
Boston University

OpenBU http://open.bu.edu

BU Open Access Articles BU Open Access Articles

2022-09

ALBADross: active learning based

anomaly diagnosis for production HPC systems

B. Aksar, E. Sencan, B. Schwaller, O. Aaziz, V.J. Leung, J. Brandt, B. Kulis, A.K. Coskun. 2022.

"ALBADross: Active Learning Based Anomaly Diagnosis for Production HPC Systems"

Proceedings - IEEE International Conference on Cluster Computing, ICCC, pp.369-380. https://doi.org/10.1109/cluster51413.2022.00048

https://hdl.handle.net/2144/47107

Downloaded from DSpace Repository, DSpace Institution's institutional repository

ALBADross: Active Learning Based
Anomaly Diagnosis for Production HPC Systems

Burak Aksar∗, Efe Sencan∗, Benjamin Schwaller†, Omar Aaziz†,
Vitus J. Leung†, Jim Brandt†, Brian Kulis∗, Ayse K. Coskun∗

∗Electrical and Computer Engineering, Boston University, Boston MA 02215, USA
{baksar, esencan, bkulis, acoskun}@bu.edu

†Sandia National Laboratories, Albuquerque NM 87123, USA
{bschwal, oaaziz, vjleung, brandt}@sandia.gov

Abstract—Diagnosing causes of performance variations in
High-Performance Computing (HPC) systems is a daunting chal-
lenge due to the systems’ scale and complexity. Variations in ap-
plication performance result in premature job termination, lower
energy efficiency, or wasted computing resources. One potential
solution is manual root-cause analysis based on system telemetry
data. However, this approach has become an increasingly time-
consuming procedure as the process relies on human expertise
and the size of telemetry data is voluminous. Recent research
employs supervised machine learning (ML) models to diagnose
previously encountered performance anomalies in compute nodes
automatically. However, these models generally necessitate vast
amounts of labeled samples that represent anomalous and healthy
states of an application during training. The demand for labeled
samples is constraining because gathering labeled samples is
difficult and costly, especially considering anomalies that occur
infrequently. This paper proposes a novel active learning-based
framework that diagnoses previously encountered performance
anomalies in HPC systems using significantly fewer labeled
samples compared to state-of-the-art ML-based frameworks. Our
framework combines an active learning-based query strategy and
a supervised classifier to minimize the number of labeled samples
required to achieve a target performance score. We evaluate our
framework on a production HPC system and a testbed HPC
cluster using real and proxy applications. We show that our
framework, ALBADross, achieves a 0.95 F1-score using 28x fewer
labeled samples compared to a supervised approach with equal
F1-score, even when there are previously unseen applications and
application inputs in the test dataset.

Index Terms—anomaly diagnosis, performance, active learning

I. INTRODUCTION

H IGH-performance computing (HPC) systems provide
significant computing resources for a wide range of

scientific and engineering applications. Generally, HPC sys-
tems comprise thousands of compute nodes to provide higher
degrees of resource sharing at scale. With the emerging
exascale machines, the underlying infrastructure has become
more heterogeneous and complex [1]. The ever-growing com-
plexity of the underlying infrastructure is more prone to a
substantial increase in performance variation and degradation,
such as up to 8 times delay in the job execution time and
more than 70% variation in application performance with
the same input deck [2]–[4]. Performance variations can be
caused by performance anomalies such as hardware-related

problems [5], shared resource contention [6], [7], fluctuating
CPU frequency [8], orphan processes [9], and memory-related
problems (e.g., memory leak) [10].

Most HPC systems include monitoring and logging frame-
works that allow for collecting telemetry data in the form
of logs, traces, and performance metrics. One way to assess
system health is by investigating selected performance metrics
and the logs of specific subsystems. Selected performance
metrics and log messages may shed light on the root causes
of performance anomalies; however, considering billions of
data points are generated daily [11], manual analysis is not
feasible and highly error-prone. Instead of manual analysis, it
is possible to establish rule-based heuristics to check abnormal
log sequences and performance metrics deviating from the
average values [12]–[15]. However, again, these methods are
fragile, have limited scalability, and are insufficient to handle
enormous volumes of telemetry data. Given the limits of
manual analysis, machine learning (ML) is emerging as an
attractive approach for automating performance analytics. ML-
based telemetry data analytics are promising since they reduce
diagnostics time and help rapid mitigation of performance
problems. In this paper, we specifically focus on diagnosing
performance anomalies (i.e., providing the type of the detected
anomaly) on HPC systems instead of anomaly detection, which
only informs whether an application run is anomalous.

To help identify performance anomalies in HPC systems,
several ML-based frameworks that detect and diagnose per-
formance anomalies have been introduced. In this work, we
are interested in supervised and semi-supervised ML-based
frameworks because we assume at least a few labeled samples
exist (i.e., labeled as healthy or anomalous, with the specific
type of anomaly). A sample refers to the whole set of telemetry
data collected during the execution of an application on a
compute node. Supervised frameworks that use Support Vector
Machines (SVM) [16], k-nearest neighbors [17], random for-
est [18], [19], or a Bayesian classifier [20] have been shown
to successfully perform anomaly detection and/or diagnosis
when enough labeled samples exist. A notable downside of
such fully supervised frameworks is the vast amount of labeled
samples required to represent the healthy and anomalous
states of an application during training. In production HPC
systems, plenty of unlabeled samples are typically available,

but obtaining a large number of labeled samples, especially
for anomalies, is a complex and time-consuming task for a
human annotator (e.g., system administrator or application
developer). Hence, the required number of labeled samples
should be kept at a minimum. It is also impractical to expect
access to labeled samples for all kinds of different applications
and anomalies, as the number of combinations can exceed
hundreds, even without considering different application input
decks. In a realistic setting, a framework should be robust1

against previously unseen applications and application inputs.
We observe that the diagnosis performance of a state-of-the-
art supervised framework reduces by up to 30% when the
test dataset contains previously unseen applications, so such
frameworks may not easily fit a production system setting due
to limitations in robustness.

One approach to minimize the number of labeled samples is
applying semi-supervised techniques that leverage both labeled
and unlabeled samples. For example, some semi-supervised
frameworks focus on detecting anomalies using only labeled
healthy samples [21], [22]. Even though anomaly detection
can help, identifying the root cause of performance anomalies
may significantly improve the system performance and lead to
an effective mitigation. Aksar et al. design a semi-supervised
framework, which operates with a large number of unlabeled
and a few labeled samples to diagnose performance anomalies
in production HPC systems [23]. We also assume a similar
setting where only a few labeled samples exist from each class,
whereas the number of unlabeled samples is large. In addition,
our setting assumes that a human annotator is available to
provide the label of a selected sample upon request.

This paper proposes a novel Active Learning-Based
Anomaly Diagnosis (ALBADross) framework, which uses sig-
nificantly fewer labeled samples compared to existing ML-
based frameworks, while providing robustness for previously
unseen applications and application inputs. ALBADross uti-
lizes resource usage characteristics of applications collected
by monitoring frameworks to train an ML model with a
single sample for each application and anomaly pair. Then,
by employing active learning-based query strategies, we de-
termine which samples should be labeled among thousands
of unlabeled samples in order to reach a target anomaly
diagnosis score. We evaluate ALBADross on a production
HPC system and a testbed HPC cluster using real applications
and benchmark suites with synthetic anomalies. Our specific
contributions are as follows:

• Design of an active learning-based anomaly diagnosis
framework, ALBADross, that operates with a small num-
ber of informative samples to reach a target anomaly
diagnosis score2.

