed. As a result, all yellow particles, including the SPs, are tra-

versed for all the green particles. For the right case, SR 1 is not requested, only the regular

yellow particles and particles in SR 2 are traversed. In practice, there are up to 8 SRs cor-

responding to 8 corner blocks surrounding a cell block, and the number of green particles

processed simultaneously in a single PE is relatively small.

The filters are originally used to evaluate the distance of two particles and check if the

pair is valid. At runtime, each filter is mapped to a single green particle and vice versa.

The Cell BRAM in the PE is traversed iteratively during force evaluation for pairing. With

the Manhattan method involved, the filters also check the Manhattan distance between the

particles and the corner block boundary. The good news is, not all the position bits are

evaluated in the filters, but only, say, 8 leading bits are used. The number of bits is subject

to the precision desired. Compared with the half-shell method, the filter pass rate increases

from ∼17% to ∼30% (disregarding the overhead, the actual pass rate subjects to the num-

ber of filters and is further discussed in the evaluation section) for uniformly distributed

particles, and the number of filters is therefore effectively reduced. The resources saved

can then contribute to building more PEs for higher throughput.

The force fragments of green particles and the accumulated SP forces are then injected

108

to the force output ring, while the forces of the regular yellow particles are directly inte-

grated in the force caches of the cell. Each force packet in the ring only has one destination,

such that the force data is not duplicated, and each force cache only covers a cubic volume

without SRs. The SPs are inherently far away from the green particles, and their pairing

chances are slim. Among all the cell-corner pairs, only ∼1% is contributed by shadow-

corner pairs. The extra pressure on the force output ring caused by SP forces is therefore

negligible.

After all forces are evaluated and integrated in force caches, the MUs start. A MU on

the motion update ring inputs all three types of data (position, velocity, force) and obtain the

position and velocity of particles for the next time step. The packets are either consumed

locally (used to update the directly connected caches) or injected to a motion update ring

(Figure 6·5(d), velocity and force caches omitted) to update the position corner caches and

both position and velocity cell caches.

The workload of the motion update phase is significantly smaller than force evaluation,

such that a much smaller number of MUs are equipped compared to the number of cells.

Furthermore, with a MU directly connected to multiple yellow/green caches, the latency of

a motion update ring is short compared to other rings. Moreover, because the force evalu-

ation is not active during motion update, the position input ring and the force output ring

can be reused to construct the motion update ring with minor cost in hardware resources.

6.2.6 Memory Misalignment

During force evaluation, the particles are easily aligned in force yellow caches and position

yellow caches (excluding SRs). That is, a particle has the same address in both caches.

However, the alignment cannot be preserved for green particles or SPs. For example, parti-

cle B in Figure 6·5(e) is at address 0 in yellow cache C1, the force is also located at address

0 in its corresponding force cache; therefore B can be directly updated with the force at

the same address. However, B is at address 2 in the green cache instead of 0, i.e., memory

109

misalignment. Similarly, the SP D is stored in the shadow addressing space in cell C4, with

its original location at address 0 in C3. To correctly update the green particles and SPs,

address and cell indexing information is added during motion update. In Figure 6·5(e),

the green caches and the shadow addressing spaces in yellow caches not only contain the

position values of particles, but also the cell IDs and addresses.

When there is no particle migration, a MU first updates a particle in a directly connected

cell, then sends a packet to the motion update ring to find the destination green cache. If a

particle migrates to a cell handled by another MU, the packet is delivered to the MU and

next sent to the destination corner cell with the updated address. Fortunately, the particle

migration is rare and the latency introduced is negligible.

6.2.7 Multi-chip Solution

The advantage of the cache overlapping method is particularly remarkable when applied

to multiple FPGA nodes. Figure 6·6 compares the half-shell method and the cache over-

lapping method on 4 FPGA nodes with periodic boundary condition. For demonstration,

each node contains 4×4 2-D cells. If the data are structured in plain cells, as Figure 6·6(a)

shows, 10 of 16 cells (blue) need to be transferred to other nodes. In the new mapping with

the cache overlapping, only the equivalent of 7 cells are transferred as shown in Figure

6·6(b).

The arrows only represent the position data transfer directions. The force data are re-

turned to the source nodes along the arrows in reverse. This feature results in the natural

balance between inbound force data and outbound position data with direct transceiver con-

nections among FPGAs. However, there are two-way arrows in (a), potentially leading to

heavy and imbalanced data transfer between the affected nodes compared to other trans-

fer paths. Typically, each FPGA node provides ∼100 Gbps level bandwidth (2×100 Gbps

QSFP28 for Intel D5005 and Xilinx Alveo U280), making the problem far more signifi-

cant. The situation is much relieved in (b), where only one-way arrows are observed. This

111

resources available on resource-abundant Intel D5005 boards with Stratix 10 SX FPGA

chips, where each chip has 933120 ALMs, 5760 DSPs, and 11721 M20K BRAMs. The

designs are implemented with Verilog and SystemVerilog HDL on Quartus 19.2 and val-

idated on the D5005 boards. The resource/frequency results are obtained from reports

generated by the Quartus software.

6.3.1 Performance

0

20k

40k

60k

80k

100k

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

3x3x3 4x4x4

5x5x5 6x6x6

Manha�an

Number of Filters Number of Filters

Number of Filters Number of Filters

N
um

be
r o

f C
yc

le
s P

er
 It

er

0

20k

40k

60k

80k

100k

N
um

be
r o

f C
yc

le
s P

er
 It

er

PE U
�liza�on

0

0.2

0.4

0.6

0.8

1

PE U
�liza�on

Half-shell

Figure 6·7: The performance and PE utilization versus the number of filters for 4 cell
geometries. 3 motion update rings and 3 force rings are used. For consistency, we assume
each cell is processed by 1 PE, and all 4 cases share the same y-axis. Bar: cycle. Curve:
utilization

Figure 6·7 shows both the performance and PE utilization. For all four geometric cases,

four Manhattan filters are almost as efficient as eight half-shell filters. The PE utilization

is saturated at ∼ 85%, which can be regarded as the utilization limit of both designs. The

Manhattan method reaches the limit at ∼5 filters, while the half-shell method requires >10

filters to achieve the same goal.

114

0
5

10
15
20
25
30

3x3x3 4x4x4 5x5x5
Space Geometry of Cells (8 cells per MU)

6x6x6

La
te

nc
y

at
 2

00
 M

H
z

(μ
s)

3 Rings
2 Rings

4 Rings
Ideal

1 Ring

Figure 6·10: MU ring latency compared with ideal. Each MU is in charge of updating 8
yellow caches and 8 green caches. A cell contains 80 particles.

to reduce the latency to a negligible degree. For 6×6×6 cells, 3µs extra latency is intro-

duced even for 4 rings. Fortunately, the latency is small compared to the overall latency

of an iteration (∼ 100µs for 6×6×6 cells, 200MHz). Furthermore, because the position

and force rings can be reused for the motion update ring, and the number of MUs is sig-

nificantly smaller than the number of cells, only a small amount of hardware resources are

required to construct the extra rings, especially for smaller numbers of cells.

6.3.5 Multi-FPGA Data Transfer

The number of cells to be sent to remote FPGAs is reduced by a considerable amount

(∼30%), and scales almost linearly with the space edge length (Figure 6·11(a)). In fact, the

actual amount of data transfer is reduced more significantly, as data forwarding is common

in FPGA clusters (e.g., [George et al., 2016,Sheng et al., 2017a,Boku et al., 2019,Mondigo

et al., 2020, Shahzad et al., 2021] and all-to-all connections [Plessl, 2018] are not always

available.

Figure 6·11(b) gives the data transfer behavior on two likely FPGA cluster configura-

tions. We assume each MD RL iteration takes 100 µs, each packet is 120 bits and each cell

contains 100 particles. The bandwidth numbers are ideal without taking imbalanced data

transfer into account. In (b1), the cluster has a 3-D torus topology. For all listed space ge-

115

Space Geometry of CellsN
um

be
r o

f C
el

ls
 to

 S
en

d Am
ount R

educed (%
)BW

 D
em

an
d

(G
bp

s)(a) (b1) (b2)

3³0

50

100

150

0

40

20

60

80

100

0

30

60

90

120

150

0

20

40

60

80

100

4³ 5³ 6³ 3³ 4³ 5³ 6³ 3³ 4³ 5³ 6³

Half-Shell Cache Overlapping Amount Reduced (%)
Figure 6·11: Data transfer per FPGA using the two methods. Each iteration (from force
evaluation to the next force evaluation phase) takes 100 µs, with 120 bits per packet and 80
particles per cell. (a): the number of cells to be sent to remote FPGAs. (b1): the estimated
ideal bandwidth demand per FPGA for a 3-D torus FPGA cluster. (b2): the estimated ideal
bandwidth demand per FPGA for 8 FPGAs connected as a ring.

ometries, the data transfer reductions all approach 75%. In the 3-D torus, a packet needs to

travel through at most 3 nodes to reach its destination. With the cache overlapping method

applied, the proportion of data that require heavy forwarding is further reduced. In (b2),

the cluster is 8 FPGAs in a ring, a likely scenario since many FPGA boards only have 2 or

4 transceiver ports. In this case, data may travel with more hops than a 3-D torus, such that

the overall bandwidth requirement is raised. Still, 40%∼50% of data transfer can be saved.

The significance of these results is found especially in the most likely FPGA cluster

use-cases, which involve strong scaling challenges (e.g., small molecule docking). With,

say, 3×3×3 cells per node, FPGA capacity allows multiple PEs (8 in our case, 216 PEs

in total) to work on the same cell, reducing the time per iteration to 1/8th the previous.

As a result, 8× bandwidth is required, which is 200 Gbps. On the other hand, compared

to the 6×6×6 case (with one PE per cell), only ∼80 Gbps are required. This is because

the ratio of surface area to volume (SATV) ratio for the 6×6×6 cells is much lower. With

strong-scaling (more PEs and/or fewer particles), the SATV ratio increases. At that point

116

Table 6.1: Hardware Costs
Cell Space Design ALM BRAM DSP

3×3×3 M1 112924 (12.1%) 1296 (11.1%) 621 (10.8%)
HS2 116146 (12.4%) 1215 (10.4%) 621 (10.8%)

4×4×4 M 236220 (25.3%) 3072 (26.2%) 1472 (25.6%)
HS 243464 (26.1%) 2880 (24.6%) 1472 (25.6%)

5×5×5 M 429812 (46.1%) 6000 (51.2%) 2875 (49.9%)
HS 443011 (47.5%) 5625 (48.0%) 2875 (49.9%)

6×6×6 M 713675 (76.5%) 10368 (88.5%) 4968 (86.3%)
HS 735274 (78.8%) 9720 (82.9%) 4968 (86.3%)

1 Manhattan
2 half-shell

the computation is completely compute bound and the performance is proportional to the

amount of data transferred.

