
Boston University

OpenBU http://open.bu.edu

Boston University Theses & Dissertations Boston University Theses & Dissertations

2023

Disambiguating natural language via

aligning meaningful descriptions

https://hdl.handle.net/2144/48024

Downloaded from DSpace Repository, DSpace Institution's institutional repository

© 2023 by
YIDA XIN
All rights reserved

Approved by

First Reader

Sang Peter Chin, PhD
Research Professor of Computer Science

Second Reader

Steve Homer, PhD
Professor of Computer Science

Third Reader

Derry Wijaya, PhD
Assistant Professor of Computer Science

Fourth Reader

Henry Lieberman, PhD
Research Scientist of Computer Science and Artificial Intelli-
gence Laboratory

Massachusetts Institute of Technology

Acknowledgments

My advisers, Professor Peter Chin and Henry Lieberman, have been supporting all

my research endeavors in a never-ending fashion. Professors Steve Homer and Derry

Wijaya have graciously provided their feedback on my thesis and attended my thesis

defense as committee members.

Professors Jonathan Appavoo and Abraham Matta meticulously screened my ini-

tial thesis abstract and draft, and provided insightful feedback.

Cyrus Shaoul, Henry Minsky, and Milan Minsky provided me with the opportunity

to work on cutting-edge Artificial Intelligence technologies.

Patrick Henry Winston introduced me to Artificial Intelligence and treated me as

a fellow traveler when I knew nothing about AI.

All my colleagues, collaborators, and friends with whom I have had countless

brainstorming sessions on everything, I will always remember them, their wisdom,

and our conversations.

I am above all grateful for everyone who has directly and indirectly contributed to

shaping me into what I am, and for all the opportunities that I have been fortunate

enough to encounter.

iv

DISAMBIGUATING NATURAL LANGUAGE VIA

ALIGNING MEANINGFUL DESCRIPTIONS

YIDA XIN

Boston University, Graduate School of Arts & Sciences, 2023

Major Professor: Sang Peter Chin, PhD
Research Professor of Computer Science

ABSTRACT

Artificial Intelligence (AI) technologies are increasingly pervading aspects of our

lives. Because people use natural language to communicate with each other, comput-

ers should also use natural language to communicate with us. One of the principal

obstacles to achieving this is the ambiguity of natural language, evidenced in problems

such as prepositional phrase attachment and pronoun coreference. Current methods

rely on the statistical frequency of word patterns, but this is often brittle and opaque

to people.

In this thesis, I explore the idea of using commonsense knowledge to resolve lin-

guistic ambiguities. I introduce PatchComm, which invokes explicit commonsense

assertions to solve context-independent ambiguities. When commonsense assertions

are missing, I invoke RetroGAN-DRD, which leverages state-of-the-art inference tech-

niques such as retrofitting and generative adversarial networks (GAN) to infer com-

monsense assertions. I build upon that with ProGeneXP, which brings state-of-the-art

language models to the task of describing its inputs and implicit knowledge in natural

language while providing meaningful descriptions for PatchComm to align to further

resolve linguistic ambiguities. Finally, I introduce DialComm to lay the groundwork

v

for moving from single-sentence disambiguation to discourse. Specifically, DialComm

builds upon PatchComm to obtain information from single sentences and integrates

such information with additional commonsense assertions to build integral frame rep-

resentations for discourses. I illustrate DialComm’s ability with an application to

end-user programming in natural language.

The contributions of this dissertation lie in showing how commonsense inference

can be integrated with parsing to resolve ambiguities in natural language, in a trans-

parent manner. I have implemented three candidate systems, with increasingly so-

phisticated approaches. I verified that they perform well on some standard tests, and

they operate in such a way that is understandable to people. This obviates the myth-

ical inevitability of an interpretability-performance tradeoff. I have shown how my

techniques can be used in a candidate application, programming in natural language.

My work leaves us in a good position to exploit further advances in natural lan-

guage understanding and commonsense inference. I am optimistic that natural, trans-

parent communication with computers will help make the world a better place.

vi

Contents

1 Introduction 1

1.1 Toward Transparent Natural Language Processing in Artificial Intelli-

gence . 1

1.2 Organization . 3

2 PatchComm 5

2.1 PatchComm: Using Commonsense Knowledge to Guide Syntactic Parsers 5

2.1.1 Syntactic Parsing . 6

2.1.2 Sentence-Level Syntactic Ambiguities 7

2.1.3 Commonsense Knowledge and Reasoning 8

2.2 Prepositional Phrase Attachment with ConceptNet 13

2.2.1 Task Setup . 13

2.2.2 Implementation Details . 14

2.2.3 Experiments and Results . 16

2.3 Pronoun Coreference . 17

2.3.1 Task Setup . 17

2.3.2 Implementation Details . 18

2.3.3 Experiments and Results . 19

2.4 RetroGAN-DRD . 20

2.4.1 RetroGAN . 22

2.4.2 Deep Relationship Discovery (DRD) 29

2.5 Disambiguation with RetroGAN-DRD 31

vii

2.5.1 Post-specialized Embeddings 31

2.5.2 Querying DRD . 32

2.5.3 Experiments and Results . 34

3 ProGeneXP 35

3.1 ProGeneXP Overview . 35

3.2 Recurrent Fine-tuning . 37

3.2.1 Implementation Details . 39

3.2.2 Probing Examples . 41

3.3 Task Specialization . 44

3.3.1 Implementation Details . 44

3.3.2 Preliminary Results . 46

3.4 PatchComm with ProGeneXP . 47

4 DialComm 48

4.1 DialComm: Discourse Understanding By Commonsense 48

4.2 Details of DialComm . 50

4.3 Application to Programming in Natural Language 54

4.3.1 Substrates for Sentence Representation Builder 54

4.3.2 Program Rendering . 57

4.4 Motivations and Future Work for Natural Language Programming . . 61

4.4.1 Descriptive and Procedural Programming 62

4.4.2 Adding Context-dependent Commonsense Inference 67

5 General Related Work 71

5.1 The State of Natural Language Processing 71

5.2 More Technical Details . 74

5.2.1 Natural Language Understanding 77

5.2.2 Syntax and Semantics . 79

viii

5.2.3 Natural Language Is Intrinsically Ambiguous 80

6 Contributions 86

References 88

Curriculum Vitae 97

ix

List of Tables

2.1 Result of PatchComm with ConceptNet on self-created prepositional

phrase attachment dataset, compared with spaCy alone. 16

2.2 Result of PatchComm with ConceptNet on WSC273 dataset, compared

with NeuralCoref alone. 20

2.3 Results for SimLex and SimVerb; best values in bold font. 27

2.4 Results for Out-of-Knowledge; best values in bold font. 28

2.5 Baselines are spaCy (top) and NeuralCoref (bottom). 34

3.1 RF model sizes. Note that for the 3rd checkpoint, 10, 515 = 9, 248

(WinoGrande-train-debiased) +1, 267 (WinoGrande-dev). 42

3.2 Probing examples for the Recurrent Fine-tuning module. At the top,

the sentences are taken from the DPR dataset for initial supervision

with human-curated descriptions. At the bottom, the sentences are

provided at probing time by us. Plain means the default T5-for-

Conditional-Generation text summarizer taken directly from the Hug-

gingFace library without fine-tuning of any kind. RF stands for our

Recurrent Fine-tuning approach. Also note that the “[]” in the sen-

tences are added to the table to clarify the pronouns of interest; they

do not appear in the datasets. 43

3.3 Test results for all 6 fine-tuning settings tested on 2 different test set-

tings. “WG” stands for WinoGrande. The WinoGrande baselines are

taken directly from Table 3 of (Sakaguchi et al., 2020). 46

x

4.1 Frame after reading S1. Note that the frame includes only relevant

information. For example, the frame does not repeat the fact that the

event is birthday party, because this is an event frame and the event

is already known. Putting spotlight over only relevant information, is

central to Minskyian frames (Minsky, 1974). 51

4.2 Frame after reading S2. From and To capture the fact that a gift needs

a giver and a receiver. Status: Maybe captures the fact the uncertainty

of whether the gift will indeed be bought. The inclusion of both From:

Robbie and From: Susie is because DialComm resolves that “them”

refers to Robbie and Susie, but needs more discourse-level context to

resolve “one.” . 52

4.3 Final frame after reading S3. 53

4.4 DialComm fills the frame slots as much possible. A sparse frame sug-

gests that more information can be introduced with ease. 58

xi

List of Figures

2·1 Architecture of PatchComm. 5

2·2 spaCy’s (above) versus PatchComm’s PP attachment decisions, where

it is obvious that PatchComm’s decision makes more commonsense. . 15

2·3 spaCy’s (above) versus PatchComm’s PP attachment decisions, where

it is obvious that PatchComm’s decision makes more commonsense. . 16

2·4 NeuralCoref when faced with ambiguous pronouns that should be re-

solved differently. 19

2·5 PatchComm resolves the ambiguity from Figure 2·4. 19

2·6 Architecture of RetroGAN. Note its cyclic nature. 24

2·7 Architecture of DRD. Note its three stages of semantic processing,

transfer learning, and task specialization. 29

2·8 Visualization of a very small snapshot of DRD’s reasoning outcomes.

Note that some of the concepts were not originally connected in Con-

ceptNet, but DRD is able to connect them. 30

3·1 Overall diagram sketch for our approach. The self-loop at the top of

the Recursive Fine-tuner (RF) indicates the recursive-style learning

that we detail in section 2.1. 35

4·1 Architecture of DialComm. 49

4·2 A simple but pronoun-ambiguous Birthday Party story. 50

4·3 A variation of Bartender story. 54

4·4 Parses for bartender story sentences, highlighting key information. . . 58

xii

4·5 PatchCommPro’s Renderer renders the discourse representation so-

far into Python code, in a real-time fashion. Specifically, the green

code in (a) is generated after Table 3.4 is generated; green code in (b)

after Table 3.5; and green code in (c) after Table 3.6. 59

4·6 An example of Metafor that shows both frontend and backend capabil-

ities. Lower-left corner: the narrative being entered; upper-left corner:

an interaction log; upper-right corner: Metafor’s representation of the

parse tree (for advanced users only); and lower-right corner: the ren-

dered Python code. 63

4·8 OpenAI’s Codex is very impressive in many cases (e.g. top), but fails

on other cases that the average human programmer would regard as

trivial (e.g. bottom). 66

4·9 Overview of current version of LM-GAN. 68

4·10 Some examples of specific and general assertions that LM-GAN is ca-

pable of generating, provided with a story, a targeted sentence, and a

hint. Note that for the general assertion, I used Atomic-style variable

names here for clarity. 69

4·11 Preliminary adversarial results of LM-GAN. 70

5·1 Information flows are from left to right in GPT (right), but bidirec-

tionally in BERT (left). 77

5·2 Constituency (top) and dependency (below) syntactic parse trees for

the sentence “The quick brown fox jumps over the lazy dog,” produced

by the Stanford CoreNLP parser. 79

5·3 Genesis’s Innerese representation for the sentence “The bird flew to

the tree because a cat appeared,” which has been slightly simplified

for readability. 84

xiii

List of Abbreviations

AGI Artificial General Intelligence
AI Artificial Intelligence
ASI Artificial Super Intelligence
BERT Bidirectional Encoder Representations from Transformers
BLEU Bilingual Evaluation Understudy
BoW Bag-of-Words
C660 Cambridge Rare Words
CBoW Continuous Bag-of-Words
CPU Central Processing Unit
CSKB Commonsense (Common Sense) Knowledge Base
DL Deep Learning
DRD Deep Relationship Discovery
GAN Generative Adversarial Network
GPT Generative Pre-trained Transformer
GRU Gated Recurrent Unit
HCAI Human-Centered Artificial Intelligence
LM Language Model
LM-GAN Language Model Generative Adversarial Network
LSTM Long Short-Term Memory
ML Machine Learning
NL Natural Language
NLP Natural Language Processing
NLU Natural Language Understanding
NMT Neural Machine Translation
OOP Object-Oriented Programming
PL Programming Language
PP Prepositional Phrase
RNN Recurrent Neural Network
Seq2seq Sequence-to-Sequence
SL SimLex
SOTA State-of-the-Art and State of the Art
SV SimVerb
UI User Interface
WSC Winograd Schema Challenge
WWW World Wide Web
XAI Explainable Artificial Intelligence

xiv

1

Chapter 1

Introduction

1.1 Toward Transparent Natural Language Processing in Ar-

tificial Intelligence

Artificial Intelligence (AI) in recent years has been hailed by many as a major wave of

technological revolution, thanks to the field’s awakening to and concentration around

Deep Learning (DL) since over a decade ago. Since then, there have been major efforts

in academic research on and industrial applications of Deep Learning models in vital

areas such as Computer/Robot Vision (CV/RV) and Natural Language Processing

(NLP), where computers/robots are programmed to use Deep Learning models to

learn to perceive our world and understand our languages.

The continual successes of Deep Learning models on one benchmark after another,

have hypnotized and intoxicated many Deep Learning enthusiasts but irritated many

Deep Learning critics, both inside and outside of the AI community. Most disagree-

ments between enthusiasts and critics revolve around the notion of AI performance,

along these two main dimensions:

1. Will current AI accelerate towards Artificial General Intelligence (AGI)?

2. Is AI good or bad? Will AGI be good or bad?

Along the first dimension, admittedly AGI is not a well-defined term. Still, most

AI experts and dilettantes agree that “AGI” at the very least means AI systems that

possess human-like or human-level intelligence. For example, we expect AGIs to able

2

to learn a diverse range of knowledge from, and solve a wide variety of problems in, the

world as we know it. Current state-of-the-art AI models are generally good at neither

domain-general knowledge acquisition nor domain-general problem solving. These

models do indeed acquire sophisticated knowledge at different levels of specificity,

from the benchmark tasks on which they have been trained. However, the knowledge

they learn have been shown to be domain-narrow and brittle. Domain-narrow, be-

cause models trained on one category of tasks generally cannot be directly applied

to a different category, until it has been significantly fine-tuned or even re-trained for

the new category. Brittle, because even within the same category, models can easily

be fooled when they are set to apply their acquired knowledge to new tasks. Based on

these observations, I believe that current AI systems lack essential ingredients to ac-

celerate toward AGI. One such ingredient, I believe, is commonsense. Consequently,

in this dissertation, I devote a large amount of attention to commonsense. Specifi-

cally, I discuss the role of commonsense knowledge and inference in natural language

processing, NLP.

Along the second dimension, there are of course many variables at play. Given the

state of AI, in order to answer whether AI is good or bad, we should always first ask

who is using AI and how they are using it. Clearly, if bad people use AI, the outcome

is predictably bad. The main challenge of AI deployment, however, is that even if

good people use AI — as I do believe is vast majority of the times — the outcome

might still turn out bad. In this dissertation, I delegate the topic of bad people

doing AI to humanitarian experts. Instead, I point to the issue of well-intentioned

people unintentionally doing “bad” AI. To that end, I once again call upon the use

of commonsense to mitigate this issue, in addition to the “merely academic” concern

of applying commonsense to language understanding.

Throughout my discussions on commonsense, I will reiterate the notion of AI

3

transparency and interpretability. I argue that the best way forward is to think about

performance and interpretability in a symbiotic relationship, rather than a trade-

off relationship. Fortunately, commonsense is the key substrate that underlies both

performance and interpretability.

My idea for implementing the said symbiotic relationship between AI performance

and interpretability, is implementing systems that use commonsense for problem solv-

ing and making sure that their internal procedures and data representations are trans-

parent to us. This way, they can explain themselves to us. The best interface for

this kind of transparency and interpretability is of course our human natural lan-

guage, and this is why my dissertation focuses on discovering transparent solutions

to ongoing problems in NLP. Consequently, in this dissertation, I implement my idea.

1.2 Organization

The organization of this document is as follows:

In chapter 2, I discuss PatchComm (Xin et al., 2021), a general-purpose sys-

tem that leverages large-scale commonsense knowledge in both symbolic and vector-

ized forms, to help syntactic parsers resolve such prominent syntactic ambiguities

as prepositional-phrase attachment ambiguity and pronoun coreference ambiguity.

PatchComm is transparent from the ground up, because it uses commonsense knowl-

edge and inference mechanisms in an explicit way and reports which exact pieces

of knowledge have been used. In addition, we will see how PatchComm achieves a

performance boost while ensuring its basic transparency, by using more sophisticated

neural network inference mechanisms.