• Demonstration of ALBADross using real applications on
a production HPC system. ALBADross achieves a 0.95
F1-score and near-zero false alarm rate, while using 28x

1In this paper, we refer to robustness as being able to detect and diagnose
performance anomalies with high accuracy when previously unseen applica-
tions and application inputs exist in the test dataset.

2Our implementation is available at: github.com/peaclab/ALBADross

fewer labeled samples compared to a fully-supervised
solution with equal accuracy, even when previously un-
seen applications and application inputs exist in the test
dataset.

• Investigation and quantification of the robustness of AL-
BADross and other ML-based methods under various
production system scenarios.

The rest of the paper starts with an overview of the related
work. Sec. III describes the technical details of the proposed
framework, Sec. IV explains our experimental methodology,
Sec. V presents our results, and we conclude in Sec. VI.

II. RELATED WORK AND BACKGROUND

Performance variation has been a significant area of research
for large-scale computing systems, and it will continue to be a
formidable problem, even more so as we approach the exascale
computing era. This section summarizes recent research on
ML-based telemetry data analytics in two main subsections.

A. Active Learning and Anomaly Detection

Active learning is a unique form of semi-supervised learning
based on querying samples iteratively from an unlabeled
dataset and re-training the selected model with the new labels
learned during the query process [24]. The primary motivation
behind active learning is that an ML model can achieve better
prediction accuracy if it can pick the samples to be labeled
for the training stage. Therefore, active learning, in its basis,
assumes that there is a human annotator who can provide
labels of the selected samples. Active learning assumes three
distinct scenarios: membership query synthesis [25], stream-
based selective sampling [26], and pool-based sampling [27].
In the membership query synthesis, the active learner can
generate its own instances to increase the number of labeled
samples based on the underlying data distribution. In stream-
based selective sampling, the samples from the unlabeled
dataset are shown to the active learner one by one, and the
learner decides whether or not to learn the label of the sample
according to a pre-defined uncertainty threshold. The pool-
based sampling assumes that the active learner has access
to a large unlabeled dataset. The learner then determines the
samples to be labeled based on the selected query strategy.
Since unlabeled samples are voluminous and accessible at
once, pool-based sampling is the most suitable scenario for
production HPC systems. Various query strategies can be
utilized in the pool-based sampling (see Sec. III).

Various studies leverage active learning for anomaly de-
tection or increasing the prediction performance when the
labeled data is limited. Russo et al. use a random forest
model and classification uncertainty query strategy to detect
anomalous points from environmental sensor data [28]. Chen
et al. diagnose faults in mechanical gearbox systems by
employing active learning with the classification uncertainty
query strategy [29]. Another study first extracts feature vectors
from raw signals using singular value decomposition and
then utilizes random forest as a supervised classifier for the

Labeled
Dataset

ML
Model

1. Build an ML model
using the available

labeled dataset

Active
Learning
Module

[x1, x2, x3, …] Labeled
Dataset

Human
Annotator

[x*,y*]

2. Investigate all
samples in the

unlabeled dataset

4. Add the new sample
and its label to the

labeled dataset

ML
Model

5. Re-fit the model

Unlabeled
Dataset

[x*]

3. Decide the sample
to be labeled

Initial
Supervised

Training

Active
Learning

Is the model accurate?
No Yes

Deployment

Telemetry
Data

Storage

Dataset Preparation

Preparation

Fig. 1. The high-level architecture of ALBADross. First, we apply feature extraction and feature selection to the available telemetry data. Next, we train a
supervised ML model using the available labeled samples. In the second step, the active learning module investigates the available unlabeled samples and
determines which sample should be labeled based on the selected query strategy. Then, a human annotator provides the label, y∗, for the selected sample,
x∗. In the last stage, the model is re-trained with the updated labeled dataset. We repeat the same cycle starting from the second step until we achieve the
target performance score, at which point the model can be deployed.

diagnosis stage [30]. Wang et al. propose an active learning-
based robust random cut forest algorithm [31] for detecting
anomalies in key performance indicator time series data [27].
One method involves a semi-supervised anomaly detection
framework for time series data that combines deep reinforce-
ment learning and active learning [32]. Xie et al. combine
active learning with one-class SVM to detect anomalous run-
time behaviors in HPC applications [33]. The authors model
instructions of executed applications as call stack trees, which
include temporal and contextual information, and aim to find
anomalous tree structures. Pimentel et al. utilize active learning
along with denoising autoencoder and multi-layer perceptron
to detect anomalies in an unsupervised manner [34]. Bodor
et al. propose an active learning-based isolation forest model
to detect anomalies in multivariate KPI time series data [35].
Nixon et al. combine active learning with autoencoder to detect
anomalies in the network data stream [36].

B. Machine Learning for HPC Performance Analytics

Supervised and semi-supervised ML frameworks, which op-
erate using multivariate time series telemetry data, are widely
employed to accomplish various tasks such as performance
anomaly diagnosis and application detection. In the supervised
setting, an ML model has access to all ground truth labels
during training. Tuncer et al. propose a novel supervised
anomaly diagnosis framework, which applies statistical feature
extraction along with a feature selection technique, and then
trains a decision tree-based classifier to classify the type of
an anomaly [37]. Ates et al. classify running applications
on compute nodes and detect unknown applications using
a supervised ML model [38]. Baseman et al. propose a
framework that leverages kernel density estimation to generate
synthetic samples and apply a random forest classifier to

predict performance anomalies [39]. In the semi-supervised
setting, the model has access to a few labeled and a large
set of unlabeled samples. Borghesi et al. use an autoencoder
to learn the normal behavior of compute nodes and detect
anomalies based on the reconstruction error [22]. Aksar et
al. propose an autoencoder-based semi-supervised framework
to diagnose anomalies in production HPC systems [23]. Their
framework learns the characteristics of previously encountered
performance anomalies in an unsupervised fashion and then
leverages supervised classifiers to diagnose anomalies on
compute nodes.

The key differentiators of ALBADross are two-fold. Exist-
ing semi-supervised frameworks [21]–[23] aim to detect and
diagnose performance anomalies using the existing labeled
and unlabeled samples, whereas ALBADross aims to minimize
the labeled samples required for a target diagnosis score in
the presence of a human annotator. The closest related work,
which combines active learning and supervised classification
in the HPC domain, only detects anomalous executions in
applications [33]. However, ALBADross is the first work, to
the best of our knowledge, that combines active learning and
supervised classification to diagnose performance anomalies
with only a few labeled samples.

III. OUR PROPOSED FRAMEWORK: ALBADross

Our primary goal is to determine whether an application
run in a system displays anomalous behavior (i.e., perfor-
mance variability) and, if so, to characterize the reason behind
the anomalous behavior (e.g., memory leak, I/O contention,
etc.) in an application-agnostic manner. We are particularly
interested in anomalies that result in performance variabil-
ity, where applications continue to run without terminat-
ing/crashing. Such anomalies are typically more challenging

to discover and diagnose than failures that result in software
errors or premature termination.