6.3.6 Hardware Resource Usage

The hardware resources demanded for both designs are listed in Table 7.1. Each half-shell

PE has 6 filters, while each Manhattan PE has 4 filters. Both designs are equipped with

3 force output rings and 3 motion update rings. The Manhattan filters have higher logic

expenses for their higher complexity compared to half-shell filters, but the overall ALM

consumption is slightly reduced due to the reduction in the number of filters. The overall

BRAM consumption is slightly higher because with ∼10 more bits included in position

caches for cell indexing (see Figure 6·5(e)). Originally, the fixed-point position data and

particle type (e.g., oxygen) together are ∼75 bits. With the 10 additional bits, we need 3

BRAMs side-by-side to satisfy the concurrent access of all 85 bits, where each BRAM is

40-bit wide, meaning another BRAM is required in each position cache. The new design

requires no extra DSPs.

6.4 Related Work

The study of parallel N-body computation with cutoff dates back to two decades ago [Snir,

2004]. This work analyzes the communication requirements with respect to space decom-

117

position and force decomposition algorithms. However, the force symmetry from New-

ton’s 3rd Law is not taken into account. In [Shaw, 2005, Bowers et al., 2006a, Bowers

et al., 2006b, Bowers et al., 2007], force symmetry is adopted, and Newton’s 3rd Law is

interpreted in a variety of ways. In their work, methods such as half-shell, midpoint, and

tower-plate are summarized in depth. It is also proven that compared to half-shell, neutral

territory methods (midpoint, tower-plate, etc.) generally result in reduced import volumes.

For all the Anton series [Shaw et al., 2007, Shaw et al., 2014, Shaw et al., 2021], neutral

territory methods are employed. Particularly, Anton 3 adopts the Manhattan Method that

leads to the import volume both small and symmetric.

6.5 Conclusion

In this chapter, we compare the baseline half-shell model with the improved cache over-

lapping model based on the Manhattan method and find almost no difference in resource

usage. The findings are as follows.

First, the filters in the Manhattan design are much more efficient compared to the half-

shell filters. The PE utilization approaches its limit with only 4 Manhattan filters, whereas 8

filters are needed for the same with half-shell. Although the filtering rate of the Manhattan

filters decreases due to SP handling, it is still considerably higher than that of the half-

shell filters. Second, the latency of the overall position data input is reduced, especially for

smaller numbers of cells (3×3×3) where 15% more work can be distributed to PEs in the

same amount of time. Third, as the trade-off, the motion update latency is increased, but

can be negligible thanks to the reusable hardware. Fourth, ∼75% of the data transfer can

be saved with the new method on a 3-D FPGA torus, and 40% to 50% of the transfer can

be saved with 8 FPGAs connected as a ring. A major benefit is that the pressure in data

transfer is greatly relieved for FPGA-based MD where commercially available boards have

significantly less available bandwidth than custom ASIC-based systems.

118

Chapter 7

FASDA: An FPGA-Aided, Scalable and
Distributed Accelerator for Range-Limited
Molecular Dynamics

7.1 Introduction

Molecular dynamics (MD) is a scientific technique that utilizes physical laws to simulate

the movements and interactions of atoms. With the recent COVID-19 pandemic, drug

discovery has gained significant attention, and MD has proven to be essential in predicting

drug-target interactions and optimizing drug properties [Ganesan et al., 2017, Zhao and

Caflisch, 2015, Salo-Ahen et al., 2020, Liu et al., 2018]. However, discovering a new drug

typically requires a significant investment of hundreds of millions of US dollars and many

years of work [Mullard, 2014]. To mitigate these costs, it is imperative to accelerate the

drug discovery process through the use of MD simulations, especially for small sets of

particles (∼50K) as they are crucial in drug discovery [Mortier et al., 2015, Aminpour

et al., 2019, Salo-Ahen et al., 2020].

Despite having a small dataset, the execution time of MD simulations is not necessarily

short. To achieve accuracy, MD runs iteratively over discrete, infinitesimal time intervals

(approximately femtoseconds, or 10−15 seconds) at runtime. Even 100 ns is considered a

long timescale because it involves millions of iterations with complicated processes. How-

ever, due to the data dependency, the sequential iterations cannot be parallelized, which

poses a significant challenge in strong-scaling as we need to accelerate the limited work-

119

load in a single iteration. To address this challenge, we need an approach that can preserve

high efficiency with a vast amount of powerful computing nodes, where each node works

only on a small piece of data.

There are numerous MD software packages available today that are regularly updated

[Case et al., 2005, Phillips et al., 2005, Eastman and Pande, 2010, Abraham et al., 2015,

Thompson et al., 2022, Bowers et al., 2006a], among which many support both CPUs and

GPUs. However, CPUs have lower parallelism capabilities, resulting in generally lower

performance compared to GPUs. GPUs are extremely powerful in throughput, but their

exceptional capability in parallel computing requires exceedingly regular data to be fully

exploited, resulting in somewhat suboptimal scalability for small datasets [Páll et al., 2020,

Glaser et al., 2015]. It is also common that one single GPU outperforms more GPUs. Apart

from the software approaches, application-specific integrated circuits (ASIC) often provide

unrivaled performance due to their flexibility, such that the data paths can be customized

and optimized for the data with low parallelism. For instance, known for its excellent

scalability, Anton 3 can attain a simulation rate of ∼200 µs-per-day for 10K particles with

512 nodes [Shaw et al., 2021]. Meanwhile, its predecessor, Anton 2, can achieve around

100 µs-per-day with the same number of nodes [Shaw et al., 2014]. However, ASICs are

expensive in production an maintenance, and are less accessible to the public thus giving

limited contribution to the community.

FPGAs, like ASICs, offer hardware flexibility, but unlike ASICs, they do not suffer

from the general availability or maintenance issues. Additionally, FPGAs are known for

their low-latency communication capabilities, making them ideal for the latency-critical

MD application that requires frequent data exchange between multiple FPGA nodes. The

combination of flexibility and low-latency communication makes FPGAs an excellent

foundation for strong-scaling purposes.

Besides, the computing power of FPGAs is highly competitive. The on-chip resources

121

With the operating platform and the problem determined, in order to fulfil our antic-

ipation for strong-scaling in MD, a completely distributed, decentralized computing sys-

tem is particularly advantageous. Without a central authority, inter-node communication

is simplified with latency reduced, and adding more nodes to the system requires minimal

additional effort. However, similar to ASICs, designing and implementing such a system

on FPGAs requires a significant amount of effort and professional knowledge, resulting in

a research area that is largely unexplored. Although FPGAs cause widespread discussions

in high performance computing, there is no answer clear enough to demonstrate the great

potential within FPGAs, especially considering there is not a lot of work available publicly

on an FPGA comparing to the general purpose platforms, let alone multi-FPGA implemen-

tations. To bridge this research gap and turn it into a new frontier, we present FASDA, to

our best knowledge, the first open-source, scalable, fully distributed RL N-body simulation

system with a cutoff that takes advantage of the benefits of FPGAs described above.

As highlighted in figure 7·1, FASDA is built with a series of easily plugable compo-

nents that can be adjusted subjecting to user requirements with minor modification. First, a

baseline Cell Building Block (CBB) is presented for a single chip, which is composed of

a set of computing, storage, and routing units. Second, the system is evolved to the decen-

tralized design with a hyper-ring shaped communication topology, synchronized using the

chained synchronization technique, together with a cell ID conversion method to ensure

its decentralized feature. Finally, for strong-scaling purposes, the original CBB is evolved

to scalable cell building block (SCBB) with scalable PEs (SPE) equipped. Our system

demonstrates almost linear performance scaling with 8 nodes and achieves over 4x speedup

compared to GPUs.

The system could not have been established without the recently emerging FPGAs in

the cloud. Various cloud platforms, including Microsoft Azure [Zhang et al., 2017], Ama-

zon EC2 F1 [ama,], FAbRIC [uta,], Chameleon Cloud [Keahey et al., 2020], and Open

122

Cloud Testbed [Handagala et al., 2022], offer FPGA clusters that can be readily accessed.

With the availability of these FPGA clusters and the designs that can be mapped to them,

we anticipate a growing trend of FPGA applications emerging in the near future.

We list our overall contributions as follows:

• A strongly scalable, decentralized, and open-sourced MD simulation solution de-

signed for high performance computing system is proposed.

• To maintain a decentralized system, a cell ID conversion technique and a chained

synchronization method are employed, which ensure consistent nodes and PEs on

each node without the need for global synchronization.

• Two levels of plugable strong-scaling modules are demonstrated, giving users the

flexibility to customize the MD system according to their performance demand and

available hardware resources.

• Our evaluation demonstrates that the proposed FASDA delivers over 4.67x speedup

for drug discovery based on molecular dynamics simulations compared with the

state-of-the-art GPU-based solution.

7.2 Scalable Architecture

In this section, the evolution of the scalable, multi-chip version from the single-chip ver-

sion is outlined, which is capable of both weak-scaling and strong-scaling. Additionally,

the methodology used to construct a synchronized and decentralized MD system is demon-

strated.

7.2.1 Hyperring-like Communication Topology

Hyperring topology in network is known for its low bisection width and relatively low

diameter [Sibai, 1998], granting the minimal cost in adding more PEs or more nodes to the

123

system with relatively small latency overhead. However, this comes at the cost of increased

bandwidth demands for nodes communicating over greater distances. Despite having poor

bandwidth demand scalability, the hyperring topology exhibits distinct advantages for our

MD system. The number of CBBs or nodes may need to be adjusted to compensate for on-

chip resources and scale the system to a different size, and the effortless insertion of CBBs

or nodes into the system offers flexibility to both the system and users. Additionally, range-

limited results in a limited number of neighboring nodes, resulting in relatively constant

latency overhead and bandwidth demand as the system scales, avoiding the bandwidth

degradation in distant communication.

Figure 7·2 provides a depiction of the hyperring-like topology of the inter-FPGA con-

nection. The on-chip position ring (PR) and force ring (FR) are both equipped an extra

“EX” ring node for external data transaction, merely adding 1-cycle latency to the rings.

Instead of exchanging data between PEs and caches, the “EX” nodes exchange data be-

tween local and remote nodes in a similar manner. This allows remote data to join the

sub-network in the local node immediately upon arrival.

The network routing device can be replaced by other FPGA nodes directly connected

as a ring to facilitate a hyperring of 2nd order, or a network switch to form a hyperring-like

communication topology. As the system scales up, cascading switches can be used to con-

nect nodes, and a hyperring of 3rd order can also be established through direct connections

between FPGAs, which can be achieved using FPGA mezzanine cards (FMC).

The right side of figure 7·2 shows a demonstration of eight FPGAs, where each FPGA is

assigned to evaluate a specific section of the simulation space. While physically connected

on the user-defined network routing device, the FPGAs are logically organized to form a

3-D torus, which indicates the communication pattern.

126

is received and decapsulated into separate data pieces with headers that contain particle

identification information (as shown in Figure 7·5(a)). Afterward, the data is serialized to

the EX node on either a position ring or a force ring, where it is injected into the ring for

further processing.

