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EPIGRAPH

“So it goes.”

- Kurt Vonnegut
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ABSTRACT

Animals perform a myriad of behaviors such as object tracking and spatial nav-

igation, primarily in the absence of explicit target signals. In the absence of targets, 

neural circuits must implement a different target function. One primary theory for 

self-supervised learning is predictive learning, in which a system predicts feedfor-

ward signals over time, and in which internal representations emerge to provide 

longer-term structural information. While such theories are inspired by neural 

properties, they often lack direct links to low-level neural mechanisms.

In the first study, a model of the formation of internal representations is pre-

sented. I introduce the canonical microcircuit of cortical structures, including gen-

eral connectivity and unique physiological properties of neural subpopulations. I 

then introduce a learning rule based on the contrast of feedforward potentials in 

pyramidal neurons with their feedback-controlled burst rates. Utilizing these two 

signals the learning rule instantiates a feedback-gated temporal error minimiza-

tion. Combined with a set of feedforward-only units and organized hierarchically, 

the model learns to tracks the dynamics of external stimuli with high accuracy, and 

successive regions are shown to code temporal derivatives of their feedforward in-

puts.
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The second study presents an electrophysiological experiment which showed a

novel functional cell type in the retrosplenial cortex of behaving Long-Evans rats.

Through rigorous statistical analysis we show that these neurons contain a egocen-

tric representation of boundary locations. Combined with their location in the cor-

tical hierarchy, this suggests that the retrosplenial neurons provide a mechanism

for translating self-centered sensory information to the map-like representations

present in subcortical structures.

In the final study I integrate the basic modular architecture of the first study

with the specific afferent stimuli and macroscale connectivity patterns involved

in spatial navigation. I simulate an agent in a simple virtual environment and

compare the learned representations to tuning curves from experiments such as

study two. I find the expected development of neural responses corresponding to

egocentric sensory representations (retrosplenial cortex), self-oriented allocentric

coding (postrhinal cortex) and allocentric spatial representations (hippocampus).

Together, these modeling results show how self-gated and guided learning in

pyramidal ensembles can form useful and stable internal representations depend-

ing on the task at hand.
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CHAPTER 1

Introduction

Animals perform a wide variety of behaviors with currently unmatched level of

fidelity. However, for the majority of daily tasks, there is rarely an explicit target

signal such as a motor sequence to a food source, and even a reinforcing signal

such as food rewards. Although such explicit targets do exist, particularly in the

form of reinforcement, using such sparse signals to create large-scale distributed

representations of sensory and motor information is a highly difficult and ineffi-

cient process. Instead, it is theorized that a large portion of learning occurs in a

‘self-supervised’ manner in which internal representations are generated without

an explicit reward, and later bootstrapped by other systems in order to perform

some task. For example, once an internal representation of one’s location in two

dimensional space is present, as well as the location of a water source, route plan-

ning from the current location to the goal is a relatively simple process.

Learning in biological systems has been experimentally shown to include synap-

tic modification dependent on the local state of neurons at the postsynaptic recep-

tors at the time of an action potential (Gerstner & Kistler, 2002). In the simplest ap-

proaches this implements a form of associative learning between the presynaptic

and postsynaptic action potential timing, suggesting that the role of time is critical

for forming representations. In contrast, modern deep learning (DL) approaches,

loosely inspired by neural systems, have largely moved away from systems in-

volving temporal dynamics or learning over time, in favor of computationally op-

timized approaches. These methods have had great success in situations such as

image classification or semantic compression, but have not generalized to other

domains where target signals cannot be provided in a temporally concise manner,
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such as dynamic motor control, rule-like manipulation, or continual learning. In-

spired by this high performance, the central topic of this thesis is to investigate

what specific architectural and dynamical constraints exist in neural systems, and

how these enable learning of useful internal representations in an unsupervised

manner. The remainder of this introduction will provide an overview of the prob-

lem space of choices to model learning in natural neural systems, and then review

the high-level background information required to choose a specific avenue of in-

vestigation. The second chapter will then investigate the more specific architec-

tural choices and performance. Chapter three then provides an extensive addi-

tional background on a specific behavioral paradigm which I model in the fourth

chapter.

Problem Space When attempting to model a neural system which minimizes

some error, there are three aspects of the system that can be manipulated (Richards

et al., 2019). The first of these is the overall objective function which, as described

above, may be a specific target signal, or may be some alternative signal such as

overall activity (Clopath & Gerstner, 2010) or matching activity over time (O’Reilly,

1997). The second major aspect is the learning rule, which determines how the

system adapts internal parameters in order to better meet the objective function.

While the learning rule may include an overall global optimization (Rumelhart &

McLelland, 1986), I will introduce several alternatives below in which, by choos-

ing a corresponding objective function, the learning rule need only include local

optimization. The final aspect that can be modified is the architecture and dynam-

ics of units in the network. These form a set of inductive biases about the nature

of stimuli and objective, such as spatial structure (Lecun et al., 2015) or temporal

continuity (Rumelhart & McLelland, 1986). Such biases may inform our choice of
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learning rule or otherwise alter the overall parameter adjustment in response to

the objective function.

1.1 LEARNING RULES

Backpropagation In its typical form, as used in machine learning, backpropaga-

tion (BP) is a method for credit assignment to individual weights after the errors

have been determined by an external objective function (Rumelhart & McLelland,

1986). These networks consist of a series of units with a piece-wise continuous

output in response to inputs. Activity at each level of the network is calculated

in a ‘feedforward‘ manner, taken as the dot product of the activation of the pre-

vious layer by a set of learnable weights and passing this through the activation

function of that layer. By combining the weights between these units appropri-

ately, a deep neural network can function as a universal function approximator

(Ablavsky & Sclaroff, 2011). However, because these networks are highly nonlin-

ear and high dimensional, there is no simple mathematical algorithm for optimiz-

ing these weights, compared to, e.g: linear regression where the inverse matrix

operation can find the optimal weights in a single iteration (Abbott, 2008). Instead

BP utilizes the chain rule of derivatives to update weights in the state-space which

most immediately decreases the error signal. While this approach is computation-

ally powerful, it requires a separate phase for feedforward activity versus weight

updates (temporal segregation) and also requires an exact method for calculating

and carrying gradient information backwards in a network.