We propose an active learning-based anomaly diagno-
sis framework called ALBADross, which achieves a target
anomaly diagnosis score while minimizing the number of
samples that need to be labeled. Figure 1 shows an overview
of our framework. We collect telemetry data from compute
nodes while running applications with and without (synthetic)
anomalies. We then extract statistical features from the raw
time series and train a supervised model with one sample for
each application and anomaly pair. After the initial model is
trained, the active learning module investigates samples in the
unlabeled dataset and selects samples by utilizing different
query strategies. Then, a human annotator provides labels
for the selected samples. As a final stage, we re-train the
model including the newly labeled samples. Note that our
system is independent of the monitoring framework used. In
the following sections, we explain these processes in depth.

A. Statistical Feature Extraction

The main goal of this stage is to extract useful information
from raw telemetry time series data. We use two differ-
ent open-source feature extraction toolkits. The first one is
MVTS [40], which computes 48 statistical features for every
metric. Some features are descriptive statistics (e.g., min,
max, mean, etc.), absolute differences between the descriptive
statistics of the first and second halves of the time series, and
long-run trends (e.g., longest monotonic increase). The second
one is TSFRESH [41], which computes 794 features for every
metric based on 63 different time series characterization meth-
ods. TSFRESH extracts a more extensive and more advanced
set of features compared to MVTS, including, but not limited
to, approximate entropy [42], power spectral density of time
series [43], and variation coefficient of each feature.

B. Feature Selection

After extracting statistical features, we use the Chi-Square
feature selection [44] technique to reduce the data dimen-
sionality, which is often helpful in time series regression and
classification tasks [45]. In statistics, the Chi-Square test is
used to determine the independence of two events. The goal
is to select features that are significantly dependent on the
given output. When two features are independent, the observed
count approaches the expected value, resulting in a lower Chi-
Square score. Thus, a high Chi-Square score suggests that the
independence hypothesis is false. In simple terms, the higher
the Chi-Square score, the more reliant the feature is on the
output and hence more suitable for model training. In our
experiments, we compute a Chi-Square score for every feature,
sort them in descending order, and select the top-k features.
The exact implementation details are disclosed in Sec. IV.

C. Hyperparameter Search and Supervised Training

This stage aims to identify the optimal hyperparameters for
each supervised model before applying active learning. We
tune each model’s hyperparameters using grid search across

multiple cross-validation folds. For the initial model training
stage, we assume one labeled sample from each application
and anomaly pair exist to train a supervised ML model with
the selected hyperparameters.

D. Active Learning

After the initial model training is completed with the se-
lected hyperparameters, we apply active learning to determine
which samples should be labeled. In the context of active
learning, we assume a pool-based sampling scenario where
a large number of unlabeled samples are available for the
query process. We explore three different query strategies to
determine samples to be labeled, where each strategy tries to
select a sample to be labeled by leveraging different statistical
measurements.

1) Classification Uncertainty: One of the commonly used
strategies is classification uncertainty, which is defined as
follows:

U(x) = 1− P (y|x), (1)

where x is the instance to be predicted and y is the most
likely prediction. We represent class probabilities with p̂i =
[p1, p2, p3, ..., pk], where i denotes the sample’s index, pk is
the probability for the k-th class, and p̂i contains all class
probabilities. Assume we have the following class probabilities
for three different samples:

p̂1 = [0.1, 0.85, 0.05]

p̂2 = [0.6, 0.3, 0.1]

p̂3 = [0.39, 0.61, 0.0]

(2)

The active learner sequentially queries all the unlabeled in-
stances until it finds the sample for which its current prediction
is maximally uncertain. In the given example, uncertainties are
Ulist = [0.15, 0.4, 0.39], and the selected sample is the second
one in this scenario.

2) Classification Margin: The classification margin strategy
calculates the probability difference between the first and
second most likely predictions, which is defined as follows:

M(x) = P (y1|x)− P (y2|x), (3)

where y1 and y1 are the first and second most likely classes.
Using the given class probabilities for each sample in Eq. 2,
the margins are the following: Mlist = [0.75, 0.3, 0.22]. When
deciding on the sample to be labeled, the strategy chooses
the sample with the smallest margin, as a smaller margin
indicates a more uncertain decision. It is the third sample in
this scenario.

3) Classification Entropy: The classification entropy is
proportional to the average number of guesses one has to make
to find the true class, which is defined as follows:

H(x) = −
∑
k

pk log(pk). (4)

Using the example class probabilities, the calculated entropies
are the following: Hlist = [0.52, 0.90, 0.67]. This strategy

TABLE I
APPLICATIONS WE RUN ON VOLTA FOR DATA COLLECTION.

Benchmark Application Description
NAS BT Block tri-diagonal solver

CG Conjugate gradient
FT 3D Fast Fourier Transform
LU Gauss-Seidel solver
MG Multi-grid on meshes
SP Scalar penta-diagonal solver

Mantevo MINIMD Molecular dynamics
COMD Molecular dynamics
MINIGHOST Partial differential equations
MINIAMR Stencil calculation

Other KRIPKE Particle transport

selects the instance where the class probabilities have the
highest entropy, which is the first sample in this case. After the
selected query strategy determines the sample to be labeled, we
re-train the model including the newly labeled sample instead
of training it from scratch.

E. Anomaly Detection and Diagnosis

We monitor the training process and finalize the training
when we reach the maximum number of allowed queries or
the target diagnosis score. The final model is stored as a
pickle object, and for a given sample, it returns the diagnosed
anomaly label and its confidence.

IV. EXPERIMENTAL METHODOLOGY

The first section details the HPC systems and the ap-
plications we run across these systems. Following that, we
discuss the details of the monitoring framework and synthetic
anomalies that we employ to generate performance variation.
We conclude with implementation details.

A. HPC Systems and Applications

We conduct tests on a testbed system called Volta and on
a production HPC system called Eclipse. We test our frame-
work’s performance against baselines using both benchmarks
and real applications.

(1) Volta is a Sandia National Laboratories-based Cray
XC30m testbed supercomputer. Volta comprises 52 comput-
ing nodes organized in 13 connected switches, each with
four nodes. Each node features 64GB of memory and two
sockets, each of which is equipped with an Intel Xeon E5-
2695 v2 CPU featuring 12 two-way hyper-threaded cores. In
Volta, we employ NAS Parallel Benchmarks (NPB) [46] and
Mantevo Benchmark Suite [47], developed for performance
and scalability research, to cover a broad collection of HPC
applications. In addition, we use the Kripke application, a
proxy application that mimics particle transit [48]. Table I
contains a list of all applications used in our experiments. We
run each program for 10-15 minutes over 4 compute nodes
with three inputs for each application.

(2) Eclipse is a production HPC system located at Sandia
National Laboratories. Eclipse has 1488 compute nodes and a
peak performance of 1.8 petaflops. Each node comes equipped
with 128GB of RAM and two sockets, each of which houses

TABLE II
APPLICATIONS WE RUN ON ECLIPSE FOR DATA COLLECTION.