The encapsulation process differs for positions and forces, as positions may have mul-

tiple destinations while forces have a unique destination. To encapsulate a position packet,

an encapsulation chain is utilized to reuse the position data and reduce fan-out. A P2R

encapsulator can be analogously regarded as a departure gate. The position data is passed

through a series of n P2R encapsulators to find its departure gates, where n is the number

of neighboring FPGAs to which a local position may be transmitted. Four positions are

wrapped up as a position packet, and buffered once all four registers are filled as shown in

figure 7·5(b), and then arbitrated for departure.

Since each force only has one destination, there is at most one force packet departure in

a cycle without the need for an arbiter. Thus, a force is directed to its departure gate using a

destination mask and is sent out once the valid signal becomes high after all four registers

are filled, as shown in Figure 7·5(c).

Both position and force packets contain a “last” signal for synchronization, which is

activated after all data associated with a destination node has been processed. The chained

synchronization mechanism is explained in the subsequent part of the chapter.

7.2.4 Chained Synchronization

Distributed spatial simulations often utilize the Bulk Synchronous Parallel (BSP) model,

which can be problematic due to its centralized nature and susceptibility to the straggler

problem [Bin Khunayn et al., 2017], where the delay of a single worker slows down the

entire system. To address these issues, instead of relying on traditional bulk synchroniza-

tion methods, we leverage the advantages of our MD architecture by analyzing its data

dependency pattern and implementing a chained synchronization approach. This technique

131

PCs. Hence, we propose a “stronger”-scaling approach, which aims to scale the CBB for

higher throughput.

In Figure 7·9, we present the architecture of a Scalable CBB that consists of two SPEs,

where each SPE is grouped by n PEs, n+ 1 FCs, a PC, a PRN, and a FRN in the way

described in PE Scaling section. Since the bottlenecks originate from the routing rings

and PCs, such grouping method restricts the bottlenecks within an SPE, and allows higher

performance being achieved by populating SPEs. Additional SPEs can be attached to the

highlighted SPE to increase throughput as shown in the figure. The second SPE uses a

separate set of routing paths to ensure equally short rings. Since both SPEs work on the

same cell within a single SCBB, the force results can be combined directly in an adder tree.

The VC, MU, and MU routing path do not scale with the SCBB as MU takes much less

time compared to force evaluation. The number of EX nodes on rings are scaled as well,

with their inputs dispatched and outputs arbitrated.

To prevent the transmission of duplicated neighbor positions to PRNs, the positions of

all home cells are divided into two disjoint subsets and stored in PC0 and PC1. These PCs

are now used only for neighbor position broadcast, and a single separate home position

cache (HPC) is responsible for home position traversal. During the local MU update, HPC,

PC0, and PC1 are all updated simultaneously. It’s worth noting that PC0 only takes positions

with even particle ID, while PC1 only takes odd ones. If more than 2 SPEs are instantiated,

they only need to work on particles with interleaved IDs to ensure a balanced workload.

Meanwhile, only the HPC is used to update local position, as it contains all the position

information for the cell, while the other PCs only hold partial information.

132

7.3 Evaluation

7.3.1 Experimental Setup

The FASDA system was developed using Verilog/SystemVerilog HDL, implemented and

validated on the New England Research Cloud (NERC) using Xilinx Vitis and Vivado

2021.2. Our experiment was carried out on the Open Cloud Testbed [Handagala et al.,

2022], where we used up to 8× Xilinx UltraScale+ Alveo U280 FPGA boards running at

200 MHz with both QSFP28 ports connected to a Dell Z9100-ON 100 GbE Switch, with

UDP protocol established. Each FPGA contains 1303K CLBs, 2607K flip-flops, 2016× 36-

Kb Block RAMs (BRAM), 960× 288-Kb Ultra RAMs (URAM), and 9024× DSP slices.

For comparison, we also run OpenMM, one of the state-of-the-art MD software packages

on high-end CPUs and GPUs, including an Intel Xeon Gold 6226R processor with up to

32× threads, as well as up to 2× Nvidia A100 GPUs connected via NVLink and up to

4× Nvidia V100 GPUs all-to-all connected with NVLinks. To ensure fairness, we ran

OpenMM only with the LJ force field.

In order to ensure the generality of our results, we utilized a custom dataset that involves

the initialization of 64 randomly distributed sodium particles in each cell, while ensuring

that none of the particles are too close to be excluded. In both FASDA and OpenMM

simulations, a cutoff radius of 8.5 Å was used, along with a simulation time step of 2 fs

(2−15 seconds).

7.3.2 Overall Performance

Figure 7·10 and 7·11 display the assessed simulation rate of different platforms in terms of

µs/day, which refers to the number of microseconds of simulation that can be executed in

a day. The former shows weak-scaling while the latter shows strong-scaling capabilities of

FPGAs, GPUs, and CPUs. The assessment is carried out on five simulation spaces, with

the first four spaces scaled up by 3×3×3 cell blocks to demonstrate weak-scalability, while

135

insight into the system.

For the rest of the evaluations, each FPGA only works on 3×3×3 or 2×2×2 cells, and

the number of FPGAs is scaled with respect to the simulation space configurations without

further notice.

7.3.3 Utilization Breakdown

The utilization of critical components in the design, including PRs, FRs, filters, PEs, and

MUs, is illustrated in Figure 7·12. The figure provides a detailed breakdown of hardware

and time utilization for all design variations. Hardware utilization refers to the average

amount of work performed by a component in comparison to its capacity, while time uti-

lization represents the average proportion of time that a component is active, during which

the pipeline may not be full, but is functioning. The former indicates the effectiveness of

the components, while the latter provides a understanding of the system’s overall operation

flow.

It is observed that the PEs remain active for about 80% of the total operating time, with

a hardware utilization of approximately 50%∼60% across all the design variations. This

suggests that the FPGA design satisfies a critical requirement for strong-scaling, whereby

the computing units retain efficiency even when a larger number of computing units are

utilized with each working on a smaller number of particles. Furthermore, the upstream

filters match the PEs well in terms of hardware utilization, indicating that the number of

filters (6 in our experiments) matches the PE throughput that generates one force per cycle.

The utilization of the PR and FR routing components is also presented. It is notewor-

thy that in weak scaling scenarios (the first four configurations of the simulation space),

both the hardware and time utilizations of PR increase. This is because the position data is

fragmented and needs to be sent to multiple nodes, weakening the data locality and result-

ing in more data fragments spinning in rings. The FR hardware utilization also increases

with more nodes involved, which extends the routing path for forces. For strong scaling,

136

the utilizations of both PR and FR increase from 4×4×4-A to 4×4×4-B due to the pop-

ulated PE in an SPE. However, the utilizations remain almost the same from 4×4×4-B to

4×4×4-C. This is because doubling the SPEs involves doubling the routing rings, splitting

workload in two halves and almost doubling the performance. In general, the system is

relatively well-balanced for all the design varieties, only with the PR underused due to the

outstanding locality of position data.

Last but not not least, the MU only occupies the least of the overall utilization which is

less than 5%, leaving the majority of the computing power focusing on the most complex

tasks, i.e., force evaluation.

7.3.4 Communication Intensity

Figure 7·13 and 7·14 provide the communication status of the multi-FPGA implementa-

tions, demonstrating the communication requirement and intensity between distinct FPGA

nodes. In our experiment, we utilized separate QSFP28 ports for position and force com-

munication. Figure 7·13 reveals that even with the strong-scaling configuration of 2-SPEs

and 3-PEs, the average bandwidth demand for an FPGA is below 25 Gbps for either posi-

tion or force, which is well below the available 100 Gbps bandwidth. However, peaks in

communication intensity could potentially overwhelm the routing device such as a switch,

causing packet loss, and therefore we limit the transmission of each board to once per sev-

eral cycles using cooldown counters, effectively spreading out a peak over a period of time.

As communication and computation are executed simultaneously, with computation typi-

cally much more intense than communication, the latency loss in communication caused

by cooldown is concealed.

Figure 7·14 displays the breakdown of position and force communication intensity in

percentage with respect to other FPGA nodes. We assume that the FPGA nodes are log-

ically connected as previously illustrated in figure 7·2. In reality, an FPGA only com-

municates intensely with the nodes logically close to it, particularly for forces. This is

138

0.0

0.2

0.4

0.6

0.8

1.0

6x3x6
Space Configuration Space Configuration

Position Force

6x6x6 4x4x4

C
om

m
. I

nt
en

si
ty

 R
at

io

To Node 1
To Node 2
To Node 3
To Node 4

To Node 5
To Node 6
To Node 7

6x3x6 6x6x6 4x4x4

Figure 7·14: The communication bandwidth demand breakdown for different design con-
figurations.

Table 7.1: Hardware Utilization of All Design Variations

Design # FPGA LUT FF BRAM URAM DSP
3×3×3 1 40% 22% 29% 20% 20%
6×3×3 2 44% 24% 38% 31% 20%
6×6×3 4 46% 24% 33% 42% 20%
6×6×6 8 46% 24% 33% 42% 20%

4×4×4-A 8 23% 16% 31% 13% 6%
4×4×4-B 8 35% 20% 51% 18% 14%
4×4×4-C 8 52% 26% 76% 28% 27%

A : 1-SPE, 1-PE. B: 1-SPE, 3-PE. C: 2-SPE, 3-PE.

7.3.5 Resources Consumption

Table 7.1 presents the resource consumption for all the implementation variations discussed

earlier as a reference, including three configurations for the 4×4×4 simulation space. In the

weak-scaling scenario, the cost of LUTs and FFs remains stable, while the memory cost

increases significantly, especially from 3×3×3 to 6×3×3. This is due to the significant

change in design required to handle and process data from remote nodes. To achieve a

balanced resource consumption, LUT, BRAM, and URAM can be traded among each other

to a certain extent.

139

0 1
Number of Iterations

R
el

at
iv

e
Er

ro
r o

f E
ne

rg
y

2 3 4 5 6 7 8 9 10
x104

10-6

10
-5

10
-4

10
-3

10
-2

Figure 7·15: Energy Relative error with respect to OpenMM.

7.3.6 Energy Conservation

In order to ensure the stability of the physical simulation system, we evaluated the energy

convergence status of FASDA by comparing it with a 64-bit double precision floating-point

simulation that was run using OpenMM for 100,000 iterations on the 4×4×4 simulation

space. Our observations from figure 7·15 indicate that the relative error generally falls

around 10−4 and 10−3 with the overall energy converged.

7.4 Related Work

Most MD simulations are typically performed using software packages on CPUs and GPUs,

which have a large user base. Some popular software that support GPUs are: AMBER

[Case et al., 2005], Desmond [Bowers et al., 2006a], GROMACS [Abraham et al., 2015],

LAMMPS [Thompson et al., 2022], NAMD [Phillips et al., 2005], and OpenMM [East-

man and Pande, 2010]. These packages offer similar main functionalities and come with

various user-customizable options, such as Monte Carlo simulations and implicit water

environment.