In chapter 3, I discuss ProGeneXP, an instructable system that aims at bringing

out transparency from large-scale language models such as BERT (Devlin et al., 2019)

and RoBERTa (Liu et al., 2019) who are notoriously opaque. ProGeneXP is open

4

to receiving new instructions from humans at all times, and is capable of generating

natural language descriptions on the fly to showcase its learning and its understand-

ing of the world to human users in natural language. To evaluate the quality of such

descriptions in automated tasks, I will revisit the task of pronoun coreference dis-

ambiguation. We will see how ProGeneXP uses its self-generated natural language

descriptions to provide transparency for human users, and to improve its performance

on downstream tasks upon baselines.

In chapter 4, I discuss DialComm, a general-purpose system that builds on Patch-

Comm’s ability to improve sentence parsing and enables language understanding at

the discourse level. The key is to leverage both discourse context and readily available

commonsense to build frame (Minsky, 1974) representations of discourses. DialComm,

like PatchComm, is transparent from the ground up for the same reason. We will

see, via demonstrations, that DialComm can construct frames from discourses, use

the frames to go back to sentence-level ambiguities and resolve them, and also use

the frames to lay the groundwork for the downstream task of end-user programming

in natural language.

In chapter 5, I review general related work on natural language processing and

commonsense inference, setting the stage for a discussion on future work.

Finally, in chapter 6, I summarize my contributions and postulate future directions

for continuing to make progress on the issue of natural language disambiguation. I

land that chapter and this dissertation stating optimistically that the future of AI,

where humans and machines have healthy communications with each other, is one to

look forward to.

5

Chapter 2

PatchComm

2.1 PatchComm: Using Commonsense Knowledge to Guide

Syntactic Parsers

PatchComm (Xin et al., 2021) is a general-purpose, modular system that leverages

commonsense to resolve context-independent syntactic ambiguities. In developing

PatchComm, we have targeted specifically at prepositional phrase (PP) attachment

ambiguities and pronoun coreference ambiguities, and investigated how the use of

commonsense is a natural solution to resolving these ambiguities.

In its latest version since the work of (Xin et al., 2021), PatchComm consists of a

syntactic parsing module and a commonsense module, shown in Figure 2·1.

Figure 2·1: Architecture of PatchComm.

Both modules can be instantiated, respectively, by any syntactic parser or com-

6

monsense reasoning system of choice. In its current implementation, PatchComm

uses spaCy dependency parser1 (Honnibal et al., 2020), including its plug-in module,

NeuralCoref2 (Clark and Manning, 2016b; Clark and Manning, 2016a), for the syn-

tactic parsing module; and uses the large-scale ConceptNet knowledge base 3 (Speer

et al., 2017) for the commonsense reasoning module.

2.1.1 Syntactic Parsing

Syntactic parsing is the linguistic process of analyzing the grammatical and syntactic

information of a sentence and compiling such information into a syntactic parse tree,

as allude to in Section 1.2 of Chapter 1.

The two most prevalent paradigms of syntactic parsing are constituency and de-

pendency. In both kinds of parsing, the tree-constructing process begins with the

words in a given sentence. The difference is that, in constituency parsing, the pro-

cess begins by grouping together related words into higher-level phrases, commonly

represented as nodes in a tree; this process then repeats recursively to build higher-

and higher-level nodes, until the whole sentence is represented as one top-level node.

The end result is a complete tree, called constituency parse tree, made up of all the

words and intermediate nodes obtained from the processing. On the other hand, in

dependency parsing, the process begins by selecting a specific word called the root,

which is treated as the top-level node for the resulting parse tree. Then, the root

node is treated as head, and child-head relations are invoked to find all the child

nodes (a.k.a. children) of the root node. After that, each child is then treated as a

head, and the process repeats recursively, until all paths terminate in words of the

sentence. The end result is a fully-connected tree whose nodes are all the words of the

sentence and edges are directed from head to child and labeled with syntactic depen-

1Currently version 2.3.5.
2Currently version 4.1.0. See https://github.com/huggingface/neuralcoref
3Currently version 5.8. See http://blog.conceptnet.io/

7

dency labels. Roughly speaking, one may think of constituency parsing as bottom-up

and dependency parsing as top-down, but this is only accurate in a sense.

Figure 2.x shows an example of constituency and dependency parse trees for a

given sentence, produced by CoreNLP (Manning et al., 2014) and spaCy (Honnibal

et al., 2020), respectively.

In its current version, PatchComm makes use of the spaCy dependency parser,

along with spaCy’s built-in NeuralCoref (Clark and Manning, 2016b; Clark and Man-

ning, 2016a). In section 2.3, we discuss details on PatchComm’s basic set of operating

rules for identifying prepositional phrases and pronouns that are to be disambiguated,

as well as their surrounding syntactic constraints in given sentences. That said, we

note that PatchComm is a general-purpose system that can be implemented with

any syntactic parser of any style of choice, so long as its basic set of operating rules

are written in the selected parser’s native vernacular. Of course, one might argue

that having to re-implement such a set of rules defeats the claim that PatchComm is

general-purpose. We disagree, because even though implementation details change,

the underlying syntactic constraints and modular design remain the same. Still, we

recognize that it is a good idea to try to automate the process of mapping from im-

plementations in spaCy’s native vernacular to a new parser’s native vernacular —

perhaps using Machine Learning, possibly with the help of Codex (Chen et al., 2021)

(see Chapter 4) — so long as the automation process itself is interpretable, too.

2.1.2 Sentence-Level Syntactic Ambiguities

Syntactic parsers primarily work on individual sentences and are frequently hindered

by syntactic ambiguities from reliably producing syntactic parse trees that reflect

the intended meaning of their input sentences. Because PatchComm builds around

syntactic parsers, it makes sense that PatchComm specifically targets at addressing

sentence-level ambiguities. Among the most notorious sentence-level ambiguities are

8

prepositional phrase attachment ambiguities and pronoun coreference ambiguities.

Roughly speaking, whenever we look at standalone sentences without contexts,

we may separate them into two categories:

1. Context-Independent Sentences:

These are unambiguous for humans but assumed by default ambiguous for ma-

chines. To resolve ambiguities in such sentences, we humans can draw on our

commonsense knowledge and zero in on the correct disambiguation solution, all

within the split of a second.

2. Context-Dependent Sentences:

These are ambiguous for both humans and machines; such sentences must be

embedded in larger contexts to be correctly understood, even by humans and

certainly by machines.

PatchComm only targets at resolving context-independent ambiguities, and I

spend the remainder of this section (section 2) describing how PatchComm has been

developed for that target; I delegate the discussion on context-dependent ambiguities

to the next chapter. Overall, PatchComm is a general-purpose framework that sets

the groundwork for leveraging explicit commonsense knowledge to resolve context-

independent ambiguities. PatchComm’a nature of leveraging commonsense knowl-

edge in explicit manners, is why I dub it as a transparent approach.

2.1.3 Commonsense Knowledge and Reasoning

To be sure, there are prior work that have utilized knowledge to resolve linguistic

ambiguities. However, those are linguistic knowledge instead of commonsense knowl-

edge. In order for a machine to truly understand natural languages, clearly linguistic

knowledge alone are not enough — clearly commonsense knowledge is necessary.

9

To make it clear that commonsense is a must for language understanding, I have

decided to make PatchComm revisit the aforementioned notorious ambiguities: prepo-

sitional phrase attachment and pronoun coreference. Through the lens of these con-

crete problems, I hope to convince the reader of the significance of a commonsense-

based solution to not just these problems, but NLP at large.

For PP attachment disambiguation, the works of (Belinkov et al., 2014) and

(Nakashole and Mitchell, 2015) are examples where crowdsourced linguistic knowl-

edge in the form of WordNet (Miller, 1995; Fellbaum, 1998), VerbNet (Schuler and

Palmer, 2005), and FrameNet (Baker et al., 1998) are used to tackle PP attach-

ment ambiguities. In these work, linguistic knowledge from WordNet, VerbNet, and

FrameNet are converted into knowledge vectors; sentences from task data are first de-

composed into words and phrases according to predetermined syntactic constraints,

then also converted into text vectors. Afterwards, knowledge vectors and text vectors

are merged to form feature vectors. After that, feature vectors of different words and

phrases are further merged, according to reconstruct the aforementioned syntactic

constraints (e.g. the constraint provided in (Ratnaparkhi et al., 1994)), into more

phrase vectors and sentence vectors. And finally, these word, phrase, and sentence

vectors are utilized to determine the “best” attachment candidate for the PP at-

tachment, where “best” means the most similar or the highest probability, etc., in a

classification setting.

For pronoun coreference, there has largely been two different directions:

• The open-ended direction that targets at resolving coreferences in discourses of

any size or style;

• The direction focused on Winograd Schema styled sentences, whose solution was

initially believed to require a significant amount of human-like or human-level

commonsense knowledge about the world.

10

In the open-ended direction, recently there has been a successful series of work on

end-to-end, span-based coreference resolution that began with the work of (Lee et al.,

2017). For the convenience of the reader, that work made clear the definitions of two

keywords:

• Span: A span is defined to be a specific sub-sequence of consecutive words taken

from a given data point (i.e. discourse). For example, in the sentence “I ate an

apple.,” ate an is a span.

• Mention: A mention is a correctly resolved coreferential entity. For example,

in the sentence “I ate an apple and it was delicious.,” apple is the mention of

the referring expression it.

The coreference task is defined as looking for all the spans in a discourse that correctly

correspond to all mentions. In this task setting, all words are once again converted

to word vectors, just like in the aforementioned related works on prepositional phrase

attachment. To keep things on point, large-scale pre-trained word embeddings such

as Word2Vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014)) have been

used. In pre-training such word embeddings, linguistic knowledge sources, such as

the aforementioned WordNet, VerbNet, FrameNet, can also be used. Whether pre-

trained on explicit knowledge sources or not, word embeddings are believed to encode

knowledge from their training sources.

In the Winograd Schema direction, the series of work, starting with the Winograd

Schema Challenge (Levesque et al., 2012) and culminating in the WinoGrande dataset

for which human-level performance has been observed (Sakaguchi et al., 2020), speaks

volumes. Initially, (Levesque et al., 2012) proposed the Winograd Schema Challenge

(WSC) as an alternative to Turing Test, because the authors believed that any so-

lution to WSC would surely require extensive commonsense capability of machines.

But as it had turned out, one solution seems to “only” require pre-trained large

11

language models, and it is unclear how much commonsense these models really pos-

sess. The series of works culminated in (Sakaguchi et al., 2020), which proposed

the large-scale crowdsourced dataset, WinoGrande, accompanied by a dataset de-

biasing algorithm, called AfLite. The authors then showed that transfer learning

(Yosinski et al., 2014) from WinoGrande to other WSC-related datasets boosts per-

formances on those datasets, including a human-level performance of 93.1%. However,

in a footnote, the authors admitted that models trained on the AfLite-debiased ver-

sion of WinoGrande “showed only chance level performance.” Another notable

point about (Sakaguchi et al., 2020) is that the word embeddings utilized are directly

from the most state-of-the-art language models such as BERT (Devlin et al., 2019)

and (Liu et al., 2019), which many believe are capable of learning deep and complex

semantics from very large-scale corpora.

Indeed, large language models have been shown to be very effective on tasks that

had been inconceivably challenge, until these models were developed. However, it

is open to debate how much commonsense — especially the kind that we humans

can make sense of — these models really possess. And of course, on the note of

transparency, the consensus of the AI community is that these models are opaque

black boxes. When they make mistakes or fail, oftentimes in quite serious ways, people

don’t know how or why — frequently not even their very developers. Consequently,

whenever an enthusiast claims that these large-scale black-box models will of course be

friendly to humans and thus we only need to worry about improving their performance

and domain-generality, I see no real evidence to support that claim.

In light of making machine-learned knowledge transparent to humans and making

machines do commonsense reasoning in human-like ways, I develop PatchComm to

contrast with purely vector and neural-network approaches. The contrast is in two

main ways:

12

1. At the highest decision-making level, PatchComm operates in the symbolic

space, rather than vector space, of language. As I will discuss in section 2.3,

PatchComm is built with a native set of transparent, symbolic rules defined over

spaCy’s native part-of-speech (PoS) tags, syntactic dependency labels, child-

head relations etc.

2. At the lower knowledge-acquisition and reasoning levels, PatchComm is built

to utilize state-of-the-art neural network mechanisms for embedding knowledge.

However, PatchComm uses such knowledge in a modular, rather than end-to-

end, fashion. Explicit scoring functions have been implemented, so that the

underlying statistical mechanisms for evaluating knowledge strengths are made

explicit and simple.

13

2.2 Prepositional Phrase Attachment with ConceptNet

In this section, I discuss details on how PatchComm first identifies prepositional

phrases from sentences according to predetermined syntactic constraints, and then

leverages context-independent commonsense knowledge to disambiguate the prepo-

sitional phrases to the best of its ability. In this section, I only discuss the more

primitive way of directly querying ConceptNet (Speer et al., 2017) for commonsense

knowledge. In section 2.4, I discuss RetroGAN-DRD, a Deep Neural Network (DNN)

model that first embeds knowledge and then becomes useful as a commonsense infer-

ence module. After that, in section 2.5, I discuss the more advanced method of using

RetroGAN-DRD for commonsense inference to ultimately help PatchComm resolve

prepositional phrase ambiguities.

2.2.1 Task Setup

By default, PatchComm assumes all encountered prepositional phrases are ambigu-

ous. When there is a single prepositional phrase, PatchComm extracts it according

to the basic syntactic constraint of

(subj, verb, obj, prep, pobj)

from (Ratnaparkhi et al., 1994), where subj means subject, verb means verb, obj

means object, prep means preposition, and pobj means prepositional object. All of

(subj, verb, obj) are candidates to which the prepositional phrase is to be attached;

(prep, pobj) is the minimally-simplified prepositional phrase that has been rid of any

determiner or adjective. In general, for multiple prepositional phrases — e.g. N of

them — PatchComm simply extends the basic syntactic constraint into

(subj, verb, obj, prep1, pobj1,· · · , prepN , pobjN)

14

2.2.2 Implementation Details

PatchComm first obtains spaCy’s outputs, and then uses commonsense knowledge

from ConceptNet (Speer et al., 2017) to check spaCy’s attachment decision. If Con-

ceptNet deems a spaCy decision wrong, then PatchComm modifies that decision

accordingly. Namely, PatchComm first obtains spaCy’s attachment decision, which

is attaching the prepositional phrase to either verb or obj. The attachment to verb

indicate, in fact, a semantic association with with subj or verb, or any combination of

both. As a result, PatchComm proceeds to query ConceptNet with the pairs (subj,

pobj) and (verb, pobj) to determine the strength of evidence for attaching to verb;

and the pair (obj, pobj) to determine the strength of evidence for attaching to obj.

As of version 5 and beyond, ConceptNet is shipped with assertions weights that

are learned from a previous project called AnalogySpace (Speer et al., 2008). Conse-

quently, to seek strengths of evidence when querying ConceptNet with the aforemen-

tioned pairs, PatchComm simply relies on the acquired assertion weights by Analo-

gySpace. Specifically, PatchComm first looks at a given pair, finds all combinations

of all lexical variants of both concepts in that pair, and returns the max-weight as-

sertion as the result of querying ConceptNet for that pair. PatchComm does this for

all pairs. Then, PatchComm simultaneously

• Looks at the pairs (subj, pobj) and (verb, pobj), and chooses the higher-weight

assertion between the two;

• Looks at the pair (obj, pobj).

If the assertion weight for (subj, pobj) and (verb, pobj) is higher than the assertion

weight for (obj, pobj), PatchComm decides that the prepositional phrase attaches to

verb; otherwise, PatchComm decides to obj. Because the assertion weights are rep-

resented as floating-point numbers, in practice, we almost see that these two weights

15

are exactly equal.

Figure 2·2 shows an example of prepositional phrase attachments where the sen-

tence has only one prepositional phrase. spaCy disambiguates without (above) and

with (below) the help of PatchComm.

Figure 2·2: spaCy’s (above) versus PatchComm’s PP attachment de-
cisions, where it is obvious that PatchComm’s decision makes more
commonsense.