Contrastive Hebbian Learning Some of the first attempts to solve backprop in

biologically plausible systems was the use of Contrastive Hebbian Learning (CHL),
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which is based on the concept of Hebbian plasticity, but with a specifically tempo-

ral error component (Xie & Seung, 2003). In this approach, there is still a separa-

tion of the primary feedforward (termed negative) and weight updating (positive)

phases. During the negative phase all units in the network evolve according to a

nonlinear dynamic such as the leaky integrators used in Chapter 2. The final acti-

vation levels from this negative phase are saved, and then the network is run again,

this time with the output layer activities clamped to the desired target value. After

the clamped activity settles, an element-wise difference is taken in the activity from

the negative and positive phases, resulting in a local error signal, and the weights

are updated according to the difference. Critically, there are reciprocal connections

(from layer N to N-1), and activity is calculated in multiple steps such that the net-

work is now a complex dynamical system, meaning that the activities of output

layers during the clamped phase can influence the activity and weight updates of

lower levels. Feedback weights may be held constant (Detorakis et al., 2018) or

updated according to the same error-driven rule as feedforward weights. In the

latter case, CHL is shown to approximate the BP algorithm, though in practice the

network fails to converge if there are more than 4-5 layers between the inputs and

output layer (Xie & Seung, 2003). However, the explicit separation of a free phase

and learning phase is a severe limitation to biological feasibility, though some au-

thors have argued that these phases may be separated by intrinsic dynamics such

as phasic changes in neurotransmitters (Hasselmo & Bower, 1993; Hasselmo, 1999),

theta/alpha oscillations (Ketz et al., 2015; Hasselmo et al., 2002), or intrinsic burst-

ing neurons (O’Reilly et al., 2021). Additionally, as originally introduced, Con-

trastive Hebbian Learning works only for continuous-valued activation functions,

not for discrete action potentials (though see below).
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Spike Timing Dependent Plasticity STDP is an extremely broad class of learn-

ing rules, dating back to the original theory of Hebb (Hebb, 1949) and including

both early extracellular studies of synaptic modification (Levy & Steward, 1979;

McNaughton et al., 1986) and intracellular studies (Gustafsson & Wigstrom, 1986;

Markram et al., 1997). Whereas the learning rules discussed above rely on the ac-

tivation value of the presynaptic and postsynaptic units, typically maximizing or

minimizing their correlations, spike-based rules operate on some internal state of

the postsynaptic unit at the point that a presynaptic action potential arrives. Often

there is a model of a postsynaptic ‘trace’ which reflects some lingering intracellu-

lar changes after an action potential, such as NMDA receptor potentiation (Compte

et al., 2000). The end result is a system in which synapses are strengthened when

a presynaptic action potential shortly follows a postsynaptic one, and decreases

otherwise. There exist a number of modifications of this basic setup which are sen-

sitive to postsynaptic voltage (Clopath et al., 2010), calcium levels (Inglebert et al.,

2020), or specific triplet firing patterns (Pfister, 2006), and which explain findings

in different experimental protocols. Many of these modified learning rules can be

capture by abstract learning rules such as the BCM rule (Bienenstock et al., 1982)

which encapsulates a pre-post associative term with a postsynaptic homeostatic

term to increase weights when the recent postsynaptic activity has been above a

long-term running average. These STDP rules have been successfully combined

with the clamping approach of Contrastive Hebbian Learning to implement accu-

rate credit assignment in spiking networks (O’Reilly & Munakata, 2000), but is still

restricted to a static target, due to the presence of a clamp signal.

Burst-Dependent Plasticity In order to avoid the requirement of a separate phase

for forward activity and weight updates, we consider a recent class of learning
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rules which utilize two multiplexed activities to simultaneously carry the signals

required for both phases. These models utilize either the intracellular calcium lev-

els (Larkum, 2013) or burst rates (Payeur et al., 2021) in pyramidal neurons to

carry feedback information. In this approach, pyramidal neurons are modeled

as two compartments. The main cell body is responsible for the generation of ac-

tion potentials, while the distal dendritic tree integrates feedback signals to create

an intracellular voltage or calcium plateau. When the distal component receives

strong input, it results in a higher internal voltage which then causes a bursting,

rather than single action potential, when the soma receives threshold input. The

authors of this approach suggest that in a network of neurons modeled as such it

is possible to multiplex a feedforward signal, through firing rates, and a feedback

signal, through burst rates. The general architecture is that a feedforward chain is

composed of pyramidal neurons projecting onto the proximal dendrites of higher

up layers, with a feedback chain wherein pyramidal neurons project to the distal

dendrites of the ’lower’ layer. By chaining these neurons, burst rate can propagate

downwards through multiple layers. With the transmission of these two signals, it

is then possible for a synapse to locally compute a learning signal. Algorithmically,

this means that the synapse increases if the presynaptic neuron simultaneously

receives a top-down and feedforward signal, but decrease in strength if there is

an ‘error‘ of presynaptic firing without distal input, resulting in spikes which are

not part of a burst. While the authors of these studies utilize this learning rule

in the familiar contrastive manner, other recent work has adapted the firing rate

versus burst rate approach to continuous time (Halvagal & Zenke, 2022) and self-

supervised approaches (Illing et al., 2021).



7

1.2 OBJECTIVE FUNCTIONS

Unsupervised Learning The majority of the work in the learning rule literature

discussed above focuses on how a system might align internal synaptic weights

such that given a particular stimulus it elicits a desired activity at a different layer.