Apart from software packages for general-purpose machines, dedicated ASIC architec-

140

tures have been designed by researchers to speed up MD. The Anton series [Shaw et al.,

2007, Shaw et al., 2014, Shaw et al., 2021] have been the foundation of ASIC-based MD

accelerator, providing an approximately tenfold performance increase with each successive

generation. The MDGRAPE series [Fukushige et al., 1996, Susukita et al., 2003, Narumi

et al., 2006, Ohmura et al., 2014], which dates back to the 1990s, has evolved from four

chips with a total peak performance of 4.2 GFLOPs to today’s 512 SoCs with 2.5 TFLOPs

per chip. Its most recent upgrade, MDGRAPE-4A [Morimoto et al., 2021] offloads the

3D-FFT based convolution to Intel Arria 10 FPGAs, indicating that FPGAs are valuable

and promising devices in MD acceleration.

Sensing the potential in FPGAs, researchers also develop MD accelerators on FPGAs.

Targeting N-body simulations in high performance computing, researchers implement a

cosmological-like (without cutoff) MD accelerator on multiple Intel Stratix 10 FPGAs with

OpenCL to demonstrate the advantages of strong scaling on FPGAs [Menzel et al., 2021].

ARUZ, consisting of ∼26,000 FPGAs including Xilinx Artix and Zynq FPGAs, is a mas-

sive FPGA cluster specifically built for MD as described in [Kiełbik et al., 2018]. Unlike

classical MD methods used in drug design, dynamic lattice liquid (DLL) method is adopted

in ARUZ, which requires global synchronization. A variety of single-FPGA MD solutions

are conveyed as well. In [Yang et al., 2019a], the idea of a complete MD system integrated

onto a single chip is outlined, presenting several design options to accommodate various

scenarios. In [Yuan et al., 2022], an MD accelerator designed for developing semiconduc-

tor materials is deployed on a Xilinx Alveo U200 FPGA, outperforming an Nvidia RTX

2080 Ti by 20%.

7.5 Conclusion

The aim of this chapter is to present FASDA, an open-sourced hardware acceleration sys-

tem for range-limited molecular dynamics based on FPGAs. FASDA is fully distributed

141

and capable of significant strong-scaling with a small number of particles.

To achieve this distributed capability, we utilize two techniques: (1) a two-level cell ID

conversion that eliminates the need for dynamic ID computing and creates a homogeneous

environment for FPGA nodes and PEs, and (2) a chained synchronization technique that

enables global synchronization through local synchronizations in a chain-reaction manner,

without requiring central FPGA nodes or host control.

To achieve strong-scaling, we have scaled an original cell building block into a scal-

able cell building block which includes scalable PEs that contain several original PEs. The

structured design has relatively well-balanced key components with high hardware utiliza-

tion, enabling users to easily parameterize the design to meet their resource or performance

requirements.

In comparison with GPUs, FASDA achieves a 4.67× speedup compared to the state-

of-the-art GPU solution in MD, demonstrating the outstanding strong-scalability of our

FPGA-based solution.

142

Chapter 8

Conclusions and Future Work

8.1 Conclusions

To reiterate, our overall goals are two-fold: maximize the potential of a single FPGA,

and constructing a high-performance multi-FPGA system. The two goals are achieved

in a progressive manner.

Firstly, we establish a single chip design that handles 3-D to 2-D mapping based on the

load partitioning schemes, leverages data locality for data reuse, and utilizes an efficient

on-chip routing mechanism to avoid high fan-in-fan-out and frequency degradation.

Secondly, based on the single chip designs, we focus on the communication problem

on two aspects: data transfer balancing for FPGA clusters of 3-D torus topology, and the

reduction in communication intensity brought by an alternative interpretation of force sym-

metry.

Furthermore, the emerging FPGA-on-the-cloud allows us to actually prototype our MD

RL system on an FPGA cluster. In our case, 8× Xilinx U280 FPGAs on an Ethernet switch

are employed to fulfill our goal, achieving both strong scaling and higher performance

compared to very high-end GPUs. Specifically, 4.67× speedup is achieved against an

Nvidia V100 GPU.

From a high-level perspective, we exploit the emerging FPGA cluster platforms to de-

ploy and execute our designs. By conducting thorough experimentation and analysis, we

present convincing evidence that FPGA clusters not only hold their own against other com-

puting technologies but also exhibit superior performance and scalability, particularly in

143

the realms of high-performance computing and strong scaling.

8.2 Future Work

The work we have accomplished thus far is not yet an end-to-end MD system that delivers

high performance in industry-level drug development. The missing components to integrate

into the system are:

• Long range force computing that takes electrostatic forces into account, enabling the

dynamics of non-electric-neutral particles.

• Bonded force computing that involves, for instance, chemical bond and hydrogen

bond. For micro-second level molecular simulations, the bonds are considered as

solid constraints which groups atoms into clusters.

Despite the separate efforts in previous works (Xiong et al., 2017; Sheng et al., 2017;

Sanaullah et al., 2016a, 2016b), there remains a lack of comprehensive integration among

the three components. To bridge the gap between academic prototypes and industry re-

quirements, our next objective is to develop a well-designed floor plan that effectively bal-

ances resource utilization and operational time for all three components. This will enable

us to achieve optimized overall performance in the integrated system.

Furthermore, there is a lack of a comprehensive compilation system that assists users

in parameterizing their inputs, enhancing the user experience. This feature is of utmost

importance since FPGA designs typically involve a higher learning overhead and steeper

learning curve compared to GPU implementations. The need for a compiler that enables

users to leverage the scalability and high performance offered by customizable hardware is

therefore essential and highly anticipated.

In the realm of research, the field of AI-aided scientific computing has experienced

rapid growth, facilitated by the advancements in machine learning. This trend presents

144

promising opportunities for the integration of AI techniques into molecular dynamics

(MD). One such example is the adoption of Graph Neural Network (GNN) approaches

to accelerate solid-state molecular simulations, particularly for phase transitions.

In the context of classical MD, there exist possibilities to leverage the capabilities of

generative models such as Generative Adversarial Networks (GANs), Variational Autoen-

coders (VAEs), and stable diffusion models. These models can be employed to generate

the atomic states based on the movements of a small subset of atoms, leading to improved

performance. Additionally, trained AI models can be utilized to achieve higher accuracy by

leveraging MD computations with reduced precision, such as simulating molecules using

only 8-bit precision.

References

Amazon EC2 F1 instances. https://aws.amazon.com/ec2/instance-types/f1/.
Accessed: 2023-03-20.

FAbRIC (FPGA research infrastructure cloud). https://wikis.utexas.edu/display/
fabric/Home. Accessed: 2023-03-21.

Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., and Lindahl,
E. (2015). GROMACS: High performance molecular simulations through multi-level
parallelism from laptops to supercomputers. SoftwareX, 1-2:19–25.

Alam, S., Agarwal, P., Smith, M., Vetter, J., and Caliga, D. (2007). Using FPGA devices
to accelerate biomolecular simulations. Computer, 40(3):66–73.

Aminpour, M., Montemagno, C., and Tuszynski, J. A. (2019). An overview of molec-
ular modeling for drug discovery with specific illustrative examples of applications.
Molecules, 24(9):1693.

Azizi, N., Kuon, I., Egier, A., Darabiha, A., and Chow, P. (2004). Reconfigurable molecu-
lar dynamics simulator. In Proceedings of the IEEE Symposium on Field Programmable
Custom Computing Machines, pages 197–206.

Bandara, S., Sanaullah, A., Tahir, Z., Drepper, U., and Herbordt, M. (2022). Enabling
VirtIO Driver Support on FPGAs. In 8th International Workshop on Heterogeneous
High Performance Reconfigurable Computing. doi: 10.1109/H2RC56700.2022.00006.

Benkrid, K. and Vanderbauwhede, W., editors (2013). High Performance Computing Us-
ing FPGAs. Springer Verlag. doi: 10.1007/978-1-4614-1791-0_4.

Bin Khunayn, E., Karunasekera, S., Xie, H., and Ramamohanarao, K. (2017). Exploiting
data dependency to mitigate stragglers in distributed spatial simulation. In Proceedings
of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic In-
formation Systems, SIGSPATIAL ’17, New York, NY, USA. Association for Computing
Machinery.

Boku, T., Kobayashi, R., Fujita, N., Amano, H., Sano, K., Hanawa, T., and Yamaguchi, Y.
(2019). Cygnus: GPU meets FPGA for HPC. In International Conference on Supercom-
puting. https://www.r-ccs.riken.jp/labs/lpnctrt/assets/img/ lspanc2020jan_boku_light
.pdf.

145

146

Bolaria, J. and Byrne, J. (2009). A Guide to FPGAs for Communications. The Linley
Group.

Bowers, K., Dror, R., and Shaw, D. (2007). Zonal methods for the parallel execution of
range-limited n-body simulations. Journal of Computational Physics, 221(1):303–329.

Bowers, K. J., Chow, D. E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis,
J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., and Shaw,
D. E. (2006a). Scalable algorithms for molecular dynamics simulations on commodity
clusters. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, pages
43–43.

Bowers, K. J., Dror, R. O., and Shaw, D. E. (2006b). The midpoint method for paralleliza-
tion of particle simulations. The Journal of Chemical Physics, 124(18):184109.

Brown, W., Wang, P., Plimpton, S., and Tharrington, A. (2011). Implementing molecular
dynamics on hybrid high performance computers–short range forces. Computer Physics
Communications (CPC), 182(4):898–911.

Case, D., Cheatham III, T., Darden, T., Gohlke, H., Luo, R., Merz, Jr., K., Onufriev, A.,
Simmerling, C., Wang, B., and Woods, R. (2005). The Amber biomolecular simulation
programs. Journal of Computational Chemistry, 26:1668–1688.

Caulfield, A. M., Chung, E. S., Putnam, A., Angepat, H., Fowers, J., Haselman, M., Heil,
S., Humphrey, M., Kaur, P., Kim, J.-Y., Lo, D., Massengill, T., Ovtcharov, K., Pa-
pamichael, M., Woods, L., Lanka, S., Chiou, D., and Burger, D. (2016). A cloud-scale
acceleration architecture. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1–13.

Chiu, M. and Herbordt, M. (2009). Efficient filtering for molecular dynamics simulations.
In 2009 International Conference on Field Programmable Logic and Applications. doi:
10.1109/ FPL15426.2009.

Chiu, M. and Herbordt, M. (2010a). Molecular dynamics simulations on high performance
reconfigurable computing systems. ACM Transactions on Reconfigurable Technology
and Systems, 3(4):1–37. doi: 10.1145/1862648.1862653.

Chiu, M. and Herbordt, M. (2010b). Towards production FPGA-accelerated molecular
dynamics: Progress and challenges. In 2010 4th High Performance Reconfigurable
Technology and Applications. doi: 10.1109/HPRCTA.2010.5670800.

Chiu, M., Herbordt, M., and Langhammer, M. (2008). Performance potential of molec-
ular dynamics simulations on high performance reconfigurable computing systems. In
2008 Second International Workshop on High-Performance Reconfigurable Computing
Technology and Applications. doi: 10.1109/ HPRCTA.2008.4745685.