In the aforementioned general case where a sentence has N prepositional phrases,

PatchComm solves all prepositional phrases from left to right, one at a time, in a

fashion similar to that for the single case above. Specifically, for n ∈ [1,· · · , N], every

time after PatchComm resolves the n-th prepositional and moves on to the (n+1)-th

prepositional phrase, PatchComm now treats all of (subj, verb, obj, pobj1,· · · , pobjn) as

candidates for the attachment of (prepn+1, pobjn+1). PatchComm repeats this process

until all N prepositional phrases have been attached.

Figure 2·3 shows an example of prepositional phrase attachments where the sen-

tence has more than one prepositional phrases — in the specific example, there are

two prepositional phrases. spaCy disambiguates without (above) and with (below)

the help of PatchComm.

It is worth noting that, when queried with a pair of concepts (c1, c2), ConceptNet

returns both all assertions that start with c1 and end with c2 and all assertions

16

Figure 2·3: spaCy’s (above) versus PatchComm’s PP attachment de-
cisions, where it is obvious that PatchComm’s decision makes more
commonsense.

that start with c2 and end with c1. Also, because ConceptNet is not omniscient, it

frequently happens that ConceptNet does not have any assertion for a given pair of

concepts and PatchComm cannot get anything. Whenever this happens, PatchComm

defaults back to spaCy’s attachment decisions.

2.2.3 Experiments and Results

For experiments on prepositional phrase attachment, I mainly conducted two exper-

iments.

For my experiment, I created a set of 100 sentences that contains only two attach-

ment candidates. The baseline for this experiment is spaCy itself. Below, table 2.1

shows the result from the experiment:

spaCy spaCy + PatchComm w/ ConceptNet

Self-created 57.0% 67.0%

Table 2.1: Result of PatchComm with ConceptNet on self-created
prepositional phrase attachment dataset, compared with spaCy alone.

17

2.3 Pronoun Coreference

In this section, I discuss details on how PatchComm first identifies pronouns from sen-

tences according to predetermined syntactic constraints, and then leverages context-

independent commonsense knowledge to disambiguate the prepositional phrases to

the best of its ability. In this section, I only discuss the more primitive way of directly

querying ConceptNet (Speer et al., 2017) for commonsense knowledge. In section 2.6,

I discuss the more advanced method of using RetroGAN-DRD for commonsense in-

ference to ultimately help PatchComm resolve pronoun coreference ambiguities.

2.3.1 Task Setup

Just like how the prepositional phrase attachment task is classified into single-PP and

multi-PP, here I also classify the pronoun coreference task into single-pronoun and

multi-pronoun. Also, just like before where I assume that each prepositional phrase

can only refer to an entity that precedes it, here I also assume that each pronoun can

only refer to an entity that precedes it. In general this is not true, but for simplicity,

this assumption will suffice.

PatchComm translates the criteria specified in (Levesque et al., 2012) into the

basic syntactic constraint of

(· · · ent1 · · · ent2 · · · pron · · ·)

for the single-pronoun case, where enti is a candidate entity and pron is the pronoun

to be resolved. And for the multi-pronoun case, note that the sequence of entities

can interweave with the sequence pronouns, so to pinpoint to a specific pronoun, the

constraint looks like

(· · · ent1 · · · entM · · · pronn · · ·)

18

where PatchComm has to determine the best of the M entities that the n-th pronoun

should corefer to.

2.3.2 Implementation Details

The key to PatchComm’s pronoun coreference mechanism is finding the right descrip-

tion token for the ambiguous pronoun. This turns out to be a very difficult step. In

this chapter, I discuss only the most primitive mechanism for finding description to-

ken that has been around since the very first version of PatchComm. But in the next

chapter, I discuss a sophiscated mechanism that takes advantage of state-of-the-art

Deep Neural Network language models. This more sophiscated mechanism is inspired

by not only the specific problem of pronoun coreference, but also AI transparency and

self-explainability in general.

In the current version, a pronoun description token is defined as the token in the

sentence that recursively shares the same head with the pronoun, marking it as a

description token. If the immediate child is neither an entity nor a property, then we

keep searching its children, until we get to either an entity or a property.

After finding the descriptor token, PatchComm queries ConceptNet with the pairs

(Entity1, description) and (Entity2, description). When a sentence has multiple

ambiguous pronouns, PatchComm assumes that each pronoun can refer to any entity

that occurs in the sentence, and uses the same description-token-matching mechanism

detailed above.

Figure 2·4 shows examples of pronoun coreference performed by NeuralCoref with-

out PatchComm. Figure ?? shows how PatchComm helps improve some outputs in

Figure ??. Note in Figure 2·5 that PatchComm embeds coreference information into

spaCy-style dependency parse, as shown by the red highlighted coref label.

19

Figure 2·4: NeuralCoref when faced with ambiguous pronouns that
should be resolved differently.

Figure 2·5: PatchComm resolves the ambiguity from Figure 2·4.

2.3.3 Experiments and Results

For my experiment, I used the publicly available WSC273 dataset4 from (Levesque

et al., 2012). Below, table 2.2 shows the result from these two experiments. I chose

NeuralCoref (Clark and Manning, 2016b; Clark and Manning, 2016a) to be the base-

line for both experiments, to abide by the setting of syntactic parsing.

4Full dataset of (Levesque et al., 2012) is available here: https://cs.nyu.edu/~davise/papers/
WinogradSchemas/WS.html. Note that this dataset actually consists of 285 sentences, but the last
12 sentences are thoughts to be “less good” than the original 273. I only used the first 273 sentences.

20

NeuralCoref NeuralCoref + PatchComm w/ ConceptNet

WSC273 31.1% 39.9%

Table 2.2: Result of PatchComm with ConceptNet on WSC273
dataset, compared with NeuralCoref alone.

2.4 RetroGAN-DRD

To recap, in sections 2.2 and 2.3, I discussed my attempt to directly apply readily

available commonsense knowledge, basically in their native symbolic form, to the

aforementioned syntactic ambiguities. However, there are two immediately obvious

shortcomings:

• The task setups may not be the optimal models for the actual underlying prob-

lems.

• ConceptNet cannot possibly cover all commonsense knowledge ever; and even

supposing it could, in their native symbolic form, matching the right kinds

of knowledge for a task-at-hand is a serious problem that requires too much

commonsense in the first place.

From all the assumptions that I made in the last two sections, the reader can

see that the task modeling can definitely be scaled up and improved. Much of this

is, admittedly, future work that I currently do not know how to shed more light

upon. In this section, I introduce RetroGAN-DRD, which targets at the second of

the aforementioned two problems.

RetroGAN-DRD starts with the work of (Colon-Hernandez et al., 2019), which

first-and-foremost identifies that neural commonsense inference consists of two steps:

21

• Integrated Semantics:

Somehow, we need to find a way to add knowledge “flavors” into plain words or

concepts. One way to do this is to first turn both knowledge and plain words into

vectors, thus unifying their representation; then apply mathematical techniques

on both kinds of vectors, so that the best of both worlds are integrated.

• Commonsense Inference:

Somehow, we need to find a way to draw assertions that connect a given pair

of concepts in some vector space. One way to do this is to train Machine

Learning models that can predict the likelihoods and compute the strengths of

all possible assertions that connect the concepts of interest, and then determine

which assertions are the “best.”

The clear separation of these two stages suggest a modular approach. Consequently,

RetroGAN has been introduced for the first stage, and Deep Relationship Discov-

ery (DRD) for the second stage. In a nutshell, RetroGAN looks at pairs of plain

word embeddings and their knowledge-flavored counterparts, and learns a mapping

from the plain embeddings to the knowledge-flavored embeddings; the same mapping

can then be applied to plain embeddings that RetroGAN has not yet seen, to gen-

erate knowledge-flavored embeddings. This allows RetroGAN to go beyond a finite

knowledge source and reason about out-of-knowledge concepts. DRD subsequently

takes a pair of knowledge-flavored concepts (which are the outputs of RetroGAN),

extracts higher-level semantics out of this pair, and uses the higher-level semantics

to determine the strength for each possible assertion.

22

2.4.1 RetroGAN

RetroGAN consists of two main stages:

1. Specialization via Retrofitting:

In retrofitting, off-the-shelf plain word embeddings are adjusted according to

semantic constraints from knowledge graphs. In other words, the inputs are

word embeddings and knowledge embeddings, and the inputs are knowledge-

adjusted (or knowledge-flavored) word embeddings. It is commonly accepted

that word embeddings capture distributional semantics and knowledge embed-

dings capture knowledge-graph semantics. Consequently, it is believed that

knowledge-flavored embeddings capture of the best of both worlds.

2. Post-Specialization via GAN :

GAN stands for Generative Adversarial Network. GAN has been a well-studied

topic of Machine Learning and GAN architectures have been well-developed

to deployed to a wide variety of real-world applications. For the purposes of

RetroGAN, GANs help with learning the aforementioned mapping from plain

word embeddings to retrofitted word embeddings, which is in turn directly useful

for out-of-knowledge inference.

Retrofitting is first proposed in (Faruqui et al., 2015) as a technique where word

embeddings trained on large-scale corpora are adjusted according to semantic con-

straints taken directly from some (also large-scale) knowledge graphs. The end result

is that the plain word embeddings are mapped from their original vector space onto

a new vector space of knowledge-flavored word embeddings. The knowledge-flavored

word embeddings are better aligned in that similar words are more “parallel with”

one another. This kind of alignment reflects the impact of the informing knowl-

edge graphs. More recently, the work of (Vulić and Mrkšić, 2018) proposes a new

23

retrofitting mechanisms called Attract-Repel, which not only aligns similar words,

but also adjusts dissimilar words so that they are more “orthogonal to” one another.

RetroGAN takes advantage of Attract-Repel. In the context of commonsense

inference, as inspired by the work of (Ponti et al., 2018), the retrofitting process is

re-dubbed as specialization.

In practice, retrofitting and specialization have been shown quite effective, e.g.

ConceptNet NumberBatch (Speer et al., 2017). However, retrofitting suffers from

one significant shortcoming: it only works on concepts that already exist within

semantic constraints, be it in the form of knowledge graphs as in ConceptNet, lists

of synonyms and antonyms as in Attract-Repel, or the like. To go into the more

open-ended world of linguistic concepts, a commonsense inference module must be

able to reason about concepts outside of the the knowledge source. Consequently, the

same work of (Ponti et al., 2018) also introduces post-specialization, which takes place

after the specialization/retrofitting stage and targets precisely at the out-of-knowledge

problem. During post-specialization, a GAN is trained to learn a mapping from

plain embeddings to retrofitted embeddings for in-knowledge words, and then applied

on plain embeddings of out-of-knowledge words to generate “knowledge-flavored”

embeddings for those words.

Architecture of RetroGAN

Whereas (Ponti et al., 2018) uses a one-directional GAN much like the basic one pro-

posed in (Goodfellow et al., 2014), RetroGAN utilizes a CycleGAN-like (Zhu et al.,

2017) architecture, in order to take advantage of CycleGAN’s cycle consistency prop-

erty. During training, both the forward and backward mappings are learned, but

during generation of out-of-knowledge embeddings, evidently, only the forward map-

ping is applied. Figure 2·6 shows the complete architecture of RetroGAN.

RetroGAN crucially consists of a CycleGAN, which is essentially two GANs that

24

Figure 2·6: Architecture of RetroGAN. Note its cyclic nature.

cooperate to balance a combination of losses to transform a particular word embed-

ding xi ∈ X from its original domain X to its counterpart yi ∈ Y in the retrofitted

domain Y , and vice-versa. In both GANs that we employ, the generator consists of

an input layer followed by 2 hidden dense layers with 2048 neurons and each followed

by a dropout layer (with a percentage of 0.2 for the dropouts), and a final linear

output layer with the same dimensionality as the input. The output of this layer, for

the trained G : X → Y produces the post-specialized embeddings (i.e. a batch of 32

FastText embeddings produces 32 post-specialized embeddings). The hidden layers

employ the ReLU (Nair and Hinton, 2010) activation function. Our discriminators

have a similar structure (an input layer, 2 hidden layers with dropout but a percent-

age of 0.3), however, the second hidden layer is followed by a batch normalization

layer and the output is a single neuron with a sigmoid activation. The reason for

25

the batch normalization layer was to stabilize the training. We also utilized a third

and fourth conditional discriminator following (Tripathy et al., 2018), to leverage the

cyclic architecture on paired data.

A novelty in RetroGAN is the combination of cyclic and non-cyclic optimization

objectives: the regular adversarial loss for both GANs (LGAN); the cyclic loss for

both generators (LCY C); the identity loss for both generators (LID); the max margin

loss similar to (Weston et al., 2011; Ponti et al., 2018) for both the generators and

additionally for the cycle of generators (LMM); and the conditional cycle consistency

loss (LcCY C) introduced in (Tripathy et al., 2018). The combined objective has the

following form:

L(G,F,DX , DY) = LGAN(G,DY , X, Y) + LGAN(F,DX , X, Y)

+ λLCY C(G,F)

+ γLID(G,F,X, Y) + LMM(G,F,X, Y)

+ ςLcCY C(G,F,DcX , DcY , X, Y)

where G : X → Y is the generator that maps the source domain X of plain word

embeddings to the target domain Y of retrofitted word embeddings; F : Y → X

is the generator that does the opposite; DX and DY are the discriminators for the

corresponding domains; and DcX , DcY are our cycle conditional discriminators. For

brevity, we only go into details on LMM and LcCY C . The other losses are the standard

ones found in their respective works: LGAN is the adversarial loss from (Goodfellow

et al., 2014). LCY C is the cycle consistency loss from (Zhu et al., 2017) with a scaling

factor of λ (set to 1.0); and LID is the identity loss from (Zhu et al., 2017), which we

scale with γ (set to 0.01). LID serves as a check of whether the embedding is already

in the correct domain. LMM is the max margin loss with random confounders as used

26

by (Ponti et al., 2018), and as a novel aspect, we add a cyclic margin loss:

LMM(G,F,X, Y) = Σ
||x||
i=1Σk

j=1|j 6=iτ [(δMM − cos(G(xi), yi) + cos(G(xi), yj))

+ (δMM − cos(F (yi), xi) + cos(F (yi), xj))

+ (δMM − cos(G(F (yi)), yi) + cos(G(F (yi)), yj))(δMM − cos(G(F (yi)), yi) + cos(G(F (yi)), yj))(δMM − cos(G(F (yi)), yi) + cos(G(F (yi)), yj))

+ (δMM − os(F (i xi) co (G i), jMM c (G xi)), i + s(F (xi) xj))(δMM − cos(F (G(xi)), xi) + cos(F (G(xi)), xj))]

Intuitively, this equation makes generated embeddings similar to their gold-standard

and different from confounders. RetroGAN further enforces this constraint across the

cycle. And lastly, we have the conditional cycle loss, LcCY C (Tripathy et al., 2018)5,

which we scale with ς (set to 1):

LcCY C(G,F,DcX , DcY , X, Y) = Ex∼pdata [log(DcX(G(x), x))]

+ Ex∼pdata [log(1−DcX(G(x), F (G(x))))]

+ Ey∼pdata [log(DcY (F (y), y))]

+ Ex∼pdata [log(1−DcY (F (y), G(F (y))))]

Experiments and Results of RetroGAN

For training, we use the Adam Optimizer (Kingma and Ba, 2015) with a learning rate

of 5e− 5 for the generators and 1e− 4 for the non-conditional discriminators. We do

not train the discriminators used in the regular GAN loss, and instead train the ones

in the conditional cycle consistency loss. We also note that we did not perform explicit

fine tuning of the scaling parameters, but we will do so in future work through a grid

search. We train for 312,500 mini-batches which is the equivalent to the AuxGAN

(Ponti et al., 2018) training, using a batch size of 32.

For tests, we use the English Common Crawl FastText with sub-word information

5In future work, we will additionally incorporate the paired conditional adversarial loss.

27

(FT-CC) (Bojanowski et al., 2017) and Numberbatch 19.08 (NB) (Speer et al., 2017)

to see how performance would be affected by using embeddings that were already

retrofitted with a large KB. We ran Attract-Repel6 (Vulić and Mrkšić, 2018)

on all these embeddings, and then perform Post-Specialization tests on learning the

mapping from FT-CC to the resulting retrofitted embeddings.