It should be noted however that this is not necessarily required for all of the learn-

ing algorithms discussed. For instance, backpropagation requires only that an er-

ror be calculated, and some work has investigated how an error might be gener-

ated at higher regions based on stimuli that occur far apart from each other in time

(Hinton, 2002). Errors may also be calculated by minimizing the difference in high

level representation of two different processing streams, similar to multi-modal

association (Chen et al., 2020). Finally, a loss could be directly calculated on the

ability of a network to reconstruct a stimulus from internal states once the external

target has been removed (Dayan et al., 1995).

Predictive Learning The approaches above may require separate observe and re-

construct phases, or a separate offline replay of temporally disjointed stimuli in the

case of contrastive errors. An alternative approach, known as predictive learning,

is to calculate error as the degree of instantaneous change, forcing stimuli which

occur close together in time to have similar internal representations. In predictive

learning, explicit teaching signals are replaced with a continuous input stream,

and ‘error‘ is the degree to which neural activity just before an observation does

not match the activity after that observation. This is predictive in that the task

of the network is then to calculate the future input as accurately as possible, re-

sulting in a continuous and detail-rich target signal throughout the lifetime. The

earliest studies of these types of systems focused on passive observation of the
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world, such as how hierarchical visual cortex might use prediction not through

time, but through space of visual scenes (Rao & Ballard, 1999). In these models

simple cells in early visual cortex respond to their typical line and Gabor type

receptive fields, while higher regions send back a prediction about a signal at a

larger spatial level, such as environmental context. By analyzing this signal over

time, we can expect that V1 cells will continue to code for their typical receptive

fields, but with some top-down input (V2) that readies them (eg: by distal den-

dritic input) to fire or not, depending on what the state of the higher levels are at

that time. The result is that V1 is responsible for the prediction of low-level detail

(lines/pixels) that is it’s input, while V2 is some estimation about a more stable

latent signal in the world, similar to a Restricted Boltzmann Machine. More recent

and computationally intensive implementations of predictive coding have specifi-

cally reconstructed videos over multiple predictive timesteps, and shown that the

pixel-level representation is accurate for multiple steps into the future, and that

overall activity levels increase when an unexpected frame is presented, consistent

with experimental findings (Lotter et al., 2020; Halvagal & Zenke, 2022).

1.3 DYNAMICS & ARCHITECTURE

Learning Through Time In the previous section I suggested that in the realm

of unsupervised learning, predictive learning is a powerful objective which we

might fit. Some forms of predictive learning rely primarily on prediction of lower

level activity patterns (Rao & Ballard, 1999). However, prediction over time allows

the prediction of lower level activity, while also incorporating dynamics of stimuli

and behavior, providing a richer error signal and providing the ability to control

systems over time, such as in reinforcement learning (Baras & Meir, 2007; Sutton
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& Barto, 1998). As with supervised learning, generation of temporal patterns for

practical purposes is typically done utilizing backpropagation, in a specific config-

uration known as backpropagation through time (BPTT) (Williams & Zipser, 1989;

Werbos, 1990). In this setup, recurrent neural networks (RNN) contain some recur-

rent connection from hidden layers back to the hidden layers, such that activation

one point in time affects future activity. At the end of a trial, an error vector is then

generated which calculates the difference in the target signal and output signal at

each point in time. This error is backpropagated across virtual layers which rep-

resent each of the hidden layers at each point in time, and weights are updated

accordingly, forming a kernel for temporal updates. While this approach can be

extremely powerful for short temporal durations, the number of virtual units in-

creases with each time step, and the final error signal must be divided among all of

the virtual layers, resulting in a diminishing magnitude that interferes with long-

term dependency learning (Bengio et al., 1994). Several attempts have been made

to resolve these issues, such as modifying the architecture of the network (see be-

low), avoiding a temporal component and instead treating a temporal sequence as

a single observation (Vaswani et al., 2017), or incorporating recurrent weights but

only learning from single frame errors (Sussillo & Abbott, 2009).

Practical Architectural Changes In order to solve the vanishing gradient prob-

lem of simple RNNs, an approach has been utilized which gates the input and

output of temporal information based on current internal values (Sutskever et al.,

2014). By preventing the feedforward signal from always being incorporated into

the internal state, these approaches decrease the rate of gradient decay. This is an

example in which a change in the modular structure of a network is introduced in

order to solve a practical issue surround the learning rule. Other examples include
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the use of convolutional connections which decrease the number of learnable pa-

rameters and introduce a bias towards certain spatial (Lecun et al., 2015), temporal

(Cui et al., 2016), or both (Shi et al., 2015), regularities in the input. Additional con-

straints may be made on the macroscale organization of modules, such as deeper

networks for image processing and shallow networks for temporal tasks.

Neural Dynamics and Learning Unlike the simplified feedforward networks

originally designed to use BP, true neural systems inherently have spatiotempo-

ral dynamics. The study of these dynamics is a field unto itself (Dayan & Abbott,

2003; Izhikevich, 2006), but less attention has been paid to how these dynamics

may be improving or at least constraining weight updates (Clopath et al., 2010;

Wunderlich & Pehle, 2021), objective functions (Boerlin et al., 2013), or entirely new

functionality such as temporal coordination (Kramer et al., 2008), attention-based

gating (Bastos et al., 2020), or explicitly temporal codes as opposed to firing rate

based approaches (Skaggs et al., 1996; Frady & Sommer, 2019). Chapter 2 shows

several steps towards harnessing these properties for low-pass interpolation, pre-

dictive bias, and temporal coincidence detection.

1.4 BEHAVIORAL TASKS

In studies one and three I will implement a biophysically inspired model which

incorporates the principles outlined above. In order to evaluate how well these

models learn both to predict external stimuli and create consistent internal repre-

sentations, they will be trained in the context of behavioral tasks. A brief justifica-

tion for the choice of tasks is provided in this section.
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1.4.1 Sequence Prediction

The task utilized in the second chapter is a framework in which the (1-3 dimen-

sional) state-space location of a stimulus moves according to an underlying de-

terministic set of ordinary differential equations. From a first-glance this task is

highly inspired by tasks such as target tracking (Yoo et al., 2021; Alexander et al.,

2022) in which an animal must predict the future location of a target object in order

to intercept it. In such settings, it is beneficial for the animal to predict the future

location of the target, rather than just the current location, in order to implement

predictive pursuit, even when the target is briefly outside of the visual scene (Yoo

et al., 2020). At a more abstract level, this task is also intended to represent how

any cortical region may predict a low dimensional representation of afferent sig-

nals, and thus perform a general form of prediction, which has been shown to be

possible in certain forms of neural models (Sussillo & Abbott, 2009), and gives rise

to characteristic recurrent weights (Chalk et al., 2016) or error signals (Lotter et al.,

2020; Gilra & Gerstner, 2017; O’Reilly et al., 2021).