147

Chiu, M., Khan, M., and Herbordt, M. (2011). Efficient calculation of pairwise nonbonded
forces. In 2011 IEEE 19th Annual International Symposium on Field-Programmable
Custom Computing Machines. doi: 10.1109/ FCCM.2011.34.

Cong, J., Fang, Z., Kianinejad, H., and Wei, P. (2016). Revisiting FPGA Acceleration
of Molecular Dynamics Simulation with Dynamic Data Flow Behavior in High-Level
Synthesis. Computing Research Repository (CoRR) in arXiv, abs/1611.04474.

Darden, T., York, D., and Pedersen, L. (1993). Particle Mesh Ewald: an N log(N) method
for Ewald sums in large systems. Journal of Chemical Physics, 98:10089–10092.

Eastman, P. and Pande, V. (2010). OpenMM: A Hardware-Independent Framework for
Molecular Simulations. Computing in Science and Engineering, 4:34–39.

Ebisuzaki, T., Makino, J., Fukushige, T., Taiji, M., Sugimoto, D., Ito, T., and Okumura,
S. K. (1993). GRAPE project: an overview. Publications of the Astronomical Society
of Japan, 45:269–278.

Eran, H., Zeno, L., Tork, M., Malka, G., and Silberstein, M. (2019). NICA: An Infras-
tructure for Inline Acceleration of Network Applications. In USENIX Annual Technical
Conference.

Fukushige, T., Taiji, M., Makino, J., Ebisuzaki, T., and Sugimoto, D. (1996). A highly par-
allelized special purpose computer for many-body simulations with and arbitrary central
force: MD-GRAPE. The Astrophysical Journal, 468:51–61.

Ganesan, A., Coote, M. L., and Barakat, K. (2017). Molecular dynamics-driven drug
discovery: leaping forward with confidence. Drug Discovery Today, 22(2):249–269.

Geng, T., Li, A., Shi, R., Wu, C., Wang, T., Li, Y., Haghi, P., Tumeo, A., Che, S., Reinhardt,
S., and Herbordt, M. (2020a). AWB-GCN: A Graph Convolutional Network Accelerator
with Runtime Workload Rebalancing. In 53rd IEEE/ACM International Symposium on
Microarchitecture (MICRO).

Geng, T., Wang, T., Sanaullah, A., Yang, C., Patel, R., and Herbordt, M. (2018a). A frame-
work for acceleration of CNN training on deeply-pipelined FPGA clusters with work and
weight load balancing. In 2018 28th International Conference on Field Programmable
Logic and Applications (FPL 2018): 394–402. doi: 10.1109/ FPL.2018. 00074.

Geng, T., Wang, T., Sanaullah, A., Yang, C., Xu, R., Patel, R., and Herbordt, M. (2018b).
FPDeep: Acceleration and Load Balancing of CNN Training on FPGA Clusters. In 2018
IEEE 26th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), page 81–84. doi: 10.1109/ FCCM.2018. 00021.

148

Geng, T., Wang, T., Wu, C., Li, Y., Yang, C., Wu, W., Li, A., and Herbordt, M. (2021a).
O3BNN-R: An Out-Of-Order Architecture for High-Performance and Regularized BNN
Inference. IEEE Transactions on Parallel and Distributed Systems, 32(1):199–213. doi:
10.1109/TPDS.2020.3013637.

Geng, T., Wang, T., Wu, C., Yang, C., Li, A., Song, S., and Herbordt, M. (2019a). LP-
BNN: Ultra-low-Latency BNN Inference with Layer Parallelism. In 2019 IEEE 30th
International Conference on Application-specific Systems, Architectures and Processors
(ASAP), volume 2160, pages 9–16. doi: 10.1109/ASAP.2019.00-43.

Geng, T., Wang, T., Wu, C., Yang, C., Wu, W., Li, A., and Herbordt, M. (2019b). O3BNN:
An Out-Of-Order Architecture for High-Performance Binarized Neural Network Infer-
ence with Fine-Grained Pruning. In ACM International Conference on Supercomputing,
volume 2160, pages 461–472. doi: 10.1145/ 3330345. 3330386.

Geng, T., Wu, C., Tan, C., Fang, B., Li, A., and Herbordt, M. (2020b). CQNN: a CGRA-
based QNN Framework. In IEEE High Performance Extreme Computing Conference.
doi: 10.1109/HPEC43674.2020.9286194.

Geng, T., Wu, C., Tan, C., Xie, C., Guo, A., Haghi, P., He, S., Li, J., Herbordt, M.,
and Li, A. (2021b). A Survey: Handling Irregularities in Neural Network Accel-
eration with FPGAs. In IEEE High Performance Extreme Computing Conference.
doi:10.1109/HPEC49654.2021.9622877.

Geng, T., Wu, C., Zhang, Y., Tan, C., Xie, C., You, H., Herbordt, M., Lin, Y., and Li, A.
(2021c). I-GCN: A Graph Convolutional Network Accelerator with Runtime Locality
Enhancement Through Islandization. In 54th IEEE/ACM International Symposium on
Microarchitecture (MICRO). doi:10.1145/3466752.3480113.

George, A., Herbordt, M., Lam, H., Lawande, A., Sheng, J., and Yang, C. (2016). Novo-
G#: A Community Resource for Exploring Large-Scale Reconfigurable Computing
Through Direct and Programmable Interconnects. In 2016 IEEE High Performance
Extreme Computing Conference (HPEC), Waltham, MA, pages 1–7. doi: 10.1109/
HPEC.2016. 7761639.

Glaser, J., Nguyen, T. D., Anderson, J. A., Lui, P., Spiga, F., Millan, J. A., Morse, D. C.,
and Glotzer, S. C. (2015). Strong scaling of general-purpose molecular dynamics simu-
lations on GPUs. Computer Physics Communications, 192:97 – 107.

Gokhale, M. and Graham, P. (2005). Reconfigurable Computing: Accelerating Computa-
tion with Field Programmable Gate Arrays. Springer.

Grossman, J., Towles, B., Greskamp, B., and Shaw, D. Filtering, reductions and
synchronization in the Anton 2 network. In 2015 IEEE International Parallel
and Distributed Processing Symposium, Hyderabad, India, 2015, pp. 860-870, doi:
10.1109/IPDPS.2015.42.

149

Gu, Y. and Herbordt, M. (2007a). FPGA-based multigrid computations for molecular dy-
namics simulations. In 15th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, pages 117–126. doi: 10.1109/ FCCM.2007.42.

Gu, Y. and Herbordt, M. (2007b). High performance molecular dynamics simulations with
FPGA coprocessors. In Reconfigurable Systems Summer Institute.

Gu, Y., VanCourt, T., DiSabello, D., and Herbordt, M. (2005a). FPGA acceleration of
molecular dynamics computations. In IEEE Symposium on Field Programmable Custom
Computing Machines. DOI: 10.1109/FCCM.2005.54.

Gu, Y., VanCourt, T., and Herbordt, M. (2005b). Accelerating molecular dynamics sim-
ulations with configurable circuits. In IEEE Conference on Field Programmable Logic
and Applications. DOI: 10.1109/FPL.2005.1515767.

Gu, Y., VanCourt, T., and Herbordt, M. (2006a). Accelerating molecular dynamics simula-
tions with configurable circuits. IEE Proceedings on Computers and Digital Technology,
153(3):189–195. doi: 10.1049/ip-cdt:20050182.

Gu, Y., VanCourt, T., and Herbordt, M. (2006b). Improved interpolation and system inte-
gration for FPGA-based molecular dynamics simulations. In 2006 International Con-
ference on Field Programmable Logic and Applications, pages 21–28. doi: 10.1109/
FPL.2006.311190.

Gu, Y., VanCourt, T., and Herbordt, M. (2006c). Integrating FPGA acceleration into
the ProtoMol molecular dynamics code: Preliminary report. In 2006 14th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines, pages 315–316. doi:
10.1109/ FCCM.2006.52.

Gu, Y., VanCourt, T., and Herbordt, M. (2008). Explicit design of FPGA-based copro-
cessors for short-range force computation in molecular dynamics simulations. Parallel
Computing, 34(4-5):261–271. doi: 10.1016/j.parco.2008.01.007.

Guo, A., Geng, T., Zhang, Y., Haghi, P., Wu, C., Tan, C., Lin, Y., Li, A., and Herbordt,
M. (2022a). A Framework for Neural Network Inference on FPGA-Centric SmartNICs.
In International Conference on Field-Programmable Logic and Applications. DOI:
10.1109/FPL57034.2022.00071.

Guo, A., Geng, T., Zhang, Y., Haghi, P., Wu, C., Tan, C., Lin, Y., Li, A., and Herbordt, M.
(2022b). FCsN: A FPGA-Centric SmartNIC Framework for Neural Networks. In 30th
IEEE International Symposium on Field-Programmable Custom Computing Machines.
DOI: 10.1109/FCCM53951.2022.9786193.

Guo, A., Hao, Y., Wu, C., Haghi, P., Pan, Z., Si, M., Tao, D., Li, A., Herbordt, M., and
Geng, T. (2023). Software-hardware co-design of heterogeneous SmartNIC system for

150

recommendation models inference and training. In ICS 2023: International Conference
on Supercomputing.

Haghi, P., Geng, T., Guo, A., Wang, T., and Herbordt, M. (2020a). FP-AMG: FPGA-
Based Acceleration Framework for Algebraic Multigrid Solvers. In 28th IEEE In-
ternational Symposium on Field-Programmable Custom Computing Machines. DOI:
10.1109/ FCCM48280.2020.00028.

Haghi, P., Geng, T., Guo, A., Wang, T., and Herbordt, M. (2020b). Reconfigurable
Compute-in-the-Network FPGA Assistant for High-Level Collective Support with Dis-
tributed Matrix Multiply Case Study. In IEEE Conference on Field Programmable
Technology.

Haghi, P., Guo, A., Xiong, Q., Patel, R., Yang, C., Geng, T., Broaddus, J., Marshall, R.,
Skjellum, A., and Herbordt, M. (2020c). FPGAs in the Network and Novel Communica-
tor Support Accelerate MPI Collectives. In IEEE High Performance Extreme Computing
Conference.

Haghi, P., Guo, A., Xiong, Q., Yang, C., Geng, T., Broaddus, J., Marshall, R., Schafer, D.,
Skjellum, A., and Herbordt, M. (2022). Reconfigurable switches for high performance
and flexible MPI collectives. Concurrency and Computation: Practice and Experience,
34(2). doi: 10.1002/cpe.6769.

Haghi, P., Krska, W., Tan, C., Geng, T., Chen, P., Greenwood, C., Guo, A., Hines, T., Wu,
C., Li, A., Skjellum, A., and Herbordt, M. (2023). FLASH: FPGA-accelerated smart
switches with GCN case study. In ICS 2023: International Conference on Supercom-
puting.