As shown in Table 2.3, we run the word similarity benchmarks: SimLex (SL) (Hill

et al., 2015) SimVerb (SV) (Gerz et al., 2016), and the Cambridge Rare Word (C660)

dataset (Pilehvar et al., 2018). In the Disjoint setting, we evaluate words that are

not seen in the constraints; in Full, we evaluate words that are seen in constraints.

Disjoint Full

FT-CC, A-R FT-CC, A-R+NB FT-CC, Attract-Repel FT-CC, A-R+NB

Models SL SV SL SV SL SV C660 SL SV C660

Distributional 0.4644 0.3649 0.4499 0.3643 0.4644 0.3649 0.2973 0.4499 0.3643 0.1068

Attract-Repel 0.4644 0.3649 0.4499 0.3643 0.7790 0.7632 0.3768 0.7748 0.7667 0.2203

AuxGAN 0.6127 0.4641 0.6116 0.5331 0.6901 0.5756 0.3899 0.6565 0.5872 0.2088

RetroGAN 0.6028 0.4702 0.6648 0.5971 0.7717 0.7192 0.5240 0.7960 0.7483 0.5581

Table 2.3: Results for SimLex and SimVerb; best values in bold font.

We trained AuxGAN for 10 epochs of 1M iterations (which in AuxGAN is a single

embedding pair rather than a batch of pairs) with both plain stochastic gradient

descent (SGD) and Adam Optimizer (lr=0.1) and selected the best performing one

(ADAM) to compensate for convergence speed discrepancies.

RetroGAN outperforms AuxGAN in the majority of similarity benchmarks. In

particular, RetroGAN sets the state of the art (SOTA) on the rare-words benchmark

(C660). In the similarity results for Full, we note the same observations that were

noted in AuxGAN: there are some inconsistent gains and losses, which may be due to

the combination of loss functions which may make the systems imprecise; although

they spread the knowledge throughout the embeddings, they lose some precision when

compared with the original retrofitted embeddings.

6Open source at: https://github.com/nmrksic/attract-repel

28

We wanted to compare the out-of-knowledge (OOK) performance more in depth

and to do this, we joined the words in SimLex (SL) and SimVerb (SV) and selected

increasingly larger amounts of them ({5,10,25,50,75,100}%). We then selected the

constraints that included these words, trained RetroGAN and AuxGAN with these

constraints, and evaluated performance on SL, SV, and C660. Part of this can be

seen in table 2.4. Evidently, RetroGAN’s performance increases every time that new

5% 10% 25% 50%

SL SV C660 SL SV C660 SL SV C660 SL SV C660

Attract-Repel 0.347 0.355 0.113 0.550 0.589 0.187 0.701 0.700 0.217 0.759 0.747 0.252

AuxGAN 0.615 0.510 0.453 0.667 0.569 0.470 0.679 0.581 0.475 0.685 0.600 0.490

RetroGAN 0.624 0.538 0.489 0.701 0.652 0.493 0.738 0.690 0.502 0.755 0.716 0.511

Table 2.4: Results for Out-of-Knowledge; best values in bold font.

constraints are added, whereas AuxGAN’s performance begins to peak after 25% of

the constraints which may indicate more efficient knowledge distribution thanks to

the cyclic system. Later on, the performance of RetroGAN kept increasing, but was

less than the base retrofitted embeddings, possibly because of the lack of precision

from the combination of losses. We note that the max-margin loss from (Ponti et al.,

2018) is necessary for high performance in all the tests. We also notice that the

cyclic (cyclic max-margin and cycle conditional discriminator) losses are essential for

improved performance on the OOK and rare-word similarity benchmarks. We also

see that the removal of the cyclic max-margin loss speeds up early learning and its

addition stabilizes later learning respectively which may indicate a need to balance

this. Future work will explore how to balance this losses, but it may be possible to

put a scheduler to enable the loss after a peak.

29

2.4.2 Deep Relationship Discovery (DRD)

Now that RetroGAN provides post-specialized, knowledge-flavored word embeddings

for downstream commonsense inference tasks, we shift to the design and development

of models for such tasks. In the original work of (Colon-Hernandez et al., 2019),

a module named deep relationship discovery (DRD) is developed side-by-side with

RetroGAN.

Intuitively, DRD first seeks further abstractions of the post-specialized word em-

beddings for a given concept pair, then concatenates the abstractions so as to reason

about the concept pair as a whole, and finally use feed-forward Deep Neural Network

models to discover the strengths for all enumerated assertions. In sections 2.5 and 2.6,

I will demonstrate that it is the strength-indicating scores by DRD that PatchCom

benefits the most from.

Architecture of DRD

Figure 2·7 shows the complete architectural design of DRD.

Figure 2·7: Architecture of DRD. Note its three stages of semantic
processing, transfer learning, and task specialization.

30

Preliminary Results of DRD

Figure 2·8 shows a small snapshot of DRD’s reasoning ability:

Figure 2·8: Visualization of a very small snapshot of DRD’s reasoning
outcomes. Note that some of the concepts were not originally connected
in ConceptNet, but DRD is able to connect them.

31

2.5 Disambiguation with RetroGAN-DRD

To recap, in section 2.2 and 2.3, I discussed the task setups for both prepositional

phrase attachment and pronoun corefernence, as well as the more naive approach of

directly querying for commonsense assertions from ConceptNet (Speer et al., 2017). I

then pointed out shortcomings of this naive approach, and suggested that a more ad-

vanced neural commonsense inference approach is warranted and might work better.

This led me to discussing the sophiscated RetroGAN-DRD system in section 2.4.

In this section, I discuss how PatchComm utilizes RetroGAN-DRD to help it bet-

ter disambiguate both prepositional phrase attachments and pronoun coreferences.

The setups for both tasks are the same as described in sections 2.2 and 2.3. Con-

sequently, all the details on querying RetroGAN-DRD that I describe below apply

strictly to pairs of concepts/words, (c1, c2).

2.5.1 Post-specialized Embeddings

This part is straightforward: to use DRD downstream, the first order of business is

to obtain post-specialized embeddings for c! and c2 using RetroGAN. The execution

pipeline here is exactly the same as the standalone RetroGAN. In particular, FastText

(Bojanowski et al., 2017) is first used to convert both c1 and c2 into “plain” word

embeddings. Then, these two plain embeddings are fed into RetroGAN and converted

into their post-specialized counterparts.

One implementation detail that differs, I note, is that instead of querying with

only c1 and c2, PatchComm queries RetroGAN with a neighborhood of c1 and a neigh-

borhood of c2. The neighborhoods are the same size. To build the neighborhoods,

we use the off-the-shelf Faiss library to do cosine-similarity search over ConceptNet

NumberBatch (Speer et al., 2017); we set the number of neighbors to be 5. Alter-

natively, we can do search over FastText for neighboring plain word embeddings,

32

and then use RetroGAN to post-specialize them. In practice, we opted to search

over NumberBatch instead of FastText, because NumberBatch being the retrofitted

version of ConceptNet itself should provide better semantics for downstream DRD.

There are two reasons that we query DRD with neighborhoods of c1 and c2 instead

of c1 and c2 alone. The RetroGAN-oriented reason is that we essentially cannot

be certain that RetroGAN’s output for a concept is in fact the “best” numerical

representation for the underlying semantics of that concept, especially in the case of

context-independence with PatchComm; consequently, we surround RetroGAN with

a small neighborhood of ConceptNet numerical representations, just to be sure. The

DRD-oriented reason, which I discuss next, is that DRD is not built to normalize

its output scores across all the task models (i.e. one task model per ConceptNet

relation), so in order to do basic numerical comparisons across the relations, each

relation needs to be normalized with respect to itself.

2.5.2 Querying DRD

To query DRD with c1’s and c2’s neighborhoods, I implemented the following algo-

rithm:

Algorithm: DRD Querying

1. Collect k neighbors of c1 and k neighbors of c2.

2. For each relation r (in ConceptNet):

2.1. Compute DRD scores for all (k+1)^2 pairs

of matchings.

2.2. Compute the normalized score of DRD(c1, c2)

using these scores. The result will be

used as the final score for the current

relation r.

3. Return the max score across all relations.

For step 2.2 in the algorithm, in order to find the best way to normalize each

33

relation’s DRD score, I experimented with the following four different normalization

techniques:

• Mean:

s =
DRD(c1, c2)

mean(
∑

(x,y)∈N (c1)×N (c2)
DRD(x, y))

• Median:

s =
DRD(c1, c2)

median(
∑

(x,y)∈N (c1)×N (c2)
DRD(x, y))

• Min-Max:

s =
DRD(c1, c2)−min(x,y)∈N (c1)×N (c2)DRD(x, y))

max(x,y)∈N (c1)×N (c2)DRD(x, y)−min(x,y)∈N (c1)×N (c2)DRD(x, y)

• Z-score:

s =
DRD(c1, c2)−mean(

∑
(x,y)∈N (c1)×N (c2)

DRD(x, y))

std(
∑

(x,y)∈N (c1)×N (c2)
DRD(x, y))

From a small set of ablation studies I conducted, I observed that normalization by

median works the best.

34

2.5.3 Experiments and Results

To compare PatchComm with RetroGAN-DRD to PatchComm with ConceptNet,

I simply evaluated PatchComm with RetroGAN-DRD on the same experiments as

described in sections 2.2 and 2.3, for prepositional phrase attachment and pronoun

coreference, respective. Below, I concatenate the results of PatchComm with Con-

ceptNet from sections 2.2 and 2.3 into one table, and append results of PatchComm

with RetroGAN-DRD to that table.

Baseline Baseline Baseline

+ PatchComm + PatchComm

w/ ConceptNet w/ RetroGAN-DRD

Self-created 57.0% 67.0% 80.0%

WSC273 31.1% 39.9% 67.4%

Table 2.5: Baselines are spaCy (top) and NeuralCoref (bottom).

35

Chapter 3

ProGeneXP

3.1 ProGeneXP Overview

In previous chapters, I discussed my approach to using commonsense to resolve

context-independent, sentence-level natural language ambiguities. I advocated for

the necessity of commonsense, because it can work well and, more importantly, be-

cause it renders the disambiguation process transparent.

In this chapter, I turn my discussion onto ProGeneXP, a general-purpose frame-

work that directly targets at transparency and simultaneously makes it easy to in-

corporate commonsense reasoning mechanisms for the future. Figure 3·1 shows the

overall diagram for ProGeneXP:

Figure 3·1: Overall diagram sketch for our approach. The self-loop at
the top of the Recursive Fine-tuner (RF) indicates the recursive-style
learning that we detail in section 2.1.

36

In particular, ProGeneXP consists of two stages:

• In the first Recurrent Fine-tuning stage, ProGeneXP fine-tunes neural networks

to make their implicit semantics transparent by eliciting it as natural language

descriptions.

• In the second Task Specialization stage, ProGeneXP evaluates the quality of

the descriptions on a set of downstream Pronoun Coreference tasks.

My motivation for the first stage is, of course, to establish AI transparency to

whatever extent possible. When it comes to introducing transparency into intrinsi-

cally opaque neural networks, my idea is to ask the networks themselves to “trans-

late” their understanding and semantic representations of the world into a form that

is most transparent to us humans. My motivation for aiming at the general problem

of pronoun coreference for the second stage is, once again, that pronoun coreference

ambiguity is perhaps the most significant hurdle to machines understanding natural

language. Here, ProGeneXP is in principle not bounded by the same syntactic limi-

tations as we saw of Winograd Schema styled sentences in section 2. My end goal for

ProGeneXP is to seek an equilibrium between model transparency from the ground

up, and model performance through years of training and evaluation.

For the remainder of this chapter:

• In section 3.2, I discuss the Recurrent Fine-tuning module, as well as my ini-

tial probing of the human-understandability of its generated natural language

descriptions.

• In section 3.3, I discuss the Task Specialization module with a focus on the

specific task of pronounce coreference in Winograd Schema inspired sentences.

• In section 3.4, I discuss how ProGeneXP can be incorporated into PatchComm,

to help PatchComm further resolve pronoun coreference ambiguities.

37

3.2 Recurrent Fine-tuning

In the Recurrent Fine-tuning module, a pre-trained large language model is fed with

open-ended pronoun-ambiguous natural language sentences, and then fine-tuned, in

a supervised fashion, to generate natural language. descriptions1 for those sentences.

Despite the word recurrent in its name, the Recurrent Fine-tuning (RF) module

does not have to incorporate any Recurrent Neural Network (RNN) unit, or the like.

The word recurrent is, instead, used liberally to mean that a model’s later behavior

and knowledge depend on the model’s earlier behavior and knowledge, respectively.

This, in fact, is analogous to an RNN in some abstract way.

To bootstrap the module, a human superviser must initially provide a small set

of supervising descriptions. But after this initial supervision, the hope is that the

module learns to generate likewise descriptions for sentences provided at later times

without supervising descriptions. Of course, at some point, it will become inevitable

that the module’s behavior dwindles after having undergone a significant period of

time without any human supervision. When this happens, a human superviser can

once again step in and provide further supervision for the module to “re-bootstrap”

or readjust. At the same time, the human can once again observe whether the module

will have indeed readjusted its behavior and knowledge expectedly. This establishes

a healthy cycle between one or more human supervisers and the module that is much

like a classroom setting with a teacher and a student. I strongly believe this form

of interactive instruction is a key ingredient to making NLP models transparent,

understandable, and friendly.

In short, the two expectations I have from the Recurrent Fine-tuning module are

as follows:

1Despite the name, these descriptions may frequently be thought of as some form of explanation
or justification. In fact, as I will discuss in section 3.3, many of the initially provided human-curated
descriptions look very much like if-then rules that help explain or justify why a pronoun should
corefer to its correctly corresponding entity instead of any other entity.

38

• By providing initial supervision and asking the module to analogize upon them,

we can hope to obtain transparent expressions of opaque semantics in Deep Neu-

ral Network language models. Admittedly, analogy is a longstanding unsolved

problem in Artificial Intelligence and is not the focus of this dissertation. My ef-

fort here is but one simple dabble that perhaps deserves a more analogy-focused

research discussion in the future.

• So that it is of utility to have a human provide descriptions via interacting

with the module at the human’s convenience, the module must be able to learn

continually. From this perspective, the Recurrent Fine-tuning module can be

regarded as an instantiation of the idea of continual learning from the sub-area

of Machine Learning called Meta Learning (Finn et al., 2017; Javed and White,

2019; Beaulieu et al., 2020).

In addition to attempting to meet the two expectations above, the Recurrent

Fine-tuning module also borrows inspiration from the work of (Shwartz et al., 2020),

which proposes an approach to question answering by literally setting large language

models to talk to themselves. I personally speculate the reason this works is because

large-scale Transformer (Vaswani et al., 2017) based language models are capable of

readjusting their internal “attention spans” simply by constantly talking to themselves

but in complex ways, thanks to the very nature of attention mechanism (Bahdanau

et al., 2015).

To set the stage for my discussions in sections 3.3 and 3.4, the Recurrent Fine-

tuning module is currently set to generate descriptions for pronoun-ambiguous nat-

ural language sentences. My motivation here is practical: I want to seek a bet-

ter description-finding mechanism for PatchComm’s existing pronoun coreference

mechanism. I have two reasons for doing this — or rather, PatchComm’s existing

description-finding mechanism is flawed in two ways — as follows:

39

• Recall in chapter 2 that PatchComm’s pronoun coreference mechanism suffers

from its poor ability to extract so-called description tokens from sentences. It

is difficult, if not impossible, to always be able to find one or a group of tokens

within a sentence that captures all the relevant semantics from that sentence.

• Frequently, much of the knowledge required for coreference are outside of a

sentence and must come from a more global context. Therefore, looking for

optimal descriptions within a sentence may not work.

Consequently, it is natural that I think about applying ProGeneXP’s ability to gen-

erate natural language descriptions to PatchComm, in place of PatchComm’s rigid

description tokens.

In addition, due to the natural language characteristic, the syntactic constraints

as stipulated in section 2.3 does not immediately apply to ProGeneXP. Of course,

at some later stage for task specialization on Winograd Schema sentences, those

constraints can be added back.

3.2.1 Implementation Details

Algorithmically, after the initial supervision, every time it is fed new sentences, the

Recurrent Fine-tuning module utilizes its most-recently acquired knowledge to gen-

erate corresponding descriptions for those inputs. Then, RF uses these new sentence-

description pairs as new data to update its ability to self-generate explanations.