Predicting such a signal is largely trivial under certain conditions for a sim-

ple RNN or LSTM network trained with backpropagation through time. In early

proof-of-concept stages for this project, I trained such networks on relatively sim-

ple tasks such as sum of sinusoids, and more complex tasks such as the Lorenz

equations. Consistent with current approaches in machine learning literature, I

found that as long as the number of timesteps over which the ANN must predict

is relatively small (<50), the trajectory has constant parameters (eg: frequency of

oscillations is constant, though initial phase may differ), a narrow and shallow net-

work is able to solve the task. However, as the number of time steps increases those

networks are unable to correctly assign error (Hochreiter, 1998), and any stochastic
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error signal tends to increase these difficulties (Bengio et al., 1994). However, these

limitations are precisely the conditions under which neocortical predictions must

occur.

Finally, because we are relatively agnostic as to the physical nature of the affer-

ent signal, this task serves as a general-purpose hierarchical prediction mechanism

(Gregor et al., 2014). This serves as an important contrast to the next task described

in this thesis, which assumes some underlying latent structure of the signal.

1.4.2 Spatial Navigation

While the previous task operates on predictions over a fast time scale and early

levels of neocortex, spatial navigation operates on the order of tens of seconds and

longer (Bittner et al., 2017; Dannenberg et al., 2019), and involve several subcortical

as well as cortical regions (Alexander et al., 2020). Many of the regions involved

in this process are implicated not only in spatial reasoning, but more generally

in sensory processing, motor control, reinforcement learning, and other functions.

The earliest studies to find striking map-like (allocentric) representations in the

brain found ‘place cells’ which respond when an animal is in a given location in

space (Morris et al., 1982; McNaughton et al., 1984). Perhaps because these rep-

resentations are so striking and intuitive to understand, they have been intensely

studied for many decades, leading to an entire sub-field which has found other

internal representations of allocentric space, such as head direction cells (Taube,

2007), cells coding running speed (Hinman et al., 2016; Kropff et al., 2015), bound-

ary vector cells (Lever et al., 2009; Solstad et al., 2008) and grid cells (Hafting et al.,

2005). These same regions have been shown to be necessary for spatial navigation

tasks, giving them a causal role in behavior (Arolfo & Brioni, 1991).
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However, such allocentric representations are clearly never directly provided

as explicit input to the neurons which exhibit them, which brings into question

how they are formed. Many early studies have investigated how the reciprocal

connections in the spatial navigation system may lead to one functional pheno-

type such as grid cells giving rise to another such as place cells (Moser et al., 2013;

Burgess et al., 2007), or how the intrinsic neural properties of regions such as en-

torhinal cortex may support spatially periodic firing fields (McNaughton et al.,

2006). While such properties and connectivity patterns may provide internal con-

sistency to such geometric representations, they must still be grounded to the more

direct sensory observations at some level. The more behaviorally grounded of the

frameworks (Byrne et al., 2007) have modeled how specific allocentric phenotypes

connect to each other. This has led to predominant theories in which the regions

involved in allocentric representations are providing some compression of the sen-

sory stimuli (Recanatesi et al., 2021), providing a structured way in which those

sensory signals may relate to each other over time (Stachenfeld et al., 2017; Whit-

tington et al., 2022). More recent biological inspired models (Bicanski & Burgess,

2018) also incorporate sensory-driven egocentric representations found in cortical

regions in the motor and retrosplenial cortex (Alexander et al., 2020), posterior

parietal cortex (Alexander et al., 2022), postrhinal cortex (LaChance et al., 2019),

and dorsal striatum (Hinman et al., 2019).

Overall spatial navigation is one of the most studied aspects of neuroscience

from both a theoretical point and also in the number of neural responses known

to exist in various brain regions. While the final subcortical representations are

removed from the sensory space, there is a clear pathway to those responses from

the directly observable environment. These properties make spatial navigation
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an ideal case to study how self-supervised learning gives rise to a known set of

responses.

1.5 TYING IT ALL TOGETHER & OUTLINE

In the sections above, I have introduced different biological learning rules, organi-

zational principles, and objective functions that have been proposed in the space of

understanding how neural systems learn. Based on the mutual constraints of the

choices in each of these aspects, along with constraints such as continuous targets,

I choose to investigate one possible combination of learning rule, architecture, and

objective function. Based primarily on the constraint of unsupervised learning, I

choose the objective of predictive coding, such that the network minimizes the dif-

ference between internal states and feedforward induced activity. Since the target

signal in this objective is the same level of abstraction as the input signal, I choose

an architecture in which we measure performance at the lowest levels of the net-

work rather than the highest. This has the added advantage that the unit-specific

error, the rate of change in activity, is local to each unit and should not require

a global error signal. Of the learning rules discussed above, the burst-dependent

plasticity rule is the one most suited to updating feedforward weights based on

continuously varying hierarchical feedback signals. The remainder of this thesis

works towards tying these choices of focus into a coherent model, and showing

how the model learns internal representations in different behavioral situations.

Chapter 2 consists of a series of experiments and findings which aims to create

a ‘predictive module’, which can be assembled to create a model of self-supervised

learning of input stimuli. The model is inspired by much of the background ma-

terial addressed above, and incorporates several biological inspirations and con-
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straints to achieve performance above what is standard in back-propagation through

time (BPTT) approaches. We introduce both a continuous version and a biophys-

ical spiking model. This work has been significantly revised through peer review

and is currently under re-review. These experiments were performed solely by

myself, and the writing was done by myself and my primary advisor.