Application Description
Real Applications LAMMPS Molecular dynamics

HACC Cosmological simulation
SW4 Seismic modeling

ECP Proxy Suite EXAMINIMD Molecular dynamics
SWFFT 3D Fast Fourier Transform
SW4LITE Numerical kernel optimizations

18 E5-2695 v4 CPU cores. We run the following applications
on Eclipse: LAMMPS, HACC, sw4, ExaMiniMD, SWFFT,
and sw4lite. There are three real applications among them:
LAMMPS, a molecular dynamics simulation focusing on ma-
terials modeling [49]; HACC, an extreme-scale cosmological
simulation [50]; and sw4, a popular 3D seismic model [51].
The remaining three, ExaMiniMD, SWFFT, and sw4lite, are
proxy applications from the ECP Proxy Apps Suite [52]. We
list all applications used in our experiments in Table II. We run
each application on 4, 8, and 16 nodes, where each application
has a different input per unique node count, for 20-45 minutes.

TABLE III
A LIST OF THE HPAS ANOMALIES USED IN OUR EXPERIMENTS.

Anomaly type Anomaly behavior

CPU intensive process Arithmetic operations

Cache contention Cache read & write

Memory bandwidth contention Uncached memory write

Memory leakage
Increasingly allocate

& fill memory

B. Monitoring Framework

We collect telemetry data across multiple subsystems using
the Lightweight Distributed Metric Service (LDMS) [11].
LDMS can gather thousands of distinct resource utilization
metrics and performance counters at sub-second resolution
from compute nodes. We gather 806 metrics from Eclipse and
721 metrics from Volta at a rate of 1Hz. Some example metrics
from each subsystem are listed below:

• Memory and virtual memory (e.g., free, active memory)
• CPU (e.g., per-core system, user, and idle time)
• Network (e.g., number of received/transmitted packets)
• Shared file system (e.g., open, close, and write counts)
• Cray performance counters (e.g., power consumption,

write-back counters)

C. Synthetic Performance Anomalies

ML models must see samples exhibiting anomalous prop-
erties to learn and detect specific anomaly signatures; on the
other hand, performance anomalies are rare, especially in pro-
duction HPC systems. Hence, we utilize synthetic performance
anomalies from the open-source HPC Performance Anomaly
Suite (HPAS) [53] to systematically simulate anomalous ap-
plication behavior.

Test DatasetActive Learning
Training Dataset

Labeled
Dataset

Unlabeled
Dataset

Fig. 2. Splitting the dataset into training and test datasets. The labeled dataset
represents the initial condition for the supervised training phase, where one
sample from each application and anomaly pair exists. Query strategies and
baselines use the unlabeled dataset to determine samples to be labeled.

HPAS is a free and open-source performance anomaly suite
that can be used to replicate the most popular performance
anomalies. In HPAS, synthetic anomalies target five primary
subsystems: the CPU, the cache, the memory, the network, and
shared storage. We inject anomalies using a variety of settings
to simulate various levels of performance variance, as detailed
in Table III. While running a multi-node application, we run
a synthetic anomaly in the first allocated compute node. For
Volta dataset, six different anomaly intensities are used: 2%,
5%, 10%, 20%, 50%, and 100%. For the Eclipse dataset, we
have 2 or 3 settings including different intensities for each
anomaly type. If an anomaly is injected, the data for each
compute node is labeled with an anomaly type; otherwise, the
sample is labeled as healthy.

D. Baselines

The most common baseline in the active learning domain is
the random selection, referred to as Random [54]. In each
iteration, we randomly select a sample from the unlabeled
dataset and ask for its label. Even though Random is pretty
typical in the literature, we implement another baseline sce-
nario, assuming that the applications running on the system
are known. In each iteration, we select one sample from each
application type, referred to as Equal App. For example, we
query in increments of 6 and guarantee that there is one
sample from each application type since the Eclipse dataset
has six applications in total. The last baseline we implement
is Proctor, which is an autoencoder-based semi-supervised ML
framework to diagnose performance anomalies [23]. In each
iteration, we query new samples using Random and retrain the
supervised classifier. We provide the implementation details in
the next section.

E. Implementation Details

1) Data Collection & Preparation: For every application
that is run on a compute node, we obtain a sequence of
multivariate time series data RTxM where T is the number
of timestamps, and M is the number of metrics of the mul-
tivariate time series data. First, we omit the time intervals
corresponding to the initialization and termination phases since
some metrics may fluctuate significantly from their expected
values. Then, we calculate the difference between each step
for cumulative performance counters, as we are interested in
the change, not the raw value. Finally, we perform linear

TABLE IV
HYPERPARAMETER SEARCH SPACE FOR EACH MODEL AND THEIR

OPTIMAL HYPERPARAMETERS FOR ECLIPSE∗ AND VOLTA+ DATASETS

Model Hyperparameter Space

LR
penalty: l1∗+, l2

C: 0.001, 0.01, 0.1, 1.0∗, 10.0+

RF

n estimators: 8, 10, 20+, 100, 200∗

max depth: None, 4, 8∗+, 10, 20

criterion: gini, entropy∗+

LGBM

num leaves: 2, 8, 31, 128+

learning rate: 0.01, 0.1∗+, 0.3

max depth: −1∗, 2, 8+

colsample bytree: 0.5, 1.0∗+

MLP

max iter: 100∗+, 200, 500, 1000

hidden layer sizes: (10,10,10), (50, 100, 50)∗, (100)+

alpha: 0.0001∗, 0.001, 0.01+

interpolation in every time series to fill in missing values since
some metric values may get lost during data collection.

After the data cleanup, we extract statistical features of
raw time series using MVTS and TSFRESH feature extraction
toolkits and drop features with NaN or zero values. After this
step, we obtain 6436 and 80839 features in the Eclipse dataset
and 5445 and 99169 features in the Volta dataset, with MVTS
and TSFRESH, respectively. Using the Chi-Square feature
selection technique, we experiment with the different number
of features: 250, 500, 1000, 2000, 4000, 6436. We limit
the minimum to 250 features since we observe a decreasing
trend in the prediction performance. The maximum number
of features is 6436 because this is the maximum number
of features for the Eclipse dataset. We achieve the best F1-
score with the following combinations, MVTS - 2000 features,
and TSFRESH - 2000 features, in the Eclipse and the Volta
datasets, respectively.

2) Dataset Split & Hyperparameter Tuning: Figure 2 shows
the dataset split to mimic a real production system scenario
during our experiments. The active learning training dataset
comprises labeled and unlabeled datasets. The labeled dataset
is used to train supervised models before applying active
learning. For the Eclipse and Volta datasets, it contains 30
(i.e., six applications and five anomalies) and 55 samples (i.e.,
11 applications and five anomalies), respectively. We repeat
the train-test split process five times using stratified sampling
to ensure that the class distribution matches the distribution in
the entire dataset. We apply the Min-Max scaler to training and
test datasets. We also maintain a 10% anomaly ratio (i.e., the
number of anomalous samples divided by all samples) in the
active learning training dataset. To make sure this ratio aligns
with a production system setting, we investigate the percentage
of application runs (without injecting any synthetic anomalies)
that show an outlier behavior (i.e., runs that have execution
time 1.5 IQR below Q1 or 1.5 IQR above Q3) in terms of
execution time on Eclipse. We observe an outlier ratio between

TABLE V
THE SUMMARY OF OUR ANOMALY DIAGNOSIS RESULTS. FOR EACH DATASET, WE REPORT THE REQUIRED NUMBER OF SAMPLES TO ACHIEVE A CERTAIN

F1-SCORE WITH THE BEST FEATURE EXTRACTION METHOD AND QUERY STRATEGY.