Because pre-trained large language models capture distributional semantics over

an enormous amount of natural language texts, they certainly have at least some of

the knowledge that are outside of particular sentences yet necessary for disambiguat-

ing the pronouns within those sentences. In addition, language models naturally

integrate, at least to some degree, the specific semantics from a given sentence with

the distributional semantics from all the corpora they have seen.

40

In its ultimate version, the Recurrent Fine-tuning module runs in a never-ending

fashion, both learning and generation. In practice, however, checkpoints have been

administered for convenience and for experimental purposes.

To provide initial human supervision, I selected 224 sentences from the Definite

Pronoun Resolution (DPR) dataset (Rahman and Ng, 2012) and manually wrote an

English explanation for each of these sentences. After that, I designated the following

three checkpoints:

• To reach the first checkpoint, I fine-tuned, for the first time, HuggingFace’s off-

the-shelf T5-Large (Raffel et al., 2019) based text summarizer training pipeline2

on these intial 224 pairs of (sentence, description).

• To reach the second checkpoint, I first used the previously fine-tuned text sum-

marizer to generate descriptions for all the remaining DPR sentences that were

excluded from the initial supervision. I then fine-tuned, for the second time,

the summarizer on all 1, 886 of DPR sentence-description pairs. For the sen-

tences that already appeared in the initial supervision, I just used my curated

descriptions, but for the ones that did not appear, I used the newly generated

descriptions.

• To reach the third and final checkpoint, I first used the previously fine-tuned

summarizer to generate descriptions for all 9, 248 WinoGrande-debiased train-

ing sentences and 1, 267 WinoGrande development sentences (Sakaguchi et al.,

2020), where the blank of each sentence is filled by the correct candidate. I then

fine-tuned this summarizer, for the third time, on all of WinoGrande sentence-

description pairs. This time, all descriptions are generated.

2Code base is publicly available at https://github.com/huggingface/transformers/tree/

main/examples/pytorch/summarization.

41

The end result is a T5-based text summarizer that has been recurrently fine-tuned

for three times.

3.2.2 Probing Examples

Having obtained this recurrently fine-tuned summarizer, next I investigate the quality

of its generated descriptions using some probing examples.

To showcase its transparency and its ability to learn upon initial supervising

sentences and analogize to new sentences, I probe the Recurrent Fine-tuning module

with natural language inputs and present some exemplary generated descriptions.

When probing, I look for two qualities:

• Without taking context into account, RF’s generated natural language descrip-

tions should abide by straightforward commonsense. Indeed, if a generated

description is simply nonsense, then there is no need to further take context

into account.

• Taking context into account, such a generated description should “appear” rel-

evant to the sentence from which the description is derived. Indeed, much of

human interpretation of things relies on the appearance of things — any attempt

at formulating the notion of interpretability mathematically begs the question

of how interpretable those formulations, in turn, are.

In addition, I stick to the following suggestions for writing the initial supervising

descriptions:

• For each pronoun-ambiguous sentence, an explanation must be one-sentence

long, in English, and must elicit how the user resolve the pronoun of interest.

For example, to resolve that “it” in “The bee landed on the flower because it

had/wanted pollen,” a user might write “Bees like pollen/Flowers have pollen”

as explanation, eliciting the background information of utility.

42

• An explanation needs to hint at accepting the correct answer, or rejecting the

wrong answer, or both. For example, in the previous example twin sentences

that differ in only “had/wanted,” a plausible explanation is “Bees like pollen

and flowers have pollen,” collecting both information into one sentence.

For investigation, we tried batch sizes of 4 and 8 for each fine-tuning checkpoint,

but did not observe significant differences between the generated explanations by the

batch-size-4 models and those by batch-size-8. In addition, we observed that RF

model sizes increase dramatically after each checkpoint. Table 3.1 collects the sizes

of all RF models.

1st checkpoint (224)
batch= 4 2.8G

batch= 8 2.8G

2nd checkpoint (1, 886)
batch= 4 20G

batch= 8 11G

3rd checkpoint (10, 515)
batch= 4 127G

batch= 8 127G

Table 3.1: RF model sizes. Note that for the 3rd checkpoint, 10, 515 =
9, 248 (WinoGrande-train-debiased) +1, 267 (WinoGrande-dev).

Evidently, model size becomes an issue as the module is continually fine-tuned. I

aim to address this issue in my future work.

Table 3.2 presents some of the examples I used, in comparison with their corre-

sponding human inputs if applicable, as well as with outputs of “plain” models who

did not go through the recurrent fine-tuning process.

43

The infection spread throughout the building because [it] was airborne.

Human Airborne viruses can spread quickly in ventilated in-door areas.

Plain The infection spread throughout the building because

it was airborne.

RF Airborne viruses can spread quickly in a building.

The infection spread throughout the building because [it] was ventilated.

Human Airborne viruses can spread quickly in ventilated in-door areas.

Plain Infection spread because the building was not ventilated.

RF Ventilation can spread infection throughout a building.

The smoke spread through the building because [it] was caught on fire.

Human —

Plain Smoke spread through the building because it was on fire.

RF Smoke is created when a building is on fire.

The smoke spread through the building because [it] came from the fire.

Human —

Plain Smoke spread through the building because it came from the fire.

RF Smoke from a fire can spread quickly in a building.

Table 3.2: Probing examples for the Recurrent Fine-tuning module.
At the top, the sentences are taken from the DPR dataset for initial
supervision with human-curated descriptions. At the bottom, the sen-
tences are provided at probing time by us. Plain means the default
T5-for-Conditional-Generation text summarizer taken directly from the
HuggingFace library without fine-tuning of any kind. RF stands for
our Recurrent Fine-tuning approach. Also note that the “[]” in the sen-
tences are added to the table to clarify the pronouns of interest; they
do not appear in the datasets.

These results clearly suggest the summarizer’s ability to analogize and produce

descriptions that are consistent with what we want to expect of such models. Namely,

in both twin sentence pairs, we see that the plain model simply regurgitates the

original sentences, lacking efforts in resolving the ambiguous pronouns and confusing

the sentence semantics with their negative counterparts. The recurrently fine-tuned

model, on the other hand, learns to associate the correct entities with their local

contexts in the initial sentences and carries this ability over to new sentences.

44

3.3 Task Specialization

In Artificial Intelligence, things that look good to people frequently do not work well

for machines. Consequently, to see whether the human-understandable outputs by

the Recurrent Fine-tuning (RF) module help NLP models perform better, in this

section I discuss how I evaluate the quality of generated descriptions by Recurrent

Fine-tuning. I have chosen the task of pronoun coreference, as discussed before.

More specifically, I set up pronoun coreference here as a classification problem,

where the ambiguous pronoun is to be correctly classified into one of the candidates.

Inspired by the work of WinoGrande (Sakaguchi et al., 2020), I have utilized a very

similar method, where, for every sentence, its ambiguous pronoun is replaced by the

correct candidate, and all tokens after the pronoun are delimited and treated them

as contextual information for the encoder and classifier. Naturally in the Winograd

Schema style setting, pronoun coreference is set up as binary classification because

there are only two candidates per sentence.

As shown in Figure 3·1, the Task Specialization module consists of an encoder

followed by a classifier. This module is kept as simple as possible for now, so that I

can focus on investigating the effectiveness of the Recurrent Fine-tuning module.

3.3.1 Implementation Details

For the encoder, I utilized off-the-shelf pre-trained BERT (Devlin et al., 2019) and

RoBERTa (Liu et al., 2019) models from the HuggingFace library3. For the pre-

trained BERT models, in turn, I utilized both the cased and uncased models, which

means that the BERT model was pre-trained on cased and uncased English texts,

respectively. In addition, for the fine-tuning data, I utilized two different version of the

WinoGrande debiased training set of 9, 248 sentences: with RF-generated descriptions

3All pre-trained Transformer-based models, such as BERT and RoBERTa, are publicly available
at https://github.com/huggingface/transformers.

45

appended to each sentence, and without. Therefore, in total, I implemented the

encoder in six different versions:

• BERT cased, fine-tuned with descriptions

• BERT cased, fine-tuned without descriptions

• BERT uncased, fine-tuned with descriptions

• BERT uncased, fine-tuned without descriptions

• RoBERTa, fine-tuned with descriptions

• RoBERTa, fine-tuned without descriptions

For the classifier, I simply utilized PyTorch’s built-in linear layer with back-

propagation turned on to allow for parameter tuning. The input size for the classifier

is 768, which is the embedding size of both BERT and RoBERTa. The output size is

2, due to binary classification.

During each epoch, the training is with validation, with a 80%− 20% split on the

said WinoGrande debiased training set, whether the dataset comes with descriptions

or not. We trained the module for a total of 20 epochs with batch size 32.

After training, the module is tested on the WinoGrande validation set of 1, 267

sentences. I selected the validation set instead of the test set, because the test set does

not have labels. Recall that the Recurrent Fine-tuning module has been used to also

generate descriptions for the WinoGrande validation set. Thus, we tested the Task

Specialization module on the validation set twice, with and without descriptions.

46

3.3.2 Preliminary Results

Table 3.3 shows all the results of the Task Specialization stage. For baselines, we

included both the coin-flip probability of 50% as well as the WinoGrande baseline

presented in (Sakaguchi et al., 2020).

Test

Train
BERT (cased) BERT (uncased) RoBERTa

– with – with – with

descs descs descs

Baseline (coin flip) 0.5

Baseline (WG) – – 0.658 0.649 0.793 0.791

WG-valid 0.867 0.859 0.863 0.852 0.855 0.856

WG-valid with descs 0.840 0.867 0.828 0.858 0.844 0.862

Table 3.3: Test results for all 6 fine-tuning settings tested on 2 dif-
ferent test settings. “WG” stands for WinoGrande. The WinoGrande
baselines are taken directly from Table 3 of (Sakaguchi et al., 2020).

Albeit simple, the ProGeneXP approach outperforms the baseline WinoGrande

approaches across the board, suggesting that the Recurrent Fine-tuning approach

provides useful descriptions that help the Task Specialization module to hone in on

relevant semantics.

I also observe that my results, despite higher accuracy across the board, also have

very high precision with each other. I suspect this is due to the module successfully

exploring some underlying statistical bias in the WinoGrande debiased dataset that

may not be interesting or easily made transparent to people.

Finally, I note that for the RoBERTa results, training and testing the encoder-

classifier stack with descriptions show promise in outperforming trainind and testing

without descriptions. For future work, I suspect that more training loops can help

further distinguish the performance of various models. I also look forward to incorpo-

rating neural commonsense inference mechanisms, like the ones discussed in chapter

2, into ProGeneXP for better performance on disambiguation at large.

47

3.4 PatchComm with ProGeneXP

In this section, I draw out a small amount of implementation details of an immediate

future work where ProGeneXP is incorporated into PatchComm (chapter 2) to help

PatchComm find better semantic descriptions for disambiguation tasks.

Recall in sections 3.2 and 3.3 I discuss that PatchComm’s current pronoun coref-

erence approach suffers from the rigid notion of description tokens from within the

sentences. I explain the two reasons why description tokens are sub-optimal:

• It is frequently too limiting to find only one token, or a group of tokens, within

a sentence that captures all the relevant semantics for understanding the coref-

erence of a pronoun within that sentence.

• It is frequently the case that the necessary knowledge for coreference may be

outside of a sentence, so looking for a good description inside a sentence would

not work.

Basically, I take the entire pipeline as shown in Figure 3·1 except for the final

classifier. When dealing with a pronoun-ambiguous sentence, ProGeneXP is first

invoked to generate a description for that sentence and to encode a concatenation of

the original sentence with the description. The result is a 768-dimensional embedding,

because the encoder is implemented with BERT and/or RoBERTa. After that, I

perform dimensionality reduction on the sentence-description embedding to obtain

a 300-dimensional embedding. This then becomes the description vector (instead

of token) for PatchComm to align with candidate entities in pronoun coreference.

Because everything is in vector form, the alignment is done by RetroGAN-DRD

(Colon-Hernandez et al., 2019).

Results from initial experiments are to follow after this dissertation.

48

Chapter 4

DialComm

4.1 DialComm: Discourse Understanding By Commonsense

In this speculative chapter, I discuss DialComm. DialComm is a general-purpose

framework that aims at understanding discourses by building semantic representa-

tions for discourses. To build robust discourse representations, it is important to

combine context-independent sentence-level disambiguation and commonsense infer-

ence, and tackle context-dependent ambiguities that require discourse-level semantics

to resolve. As circular as this may sound, discourse-level semantic representations

and disambiguation mechanisms aid each other, often in loops.

Understanding natural language discourse in robust ways is a longstanding re-

search challenge; for example, see (Scha et al., 1986). Presently, DialComm is built

upon PatchComm’s ability to handle sentence-level ambiguities, inspired by the Frame

semantic representation (Minsky, 1974) and research in interactive natural language

programming such as Metafor (Liu and Lieberman, 2005), and fueled by commonsense

inference mechanisms.

In its current version, DialComm consists of a Sentence Representation Builder

(SRB) that directly utilizes PatchComm’s (Chapter 2) capability of using common-

sense knowledge and reasoning to disambiguate sentences, and a Discourse Represen-

tation Builder (DRB) that recursively draws on information collected from previous

sentences so as to understand new sentences within the established context. Figure

4·1 shows the architecture of DialComm.

49

Figure 4·1: Architecture of DialComm.

In order to achieve this, there must be a unifying representation that congregates,

and allows for the updating of, information across all sentences. We have chosen to

use the frame data structure (Minsky, 1974) to implement this unifying discourse-level

representation.

One natural by-product that can be obtained from this frame representation, is

sentence-level pronoun coreference disambiguation. In the next section, I demonstrate

DialComm’s ability to apply discourse-level representation back to sentence-level am-

biguous pronouns. Although this pronoun coreference disambiguation capability is

only part of downstream capabilities such as question answering and story summa-

rization, the ability to reflect on one’s previous behaviors and outcomes and explain

why decisions are made, is necessary for transparent intelligent agents.

50

4.2 Details of DialComm

In this section, I demonstrate DialComm’s story understanding and commonsense

inference mechanisms, by walking through a concrete example story. We will see that

pronoun coreference disambiguation is a natural by-product of this story understand-

ing process. The story is inspired by the exemplary Birthday Party scenario that

has been extensively studied in Artificial Intelligence — for example, see (Clemenson,

1977). My version of the Birthday Party story consists of the following sentences:

S1: Robbie and Susie are going to Marvin’s birthday party.
S2: One of them wants to buy a kite.
S3: “But he already has one,” he says, “he will make you take it back.”

Figure 4·2: A simple but pronoun-ambiguous Birthday Party story.

At its core, DialComm follows an incremental approach that is implemented as

a recursive algorithm. The central Frame representation is updated whenever new

information is detected in a new sentence. When DialComm reads a sentence, it

uses PatchComm (Xin et al., 2021) (essentially spaCy (Honnibal et al., 2020)) to

parse that sentence into parts of speech and syntactically connected phrases, and

then attempts to match these extracted information against its own knowledge that

has been pre-built-in for bootstrapping.

At the top level, DialComm understands that there are three root entities — the

Person, Thing, and Event entities — but does not include these labels into any frame

it builds. After reading S1 of Figure 4·2, PatchComm extracts the key information

of Robbie and Susie, Marvin, Marvin’s birthday party, and going. Then, DialComm

uses its built-in knowledge to know that:

51

• Marvin’s birthday party is an event, with Marvin being the host.

• If Person X goes to Person Y’s birthday party, then Person X is a guest. So

Robbie and Susie are the guests to Marvin’s birthday party.

• Host and guests are all Persons.

• Robbie is male, Susie is female, and Marvin is male; their pronouns should be

assigned accordingly1.

Putting these together, DialComm builds the following initial frame:

Hosts Marvin Pronoun: He

Guests
Robbie Pronoun: He

Susie Pronoun: She

Table 4.1: Frame after reading S1. Note that the frame includes
only relevant information. For example, the frame does not repeat the
fact that the event is birthday party, because this is an event frame
and the event is already known. Putting spotlight over only relevant
information, is central to Minskyian frames (Minsky, 1974).