Chapter 3 consists of a previously published study (Alexander et al., 2019). This

study investigates the neural responses of retrosplenial cortex (RSC) in freely be-

having rats, and shows the presence of egocentric boundary cells (EBCs). It is cho-

sen as an example of several experimental papers (Raudies et al., 2015; Shay et al.,

2015; Tsuno et al., 2015; Ferrante et al., 2016; Hinman et al., 2016; Monaghan et al.,

2017; Hinman et al., 2019; Alexander et al., 2019, 2022) where I have worked on the

development of statistical analyses for detecting novel functional phenotypes in-

volved in spatial navigation. This particular paper was chosen as it demonstrates

the role of RSC, specifically the presence of egocentric boundary cells, which form

a critical component of the transformation from egocentric observations to allocen-

tric representations, as demonstrated in the following chapter.

Chapter 4 utilizes the basic architecture presented in Chapter 2 and incorpo-

rates it into a larger architecture to investigate the mechanisms of spatial represen-

tation learning. The overall connectivity is inspired by previous work (Bicanski

& Burgess, 2018) which was hardwired to give specific functional cell types. In

contrast, the work presented here begins with a tabla rasa connectivity and incor-

porates a self-supervised predictive learning rule to show the emergence of ego-

centric and allocentric representations purely from egocentric sensory information.

This is the first released version of this work, performed exclusively by my advisor

and myself, and will soon be submitted for peer review.
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Taken together, these studies show that predictive learning is a biologically fea-

sible mechanism whose implementation gives rise to internal representations of

useful latent factors of inputs and mirrors experimental findings.
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CHAPTER 2

Predictive Learning by a Burst-Dependent Learning Rule

ABSTRACT

Humans and other animals are able to quickly generalize latent dynamics of spa-

tiotemporal sequences, often from a minimal number of previous experiences. Ad-

ditionally, internal representations of external stimuli must remain stable, even in

the presence of sensory noise, in order to be useful for informing behavior. In con-

trast, typical machine learning approaches require many thousands of samples,

and generalize poorly to unexperienced examples, or fail completely to predict at

long timescales. Here, we propose a novel neural network module which incor-

porates hierarchy and recurrent feedback terms, constituting a simplified model

of neocortical microcircuits. This microcircuit predicts spatiotemporal trajectories

at the input layer using a temporal error minimization algorithm. We show that

this module is able to predict with higher accuracy into the future compared to

traditional models. Investigating this model we find that successive predictive

models learn representations which are increasingly removed from the raw sen-

sory space, namely as successive temporal derivatives of the positional informa-

tion. Next, we introduce a spiking neural network model which implements the

rate-model through the use of a recently proposed biological learning rule utiliz-

ing dual-compartment neurons. We show that this network performs well on the

same tasks as the mean-field models, by developing intrinsic dynamics that follow

the dynamics of the external stimulus, while coordinating transmission of higher-

order dynamics. Taken as a whole, these findings suggest that hierarchical tem-

poral abstraction of sequences, rather than feed-forward reconstruction, may be
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responsible for the ability of neural systems to quickly adapt to novel situations.

2.1 INTRODUCTION

Neocortical circuits mediate a broad variety of cognitive functions, including the

extraction of rules in different behavioral tasks (Bhandari & Badre, 2018; Zhu et al.,

2018; Hasselmo & Stern, 2018; Wallis et al., 2001; Buschman et al., 2012). One as-

pect of the extraction of rules involves the tracking of dynamics of sensory stim-

uli(Yoo et al., 2020) and self-location as an agent navigates in an environment (Mc-

Naughton et al., 2006; Byrne et al., 2007; Hasselmo, 2005; Bicanski & Burgess, 2018).

A number of different cortical regions are implicated in these types of functions,

including parietal cortex(Byrne et al., 2007; Bicanski & Burgess, 2018), retrosple-

nial cortex(Alexander et al., 2020), entorhinal cortex(Brandon et al., 2013), and pre-

frontal cortex. Simultaneously, anatomical evidence suggests that there may be

common features of cortical circuitry throughout different cortical regions(Douglas

et al., 1989; Bastos et al., 2012; Mountcastle, 1997; Rockland, 2010). Given the dis-

tributed nature of tracking, as well as this anatomical consistency across cortical

circuits, we hypothesize that particular aspects of cortical organization may be re-

sponsible for building accurate internal representations of these external stimuli.

Here, we work towards building a model of cortical microcircuits which replicates

this ability to predicatively code for trajectories of stimuli.

Previous Work There have been many models of prediction of time series, both

from a machine learning perspective and a neurally inspired framework. While

our goal is to create a biologically realistic model of prediction, we discuss machine

learning (ML) approaches as well. These ML approaches serve as a baseline to
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which we can compare our model’s performance, but also as extremely abstracted

and mathematically optimized models of neural systems (Rumelhart & McLel-

land, 1986). The most common form of ML sequence prediction is sequence-to-

sequence modeling, which utilizes backpropagation of errors through time (BPTT)

(Williams & Zipser, 1989). While this approach has high success in areas such as

natural language processing (Sutskever et al., 2014), they are essentially recurrent

autoencoders, and typically fail when external teaching signals are inconsistent or

sparse (Bengio et al., 1994). Alternative approaches based on echo-state (known

as FORCE training) (Sussillo & Abbott, 2009), or liquid-state (Boerlin et al., 2013),

networks are able to mimic external dynamics autonomously after a brief train-

ing period. FORCE and related methods however rely on a specific connectivity

in which a decoded state is optimized by an external teacher and fed back into

the network (Nicola & Clopath, 2017; Denève et al., 2017), and can not learn when

the external teaching signal appears stochastically (see supplemental materials).

In contrast, animals must perform in an environment where external stimuli may

appear and disappear at random intervals, and building incorrect internal models

of position is not sufficient for driving behavior. Prompted by this discrepancy, we

consider three core aspects in which neural systems are thought to be organized,

and consider how they may be essential for sequence prediction.