Dataset
Feature

Extraction
Method

Query
Strategy

Initial
Sample Count

Starting
F1-score F1-score:0.85 F1-score:0.90 F1-score:0.95

Active Learning
Training Dataset

F1-score

Max Score
5-fold CV

Volta TSFRESH Uncertainty 55 0.86 Already Passed 65 Samples 76 Samples 0.95
(6329 Samples)

0.99
(16732 Samples)

Eclipse MVTS Margin 30 0.72 87 Samples 150 Samples 230 Samples 0.95
(5619 Samples)

0.99
(19652 Samples)

2-7% among different application types and we cap this value
to 10%. The size of Eclipse and Volta datasets is different;
hence, training and test percentages are adjusted accordingly
for each dataset to satisfy the conditions mentioned above.

In the last stage, we perform hyperparameter tuning only
on the active learning training dataset to prevent potential
information leakage from the test set, i.e., the test dataset is
withheld. We apply grid search in a 5-fold stratified cross-
validation setting. The hyperparameter search space for each
model is shown in Table IV. The optimal hyperparameters
are denoted with the ∗ and + symbols for Eclipse and Volta
datasets, respectively.

3) ML Models and Baselines: We use the random forest,
Light Gradient Boosting Machines (LGBM) [55], logistic
regression, and Multi-Layer Perceptron (MLP) in our experi-
ments. A random forest model comprises numerous decision
trees, and it often uses the average of each decision tree
or majority voting to make predictions. Gradient boosting
machines are decision-tree-based classifiers that make use
of gradient boosting, which generates a prediction result by
combining weak prediction models. We use the LGBM since
they generally require less time to train and have lower
memory usage compared to Extreme Gradient Boosting, which
is another popular gradient boosting machine algorithm [56].

We utilize the scikit-learn [57] and the modAL [58] libraries
to implement ML models and active learning query strategies,
respectively. Each of the baseline methods, Random and Equal
App, is run ten times in every query. We adopt the proposed
autoencoder topology to implement Proctor [23]. The final
model includes a deep autoencoder with 2000 neurons in the
code layer and a logistic regression classifier for the supervised
training part. We use adadelta optimizer and minimize the
Mean Squared Error for 100 epochs.

V. EVALUATION

We evaluate our framework against three distinct exper-
imental scenarios and present F1-scores, false alarm rates
(i.e., false-positive rates), and anomaly miss rates (i.e., false-
negative rates). The F1-score is the harmonic mean of pre-
cision and recall, where precision shows what percentage of
positive class predictions are correct and recall shows what
percentage of actual positive class samples are identified cor-
rectly. The false alarm rate is the percentage of healthy samples
classified as one of the anomaly classes. The anomaly miss
rate is the percentage of anomalous samples (any anomaly)
that are classified as healthy.

0 50 100 150 200 250
Number of Queries

0.825

0.850

0.875

0.900

0.925

0.950

0.975

F1
-s

co
re

 (M
ac

ro
 A

vg
)

F1-score

0 50 100 150 200 250
Number of Queries

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

False Alarm Rate

0 50 100 150 200 250
Number of Queries

0.05

0.10

0.15

0.20

0.25
Anomaly Miss Rate

Entropy Equal App* Margin Proctor* Random* Uncertainty MinQueryF195 F195

Fig. 3. The F1-scores, false alarm rates, and anomaly miss rates of different query strategies and baselines (Random*, Equal App*, and Proctor*) for the first
250 queries in the Volta dataset. The red dashed line points to a 0.95 F1-score, the black dashed line shows the minimum number of additional samples to
reach a 0.95 F-1 score, and the shades show a 95% confidence interval for different train-test splits. The uncertainty query strategy achieves a 0.95 F1-score
by learning the labels of additional 21 samples while maintaining an almost perfect false alarm rate.

dcopy dial leak
memeater

healthy

Anomalies

0

5

10

15

20

25

30

Co
un

t
Selected Anomaly Types

CoMD bt cg ft kripke lu mg
miniAMR

miniGhost
miniMD sp

Applications

2

4

6

8

10

12

14

16
Selected Application Types

Fig. 4. The distribution of selected application and anomaly types in the
Volta dataset for the first 50 queries. The top two labels are healthy and dial.
Among the applications, Kripke is the most frequently queried one.

A. Anomaly Diagnosis with Active Learning

The main goal of this scenario is to determine how many
labeled samples are required to reach a target F1-score. We
explore three different active learning query strategies: entropy,
margin, and uncertainty. In terms of baselines, we utilize
Random, Equal App, and Proctor. We start with one sample
for each application and anomaly pair and query 1000 samples
in the Eclipse and Volta datasets for each method. After each
query, all the methods are tested with the same test dataset,
and then we report the F1-scores, anomaly miss rates, and
false alarm rates.

Table V shows the summary of the best results in two
datasets. The starting F1-score column shows the initial F1-
score when we train the models with the labeled dataset in
Fig. 2. In the Volta dataset, the uncertainty query strategy
reaches an F1-score of 0.90 with ten additional samples.
With an additional 21 samples, the uncertainty query strategy
achieves a 0.95 F1-score, whereas Random reaches the same
F-1 score with approximately 600 samples. This score is the
maximum score we can achieve using a random forest model
with the active learning training dataset (Fig. 2), which consists
of 6329 samples in total. To summarize, the uncertainty query
strategy achieves the same score using only 2% of the active
learning training dataset. For the Eclipse dataset, the margin
query strategy can achieve a 0.95 F1-score with additional 200
samples. This score is the maximum score we can achieve

using the active learning training dataset (5619 samples),
where the margin query strategy achieves this score using 24x
fewer labeled samples.

Figure 3 shows how F1-scores, false alarm rates, and
anomaly miss rates change for the first 250 queries of each
method in the Volta dataset. Even though margin and uncer-
tainty query strategies perform similarly, the uncertainty query
strategy achieves a slightly higher F1-score on average, so it
is chosen as the best strategy. Regarding false alarm rates,
the uncertainty strategy reaches an almost zero false alarm
pretty quickly, whereas the anomaly miss rate increases until
the 50th query. To understand the underlying behavior, we
investigate the selected anomaly and application types during
this process and provide a drill-down analysis for the first
50 queries in Fig. 4. The main reason is that the uncertainty
query strategy initially selects more healthy samples, where
almost 30 samples out of 50 belong to the healthy label on
average. This trend leads to an immediate drop in the false
alarm rate while creating a temporary increase in the anomaly
miss rate since the model prioritizes learning the signatures of
healthy samples. Most of the selected healthy samples are from
Kripke, MiniMD, and MiniAMR applications. On average, 10
out of 13 Kripke samples, 5 out of 8 MiniMD samples, and
4 out of 7 MiniAMR samples have the healthy label. On
the other hand, dial anomaly is the most queried anomaly
type amongst the other anomalies. The reason is that the dial
anomaly is the most confusing anomaly type for the model
since it has the lowest F1-score in the prediction phase. In
terms of baselines, Proctor has the best false alarm rate but
the lowest classification performance. When we investigate F1-
scores for each anomaly type, we realize that Proctor has over
0.94 F1-score for each class but cpuoccupy, which is around
0.73. This trend leads to a decrease in the macro average F1-
score. Proctor maintains an almost zero false alarm rate from
the start, whereas other baselines achieve the same score with
200 additional samples.