Hamada, T. and Nakasato, N. (2005). Massively parallel processors generator for recon-
figurable system. Proceedings of the IEEE Symposium on Field Programmable Custom
Computing Machines.

Handagala, S., Leeser, M., Patle, K., and Zink, M. (2022). Network attached FPGAs in the
open cloud testbed (OCT). In IEEE INFOCOM 2022 - IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pages 1–6.

Hauck, S. and DeHon, A. (2008). Reconfigurable Computing: The Theory and Practice of
FPGA-Based Computing. Morgan Kaufmann.

Herbordt, M. (2013). Architecture/algorithm codesign of molecular dynamics processors.
In 2013 Asilomar Conference on Signals, Systems, and Computers, pages 1442–1446.
doi: 10.1109/ ACSSC.2013.6810534.

Herbordt, M. (2019). Advancing OpenCL for FPGAs: Boosting performance with Intel
FPGA SDK for OpenCL technology. In Parallel Universe Magazine, 35:17-32.

151

Herbordt, M., Gu, Y., VanCourt, T., Model, J., Sukhwani, B., and Chiu, M. (2008a). Com-
puting models for FPGA-based accelerators with case studies in molecular modeling.
Computing in Science and Engineering, 10(6):35–45. doi: 10.1109/ MCSE.2008.143.

Herbordt, M., Khan, M., and Dean, T. (2009). Parallel discrete event simulation of molec-
ular dynamics through event-based decomposition. In In 2009 20th IEEE International
Conference on Application-specific Systems, Architectures and Processors, Boston, MA,
pages 129–136. doi: 10.1109/ ASAP.2009.39.

Herbordt, M., Kosie, F., and Model, J. (2008b). An efficient O(1) priority queue for
large FPGA-based discrete event simulations of molecular dynamics. In In 2008 16th
International Symposium on Field-Programmable Custom Computing Machines, pages
248–257. doi: 10.1109/ FCCM.2008.49.

Herbordt, M., Model, J., Sukhwani, B., Gu, Y., and VanCourt, T. (2006). Single pass,
BLAST-like, approximate string matching on FPGAs. In 2006 14th Annual IEEE Sym-
posium on Field-Programmable Custom Computing Machines, pages 217–226. doi:
10.1109/ FCCM.2006.64.

Herbordt, M., Model, J., Sukhwani, B., Gu, Y., and VanCourt, T. (2007a). Single pass
streaming BLAST on FPGAs. Parallel Computing, 33(10-11):741–756.

Herbordt, M., VanCourt, T., Gu, Y., Sukhwani, B., Conti, A., Model, J., and DiSabello, D.
(2007b). Achieving high performance with FPGA-based computing. IEEE Computer,
40(3):42–49.

Hilbert, D. (1952). Geometry and the Imagination. Chelsea Publishing Company, New
York.

Humphries, B., Zhang, H., Sheng, J., Landaverde, R., and Herbordt, M. (2014). 3D FFT
on a Single FPGA. In 2014 IEEE 22nd Annual International Symposium on Field-
Programmable Custom Computing Machines. doi: 10.1109/ FCCM.2014.28.

Ito, T., Ebisuzaki, T., Makino, J., and Sugimoto, D. (1991). A Special-Purpose Computer
for Gravitational Many-Body Systems: GRAPE-2. Publications of the Astronomical
Society of Japan, 43:547–555.

Jamieson, P., Sanaullah, A., and Herbordt, M. (2018). Benchmarking Heterogeneous HPC
Systems Including Reconfigurable Fabrics: Community Aspirations for Ideal Compar-
isons. In IEEE High Performance Extreme Computing Conference.

Jones, D., Allen, J. E., Yang, Y., Drew Bennett, W. F., Gokhale, M., Moshiri, N., and
Rosing, T. S. (2022). Accelerators for classical molecular dynamics simulations of
biomolecules. Journal of Chemical Theory and Computation, 18(7).

152

Keahey, K., Anderson, J., Zhen, Z., Riteau, P., Ruth, P., Stanzione, D., Cevik, M., Colleran,
J., Gunawi, H. S., Hammock, C., Mambretti, J., Barnes, A., Halbach, F., Rocha, A., and
Stubbs, J. (2020). Lessons learned from the Chameleon testbed. In Proceedings of the
2020 USENIX Annual Technical Conference (USENIX ATC ’20). USENIX Association.

Khan, M., Chiu, M., and Herbordt, M. (2013). FPGA-Accelerated Molecular Dynamics.
In Benkrid, K. and Vanderbauwhede, W., editors, High Performance Computing Using
FPGAs, pages 105–135. Springer Verlag. doi: 10.1007/978-1-4614-1791-0_4.

Khan, M. and Herbordt, M. (2011). Parallel discrete event simulation of molecular dy-
namics with speculation and in-order commitment. Journal of Computational Physics,
230(17):6563–6582. doi: 10.1016/j.jcp.2011.05.001.

Khan, M. and Herbordt, M. (2012). Communication requirements for FPGA-centric
molecular dynamics. In Symposium on Application Accelerators for High Performance
Computing. https:// www.bu.edu/ caadlab/saahpc12.pdf.

Kiełbik, R., Hałagan, K., Zatorski, W., Jung, J., Ulański, J., Napieralski, A., Rudnicki,
K., Amrozik, P., Jabłoński, G., Stożek, D., Polanowski, P., Mudza, Z., Kupis, J., and
Panek, P. (2018). ARUZ — large-scale, massively parallel FPGA-based analyzer of real
complex systems. Computer Physics Communications, 232:22–34.

Kindratenko, V. and Pointer, D. (2006). A case study in porting a production scientific
supercomputing application to a reconfigurable computer. In Proceedings of the IEEE
Symposium on Field Programmable Custom Computing Machines, pages 13–22.

Komeiji, Y., Uebayasi, M., Takata, R., Shimizu, A., Itsukashi, K., and Taiji, M. (1997).
Fast and accurate molecular dynamics simulation of a protein using a special-purpose
computer. Journal of Computational Chemistry, 18(12):1546–1563.

Larson, R., Salmon, J., Deneroff, M., Young, C., Grossman, J., Shan, Y., Klepseis, J., and
Shaw, D. High-throughput pairwise point interactions in Anton, a specialized machine
for molecular dynamics simulation. In 2008 IEEE 14th International Symposium on
High Performance Computer Architecture, Salt Lake City, UT, USA, 2008, pp. 331-342,
doi: 10.1109/HPCA.2008.4658650.

Lawande, A., George, A., and Lam, H. (2016). Novo-G#: a multidimensional torus-
based reconfigurable cluster for molecular dynamics. Concurrency and Computation:
Practice and Experience, 28(8).

Liu, X., Shi, D., Zhou, S., Liu, H., Liu, H., and Yao, X. (2018). Molecular dynamics
simulations and novel drug discovery. Expert Opinion on Drug Discovery, 13(1):23–37.
PMID: 29139324.

153

Makino, J. and Daisaka, H. (2012). GRAPE-8: An accelerator for gravitational n-body
simulation with 20.5gflops/w performance. In Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and Analysis, SC ’12,
Washington, DC, USA. IEEE Computer Society Press.

Makino, J., Fukushige, T., Koga, M., and Namura, K. (2003). GRAPE-6: Massively-
Parallel Special-Purpose Computer for Astrophysical Particle Simulations. Publications
of the Astronomical Society of Japan, 55(6):1163–1187.

Makino, J., Taiji, M., Ebisuzaki, T., and Sugimoto, D. (1994). GRAPE 4: a one-
tflops special-purpose computer for astrophysical n-body problem. In Supercomputing
’94:Proceedings of the 1994 ACM/IEEE Conference on Supercomputing, pages 429–
438.

Menzel, J., Plessl, C., and Kenter, T. (2021). The strong scaling advantage of FPGAs
in HPC for n-body simulations. ACM Transactions on Reconfigurable Technology and
Systems, 15(1).

Model, J. and Herbordt, M. (2007). Discrete event simulation of molecular dynamics with
configurable logic. In 2007 International Conference on Field Programmable Logic and
Applications, pages 151–158. doi: 10.1109/FPL.2007.4380640.

Mondigo, A., Ueno, T., Sano, K., and Takizawa, H. (2020). Comparison of Direct and
Indirect Networks for High-Performance FPGA Clusters. In Rincon, F., Barba, J., So,
H., Diniz, P., and Caba, J., editors, ARC 2020. Lecture Notes in Computer Science, vol
12083. Springer. 10.1007/978-3-030-44534-8_24.

Morimoto, G., Koyama, Y. M., Zhang, H., Komatsu, T. S., Ohno, Y., Nishida, K., Ohmura,
I., Koyama, H., and Taiji, M. (2021). Hardware acceleration of tensor-structured multi-
level Ewald summation method on MDGRAPE-4A, a special-purpose computer system
for molecular dynamics simulations. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pages 1–15.

Mortier, J., Rakers, C., Bermudez, M., Murgueitio, M. S., Riniker, S., and Wolber, G.
(2015). The impact of molecular dynamics on drug design: applications for the char-
acterization of ligand–macromolecule complexes. Drug Discovery Today, 20(6):686 –
702.

Mullard, A. (2014). New drugs cost us $2.6 billion to develop. Nature reviews. Drug
discovery, 13(12):877.

Narumi, T., Ohno, Y., Okimoto, N., Suenaga, A., Yanai, R., and Taiji, M. (2006). A high-
speed special-purpose computer for molecular dynamics simulations: MDGRAPE-3. In
NIC Workshop, volume 34, pages 29–36. Citeseer.

154

Narumi, T., Susukita, R., Koishi, T., Yasuoka, K., Furusawa, H., Kawai, A., and Ebisuzaki,
T. (2000). 1.34 TFLOPS molecular dynamics simulation for NaCl with a special-
purpose computer: MDM. In ACM/IEEE Conference on Supercomputing (SC), pages
54:1–54:20.

Obeidat, A., Jaradat, A., Hamdan, B., and Abu-Ghazleh, H. (2018). Effect of cutoff radius,
long range interaction and temperature controller on thermodynamic properties of fluids:
Methanol as an example. Physica A: Statistical Mechanics and its Applications, 496.

Ohmura, I., Morimoto, G., Ohno, Y., Hasegawa, A., and Taiji, M. (2014). MDGRAPE-4:
a special purpose computer system for molecular dynamics simulations. Philosophical
Transactions of the Royal Society A, 372(20130387).

Okumura, S., Makino, J., Ebisuzaki, T., Ito, T., Fukushige, T., Sugimoto, D., Hashimoto,
E., Tomida, K., and Miyakawa, N. (1992). GRAPE-3: highly parallelized special-
purpose computer for gravitational many-body simulations. In Proceedings of the
Twenty-Fifth Hawaii International Conference on System Sciences, volume i, pages 151–
160 vol.1.

Páll, S., Zhmurov, A., Bauer, P., Abraham, M., Lundborg, M., Gray, A., Hess, B., and Lin-
dahl, E. (2020). Heterogeneous parallelization and acceleration of molecular dynamics
simulations in gromacs. The Journal of Chemical Physics, 153(13):134110.