Hierarchy Proposals of cortical function have used hierarchical representations

of information across different regions. These include many examples of function.

For example, in progressing from caudal to rostral regions in the visual system dif-

ferent cortical regions mediate a hierarchical transition of coding level (Gilbert &

Li, 2013; DiCarlo et al., 2012) of individual points of an image with the extraction

of edges (V1), to the coding of higher order features such as movement (MT), color
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(V4) and ultimately the identity of an object such as a face (IT) (Desimone & Schein,

1987; Hasselmo et al., 1989; DiCarlo et al., 2012). Another example concerns posi-

tion information in which the elements of self-movement can be extracted sepa-

rately in terms of position (O’Keefe & Dostrovsky, 1971; O’Keefe & Burgess, 2005),

or separately as velocity (Kropff et al., 2015; Hinman et al., 2016) or as accelera-

tion (Kropff et al., 2021). This also applies to higher level cognitive control mod-

eled on reinforcement learning in which sub-policies in posterior frontal cortex

are controlled by higher level hierarchical control policies in more anterior regions

(Koechlin & Summerfield, 2007; Badre & Frank, 2012; Badre & D’Esposito, 2009).

In modeling, these types of hierarchical representations are used in hierarchical

reinforcement learning (Sutton et al., 1999) and in hierarchical Bayesian coding

(Kingma & Welling, 2019). Here we build on the idea of hierarchical representa-

tions of cortical regions to form a predictive representation of dynamics, where the

higher cortical regions track successively derived features.

Supervised vs Predictive Coding Previous approaches tend to rely on super-

vised learning, in which a whole or portion of a sequence is provided at one ‘end’

of a network, and a prediction is formed at the other end of the network, which

is then used to update synaptic weights. In contrast, a number of cortical models

involve generative-predictive coding (Rao & Ballard, 1999). In this framework, a

given cortical region receives a feedforward (eg: sensory) signal, and a feedback

signal consisting of the expected feedforward signal. Each region then calculates

the difference between the feedforward (true) and feedback (expected) activity,

which is then passed to the next cortical region (Bastos et al., 2012). In the ex-

ample of early visual cortex, these feedback signals may be a line segment, while

feedforward signals then carry the spatial error, giving rise to the end-stopping
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phenomenon and other experimental findings (Lotter et al., 2020). While these

forms of predictive coding hypothesize that the feedforward activity represents

prediction errors, other studies have hypothesized that there is no such explicit

computation of error. These alternative forms of predictive coding pose a feedfor-

ward signal which is, in each cortical region, simply a transformed version of it’s

own input, and feedback signals represent some latent feature which may be infor-

mative for improving these lower-level predictions (O’Reilly et al., 2021). A com-

mon aspect to both the feedforward error and feedforward prediction frameworks

is that reconstruction or prediction of the external stimulus occurs at the lowest

cortical regions. This is similar to Helmholtz Machines, in which external stimuli

drive the formation of self organizing maps, and feedback weights create gener-

ative biases that can reconstruct stimuli from scratch or distorted signals (Dayan

et al., 1995). More recent work has also begun to investigate how the lower-level

reconstruction approach can improve or simplify temporal prediction in machine-

learning contexts (Gregor et al., 2014; Sutskever et al., 2009). In addition to hi-

erarchical prediction, explicit prediction over time has also been shown to create

compressed representations of stimuli, whereas non-predictive autoencoders do

not (Recanatesi et al., 2021). Inspired by the success of hierarchical predictive cod-

ing, in both biological plausibility and successful stimulus prediction, we look for

a model which incorporates a predictive and generative framework. Specifically,

we expect that some temporal features of stimuli, such as temporal derivatives,

may be derived in a hierarchy, thus forming the basis for a temporally changing

context which can improve lower-level predictions.

Learning Rules Most of the articles cited up until this point rely either on some

form of backpropagation through time (BPTT), or an abstracted form of statistical
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optimization (eg: (Bastos et al., 2012)). However backpropagation is biologically

implausible, in its generally presented form. There have been several proposed

learning rules which approximate backpropagation in a more biologically plausi-

ble form, such as Contrastive Hebbian Learning (O’Reilly, 1997), Feedback Align-

ment (Lillicrap et al., 2016), or burst propagation networks (Payeur et al., 2021).

However, these studies tend to focus on supervised learning problems, in which a

series of feedforward regions attempt to match a given input to a desired output

label. Even if the architecture of the network is modified such that reconstruction

is performed at the lowest level, BPTT is not guaranteed to converge on optimal

weights (as we show in our section ‘Intermediate Models’ below). In contrast, a

more biologically plausible and local learning rule may converge on more optimal

weights, despite being worse for generating universal function approximations, if

it is more suited towards directly minimizing temporal error. We therefore propose

to investigate a learning rule which incorporates both feedforward and feedback

weights to minimize errors over time, and then connect it to a spike-based learning

rule from experimental and computational literature (Payeur et al., 2021).

Scope of Work In the current work we focus on training networks to predict

deterministic dynamical systems for long periods after stimulus has stopped be-

ing presented. We begin by illustrating how training by backpropagation through

time fails in the presence of unreliable external input. We then present three se-

quential modifications to the baseline architecture, each of which is based on the

biological principles discussed above. We then present a final modification in the

introduction of a local learning rule, inspired by theories of error-driven learning in

neocortex. We show that this biologically inspired “predictive module” performs

significantly better at predicting dynamics over long timescales. Investigating the
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learned representations in the predictive module, we find that successive modules

learn to encode successive temporal derivatives. Finally, in the third portion of

the results section, we present a spiking adaptation of the predictive module. This

spiking model utilizes a set of biologically plausible learning rules, and performs

with similar accuracy and feature learning as the continuous approximation.