Figure 5 shows the anomaly diagnosis results for the Eclipse
dataset. The margin query is the best strategy since it achieves

0 50 100 150 200 250
Number of Queries

0.65

0.70

0.75

0.80

0.85

0.90

0.95

F1
-s

co
re

 (M
ac

ro
 A

vg
)

F1-score

0 50 100 150 200 250
Number of Queries

0.00

0.05

0.10

0.15

0.20

0.25

False Alarm Rate

0 50 100 150 200 250
Number of Queries

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Anomaly Miss Rate

Entropy Equal App* Margin Proctor* Random* Uncertainty MinQueryF195 F195

Fig. 5. The F1-scores, false alarm rates, and anomaly miss rates of different query strategies and baselines (Random*, Equal App*, and Proctor*) for the first
250 queries in the Eclipse dataset. The red dashed line points to a 0.95 F1-score, the black dashed line shows the minimum number of additional samples to
reach a 0.95 F-1 score, and the shades show a 95% confidence interval across different train-test splits. The margin query strategy achieves a 0.95 F1-score
by learning the labels of additional 200 samples while maintaining a zero false alarm rate.

the highest F1-score compared to other query strategies. The
margin query strategy reaches a 0.85 F1-score with additional
57 samples, whereas Random reaches the same score with
approximately 1000 samples. To reach a 0.95 F1-score, the
margin query strategy requires approximately 200 samples,
which is the same score we can achieve when all 5619 samples
in the active learning training dataset are used. One trend we
observe is that the number of samples required is almost one
order of magnitude higher than the case in the Volta dataset.
The main reason behind this trend is the complexity of the
dataset. On Eclipse, we run real applications across a different
number of compute nodes for 20-45 minutes, whereas on
Volta, mostly benchmark and proxy applications are run on
four nodes for 10-15 minutes. This complexity also explains
the difference between the initial starting F1-scores, which
are 0.72 and 0.86 in the Eclipse and the Volta datasets,
respectively. Regarding false alarm and anomaly miss rates,
while active learning query strategies and Proctor perform
similarly, Random and Equal App have high anomaly miss
rates. We conduct a similar drill-down analysis to investigate
selected applications and anomaly types. The margin query
strategy often selects samples with membw and cpuoccupy
since these samples generally have the lowest F1-score. In
terms of applications, almost all application types are selected
equally. Among the baselines, Random has the lowest classi-
fication performance, and Equal App has the highest anomaly
miss rate. The performance of Proctor remains steady since
the randomly selected labeled samples do not bring extra
information to the model.

B. Investigating Robustness for Anomaly Diagnosis

In production systems, it is not likely to obtain labeled
samples from every application and their unique inputs. A
robust framework should be able to diagnose anomalies even
though the test dataset contains previously unseen applications
and application inputs. First, we conduct a motivational exper-

iment in the Volta dataset to show the impact of the previously
unseen applications on the diagnosis performance. We select
three applications for the test dataset and keep the remaining
eight in the training dataset. Then, we measure the F1-scores,
false alarm rates, and anomaly miss rates in a constant test
dataset while gradually increasing the number of applications
in the training dataset. This scenario is repeated for different
application combinations, i.e., 11 combinations of 3.

2 4 6 8
Number of Training Apps

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F1
-S

co
re

 (M
ac

ro
 A

vg
)

2 4 6 8
Number of Training Apps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
F1-scoreCV

FARCV

AMRCV

False Alarm Rate (FAR)
Anomaly Miss Rate (AMR)

Fig. 7. We increase the number of applications in the training set while
keeping a constant test set to measure the robustness of a random forest
classifier. The error bars show a 95% confidence interval, and dashed lines
show the scores in a 5-fold CV setting when all applications exist in the
training and test datasets. When the training dataset has two applications, we
achieve a 0.7 average F1-score and 35% false alarm rate, which is 30% lower
and 35x higher than the 5-fold CV setting.

Figure 7 summarizes our results. When there are two
applications in the training dataset, the average F1-score drops
by approximately 30%, and the false alarm rate is 35x higher
compared to the 5-fold CV scenario. Even though the average
F1-score is 0.7, the F1-score may drop to 0.27 for some
application combinations in the training and test datasets.

1) Previously Unseen Applications: Considering the sever-
ity of the above problem, we measure the robustness of the
best query strategy and Random when previously unseen appli-
cations exist in the test dataset. We start with two applications
in the training dataset (all anomalies are included) and place

0 50 100 150 200 250
Number of Queries

0.70

0.75

0.80

0.85

0.90

0.95

F1
-s

co
re

 (M
ac

ro
 A

vg
)

Training Dataset: 2 Apps

0 50 100 150 200 250
Number of Queries

0.75

0.80

0.85

0.90

0.95

Training Dataset: 4 Apps

0 50 100 150 200 250
Number of Queries

0.80

0.85

0.90

0.95

Training Dataset: 6 Apps

Previously Unseen Applications - Volta
Random Uncertainty MinQueryF195 F195

Fig. 6. The F1-scores when the training dataset includes different number of applications. For example, when the training dataset has two applications, the
test dataset has the remaining nine applications. The red dashed line points to a 0.95 F1-score, the black dashed line shows the minimum number of additional
samples to reach a 0.95 F-1 score, and the shades show one standard deviation for different application combinations. We experiment with all combinations
in each scenario (e.g., 11 combinations of 2). When there are two, four, and six applications in the training dataset, the uncertainty query strategy reaches a
0.95 F1-score using additional 50, 35, and 30 samples, respectively.

0 50 100 150 200 250
Number of Queries

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

 (M
ac

ro
 A

vg
)

F1-score

0 50 100 150 200 250
Number of Queries

0.0

0.2

0.4

0.6

0.8

False Alarm Rate

0 50 100 150 200 250
Number of Queries

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Anomaly Miss Rate

Previously Unseen Application Inputs - Volta
Random Uncertainty MinQueryF195 F195

Fig. 8. The F1-scores, false alarm rates, and anomaly miss rates when the training dataset includes only the first input of each application and the test dataset
includes the remaining two inputs. The red dashed line points to a 0.95 F1-score, the black dashed line shows the minimum number of additional samples to
reach a 0.95 F1-score, and the shades show a 95% confidence interval for different input combinations. The uncertainty query strategy reaches a 0.95 F1-score
with 170 additional samples, whereas Random requires more than 1000 additional samples.

the remaining applications in the test dataset. In the training
dataset, we increase the number of applications to eight with
increments of two. Figure 6 shows the F1-scores of three
different scenarios, where each scenario has a different number
of applications in the training dataset. As we increase the
number of applications, we start with a higher initial score and
reach a 0.95 F1-score using fewer samples. In all cases, the
uncertainty query strategy significantly outperforms Random
and reaches a 0.95 F1-score by learning the labels of 50 extra
samples in the worst case (i.e., the two applications case).