After reading S2 of Figure 4·2, PatchComm takes advantage of its pronoun coref-

erence ability to guess some preliminary results that DialComm does not yet rely on;

also, PatchComm extracts the entire phrase of want to buy a kite. Then, DialComm

uses its built-in knowledge to know that

• Birthday party guests usually buy gifts for birthday party hosts.

• Want to means not yet done, so a discussion might ensue and be anticipated.

With these information, DialComm updates the frame, which becomes: DialComm

resolves that “them” refers to Robbie and Susie, because:

1Note that this stipulation is so that DialComm can begin doing any processing at all. I decline
all political arguments on pronoun and gender identity.

52

Hosts Marvin Pronoun: He

Guests
Robbie Pronoun: He

Susie Pronoun: She

Gifts Kite

From: Robbie

To: Marvin

Status: Maybe

From: Susie

To: Marvin

Status: Maybe

Table 4.2: Frame after reading S2. From and To capture the fact that
a gift needs a giver and a receiver. Status: Maybe captures the fact the
uncertainty of whether the gift will indeed be bought. The inclusion
of both From: Robbie and From: Susie is because DialComm resolves
that “them” refers to Robbie and Susie, but needs more discourse-level
context to resolve “one.”

• From before, when DialComm sees want to and anticipates a discussion on gifts

between guests, who DialComm assumes are the gift buyers.

• DialComm confirms that the guests are Robbie and Susie, by referencing the

existing frame from the previous step. By default, DialComm assumes that

plural pronouns such as “them” refer to entities that have the most in com-

mon, prioritizing the most specific commonalities and incrementally moving

to more general commonalities. In the example, Robbie and Susie are both

guests whereas Marvin is a host, even though all three are Persons. Therefore,

DialComm confirms that “them” refers to Robbie and Susie.

Finally, after reading S3 of Figure 4·2, DialComm immediately knows that the

dialogue is between Robbie and Susie, because from before DialComm has been an-

ticipating a discussion on gifts between them. Then from “he says” DialComm knows

that Robbie is the speaker, by referencing the existing frame for pronoun information.

This leads to the final version of the event frame for the story: Having this final frame,

53

Hosts Marvin Pronoun: He

Guests

Robbie

Pronoun: He

Dialogues:

“But he already has one”

“he will make you take it back”

Susie
Pronoun: She

Dialogues:

Gifts Kite

From: Robbie

To: Marvin

Status: Maybe

From: Susie

To: Marvin

Status: Maybe

Table 4.3: Final frame after reading S3.

DialComm can revisit all the unresolved pronouns, starting with the current sentence

(S3) and then doing a full pass through the story again. For Robbie’s dialogues in

S3, DialComm has built-in linguistic knowledge to know that, within quoted utter-

ances, I/me/my self-refers to the speaker; you/your refers to whomever the speaker is

speaking with; and third-party pronouns like he/him/his, she/her/her, it/it/its, and

they/them/their refer to whoever outside of the dialogue that go by those pronouns

accordingly. Using such knowledge, DialComm easily infers that the he in Robbie’s

dialogue refers to Marvin, you refers to Susie, and one and it refers to Kite.

In its ultimate version, DialComm should further infer that Susie will thus decide

not to buy a kite for Marvin’s birthday party. However, in its current version, Dial-

Comm still needs to leverage much more sophisticated commonsense knowledge and

inference mechanisms to draw such conclusions.

54

4.3 Application to Programming in Natural Language

In order to generalize beyond story-specific mechanisms, below I describe several sub-

strates of the Sentence Representation Builder (SRB) of DialComm that attempt to

reliably extract information from sentences. Then, I describe how these mechanisms

are useful for a downstream task of programming in natural language. All imple-

mentations are grounded in a combination of dependency parsing mechanisms from

PatchComm and commonsense knowledge from ConceptNet2 (Speer et al., 2017).

For demonstration, I walk through an example story that is directly inspired by

the Bartender story in (Liu and Lieberman, 2005):

S1: I found a bar with a bartender who was making fancy drinks.
S2: If a drink was in the menu, the bartender would make it.
S3: One customer was rude, so the bartender threw away their drink.

Figure 4·3: A variation of Bartender story.

4.3.1 Substrates for Sentence Representation Builder

Entity Getter

Entity is the most important aspect of DialComm, because all of DialComm’s frame

semantic information is indexed by entities. I define an entity to mean noun (including

proper noun), noun phrase (including proper noun phrase), or any combination of

the two. For example, piano (noun), Yamaha (proper noun), subway station (noun

phrase), New York City (proper noun phrase), and New York City subway station

(combination) are all examples of entity.

In the current version, Entity Getter is able to extract such example entities as

above. However, a major challenge is to robustly distinguish single entities that carry

2An immediate thought is to use RetroGAN-DRD in place of ConceptNet. However, the current
version of RetroGAN-DRD is not as precise as ConceptNet. For DialComm-styled discourse analysis,
precision is crucial in applying knowledge.

55

conjunctives in their names, e.g. rum and coke or peanut butter and jelly sandwich.

With the help of ConceptNet and other forms of knowledge bases, DialComm can

identify some of these conjunctives. Still, for a general solution, I suspect that inter-

active instructions from users will be necessary.

Sub-entity Getter

Sub-entity is a rather loose notion, and by it I mean an entity that roughly belongs

to or is contained in another entity. For example in the bartender story in Figure 4·3,

a bartender is a sub-entity of a bar, because bartenders can be found at bars.

Using ConceptNet’s relations HasA and AtLocation, I define that an entity E1 is

a sub-entity of another entity E2, if either E2 HasA E1 is true or E1 AtLocation E2

is true. For bartender and bar, ConceptNet has an assertion that says “bartender

AtLocation bar,” and DialComm uses this assertion.

Property Getter

I simply define that an entity has a certain property P , if P is either the adjectival

modifier or adjectival complement of the entity. PatchComm provides such syntactic

information.

Action Getter

In DialComm, all actions are defined and indexed by their corresponding entities.

For implementation, I define an action of an entity to be a verb that is either directly

connected to the entity (e.g. the bartender makes the drink), or indirectly connected

to the entity via one or multiple conjunct links the bartender makes the drink and

gives it to the customer.

Within the larger frame indexed by entities, an action itself is also represented

as a frame, where the slots are Direct Objects, Indirect Objects, and Conditions. For

56

example, in S2 and S3 of Figure 4·3, DialComm knows that drink is a direct object

of the actions make and throw, respectively. On top of that, make has a condition,

if drink in menu, which DialComm gathers from the if -led adverbial clause.

Inheritance Getter

Last but not least, whenever there are multiple entities and some are more gen-

eral/specific than others, there must be a way of resolving their relations. In Dial-

Comm, ConceptNet’s IsA relation is used to help determine such inheritance rela-

tions. In particular, I devise an algorithm for recognizing chained inheritances. For

example, suppose we are given the following list of entities,

[piano, Yamaha, instrument, Steinway]

and would like to order their inheritance relations based on our commonsense under-

standings about these entities. The inheritance recognition algorithm first establishes

a complete list of all IsA relations from this list, which looks like

[(piano IsA instrument),

(Yamaha IsA piano),

(Yamaha IsA instrument),

(Steinway IsA piano),

(Steinway IsA instrument)]

57

Then, the algorithm observes that (Yamaha IsA instrument) is a chained inheritance,

because (Yamaha IsA piano) and (piano IsA instrument) suggest that piano is a

middle entity. Therefore, the algorithm removes (Yamaha IsA instrument) from

the list. Similarly, the algorithm removes (Steinway IsA instrument) from the list,

yielding a list of 1-hop inheritances3:

[(piano IsA instrument),

(Yamaha IsA piano),

(Steinway IsA piano)]

Although the working Bartender example does not make use of the Inheritance

Getter, it is a necessity for building larger and more complex frames.

4.3.2 Program Rendering

Just like in section 4.2 for pronoun coreference disambiguation alone, the program-

ming application requires the same parsing and frame-building stages. In addition,

there is one more program rendering stage.

In the parsing stage, DialComm invokes PatchComm to produce the following

parse trees, with disambiguated prepositional phrase attachments and pronoun coref-

erences highlighted, just like in chapter 2:

3Here, “1-hop” means based on only the knowledge we have. If new knowledge comes up that
suggests additional middle entities, the algorithm modifies the list of inheritances accordingly.

58

Figure 4·4: Parses for bartender story sentences, highlighting key
information.

Then, DialComm invokes the same incremental frame-constructing mechanisms

to build and update intermediate frames using the parse trees above. Below, I only

show the final version of that frame:

Entities Actions Sub-Entities Properties

Bar bartender

Bartender
make(drink) condition: if drink in menu

throw(drink)

Drink fancy

Menu

Customer rude

Table 4.4: DialComm fills the frame slots as much possible. A sparse
frame suggests that more information can be introduced with ease.

59

And finally, Figure 4·5 shows DialComm’s incremental program rendering of all

intermediate frames and the final frame (Figure 4.4) into Python-like scripts.

(a) After Table 3.4. (b) After Table 3.5. (c) After Table 3.6.

Figure 4·5: PatchCommPro’s Renderer renders the discourse rep-
resentation so-far into Python code, in a real-time fashion. Specifically,
the green code in (a) is generated after Table 3.4 is generated; green
code in (b) after Table 3.5; and green code in (c) after Table 3.6.

60

When mapping frame semantics to Python-like scripts, DialComm simply follows

these rules:

• Entities become Python classes.

• Sub-entities become class instances of their corresponding entities.

• Actions become instance methods of their corresponding entities.

• Properties are simply stored as a list, accessible by class instances.

In addition, thought not shown in the bartender example, inheritances become super-

classes and sub-classes.

Also, note that DialComm sticks to Pythonic syntax as much as possible. For

example, all class names are capitalized (and camel-cased, though not shown here);

every class begins with the init block, which isn’t always required, but is common

practice; each class has the self keywords where they need to be; and methods are

passed whenever their procedural details are insufficiently or not at all described.

61

4.4 Motivations and Future Work for Natural Language Pro-

gramming

To thoroughly establish the kind of human-to-AI communications depicted in Figure

1.2, outputs of NLU must be converted into computer code written in some high-level,

human-readable programming language (PL).

In (Lieberman and Liu, 2006) and (Mihalcea et al., 2006), two paradigms of NL

Programming are identified: the Descriptive paradigm and the Procedural paradigm.

It is first and foremost important to note that these paradigms should be working

with, not against, each other.

The Descriptive paradigm treats programming as the process where humans try

to establish discourses or exchange thoughts with computers; for example, a human

user might use English to describe the layout of their kitchen to a computer, and

the computer internalizes this discourse into a Python program in which the vari-

ous objects and object-relations in the kitchen are modeled with Objected-Oriented-

Programming (OOP) mechanisms. The Procedural paradigm might be considered as

the more “conventional” type of NL Programming, which treats programming as the

process where humans issue verbal commands in NL to computers without having to

translate them into PL. For example, suppose we want to write a Python program

that enumerates all integers divisible by 113 between 1 and 10000. If we know how

to program in Python, we might write the following program:

all_integers = []

for i in range(1, 10000):

if i % 113 == 0:

all_integers.append(i)

For a human user who does not program in Python or at all, Procedural NL Pro-

gramming allows them to simply tell their computer to “write a Python program that

enumerates all integers divisible by 113 between 1 and 10000.”

62

Genesis, in addition to its ambition in NLU and modeling human intelligence,

has a self-aware problem solving process (Winston, 2018) that, in a deep sense, sets

up yet another ambitious framework for NL Programming. In that problem-solving

process, Genesis first internalizes problems presented in the form of carefully written,

simple English stories into Innerese representations (see section 2.2), and then decom-

poses these representations into substrates known as Just-Do-It programs, which are

low-level, directly executable programs. Although strictly speaking, Genesis is not an

implementation of the Descriptive NL Programming paradigm, it is a demonstration

of how to generate descriptive representations of language and ground them in Pro-

cedural implementations. And fundamentally, this is how I believe the Descriptive

and Procedural paradigms should work with each other: the Descriptive paradigm

constructs the skeleton and the Procedural paradigm fills the skeleton with flesh.

4.4.1 Descriptive and Procedural Programming

The pioneering work in Descriptive NL Programming is Metafor (Liu and Lieber-

man, 2005), which contributed to the aforementioned works of (Lieberman and Liu,

2006) and (Mihalcea et al., 2006), but unfortunately stopped short. In its final ver-

sion to date, Metafor consists of, among others, a backend, commonsense-integrated

NLP engine that does syntactic parsing and maps parsed outputs to representations

of semantic information and commonsense knowledge (e.g. entities, entity relations,

actions, properties, etc.); a backend code renderer that renders semantic representa-

tions into Python code (at the time of Metafor, Python was in its versions 2.4 and

2.5); and crucially, a frontend User Interface (UI) where human users/programmers

interact with the backends by narrating stories sentence-by-sentence. Every time a

new sentence is provided in the UI, Metafor looks at the semantic representations

already built and the code already rendered, extracts new information (if any) from

the new sentence, and updates the existing semantic representation and code with

63

those new information. Figure 4·6 shows an example of Metafor:

Figure 4·6: An example of Metafor that shows both frontend and
backend capabilities. Lower-left corner: the narrative being entered;
upper-left corner: an interaction log; upper-right corner: Metafor’s
representation of the parse tree (for advanced users only); and lower-
right corner: the rendered Python code.

A very similar line of work to Procedural NL Programming is Semantic Pars-

ing. Unlike Syntactic parsing which maps NL texts onto syntactic parse trees (see

64

section 2.2), Semantic Parsing maps NL texts onto logical forms. The denotations

(i.e. meanings) of such logical forms are identical to the results that would be ob-

tained if these logical forms were implemented in some programming language and

then executed. An exemplary semantic parser is SEMPRE4 (Semantic Parsing with

Execution) (Berant et al., 2013; Berant and Liang, 2014), implemented in Java. As

an example, suppose we ask SEMPRE, “What is three plus four times two?” SEM-

PRE understands this ambiguous question could be interpreted as either three plus

four before times two or four times two before three plus, therefore produces so-called

derivations that represent the two logical forms below, to capture this ambiguity:

(execute (call * (call +

(number 3)

(number 4)))

(number 2))

(a) First interpretation of three plus four before times two.

(execute (call + (number 3)

(call *

(number 4)

(number 2))))

(b) Second interpretation of four times two before three plus.

Afterwards, SEMPRE executes both derivations to yield (number 14) and (number

11), respectively.

4Open source at https://github.com/percyliang/sempre

65

On the surface, the difference between Semantic Parsing and Procedural NL Pro-

gramming seems to only be that one produces logical forms as output and the other

produces code as output, respectively. But on a deeper level, representing natural

language in logic has had a long history of problems and criticisms; perhaps the most

quoted criticism is: Logic is too rigid for natural language. True, programming lan-

guages are also rigid, but they are more flexible than logic. Therefore, I am more

inclined to Procedural NL Programming than to Semantic Parsing.

Directly targeted at the task of Procedural NL Programming is the latest work

by OpenAI, Codex5 (Chen et al., 2021). Building on the GPT family of language

models(Radford et al., 2018; Radford et al., 2019; Brown et al., 2020), Codex is

specifically trained for generating code. Figure 4·8 provides some examples of Codex

at work.

Codex has been shown successful in many application cases, and is now the back-

bone of GitHub Copilot6. But evidently, there are test cases that should be trivial

to human programmers but can be used to trick Codex. This hints at the lack of

generalizability in Codex and systems like Codex, but the hope is that, by integrating

Descriptive capabilities with this kind of SOTA Procedural capabilities, we will make

progress in realizing the dream of programming machines in natural languages and

thereby establishing thorough human-to-AI communications.

5See https://openai.com/blog/openai-codex/
6See https://copilot.github.com/

66

Figure 4·8: OpenAI’s Codex is very impressive in many cases (e.g.
top), but fails on other cases that the average human programmer would
regard as trivial (e.g. bottom).

67

4.4.2 Adding Context-dependent Commonsense Inference

A notable ongoing work on context-dependent commonsense inference is LM-GAN,

my collaborative effort that directly follows from the previous work of RetroGAN

(Colon-Hernandez et al., 2021). LM-GAN simply stands for Language Model Gen-

erative Adversarial Network. It takes advantage of the same adversarial training as

in our RetroGAN work, and uses language model as its Generator component to

generate commonsense assertions from texts.