2.2 METHODS

2.2.1 Task

In order to test the degree to which our models can predict underlying dynamics

of an external stimulus, we utilize the commonly used sum of sinusoids task (Fig

2.1A) which evolves according to equation 2.1 (Duggins & Eliasmith, 2022; Sussillo

& Abbott, 2009), with two modifications. First, in comparison to earlier papers, we

generate the task in a procedural manner, where the relative phase and frequency

of the underlying task change on each presentation (see table 2.5 for parameter

ranges). By altering these parameters on each trial, we test the ability of the net-

works to learn general dynamics, rather than forecasting from previously seen his-

tories. Secondly, we utilize a paradigm known as teacher forcing in which, over

the course of training, the interval at which the network observed the ground-truth

stimulus decreases. This frequency of observation of ground-truth, termed ‘teach-

ing ratio’, is decreased over training according to a hyperbolic schedule (Fig 2.1E).

On frames where the network is able to observe the ground-truth, the stimulus is

presented to the lowest level of the network (Fig 2.1B, top). On frames where the

network is not able to view the stimulus (“rollout”), the lowest region is instead

presented with a decoded input from the previous time-step’s activity (Fig 2.1B,

Middle), or no input at all (Fig 2.1B Bottom). During the initial phases of learn-
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ing, having a high teaching ratio ensures that the ground truth and input follow

similar statistical distributions, and is necessary to ensure learning during early

phases of training. As training progresses, predictions a few time steps out are

likely to follow the same distribution as the ground truth, as the network predicts

each next-frame with high accuracy. On any given trial, the network is guaranteed

to receive the true stimulus input for the first half (150) of frames, in order to allow

appropriate historical observations to propagate through the network. On each

epoch, we test the network on an unseen set of trials, and measure performance

using the teaching ratio according to the schedule described above (henceforth the

’local ratio’), and also using a teaching ratio of zero (Fig 2.1C). This allows inves-

tigation of how the networks learn to respond to the task which they are being

trained to (local teaching ratio), while simultaneously investigating how they re-

spond to long periods without external feedback.

P (t) = a1 sin(f1t+ ϕ1) + a2 sin(f2t+ ϕ2) (2.1)
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Figure 2.1: Caption on next page

2.2.2 Simulation Tools and Model Training

In the following sections we introduce a number of models which progress from a

simple baseline model to a final novel architecture and learning rule. In each sec-

tion equations which model the dynamics and weight updates are introduced, and

parameters and initial distributions are set in tables. All models, with the excep-

tion of the spiking model, are implemented in PyTorch (Paszke et al., 2019), and

evolve according to a simple forward Euler method, utilizing a timestep of 1. In

all cases, error is calculated as the sum of mean-square errors across the entirety

of a trial. All models before the predictive module are optimized by backprop-

agation through time (BPTT), using the ADAM optimizer (Kingma & Dhariwal,
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A Example of the task used, showing the simulated trajectory as a function of
time. Trajectories as parametrically generated according to equation 1. B Different
approaches to time-series prediction. (Top) During a teaching frame, a network
receives the ground truth position, and estimates the next frame. No information
about the decoded prediction is returned to the network. (Middle) On a rollout
frame, the network does not receive the ground truth, and instead receives its pre-
vious decoded prediction. (Bottom) In alternative frameworks, used later in the
paper, a network may evolve autonomously, receiving neither the ground truth nor
the decoded prediction. C Example of a target signal (top), and the corresponding
external signal to the networks. (Middle) Throughout training, the network is pre-
sented with a training signal which is equal to the target signal for the first half of
the trial, but randomly set to zero during the probabilistic rollout period (p=0.50 in
example). On frames where the external signal is zero, the network evolves accord-
ing to the corresponding rules from B. (Bottom) Throughout training an additional
‘validation’ signal is presented, in which the rollout teacher ratio is set to zero, but
no learning occurs; this shows how the network would perform at the fully au-
tonomous task at any point in training. D Example of a trial for a backpropagation
through time (BPTT) network partly through training. During the full teaching
period the network closely matches the target signal (green). During probabilistic
rollout (blue), the network continues to closely approximate the target signal; the
validation configuration (orange) diverges from the target. Note that while we use
a signal frozen example in this and future traces, the actual signal given to the net-
work is randomly generated on each trial. E The teacher ratio decreases over the
course of training. Dashed lines indicate points where examples are drawn from
in subsequent figures.

2018). In the predictive module section we replace BPTT with a novel learning rule

which utilizes only local variables, and update weights in the same manner and

frequency that activities are updated. Hyperparameter optimizations are found in

table 2.4 and were chosen by an exhaustive grid search, representing 36-48 con-

figurations for each model. For each hyperparameter configuration, five separate

randomly models were run and their minimum local error or validation error were

averaged together. The minimum error for each models best hyperparameter con-

figuration are given in table 2.4 The spiking model was implemented in BindsNET

(Hazan et al., 2018), a spiking neural network simulator built in Python, and utilize
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a timestep of 0.1ms, and is described in more depth in the corresponding section

below.

2.2.3 Baseline Model

As a comparison for our biologically-inspired network described later, we imple-

ment a standard sequence-to-sequence model. This baseline model consists of a

linear encoder, a number of hidden Elman RNN layers, and a linear decoding layer.

The activity of each layer, denoted ‘R(t)’ evolved according to the equation:

R0(t) = tanh(WI0I(t) + b0)

Ri(t) = tanh(WiiRi(t− 1) +W(i−1)iRi−1(t) + bi)

RN(t) = W(i−1)iRN−1(t) + bN

(2.2)

Where subscripts denote either layer or weight (PrePost). On each time-step, the

external input I is either the ground-truth stimulus (Fig 1B, top), or previous de-

coded output (Fig 1B, middle), according to the teaching ratio (Fig 1C and Fig 1E).