2) Previously Unseen Application Inputs: Another frequent
scenario in production systems is executing the same applica-
tion with different input decks. We repeat a similar scenario
to the previously unseen application case, and our goal is to
measure the robustness of the best query strategy and Random.
For each application in our dataset, we have three input decks.
First, we delete all runs with the selected input deck from the
training dataset and only include the application runs with
the deleted input deck to the test dataset. Figure 8 shows
F1-scores, false alarm rates, and anomaly miss rates of the
uncertainty query strategy and Random. The initial F1-score
is 0.2, and the initial false alarm rate is 80%, where both scores
are significantly worse than the previously unseen application
case. This shows that previously unseen application inputs
may drastically impact the diagnosis performance. We train a
random forest model using the active learning training dataset
(6329 samples) and achieve a 0.95 F1-score. To reach the same
score, Random requires 1000 samples, whereas the uncertainty
query strategy requires only 225 samples, which is 28x fewer.
Regarding anomaly miss rate, although we observe a slight
increase for the first 20 samples, we see a logarithmic decrease
as we continue to select samples to be labeled. The initial in-
crease is due to prioritizing the samples with the healthy label.

To summarize, ALBADross minimizes the number of samples
to be labeled by selecting the most informative samples even
though previously unseen applications and application inputs
exist, which are very common in a production system.

VI. CONCLUSION & FUTURE WORK

Variation in application performance in HPC systems de-
grades user satisfaction, reduces resource utilization efficiency,
and wastes computing power. With the increasing size and
complexity of HPC systems, automated telemetry data-based
analytics are becoming essential for reliable and efficient
service. Even though active learning-based frameworks have
become popular in the domains where the labeled data is
limited, none of the prior works leverage it for anomaly
diagnosis in HPC. This paper proposes a novel active learning-
based framework for diagnosing previously encountered per-
formance anomalies in HPC systems while remaining robust
to unseen applications and application inputs. Our framework
is evaluated on a production HPC system and a testbed HPC
cluster. We demonstrate that our proposed framework achieves
a 0.95 F1-score using 28x fewer labeled samples compared
to a supervised baseline using the whole active learning
dataset, even when there are previously unseen applications
and application inputs in the test dataset.

As a next step, we plan to cover a scenario where AL-
BADross is deployed on a production HPC system. The goal
will be to design an interactive dashboard to make the querying
process (i.e., asking for the label of the selected sample) easier
for human annotators. To make this process more intuitive,
we plan to incorporate some unsupervised techniques and
domain heuristics together to point out the most important
metrics. Another direction we plan to explore is to design
a custom query strategy for multivariate time series data to
further reduce the necessary labeled samples.

ACKNOWLEDGMENT

This work has been partially funded by Sandia National
Laboratories. Sandia National Laboratories is a multimission
laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. De-
partment of Energy’s National Nuclear Security Administra-
tion under Contract DE-NA0003525. This paper describes
objective technical results and analysis. Any subjective views
or opinions that might be expressed in the paper do not
necessarily represent the views of the U.S. Department of
Energy or the United States Government.

REFERENCES

[1] J. Gao et al., “Sunway supercomputer architecture towards exascale
computing: analysis and practice,” Science China Information Sciences,
vol. 64, no. 4, pp. 1–21, 2021.

[2] Y. Zhang, T. Groves, B. Cook, N. J. Wright, and A. K. Coskun, “Quan-
tifying the impact of network congestion on application performance
and network metrics,” in IEEE International Conference on Cluster
Computing (CLUSTER), 2020, pp. 162–168.

[3] S. Chunduri et al., “Run-to-run variability on xeon phi based cray xc
systems,” in SC’17: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2017,
pp. 1–13.

[4] V. J. Leung, M. A. Bender, D. P. Bunde, and C. A. Phillips, “Algorith-
mic support for commodity-based parallel computing systems.” Sandia
National Laboratories, Tech. Rep., 2003.

[5] N. El-Sayed and B. Schroeder, “Reading between the lines of failure
logs: Understanding how hpc systems fail,” in IEEE/IFIP international
conference on dependable systems and networks (DSN), 2013, pp. 1–12.

[6] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There goes the
neighborhood: performance degradation due to nearby jobs,” in SC’13:
IEEE Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, 2013, pp. 1–12.

[7] M. Dorier, G. Antoniu, R. Ross, D. Kimpe, and S. Ibrahim, “Calciom:
Mitigating i/o interference in hpc systems through cross-application
coordination,” in IEEE 28th international parallel and distributed pro-
cessing symposium, 2014, pp. 155–164.

[8] M. Snir et al., “Addressing failures in exascale computing,” The Inter-
national Journal of High Performance Computing Applications, vol. 28,
no. 2, pp. 129–173, 2014.

[9] J. Brandt et al., “Quantifying effectiveness of failure prediction and
response in HPC systems: Methodology and example,” in IEEE Inter-
national Conference on Dependable Systems and Networks Workshops
(DSN-W), 2010, pp. 2–7.

[10] A. Agelastos et al., “Toward rapid understanding of production HPC
applications and systems,” in IEEE International Conference on Cluster
Computing, 2015, pp. 464–473.

[11] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gen-
tile, S. Monk, N. Naksinehaboon, J. Ogden et al., “The lightweight
distributed metric service: a scalable infrastructure for continuous mon-
itoring of large scale computing systems and applications,” in SC’14:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2014, pp. 154–165.

[12] R. Ahad, E. Chan, and A. Santos, “Toward autonomic cloud: Automatic
anomaly detection and resolution,” in International Conference on Cloud
and Autonomic Computing, 2015, pp. 200–203.

[13] J. Brandt et al., “Enabling advanced operational analysis through multi-
subsystem data integration on trinity.” Sandia National Laboratories,
Tech. Rep., 2015.

[14] L. Zhang, X. Xie, K. Xie, Z. Wang, Y. Lu, and Y. Zhang, “An
efficient log parsing algorithm based on heuristic rules,” in International
Symposium on Advanced Parallel Processing Technologies. Springer,
2019, pp. 123–134.

[15] W. Xu, L. Huang, A. Fox, D. A. Patterson, and M. I. Jordan, “Mining
console logs for large-scale system problem detection.” SysML, vol. 8,
pp. 4–4, 2008.

[16] B. L. Dalmazo, J. P. Vilela, P. Simoes, and M. Curado, “Expedite
feature extraction for enhanced cloud anomaly detection,” in IEEE/IFIP
Network Operations and Management Symposium, 2016, pp. 1215–
1220.

[17] S. Jin, Z. Zhang, K. Chakrabarty, and X. Gu, “Accurate anomaly
detection using correlation-based time-series analysis in a core router
system,” in IEEE International Test Conference (ITC), 2016, pp. 1–10.

[18] O. Tuncer et al., “Diagnosing performance variations in HPC ap-
plications using machine learning,” in International Supercomputing
Conference. Springer, 2017, pp. 355–373.

[19] B. Arzani, S. Ciraci, B. T. Loo, A. Schuster, and G. Outhred, “Taking
the blame game out of data centers operations with netpoirot,” in
Proceedings of the ACM SIGCOMM Conference, 2016, pp. 440–453.

[20] G. Wang, J. Yang, and R. Li, “An anomaly detection framework based on
ica and bayesian classification for iaas platforms,” KSII Transactions on
Internet and Information Systems (TIIS), vol. 10, no. 8, pp. 3865–3883,
2016.

[21] A. Borghesi, A. Bartolini, M. Lombardi et al., “Anomaly detection using
autoencoders in high performance computing systems,” Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 33, p. 9428–9433,
2019, arXiv: 1811.05269.