Pascoe, C., Stewart, L., Sherman, B., Sachdeva, V., and Herbordt, M. (2020). Execu-
tion of Complete Molecular Dynamics Simulations on Multiple FPGAs. In IEEE High
Performance Extreme Computing Conference.

Patel, R., Haghi, P., Jain, S., Kot, A., Krishnan, V., Varia, M., and Herbordt, M.
(2022a). COPA Use Case: Distributed Secure Joint Computation. In 30th IEEE In-
ternational Symposium on Field-Programmable Custom Computing Machines. doi:
10.1109/FCCM53951.2022.9786156.

Patel, R., Haghi, P., Jain, S., Kot, A., Krishnan, V., Varia, M., and Herbordt, M. (2022b).
Distributed Hardware Accelerated Secure Joint Computation on the COPA Frame-
work. In IEEE High Performance Extreme Computing Conference. doi: 10.1109/H-
PEC55821.2022.9926388.

Patel, R., Wolfe, P.-F., Munafo, R., Varia, M., and Herbordt, M. Arithmetic and Boolean
Secret Sharing MPC on FPGAs in the Data Center. In 2020 IEEE High Performance
Extreme Computing Conference (HPEC), Waltham, MA, USA, 2020, pp. 1-8, doi:
10.1109/HPEC43674.2020.9286159.

Phillips, J., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel,
R., Kale, L., and Schulten, K. (2005). Scalable molecular dynamics with NAMD. Jour-
nal of Computational Chemistry, 26:1781–1802.

155

Plessl, C. (2018). Bringing FPGAs to HPC Production Systems and Codes. In H2RC’18
workshop at Supercomputing (SC’18). doi: 10.13140/RG.2.2.34327.42407.

Putnam, A. (2014). A Reconfigurable Fabric for Accelerating Large-Scale Datacenter
Services. In International Symposium on Computer Architecture, pages 13–24. doi:
10.1109/ISCA.2014.6853195.

Salo-Ahen, O. M., Alanko, I., Bhadane, R., Bonvin, A. M., Honorato, R. V., Hossain,
S., Juffer, A. H., Kabedev, A., Lahtela-Kakkonen, M., Larsen, A. S., et al. (2020).
Molecular dynamics simulations in drug discovery and pharmaceutical development.
Processes, 9(1):71.

Sanaullah, A., C.Yang, Alexeev, Y., Yoshii, K., and Herbordt, M. (2018a). Application
Aware Tuning of Reconfigurable Multi-Layer Perceptron Architectures. In IEEE High
Performance Extreme Computing Conference.

Sanaullah, A. and Herbordt, M. (2018a). An Empirically Guided Optimization Frame-
work for FPGA OpenCL. In 2018 International Conference on Field Programmable
Technology (FPT), pages 46–53. doi: 10.1109/FPT.2018.00018.

Sanaullah, A. and Herbordt, M. (2018b). FPGA HPC using OpenCL: Case Study in 3D
FFT. In 9th International Symposium on Highly-Efficient Accelerators and Reconfig-
urable Technologies, page 1–6. doi: 10.1145/3241793.3241800.

Sanaullah, A. and Herbordt, M. (2018c). Unlocking Performance-Programmability by
Penetrating the Intel FPGA OpenCL Toolflow. In 2018 IEEE High Performance extreme
Computing Conference (HPEC). doi: 10.1109/HPEC.2018.8547646.

Sanaullah, A., Khoshparvar, A., and Herbordt, M. (2016a). FPGA-Accelerated Particle-
Grid Mapping. In IEEE 24th Annual International Symposium on Field-Programmable
Custom Computing Machines, pages 192–195. doi: 10.1109/ FCCM .2016.53.

Sanaullah, A., Lewis, K., and Herbordt, M. (2016b). GPU Accelerated Particle-Grid
Mapping. In IEEE High Performance Extreme Computing Conference. DOI: 10.1109/
HPEC.2016.7761599.

Sanaullah, A., Sachdeva, V., and Herbordt, M. (2018b). SimBSP: Enabling RTL Simu-
lation for Intel FPGA OpenCL Kernels. In Proc. Heterogeneous High Performance
Reconfigurable Computing. https://www.bu.edu/caadlab/H2RC18.pdf.

Sanaullah, A., Yang, C., Alexeev, Y., Yoshii, K., and Herbordt, M. (2018c). Real-Time
Data Analysis for Medical Diagnosis using FPGA Accelerated Neural Networks. BMC
Bioinformatics, 19 Supplement 18. doi: 10.1186/s12859-018-2505-7.

Sasaki, T., Betsuyaku, K., Higuchi, T., and Nagashima, U. (2005). Reconfigurable 3D-
FFT Processor for the Car-Parrinello Method. Journal of Computer Chemistry, Japan,
4(4):147–154.

156

Schaffner, M. and Benini, L. (2018). On the feasibility of FPGA acceleration of molecular
dynamics simulations. https://arxiv.org/abs/1808.04201.

Scrofano, R., Gokhale, M., Trouw, F., and Prasanna, V. (2006). A hardware/software
approach to molecular dynamics on reconfigurable computers. In Proceedings of the
IEEE Symposium on Field Programmable Custom Computing Machines, pages 23–32.

Scrofano, R., Gokhale, M., Trouw, F., and Prasanna, V. (2008). Accelerating Molecular
Dynamics Simulations with Reconfigurable Computers. IEEE Transactions on Parallel
and Distributed Systems, 19(6):764–778.

Scrofano, R. and Prasanna, V. (2006). Preliminary investigation of advanced electrostatics
in molecular dynamics on reconfigurable computers. In Proceedings of the ACM/IEEE
International Conference for High Performance Computing, Networking, Storage and
Analysis.

Shahzad, H., Sanaullah, A., Arora, S., Munafo, R., Yao, X., Drepper, U., and Herbordt, M.
(2022). Reinforcement Learning Strategies for Compiler Optimization in High Level
Synthesis. In The Eighth Workshop on the LLVM Compiler Infrastructure in HPC.
DOI: 10.1109/LLVM-HPC56686.2022.00007.

Shahzad, H., Sanaullah, A., and Herbordt, M. (2021). Survey and Future Trends for FPGA
Cloud Architectures. In Proceedings of the IEEE High Performance Extreme Computing
Conference.

Shaw, D. (2005). A Fast, Scalable Method for the Parallel Evaluation of Distance-Limited
Pairwise Particle Interactions. Journal of Computational Chemistry, 26(13):1318–1328.

Shaw, D. E., Adams, P. J., Azaria, A., Bank, J. A., Batson, B., Bell, A., Bergdorf, M., Bhatt,
J., Butts, J. A., Correia, T., Dirks, R. M., Dror, R. O., Eastwood, M. P., Edwards, B.,
Even, A., Feldmann, P., Fenn, M., Fenton, C. H., Forte, A., Gagliardo, J., Gill, G., Gor-
latova, M., Greskamp, B., Grossman, J., Gullingsrud, J., Harper, A., Hasenplaugh, W.,
Heily, M., Heshmat, B. C., Hunt, J., Ierardi, D. J., Iserovich, L., Jackson, B. L., Johnson,
N. P., Kirk, M. M., Klepeis, J. L., Kuskin, J. S., Mackenzie, K. M., Mader, R. J., Mc-
Gowen, R., McLaughlin, A., Moraes, M. A., Nasr, M. H., Nociolo, L. J., O’Donnell, L.,
Parker, A., Peticolas, J. L., Pocina, G., Predescu, C., Quan, T., Salmon, J. K., Schwink,
C., Shim, K. S., Siddique, N., Spengler, J., Szalay, T., Tabladillo, R., Tartler, R., Taube,
A. G., Theobald, M., Towles, B., Vick, W., Wang, S. C., Wazlowski, M., Weingarten,
M. J., Williams, J. M., and Yuh, K. A. (2021). Anton 3: twenty microseconds of molec-
ular dynamics simulation before lunch. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, pages 1–11.

Shaw, D. E., Deneroff, M. M., Dror, R. O., Kuskin, J. S., Larson, R. H., Salmon, J. K.,
Young, C., Batson, B., Bowers, K. J., Chao, J. C., Eastwood, M. P., Gagliardo, J., Gross-
man, J. P., Ho, C. R., Ierardi, D. J., Kolossváry, I., Klepeis, J. L., Layman, T., McLeavey,

157

C., Moraes, M. A., Mueller, R., Priest, E. C., Shan, Y., Spengler, J., Theobald, M.,
Towles, B., and Wang, S. C. (2007). Anton, a special-purpose machine for molecu-
lar dynamics simulation. In Proceedings of the International Symposium on Computer
Architecture, pages 1–12.

Shaw, D. E., Grossman, J., Bank, J. A., Batson, B., Butts, J. A., Chao, J. C., Deneroff,
M. M., Dror, R. O., Even, A., Fenton, C. H., Forte, A., Gagliardo, J., Gill, G., Greskamp,
B., Ho, C. R., Ierardi, D. J., Iserovich, L., Kuskin, J. S., Larson, R. H., Layman, T., Lee,
L.-S., Lerer, A. K., Li, C., Killebrew, D., Mackenzie, K. M., Mok, S. Y.-H., Moraes,
M. A., Mueller, R., Nociolo, L. J., Peticolas, J. L., Quan, T., Ramot, D., Salmon, J. K.,
Scarpazza, D. P., Schafer, U. B., Siddique, N., Snyder, C. W., Spengler, J., Tang, P.
T. P., Theobald, M., Toma, H., Towles, B., Vitale, B., Wang, S. C., and Young, C.
(2014). Anton 2: raising the bar for performance and programmability in a special-
purpose molecular dynamics supercomputer. In SC ’14: Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis, pages 41–53.

Sheng, J., Humphries, B., Zhang, H., and Herbordt, M. (2014). Design of 3D FFTs with
FPGA Clusters. In IEEE High Performance Extreme Computing Conference. doi:
10.1109/ HPEC.2014.7040997.

Sheng, J., Xiong, Q., Yang, C., and Herbordt, M. (2017a). Collective Communication on
FPGA Clusters with Static Scheduling. ACM SIGARCH Computer Architecture News,
44(4). doi: 10.1145/ 3039902.3039904.

Sheng, J., Yang, C., Caulfield, A., Papamichael, M., and Herbordt, M. (2017b). HPC
on FPGA Clouds: 3D FFTs and Implications for Molecular Dynamics. In 27th Inter-
national Conference on Field Programmable Logic and Applications. doi: 10.23919/
FPL.2017.8056853.

Sheng, J., Yang, C., and Herbordt, M. (2015). Towards Low-Latency Communication on
FPGA Clusters with 3D FFT Case Study. In International Symposium on Highly Effi-
cient Accelerators and Reconfigurable Technologies. https:// pdfs.semanticscholar.org
/832d/ c69145f5ba0ed6a951583201b1b20dd 2096e.pdf.

Sheng, J., Yang, C., and Herbordt, M. (2016). Application-Aware Collective Commu-
nication on FPGA Clusters. In IEEE 24th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). doi: 10.1109/ FCCM.2016.55.