The fundamental limitation of RetroGAN is the lack of contextualization in its

generated knowledge embeddings. In other words, had there been different discourses

that act as different contexts for a particular word and had RetroGAN been used to

generate an embedding for that word, RetroGAN would always generate the same

embeddings for the word and not be able to pick up the different contexts.

In LM-GAN, on the contrary, our goal is that the system will generate context-

informed commonsense assertions, initially in the form of vectors but immediately

converted to symbols for human readability. More specifically, LM-GAN first utilizes

a generative language model to conduct commonsense inference over GLUCOSE-style

(Mostafazadeh et al., 2020) story-sentence pairs, where the story serves as the context

for the sentence. The language model learns to take hints on which components of a

commonsense assertion it should generate, and whether to generate more general or

more specific versions of an assertion. And due to its context-dependent, the language

model can generate different commonsense assertions for the same sentence that is

embedded in different story contexts. After that, the GAN is utilized as a variant

of the post-specialization technique in AuxGAN (Ponti et al., 2018) and RetroGAN

(Colon-Hernandez et al., 2021) to help the commonsensically fine-tuned language

model to generalize beyond what it has learned. Figure 4·9 shows the complete

architecture of LM-GAN:

68

Figure 4·9: Overview of current version of LM-GAN.

Note especially that the Discriminator is geared with both the skill to tell whether

a generated assertion is real and the skill to tell whether a generated assertion is

factual. Here, a real assertion means one that can be found in any of the original

commonsense knowledge bases; a factual assertion may not be found in any existing

knowledge base, but nonetheless it may speak some truth. To tell whether an assertion

is real, we have simply used the adversarial loss inspired by that of (Goodfellow et al.,

2014). To tell whether an assertion is factual, we implemented loss function terms

inspired by the work of (Li et al., 2016) that makes use of negative examples to prime

the GAN to tell apart what is factual from what is counterfactual.

69

Working Example

To better understand the intricate mechanisms of LM-GAN, I will briefly walk through

an example. Suppose we have the following story:

S1: John is a regular person who has a dog.

S2: John, every day, goes out to walk his dog.

S3: A dog is a man’s best friend.

S4: Dogs like to bark at other dogs.

Following the GLUCOSE style of knowledge generation, LM-GAN can generate

specific knowledge and general knowledge from this story, by focusing on a specific

sentence in the story, and by utilizing hints.

Suppose LM-GAN is set to focus on S2 and is given the hint <CapableOf>, a

ConceptNet relation. Then, LM-GAN can generate the following specific and general

commonsense assertions:

specific: John is capable of walking his dog.

specific: John has a dog.

specific: John has a dog enables John to walk his dog.

general : PersonX who has ThingA enables PersonX to walk ThingA.

Figure 4·10: Some examples of specific and general assertions that
LM-GAN is capable of generating, provided with a story, a targeted
sentence, and a hint. Note that for the general assertion, I used Atomic-
style variable names here for clarity.

Note that generating the general knowledge here requires pulling together all the

specific knowledge, as well as knowing that John is a PersonX and dog is a ThingA.

Note also that linguistic templates are used to generate knowledge in this kind of

human-readable format.

70

Preliminary Analysis

Figure 4·11 shows some preliminary results of our current exploration of LM-GAN.

Figure 4·11: Preliminary adversarial results of LM-GAN.

These results show that LM-GAN strikes a balance between precision and recall

and can be scaled up to do well in both. Of course, in commonsense inference, both

precision and recall are vital: invoking lots of wrong knowledge alongside lots of right

knowledge (low precision) is troublesome; invoking mostly right knowledge but not

enough of it (low recall) is just as troublesome.

71

Chapter 5

General Related Work

5.1 The State of Natural Language Processing

It is widely recognized that NLP started with the work of SHRDLU (Winograd,

1972), where a computer is programmed to understand human instructions and then

to accordingly carry out actions in its simulated environment. Fast forward to the

present, we may construe SHRDLU as a miniature demonstration of what the ultimate

NLP should look like — that is, machines communicating with us humans in our

languages, and do us favors when we ask them to. The reality is, in the 50 years since

SHRDLU, NLP has branched off into several, more concentrated directions, each with

its own set of approaches and accomplishments.

Some NLP approaches program computers to explicitly analyze words, sentences,

and discourses. On the word level, large-scale semantic-graph databases, such as

WordNet (Miller, 1995; Fellbaum, 1998) and ConceptNet (Speer et al., 2017), have

been crowd-sourced to capture lexical and commonsense meanings of words and

phrases. Using such databases of knowledge (a.k.a. knowledge bases), tasks such

as Word Sense Disambiguation can be tackled, using statistical models that leverage

statistical information within and among the various knowledge bases. For instance,

see the work of (Havasi et al., 2010) on Word Sense Disambiguation using Concept-

Net. In addition to these knowledge-flavored databases, statistical methods have been

directly applied to large-scale corpora to learn so-called word embeddings. Word em-

beddings come in many shapes and forms: if a task demands more global context,

72

GloVe (Pennington et al., 2014) can be used; if a task demands more local context,

word2vec (Mikolov et al., 2013) can be used; or if a task demands sub-word informa-

tion (e.g. RetroGAN (Colon-Hernandez et al., 2021)), FastText (Bojanowski et al.,

2017) can be used. Generally speaking, word embeddings have been shown useful in

such important tasks as sentiment analysis and document retrieval.

On the sentence level, syntactic parsers, such as CoreNLP (Manning et al., 2014)

and spaCy (Honnibal et al., 2020), have been developed to convert individual sen-

tences into so-called syntactic parse trees ; a syntactic parse tree of a sentence is a

specific organization of all the words in the sentence, according to the syntactic rela-

tions between the words themselves and phrases consisted of the words. In addition,

semantic parsers, such as SEMPRE (Berant et al., 2013; Berant and Liang, 2014),

have also been developed to convert sentences into logical expressions that capture

the gist of sentences; this is especially useful when dealing with sentences that are

supposed to unambiguously describe entities, entity relations, properties, actions, etc.

in and of the physical world.

On the discourse level, a discourse can be either a story or a dialog; therefore, story

understanding and conversational systems have been developed to leverage word- and

sentence-level information to yield an integral understanding of any given discourse as

a whole, rather than as a collection of individual sentences. After all, the goal of NLP

is to build computer programs that understand discourses; word- and sentence-level

understandings are of service to this ultimate goal.

The more trendy NLP approaches, however, have not seen the same explicit dis-

tinctions among words, sentences, and discourses. Instead, they segment an entire

corpus into identical-sized sets of tokens and treat the segments as contextual informa-

tion, where the meanings of the individual words are thought to be embedded within

their contexts. Afterwards, so-called Language Models (LM) are built and trained to

73

encode such words-within-contexts. The end results are a lexicon, where each word

has a corresponding vector-based representation, called word vector or word embed-

ding, that is useful for downstream tasks; and a pre-trained language model that can

readily convert seen (and unseen) words and documents into vectors, for downstream

tasks. Since the introduction of the Transformer architecture (Vaswani et al., 2017)

and all the Transformer-enabled language models such as BERT (Devlin et al., 2019)

and RoBERTa (Liu et al., 2019) and their variants as well as the family of GPTs

(Radford et al., 2018; Radford et al., 2019; Brown et al., 2020), old-school word em-

beddings like word2vec and GloVe are being replaced by these language models. At

the time of this writing, these language models serve as backbones for many research

endeavors and industrial products — for starters, practically all machine translation

software (e.g. Google Translate) and virtual (voice) assistants (e.g. Amazon’s Alexa)

— and are continued to be scaled up to see where their limits are.

Large language models have proven to work better and are much more convenient

to use, compared to their old-school counterparts, and their ongoing developments

are almost entertaining to follow on social media these days. Still, building real-world

versions of SHRDLU-like systems seems like such a lofty goal that people have not

dared to touch in 50 odd years. Indeed, natural language is highly ambiguous and the

physical world is vastly more complicated than any computer-simulated world. Much

unlike us humans, machines still fundamentally lack any general ways of resolving

ambiguities in natural language and in the physical world. Whenever set upon tasks

that involve ambiguities, state-of-the-art systems largely ignore the intermediate step

of explicitly resolving ambiguities and try to solve the tasks in an end-to-end fash-

ion, hoping for the best. Or, they exploit task-specific statistical patterns that are

buried to people and they make educated guesses, hoping for the best. Either way,

disambiguation has largely been avoided.

74

5.2 More Technical Details

In NLP, an AI system is given some input texts along with some downstream natural

language tasks, and then the system is asked to perform the said tasks by drawing

upon information that it extracts from the input texts. At the time of this writing,

the most popular and widely accepted approach to NLP is to directly or indirectly

use statistical and/or Machine Learning (ML) — including but not limited to Deep

Learning — models. These models are pre-trained on input texts to become a lan-

guage model, which is then fine-tuned on downstream tasks to boost performance.

Chronologically, statistical language models precede neural ones. Among the most

well-known statistical language models are n-gram with TF-IDF and (continuous)

bag-of-words (BoW/CBoW). At the moment, however, neural language models really

are the default go-to choices for many if not most applications and research.

Very roughly speaking, all state-of-the-art neural language models implement the

Sequence-to-Sequence (Seq2seq) framework, where the input texts are treated as one

contiguous input sequence, and the sequence is first encoded by the model, and then

decoded into an output sequence. The forms and contents of a language model’s input

and output sequences are basically dependent on the model’s designated tasks. As an

example, in the task of neural machine translation (NMT), an model’s input sequence

could be a collection of English documents that have been sequentialized into indi-

vidual English tokens, with or without punctuation and special tokens; if the target

language is, say, Chinese, the model’s output sequence would be a sequence of Chinese

tokens, with or without punctuation and special tokens. In addition, there must be

criteria about how good the translated results are; one universally used criterion is

BLEU (Papineni et al., 2002), which computes the percentage of correctly translated

words in the output sequence. Although BLEU takes into account neither word order

nor linguistic features, it remains the most widely used metrics for neural machine

75

translation. Nevertheless, there have been some metrics that attempt to emphasize

word order, e.g. (Han et al., 2012), and metrics that attempt to emphasize syntactic

and semantic features, e.g. (Liu and Gildea, 2005) and (Stanojević and Sima’an,

2014), respectively. As another example of Seq2seq, in the task of dependency-style

syntactic parsing (e.g. see (Li et al., 2018)), a language model’s input sequence could

again be a sequence of English tokens taken from a sentence, and its output sequence

would be a nested clause that represents a dependency parse tree. The most com-

monly used criterion is attachment score, which measures the percentage of words

that have been assigned their correspondingly correct heads; the style where depen-

dency labels are also taken into account is called labeled attachment score (LAS),

and the style without considering dependency labels is called unlabeled attachment

score (UAS) (Nivre and Fang, 2017).

The term “Seq2seq” was first coined in (Sutskever et al., 2014); the paper is

frequently cited as the first-ever attempt to use Long Short-Term Memory (LSTM)

units (Hochreiter and Schmidhuber, 1997), an improved version of the original Recur-

rent Neural Networks (RNN) units (Rumelhart et al., 1986), to implement both the

encoder sequence and decoder sequence of a Seq2seq model. LSTM is an improved

version of the original RNN, because LSTM is specifically designed to target at the

problems of gradient vanishing and gradient explosion; these problems are inevitable

when the module sequence becomes too long, and module sequences do become very

long in task settings such as neural machine translation. The introduction of LSTM-

based Seq2seq models proved to be unprecedentedly successful at solving NLP tasks.

At the same time, RNNs, even LSTMs, have historically been known to be compu-

tationally very costly. To combat high computational costs in training LSTM-based

Seq2seq models, (Chung et al., 2014) proposed a new RNN architecture called Gated

Recurrent Unit (GRU) (Chung et al., 2014), which removed the memory cell from

76

a LSTM unit and, instead, exposes the entire hidden state. In practice, GRUs have

become more prevalent than LSTM, because GRUs are easier to implement, debug,

and train, all while ensuring performance.

Soon after the introduction of GRU, (Bahdanau et al., 2015) proposed the idea

of imposing Attention Mechanisms on top of Seq2seq models. Their argument was

that not all words within a sequence are of equal importance; therefore, there should

be a learning algorithm that learns, at each time step, to associate a corresponding

weight (a.k.a. attention score) for the current word, by observing the current word

in the context of the hidden states of the previous encoder modules.

Because RNN remained computationally expensive and, simultaneously, attention

mechanism began giving rise to superior performance in NLP applications across the

board, NLP researchers started exploring ways to move closer to attention mechanism

and further from conventional RNNs. This shift eventually culminated in (Vaswani

et al., 2017), which proposed the idea — as they stated verbatim in their title — that

“attention is all you need.” With only attention mechanism and no RNN, the new

architecture of Transformer was born. Today, most large language models in applica-

tion are derived from the Transformer architecture. Perhaps the two most prominent

families of such language models are the Generative Pre-trained Transformer (GPT)

family (Radford et al., 2018; Radford et al., 2019; Brown et al., 2020) maintained by

OpenAI, and the Bidirectional Encoder Representations from Transformers (BERT)

(Devlin et al., 2019) family pioneered by Google and advanced by many. GPT is

different from BERT in that information flows from left to right in GPT, but bidirec-

tionally in BERT (see Figure 2.1). As a result, GPT is a generative language model

that generates a sequence of tokens of some specified length, L, by sampling from the

internal state, h, of the model and conditioning on all previously generated tokens at

77

Figure 5·1: Information flows are from left to right in GPT (right),
but bidirectionally in BERT (left).

every time step, as in equation (1.1),

Pr{x(1),· · · , x(L)|x(0), h} ∝
L∏
i=1

Pr{x(i)|x(i−1),· · · , x(0), h} (5.1)

where x(0) is typically some start token. On the other hand, BERT is primarily a

masked language model that is trained to use information from both directions to fill

in the masked out words in sentences.

5.2.1 Natural Language Understanding

A subarea of NLP is natural language understanding (NLU), where we care not only

about the outputs of NLP systems, but also how they produce the outputs — for

example, whether they produce their outputs in a transparent and interpretable way.

The terms “NLP” and “NLU” are often used interchangeably in various literature.

But for me, there is a key distinguishing factor: NLP systems are more task-oriented,

whereas NLU systems are more transparency- and interpretability-oriented. On one

hand, if an NLP system performs at a superhuman level but fails to make clear how it

reaches its results, then determining whether there is real understanding in its task-

78

solving pipeline is difficult. Assuming there is indeed real understanding somewhere,

locating precisely where and making sense of its constituents are difficult, too. On

the other hand, even if a system does not yield impressive results but, for the ones it

does yield (including the wrong ones), a human can see clearly its reasoning processes,

then it surely deserves to be called an NLU system.

Previously on NLP, I briefly mentioned Syntactic Parsing, saying that it can be

and has been tackled with the general Seq2seq approach using any state-of-the-art

language model of choice. Although it technically belongs to NLP, I will expand

on Syntactic Parsing in this section on NLU. My rationale is, once again, rooted

in the notion of tree-structured Inner Language representations of natural languages

(NL) in the human brain (Berwick and Chomsky, 2015). In Syntactic Parsing, an

NL sentence is converted by a syntactic parser into a tree-structured representation,

called syntactic parse tree. It remains an open research question as to how much

“semantics” can be revealed by syntactic parse trees — or, said in another way,

how can syntactic parse trees be made to reveal more semantics — in NL sentences

(Mueller, 2002). Nevertheless, these trees are a good starting point for building “Inner

Languages” in AI systems.

The two most prominent styles of Syntactic Parsing are Constituency Parsing

and Dependency Parsing. In Constituency Parsing, all the tokens in a sentence are

treated as leaf nodes, and they are recursively built into higher- and higher-level nodes

that represent various phrases, until everything culminates in one node, at the top-

most level, that represents the entire sentence. In Dependency Parsing, a sentence is

treated as a directed graph whose nodes represent the tokens in the sentence and edges

represent, whenever applicable, the dependency relations between pairs of tokens.

Figure 2.2 shows an example, produced by the Stanford CoreNLP parser (Manning

et al., 2014), that contrasts these two styles:

79

Figure 5·2: Constituency (top) and dependency (below) syntactic
parse trees for the sentence “The quick brown fox jumps over the lazy
dog,” produced by the Stanford CoreNLP parser.