[22] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini,
“A semisupervised autoencoder-based approach for anomaly detection
in high performance computing systems,” Engineering Applications of
Artificial Intelligence, vol. 85, p. 634–644, 2019.

[23] B. Aksar, Y. Zhang, E. Ates, B. Schwaller, O. Aaziz, V. J. Leung,
J. Brandt, M. Egele, and A. K. Coskun, “Proctor: A semi-supervised
performance anomaly diagnosis framework for production hpc systems,”
in International Conference on High Performance Computing. Springer,
2021, pp. 195–214.

[24] B. Settles, “Active learning literature survey,” 2009.
[25] D. Angluin, “Queries and concept learning,” Machine learning, vol. 2,

no. 4, pp. 319–342, 1988.
[26] Y. Freund, H. S. Seung, E. Shamir, and N. Tishby, “Selective sampling

using the query by committee algorithm,” Machine learning, vol. 28,
no. 2, pp. 133–168, 1997.

[27] Y. Wang et al., “Practical and white-box anomaly detection through
unsupervised and active learning,” in 29th International Conference on
Computer Communications and Networks (ICCCN). IEEE, 2020, pp.
1–9.

[28] S. Russo, M. Lürig, W. Hao, B. Matthews, and K. Villez, “Active
learning for anomaly detection in environmental data,” Environmental
Modelling & Software, vol. 134, p. 104869, 2020.

[29] J. Chen, D. Zhou, Z. Guo, J. Lin, C. Lyu, and C. Lu, “An active
learning method based on uncertainty and complexity for gearbox fault
diagnosis,” IEEE Access, vol. 7, pp. 9022–9031, 2019.

[30] Y. Lei, J. Lin, Z. He, and M. J. Zuo, “A review on empirical mode
decomposition in fault diagnosis of rotating machinery,” Mechanical
systems and signal processing, vol. 35, no. 1-2, pp. 108–126, 2013.

[31] S. Guha, N. Mishra, G. Roy, and O. Schrijvers, “Robust random cut
forest based anomaly detection on streams,” in International conference
on machine learning. PMLR, 2016, pp. 2712–2721.

[32] T. Wu and J. Ortiz, “Rlad: Time series anomaly detection
through reinforcement learning and active learning,” arXiv preprint
arXiv:2104.00543, 2021.

[33] C. Xie, W. Xu, and K. Mueller, “A visual analytics framework for the
detection of anomalous call stack trees in high performance computing
applications,” IEEE transactions on visualization and computer graph-
ics, vol. 25, no. 1, pp. 215–224, 2018.

[34] T. Pimentel, M. Monteiro, A. Veloso, and N. Ziviani, “Deep active
learning for anomaly detection,” in 2020 International Joint Conference
on Neural Networks (IJCNN). IEEE, 2020, pp. 1–8.

[35] H. Bodor, T. V. Hoang, and Z. Zhang, “Little help makes a big
difference: Leveraging active learning to improve unsupervised time
series anomaly detection,” arXiv preprint arXiv:2201.10323, 2022.

[36] C. Nixon, M. Sedky, and M. Hassan, “Salad: An exploration of split ac-
tive learning based unsupervised network data stream anomaly detection
using autoencoders,” 2021.

[37] O. Tuncer et al., “Online diagnosis of performance variation in hpc
systems using machine learning,” IEEE Transactions on Parallel and
Distributed Systems, vol. 30, no. 4, pp. 883–896, 2018.

[38] E. Ates et al., “Taxonomist: Application detection through rich monitor-
ing data,” in European Conference on Parallel Processing. Springer,
2018, pp. 92–105.

[39] E. Baseman, S. Blanchard, N. DeBardeleben, A. Bonnie, and A. Morrow,
“Interpretable anomaly detection for monitoring of high performance
computing systems,” in Outlier Definition, Detection, and Description
on Demand Workshop at ACM SIGKDD, 2016.

[40] A. Ahmadzadeh, K. Sinha, B. Aydin, and R. A. Angryk, “Mvts-data
toolkit: A python package for preprocessing multivariate time series
data,” SoftwareX, vol. 12, p. 100518, 2020.

[41] M. Christ, N. Braun, J. Neuffer, and A. W. Kempa-Liehr, “Time series
feature extraction on basis of scalable hypothesis tests (tsfresh–a python
package),” Neurocomputing, vol. 307, pp. 72–77, 2018.

[42] J. M. Yentes, N. Hunt, K. K. Schmid, J. P. Kaipust, D. McGrath, and
N. Stergiou, “The appropriate use of approximate entropy and sample
entropy with short data sets,” Annals of biomedical engineering, vol. 41,
no. 2, pp. 349–365, 2013.

[43] P. Welch, “The use of fast fourier transform for the estimation of power
spectra: a method based on time averaging over short, modified peri-
odograms,” IEEE Transactions on audio and electroacoustics, vol. 15,
no. 2, pp. 70–73, 1967.

[44] H. Schütze, C. D. Manning, and P. Raghavan, Introduction to informa-
tion retrieval. Cambridge University Press Cambridge, 2008, vol. 39.

[45] M. Christ, A. W. Kempa-Liehr, and M. Feindt, “Distributed
and parallel time series feature extraction for industrial big data
applications,” CoRR, vol. abs/1610.07717, 2016. [Online]. Available:
http://arxiv.org/abs/1610.07717

[46] D. H. Bailey et al., “The NAS parallel benchmarks summary and
preliminary results,” in ACM/IEEE conference on Supercomputing, 1991,
pp. 158–165.

[47] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving performance via mini-applications,” Sandia
National Laboratories, Tech. Rep. SAND2009-5574, vol. 3, 2009.

[48] A. J. Kunen, T. S. Bailey, and P. N. Brown, “Kripke-a massively

parallel transport mini-app,” Lawrence Livermore National Lab.(LLNL),
Livermore, CA (United States), Tech. Rep., 2015.

[49] S. Plimpton, “Fast parallel algorithms for short-range molecular dynam-
ics,” Journal of computational physics, vol. 117, no. 1, pp. 1–19, 1995.

[50] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, and K. Heit-
mann, “Hacc: Extreme scaling and performance across diverse architec-
tures,” in SC’13: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, 2013, pp.
1–10.

[51] N. Petersson and B. Sjögreen, “Sw4 v1.1 [software],” Computational
Infrastructure for Geodynamics, 2014.

[52] “Exascale proxy applications.” [Online]. Available: https://proxyapps.
exascaleproject.org/

[53] E. Ates et al., “HPAS: An HPC performance anomaly suite for re-
producing performance variations,” in ACM Proceedings of the 48th
International Conference on Parallel Processing, 2019, p. 1–10.

[54] G. C. Cawley, “Baseline methods for active learning,” in Active Learning
and Experimental Design workshop In conjunction with AISTATS 2010.
JMLR Workshop and Conference Proceedings, 2011, pp. 47–57.

[55] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-
Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,”
Advances in neural information processing systems, vol. 30, pp. 3146–
3154, 2017.

[56] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in
Proceedings of the ACM Int. Conf. on Knowledge Discovery and Data
Mining, 2016, pp. 785–794.

[57] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[58] T. Danka and P. Horvath, “modal: A modular active learning framework
for python,” arXiv preprint arXiv:1805.00979, 2018.