Shi, R., Dong, P., Geng, T., Ding, Y., Ma, X., So, H., Herbordt, M., Li, A., and Wang, Y.
(2020). CSB-RNN: A Faster-than-Realtime RNN Acceleration Framework with Com-
pressed Structured Blocks. In International Conference on Supercomputing.

Sibai, F. N. (1998). The hyper-ring network: a cost-efficient topology for scalable multi-
computers. In ACM Symposium on Applied Computing.

158

Snir, M. (2004). A note on N-body computations with cutoffs. Theory of Computing
Systems, 37:295–318.

Stewart, L., Pascoe, C., Davis, E., Sherman, B., Herbordt, M., and Sachdeva, V. (2021).
Particle Mesh Ewald for Molecular Dynamics in OpenCL on an FPGA Cluster. In IEEE
Symposium on Field Programmable Custom Computing Machines.

Sukhwani, B. and Herbordt, M. GPU acceleration of a production molecular docking code.
In GPGPU-2: Proceedings of 2nd Workshop on General Purpose Processing on Graph-
ics Processing Units, pp. 19–27. https://dl.acm.org/doi/proceedings/10.1145/1513895.

Sukhwani, B. and Herbordt, M. (2008). Acceleration of a Production Rigid Molecule
Docking Code. In 2008 International Conference on Field Programmable Logic and
Applications, pages 341–346. doi: 10.1109/ FPL.2008.4629955.

Sumanth, J., Swanson, D., and Jiang, H. (2003). Performance and cost effectiveness of a
cluster of workstations and MD-GRAPE 2 for MD simulations. In Second International
Symposium on Parallel and Distributed Computing, pages 244–249. doi: 10.1109/IS-
PDC.2003.1267670.

Susukita, R., Ebisuzaki, T., Elmegreen, B. G., Furusawa, H., Kato, K., Kawai, A.,
Kobayashi, Y., Koishi, T., McNiven, G. D., Narumi, T., and Yasuoka, K. (2003). Hard-
ware accelerator for molecular dynamics: MDGRAPE-2. Computer Physics Communi-
cations, 155(2):115–131. doi: 10.1016/S0010-4655(03)00349-7.

Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M.,
Crozier, P. S., in ’t Veld, P. J., Kohlmeyer, A., Moore, S. G., Nguyen, T. D., Shan,
R., Stevens, M. J., Tranchida, J., Trott, C., and Plimpton, S. J. (2022). LAMMPS
- a flexible simulation tool for particle-based materials modeling at the atomic, meso,
and continuum scales. Computer Physics Communications, 271:108171. doi:
10.1016/j.cpc.2021.108171.

Towles, B., Grossman, J., Greskamp, B., and Shaw, D. (2014). Unifying on-chip and
inter-node switching within the Anton 2 network. In Proceedings of the International
Symposium on Computer Architecture, pages 1–12. doi: 10.1109/ISCA.2014.6853238.

VanCourt, T., Gu, Y., and Herbordt, M. (2004). FPGA acceleration of rigid molecule inter-
actions. In 12th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines, pages 300–301. doi: 10.1109/ FCCM.2004.33.

VanCourt, T. and Herbordt, M. (2004). Families of FPGA-based algorithms for ap-
proximate string matching. In Proceedings. 15th IEEE International Conference on
Application-Specific Systems, Architectures and Processors, 2004., pages 354–364. doi:
10.1109/ ASAP.2004.1342484.

159

VanCourt, T. and Herbordt, M. (2005a). LAMP: A tool suite for families of FPGA-based
application accelerators. In International Conference on Field Programmable Logic and
Applications, 2005. doi: 10.1109/ FPL.2005.1515797.

VanCourt, T. and Herbordt, M. (2005b). Three dimensional template correlation: Ob-
ject recognition in 3D voxel data. In Seventh International Workshop on Computer
Architecture for Machine Perception (CAMP’05), pages 153–158. doi: 10.1109/
CAMP.2005.52.

VanCourt, T. and Herbordt, M. (2006a). Application-dependent memory interleaving en-
ables high performance in FPGA-based grid computations. In IEEE Conference on Field
Programmable Logic and Applications, pages 395–401. doi: 10.1109/ FCCM.2006.25.

VanCourt, T. and Herbordt, M. (2006b). Rigid molecule docking: FPGA reconfiguration
for alternative force laws. Journal on Applied Signal Processing, v2006:1–10. doi:
10.1155/ ASP/2006/97950.

VanCourt, T. and Herbordt, M. (2006c). Sizing of processing arrays for FPGA-based
computation. In 2006 International Conference on Field Programmable Logic and
Applications, pages 755–760. doi: 10.1109/ FPL.2006.311307.

VanCourt, T. and Herbordt, M. (2007). Families of FPGA-based accelerators for ap-
proximate string matching. Microprocessors and Microsystems, 31(2):135–145. doi:
10.1016/ j.micpro.2006.04.001.

VanCourt, T. and Herbordt, M. (2009). Elements of high performance reconfigurable
computing. In Zelkowitz, M., editor, Advances in Computers, volume v75, pages 113–
157. Elsevier. doi: 10.1016/ S0065-2458(08)00802-4.

Wang, T., Geng, T., Jin, X., and Herbordt, M. (2019a). Accelerating AP3M-Based Com-
putational Astrophysics Simulations with Reconfigurable Clusters. In 2019 IEEE 30th
International Conference on Application-specific Systems, Architectures and Processors
(ASAP), pages 181–184. doi: 10.1109/ ASAP.2019.000-5.

Wang, T., Geng, T., Jin, X., and Herbordt, M. (2019b). FP-AMR: A Reconfigurable Fabric
Framework for Block-Structured Adaptive Mesh Refinement Applications. In 2019
IEEE 27th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pages 245–253. doi: 10.1109/ FCCM.2019. 00040.

Wang, T., Geng, T., Li, A., Jin, X., and Herbordt, M. (2020). FPDeep: Scalable Accel-
eration of CNN Training on Deeply-Pipelined FPGA Clusters. IEEE Transactions on
Computers, C-69(8):1143–1158. doi: 10.1109/TC.2020.3000118.

Wolfe, P.-F., Patel, R., Munafo, R., Varia, M., and Herbordt, M. (2020). Secret Sharing
MPC on FPGAs in the Datacenter. In IEEE Conference on Field Programmable Logic
and Applications.

160

Wu, C., Bandara, S., Geng, T., Guo, A., Haghi, P., Sherman, W., Sachdeva, V., and Her-
bordt, M. (2022). Optimized Mappings for Symmetric Range-Limited Molecular Force
Calculations on FPGAs. In International Conference on Field-Programmable Logic and
Applications. DOI: 10.1109/FPL57034.2022.00026.

Wu, C., Bandara, S., Geng, T., Sachdeva, V., Sherman, B., and Herbordt, M. (2021a).
System-Level Modeling of GPU/FPGA Clusters for Molecular Dynamics Simula-
tions. In IEEE High Performance Extreme Computing Conference. doi: 10.1109/H-
PEC49654.2021.9622838.

Wu, C., Geng, T., Bandara, S., Yang, C., Sachdeva, V., Sherman, W., and Her-
bordt, M. (2021b). Upgrade of FPGA Range-Limited Molecular Dynamics
to Handle Hundreds of Processors. In 2021 IEEE 29th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM). doi:
10.1109/FCCM51124.2021.00024.

Wu, C., Geng, T., Guo, A., Bandara, S., Haghi, P., Liu, C., Li, A., and Herbordt, M.
(2023). FASDA: An FPGA-Aided, Scalable and Distributed Accelerator for Range-
Limited Molecular Dynamics. In International Conference for High Performance Com-
puting, Networking, Storage and Analysis.

Wu, C., Geng, T., Sachdeva, V., Sherman, W., and Herbordt, M. (2020). A
Communication-Efficient Multi-Chip Design for Range-Limited Molecular Dynamics.
In 2020 IEEE High Performance extreme Computing Conference (HPEC).

Xiong, Q. and Herbordt, M. (2017). Bonded Force Computations on FPGAs. In 2017
IEEE 25th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pages 72–75. doi: 10.1109/ FCCM.2017.49.

Xiong, Q., Yang, C., Haghi, P., Skjellum, A., and Herbordt, M. (2020). Accelerating MPI
Collectives with FPGAs in the Network and Novel Communicator Support. In IEEE
Symposium on Field Programmable Custom Computing Machines.

Yang, C., Geng, T., Wang, T., Patel, R., Xiong, Q., Sanaullah, A., Wu, C., Sheng, J., Lin,
C., Sachdeva, V., Sherman, W., and Herbordt, M. (2019a). Fully integrated FPGA
molecular dynamics simulations. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC ’19, New York,
NY, USA. Association for Computing Machinery.

Yang, C., Geng, T., Wang, T., Sheng, J., Lin, C., Sachdeva, V., Sherman, W., and Her-
bordt, M. (2019b). Molecular Dynamics Range-Limited Force Evaluation Optimized
for FPGA. In 2019 IEEE 30th International Conference on Application-specific Systems,
Architectures and Processors (ASAP), pages 263–271. doi: 10.1109/ ASAP.2019.00016.

161

Yang, C., Sheng, J., Patel, R., Sanaullah, A., Sachdeva, V., and Herbordt, M. (2017).
OpenCL for HPC with FPGAs: Case Study in Molecular Electrostatics. In 2017 IEEE
High Performance Extreme Computing Conference (HPEC), pages 1–8. doi: 10.1109/
HPEC.2017. 8091078.

Yao, Z., Wang, J.-S., Liu, G.-R., and Cheng, M. (2004). Improved neighbor list algorithm
in molecular simulations using cell decomposition and data sorting method. Computer
Physics Communications, 161(1):27 – 35.

Young, C., Bank, J., Dror, R., Grossman, J., Salmon, J., and Shaw, D. (2009). A 32x32x32,
spatially distributed 3D FFT in four microseconds on Anton. In SC ’09: Proceedings
of the Conference on High Performance Computing Networking, Storage and Analysis,
pages 1–11.

Yuan, M., Liu, Q., Deng, Q., Xiang, S., Gan, L., Yang, J., Duan, X., Fu, H., and Yang, G.
(2022). FPGA-accelerated tersoff multi-body potential for molecular dynamics simu-
lations. In Gan, L., Wang, Y., Xue, W., and Chau, T., editors, Applied Reconfigurable
Computing. Architectures, Tools, and Applications, pages 17–31, Cham. Springer Na-
ture Switzerland.

Zhang, J., Xiong, Y., Xu, N., Shu, R., Li, B., Cheng, P., Chen, G., and Moscibroda, T.
(2017). The feniks FPGA operating system for cloud computing. In Proceedings of the
8th Asia-Pacific Workshop on Systems, pages 1–7.

Zhao, H. and Caflisch, A. (2015). Molecular dynamics in drug design. European journal
of medicinal chemistry, 91:4–14.

CURRICULUM VITAE

163

164

165