Whether constituency- or dependency-style, syntactic parsers are troubled by two

prominent syntactic ambiguities: Prepositional Phrase (PP) Attachment, and Pro-

noun Coreference. How to resolve these ambiguities robustly and in general-purpose

ways, remains an open research question, and there are two primary reasons for that.

5.2.2 Syntax and Semantics

The immediate reason is that, traditionally, Computational Linguistics and NLP re-

searchers isolate the notion of semantics (i.e. meaning) from the notion of syntax,

and treat semantics as either a downstream task or future work. This isolation is a

problem for both PP Attachment and Coreference — both are what they categorize

80

as syntactic parsing tasks — because the resolutions of both require semantic infor-

mation. And very likely, the required semantic information is commonsense, which is

generally not explicitly provided in the text. Consider the following example sentence

for PP Attachment:

The doctor treated the veteran with disabilities.

This sentence minimally and strictly abides by the (S, V,N1, P,N2) syntactic con-

straint characterized in (Ratnaparkhi et al., 1994), where S is subject, V is verb, Ni

are nouns, and P is preposition. Together, P and N2 comprise the PP, which here is

“with disabilities.” The task is to determine whether the PP should be attached to V

(or, equivalently, to S, assuming that V is S’s action) or to N1. Evidently, using syn-

tactic information alone, it is impossible for a syntactic parser to make an informed

attachment decision. Knowing as much (or little, depending on one’s perspective) as

that veterans are more likely than doctors to be associated with disabilities, however,

a syntactic parser can justifiably make the more “correct” attachment decision that

“with disabilities” attaches to “veteran.”

Similarly, consider the following example for Pronoun Coreference:

The fish ate the worm because it was hungry.

Abiding by the (· · · Entity1 · · · Entity2 · · · pronoun · · ·) syntactic constraint and

knowing that eating is related to hunger, a syntactic parser can “correctly” decide

that it refers to the fish.

In general, by putting semantics back into syntax, parsers can begin to understand

language in ways that also make sense to human users.

5.2.3 Natural Language Is Intrinsically Ambiguous

The deeper reason that resolving such linguistic ambiguities remains an open research

question, is that natural language is intrinsically ambiguous. In the case of preposi-

82

they are communicating about what gift to buy. Therefore, the “he” in “he

said” must be Robbie.

� Because Robbie would not refer to himself as “he” in a direct quote from himself,

and because the only other male character of relevance is Marvin, the “he” in

Robbie’s quotes must be Marvin.

� The second “one” refers to “a kite,” because the “he” in “he has one” refers to

Marvin, “has” indicates ownership, and so far kite is the only object of relevance

to ownership.

� “But” indicates that Robbie disagrees with Susie on buying a kite for Marvin

because “he has one.” Therefore, it must be Susie who wanted to buy a kite,

so now we know the first “one” refers to Susie.

� Finally, in “he will make you take it back,” “he” is once again Marvin because

Robbie is just continuing his sentence; “you” is Susie, because the conversation

is between Robbie and Susie, so when Robbie uses “you,” he is addressing Susie;

and “it” refers to the hypothetical kite that Susie wanted to buy but Robbie

disagreed with.

A notable, ongoing work that has addressed such syntactic ambiguities with se-

mantic information, is the START system (Katz, 1997). START has a constituency

syntactic parser as its basis and parses sentences into a list of triples that include all

the syntactic and semantic information that START can extract from those sentences.

For example, for the sentence

The bird flew to the tree because a cat appeared.

START produces the following list of triples1:

1Truthfully, in START, entities and verbs are indexed; for clarity, here we omit indices.

83

[fly because appear]

[bird fly null]

[fly to tree]

[cat appear null]

[fly has tense past]

[fly has position leading]

[because is clausal yes]

[because is main yes]

[appear has tense past]

[appear has clause type tensed]

[bird has det definite]

[to has position trailing]

[tree has det definite]

[cat has det indefinite]

[fly has person 3]

[appear has person 3]

[bird has number singular]

[null has category nil]

[tree has number singular]

[cat has number singular]

START’s parsing capability can be used by downstream NLU systems to understand

stories. The Genesis Story Understanding System (Winston and Holmes, 2018) is

one such system that takes advantage of START’s parsing results and analyzes sim-

ple English stories that are carefully written, to reflect and model the human story

understanding processes, and to further model human intelligence.

In Genesis, the first step is to convert START triples into Genesis’s own Inner

Language representations, which is affectionately named Innerese. Innerese is di-

rectly inspired by Case Frames (Fillmore, 1968), a frame-semantic (Minsky, 1974)

representation for language. Using the previous sentence as an example, Genesis

produces the following Innerese expression from the previous list of triples:

In addition to representing such input texts in Innerese, Genesis also expresses its

84

(relation cause

(relation appear

(entity cat))

(relation fly

(entity bird)

(function to (entity tree))))

Figure 5·3: Genesis’s Innerese representation for the sentence “The
bird flew to the tree because a cat appeared,” which has been slightly
simplified for readability.

story-processing mechanisms entirely in Innerese. The story-processing mechanisms

include various If-Then commonsense rules that capture commonsense knowledge, as

well as various Script-like (Schank and Abelson, 1977) concept patterns that capture

story-level concepts. An example commonsense rule is: If an entity A is dead, then

among other things, Genesis knows that A cannot be happy. An example concept

pattern is: If, in a story, an entity A’s harming an entity B eventually leads to B

harming A back, then Genesis concludes that the concept “Revenge” has taken place

in the story.

At an even higher level, because Genesis represents both its data and its story-

processing mechanisms in Innerese, Genesis has the ability to tell a story about how it

found a concept in a given story, look at the story it tells itself, and then do a higher-

level analysis on its self-told story — and Genesis can do so recursively, without any

apparent theoretical limit.

NLU systems like Genesis deserve to be merited as Human-Centered AI (HCAI)

systems, because their priorities are precisely transparency, explainability, and in-

terpretability. Their working assumption inspires the main argument of this thesis,

which once again is: Language will be a key conveyance of human-AI communica-

tions, therefore we had better make sure that AI systems understand (and speak) our

85

languages in ways that are transparent, explainable, and interpretable to us.

Despite the value such human-centered NLU systems, they are yet to be deployed

in applications of any scale, because their capabilities are limited — at each level at

which they dabble. Their capabilities are limited, because, for a system like Genesis,

dealing with unconstrained natural language inputs is a major hurdle. For example,

Genesis uses START to process natural language inputs, but START, as a parser,

suffers from the same prepositional phrase attachment ambiguities and pronoun coref-

erence ambiguities that were discussed earlier. Unless and until there become robust

ways to scale up START’s and/or Genesis’s NLP ability to “translate” multilingual

natural language inputs into Innerese representations, Genesis is limited to carefully

written, simple English stories that are pedagogical and enlightening, but not broadly

useful. Perhaps someday, something like my dissertation work here can find its way

to Genesis and take it into the real world.

86

Chapter 6

Contributions

In this dissertation, I argued that the way to transparent AI is through transparent

natural language processing (NLP), and that disambiguation is the key to making

NLP transparent. Targeted at disambiguation, a system naturally finds its way to

utilizing commonsense knowledge and inference mechanisms. I summarize my overall

scientific vision in the following Commonsense Disambiguation Hypothesis :

Disambiguation is the application of commonsense inference to language

understanding. In addition, disambiguation at all levels of language will

solve most, if not all, of the longstanding problem machine language

understanding.

To lay the groundwork for testing my hypothesis, I made the following contribu-

tions:

• Implemented PatchComm, and showed that it leverages context-independent

commonsense to better resolve sentence-level syntactic ambiguities than purely

syntactic parsers alone.

• Implemented ProGeneXP, and showed that it brings together pre-trained lan-

guage context and newly encountered sentences, to yield transparent descrip-

tions for human users while improving performance on downstream tasks over

baselines.

• Implemented DialComm, and showed that it builds semantic representations

87

for discourses, enabling both sentence-level disambiguation and downstream

end-user programming in natural language.

• Incorporated commonsense, in various ways, into language understanding, across

various scenarios and tasks.

The results from my own work and my collaborative work suggest to me that these

work have successfully set the stage for future advances in NLP and commonsense

inference. To achieve future advances, this or another similar line of work needs to be

continued. Ultimately, the goal is to build AIs that we can talk to and trust. People

talk to each other in natural language, so machines that we build should do the same.

People can establish trust with each other just by talking, so machines should do

the same. If anything, my dissertation has shown how feasible it is to get started on

building transparent AI that understands commonsense. As long as AI people do get

started on this — and many are — I have no doubt that the world will be a better

place and scientists will finally be able to solve many lingering scientific mysteries.

References

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473.

Baker, C. F., Fillmore, C. J., and Lowe, J. B. (1998). The berkeley framenet project.
In Proceedings of the 36th Annual Meeting of the Association for Computational
Linguistics and 17th International Conference on Computational Linguistics - Vol-
ume 1, ACL ’98/COLING ’98, page 86–90, USA. Association for Computational
Linguistics.

Beaulieu, S., Frati, L., Miconi, T., Lehman, J., Stanley, K. O., Clune, J., and Cheney,
N. (2020). Learning to continually learn. In Giacomo, G. D., Catalá, A., Dilkina,
B., Milano, M., Barro, S., Bugaŕın, A., and Lang, J., editors, ECAI 2020 - 24th Eu-
ropean Conference on Artificial Intelligence, 29 August-8 September 2020, Santiago
de Compostela, Spain, August 29 - September 8, 2020 - Including 10th Conference
on Prestigious Applications of Artificial Intelligence (PAIS 2020), volume 325 of
Frontiers in Artificial Intelligence and Applications, pages 992–1001. IOS Press.

Belinkov, Y., Lei, T., Barzilay, R., and Globerson, A. (2014). Exploring composi-
tional architectures and word vector representations for prepositional phrase attach-
ment. Transactions of the Association for Computational Linguistics, 2:561–572.

Berant, J., Chou, A., Frostig, R., and Liang, P. (2013). Semantic parsing on Freebase
from question-answer pairs. In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pages 1533–1544, Seattle, Washington,
USA. Association for Computational Linguistics.

Berant, J. and Liang, P. (2014). Semantic parsing via paraphrasing. In Proceed-
ings of the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1415–1425, Baltimore, Maryland. Association for
Computational Linguistics.

Berwick, R. C. and Chomsky, N. (2015). Why Only Us: Language and Evolution.
The MIT Press.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching word vectors
with subword information. Transactions of the Association for Computational
Linguistics, 5:135–146.

88

89

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakan-
tan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger,
G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse,
C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C.,
McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. (2020). Language
models are few-shot learners. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M. F., and Lin, H., editors, Advances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates, Inc.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto, H. P., Kaplan, J.,
Edwards, H., Burda, Y., Joseph, N., Brockman, G., Ray, A., Puri, R., Krueger,
G., Petrov, M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder,
N., Pavlov, M., Power, A., Kaiser, L., Bavarian, M., Winter, C., Tillet, P., Such,
F. P., Cummings, D., Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A.,
Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang, J., Babuschkin, I., Balaji,
S., Jain, S., Saunders, W., Hesse, C., Carr, A. N., Leike, J., Achiam, J., Misra,
V., Morikawa, E., Radford, A., Knight, M., Brundage, M., Murati, M., Mayer,
K., Welinder, P., McGrew, B., Amodei, D., McCandlish, S., Sutskever, I., and
Zaremba, W. (2021). Evaluating large language models trained on code.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of
gated recurrent neural networks on sequence modeling. In NIPS 2014 Workshop
on Deep Learning, December 2014.

Clark, K. and Manning, C. D. (2016a). Deep reinforcement learning for mention-
ranking coreference models. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 2256–2262, Austin, Texas. Associ-
ation for Computational Linguistics.

Clark, K. and Manning, C. D. (2016b). Improving coreference resolution by learning
entity-level distributed representations. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages
643–653, Berlin, Germany. Association for Computational Linguistics.

Clemenson, G. D. (1977). A birthday party frame system. Technical Report MIT Ar-
tificial Intelligence Laboratory Working Papers, WP-140, Massachusetts Institute
of Technology, Cambridge, Massachusetts, USA. This report describes research
done at the Artificial Intelligence Laboratory of the Massachusetts Institute of
Technology. Support for the Laboratory’s artificial intelligence research is provided
in part by the Advanced Research Projects Agency of the Department of Defense
under Office of Naval Research contract N00014-75-C-0643.

Colon-Hernandez, P., Lieberman, H., and Havasi, C. (2019). Does a dog desire cake?-
expanding knowledge base assertions through deep relationship discovery. In 33rd

90

Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver,
Canada.

Colon-Hernandez, P., Xin, Y., Lieberman, H., Havasi, C., Breazeal, C., and Chin,
P. (2021). RetroGAN: A cyclic post-specialization system for improving out-of-
knowledge and rare word representations. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages 2086–2095, Online. Association
for Computational Linguistics.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of
the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational
Linguistics.

Faruqui, M., Dodge, J., Jauhar, S. K., Dyer, C., Hovy, E., and Smith, N. A. (2015).
Retrofitting word vectors to semantic lexicons. In Proceedings of the 2015 Con-
ference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 1606–1615, Denver, Colorado. As-
sociation for Computational Linguistics.

Fellbaum, C., editor (1998). WordNet: An Electronic Lexical Database. Language,
Speech, and Communication. MIT Press, Cambridge, MA.

Fillmore, C. J. (1968). The case for case, dins. In Bach, E. and Harms, R., editors,
Universals in Linguistic Theory. Holt, Rinehart, and Winston.

Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-learning for fast
adaptation of deep networks. In Precup, D. and Teh, Y. W., editors, Proceedings of
the 34th International Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 1126–1135. PMLR.

Gerz, D., Vulić, I., Hill, F., Reichart, R., and Korhonen, A. (2016). SimVerb-3500: A
large-scale evaluation set of verb similarity. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing, pages 2173–2182, Austin,
Texas. Association for Computational Linguistics.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Ghahramani,
Z., Welling, M., Cortes, C., Lawrence, N., and Weinberger, K. Q., editors, Advances
in Neural Information Processing Systems, volume 27. Curran Associates, Inc.

Han, A. L. F., Wong, D. F., and Chao, L. S. (2012). LEPOR: A robust evaluation
metric for machine translation with augmented factors. In Proceedings of COLING

95

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with
neural networks. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., and
Weinberger, K. Q., editors, Advances in Neural Information Processing Systems,
volume 27. Curran Associates, Inc.

Tripathy, S., Kannala, J., and Rahtu, E. (2018). Learning image-to-image translation
using paired and unpaired training samples. In Asian Conference on Computer
Vision, pages 51–66. Springer.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L. u., and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg,
U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R.,
editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc.

Vulić, I. and Mrkšić, N. (2018). Specialising word vectors for lexical entailment. In
Proceedings of the 2018 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers), pages 1134–1145, New Orleans, Louisiana. Association for Compu-
tational Linguistics.

Weston, J., Bengio, S., and Usunier, N. (2011). Wsabie: Scaling up to large vo-
cabulary image annotation. In Twenty-Second International Joint Conference on
Artificial Intelligence.

Winograd, T. (1972). Understanding natural language. Cognitive Psychology,
3(1):1–191.

Winston, P. H. (2018). Self-aware problem solving. CMHI Report Number 2, MIT
DSpace. Computational Models of Human Intelligence Community.

Winston, P. H. and Holmes, D. (2018). The genesis enterprise: Taking artificial
intelligence to another level via a computational account of human story under-
standing. CMHI Report Number 1, MIT DSpace. Computational Models of
Human Intelligence Community.

Xin, Y., Lieberman, H., and Chin, P. (2021). PATCHCOMM: Using Commonsense
Knowledge to Guide Syntactic Parsers. In Proceedings of the 18th International
Conference on Principles of Knowledge Representation and Reasoning, pages 712–
716.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are
features in deep neural networks? In Ghahramani, Z., Welling, M., Cortes, C.,
Lawrence, N., and Weinberger, K. Q., editors, Advances in Neural Information
Processing Systems, volume 27. Curran Associates, Inc.

96

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017). Unpaired image-to-image
translation using cycle-consistent adversarial networks. In 2017 IEEE Interna-
tional Conference on Computer Vision (ICCV), pages 2242–2251.

97

98

99

100