We also investigated the performance of a similar architecture but instead utilizing

LSTM units.
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2.2.4 Intermediate Models

Figure 2.2: Intermediate models, showing stepwise changes towards biologically
inspired architecture. A Stacked RNN: In the baseline model activity entered a
stack of Simple RNNs at the base and propagates to a top layer where readout oc-
curred. In the stacked RNN case, there are bidirectional connections between each
hidden layer, and readout occurs either at the top layer (top) or input layer (bot-
tom). B Leaky integrators (LI): Instantaneous responses in the simple RNNs are
now replaced with leaky integrators which have a finite-time response to inputs.
Here we show the impulse response of a single (blue) LI, two LIs in series (orange)
and three LIs in series (green). Each successive layer introduces an additional de-
lay (offset) and smoothing of the input. C We now introduce separate feedforward
(FF) and feedback (FB) pathways. Each colored block represents a set of leaky inte-
grators, now arranged in a manner similar to neocortical motifs (see text), allowing
separate feedforward (black) and feedback (red) pathways. Feedback connections
project to L2/3 and L5/6 of lower regions.

We next introduce a series of intermediate models, each of which incorporates one

of the principles outline in the introduction. The purpose of these models is to

introduce aspects of the final proposed model, while allowing investigation into

how each of these architectural or dynamical principles influence the ability of a

standard learning rule (BPTT) to learn in the presence of our task. For each of these

changes, we provide a biological rationale, and a normative explanation for how

the change may improve performance.

Recurrence & Readout Layer Compared to the feed-forward networks of the

baseline approach, cortical regions tend to be bidirectionally connected. For this
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reason our first intermediate model utilizes a series of stacked Elman RNN layers

but adds an additional weight from each layer back to its preceding layer (Fig-

ure 2.2 A, top). Next, we address the issue of where signals are reconstructed.

In a hierarchical circuit the further we move up a hierarchy, the less information

about the external stimulus is directly available. A common approach in machine

learning settings is to introduce a ‘U’ like structure or provide skip connections,

which bypass intermediate transformations and provide direct routes for lower-

level information to be integrated into higher-level (deeper) regions. Here, we take

a slightly different approach, inspired by biological models of predictive coding.

Instead of providing skip connections that bring low-level information to higher

regions, we provide backwards-projections, such that the representation from a

deeper region influences the activity of earlier layers. This achieves the same re-

sult that less processed and more processed information integrate in a given layer,

but creates several patterns of activity that have been observed in neural data (Lot-

ter et al., 2020) and satisfies the general framework of predictive coding in which

deeper layers represent some information not present in earlier layers and project

that backwards (Rao & Ballard, 1999). The result is a stacked hierarchy of RNN

cells, but reconstruction now occurs at the lowest level of the model (Fig 2.2 A,

bottom). Mathematically, both of these scenarios can be expressed as:

R0(t) = tanh(W00R0(t− 1) +W10R1(t− 1) +WI0I(t) + b0)

Ri(t) = tanh(WiiRi(t− 1) +W(i−1)iRi−1(t− 1) +W(i+1)iRi+1(t− 1) + bi)

RN(t) = tanh(WNNRN(t− 1) +W(N−1)NRN−1(t− 1) + bN)

Rout(t) = WX−outRX(t) + bout

(2.3)
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Where “X” denotes either the bottom-most or top-post layer, depending on the

condition, and Rout consists only of a single unit. In order for each layer to update

synchronously, inputs to all layers are collected before any layer’s activity is up-

dated. This results in a 1-frame delay between each layer (2 frames from bottom

layer to top layer, 4 frames for bottom layer activity to propagate all the way to the

deepest layer and then back to the lowest layer).

Leaky Integrator Units From a biological perspective, the activity of a popula-

tion of neurons can not change instantaneously, and is often modeled as a leaky-

integrator (LI), in which the potential of a single unit decays to zero in the absence

of any input, according to the equation:

τ
dvL
dt

= −vL(t) +
∑
N∈A

WNLRN(t)

RL(t) = tanh(vL(t))

(2.4)

Where τ represents a slow-leak time constant (set to 10 frames), v represents the

’membrane potential’, r represents the outgoing activity, and A is the set of all other

layers which project to layer L, again following the same bidirectional connectivity

pattern from above. Leaky integrators have also been shown to be useful in gen-

eration of complex trajectories by providing a temporal reservoir of past activity

(see supplemental material). Functionally, LI units act as a low-pass filter, which

can filter out transiently absent inputs to a certain degree, and may be useful in

smoothing out small errors in rollout dynamics. An additional consequence of the

low-pass function is that input to a given unit has a delay before causing maximal

changes in a downstream unit (Fig 2.2 B). This delay means that in our stacked

RNN setting, changes that occur in a given layer and propagate into hidden layers
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and back have a 2τ∆N delay before they can be fully propagated and integrated

into the layer. This means that in order for a signal to be useful by the time it prop-

agates back, there must be some explicit bias towards prediction at each synaptic

step.

Separate Feedforward and Feedback Pathways For the final intermediate model,

we increase the connective complexity within each region. In neocortex there is a

distinct laminar organization in which there is a separate feedforward pathway

(lower regions →granular →superficial →higher regions) and feedback pathway

(higher regions →infragranular →lower regions) (Haeusler & Maass, 2007). Com-

pared to a simple stacked approach, this branching connectivity allows infragran-

ular neurons to integrate feedforward and feedback signals before passing them

back down the cortical hierarchy, and has been suggested to be important for

predictive coding approaches (Lotter et al., 2017). When combined with leaky-

integrator units, this integration of paths also occurs over time, since feedback

pathways represent older representations than feedforward ones. In order to test

whether this separation of pathways can be utilized for prediction of external stim-

uli we modify the previous intermediate stacked model such that each region con-

tains these separate sub-modules. The overall connectivity pattern is in Table 2.1,

or illustrated in figure 2.2 C, and each sub-module continues to follow the dynam-

ics of equation 2.4.
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WPrePost

Recur
WGG

WSS

WII

Intra WGS

WSI

Inter
WSG

WIS

WII

Table 2.1: Organization of connections in the laminar intermediate model. Weights
are indicated as PrePos. G is “granular” (lamina 4), S is “superficial” (Lamina 2/3)
and I is “infragranular” (Lamina 5/6). Interegional SG is the primary feedforward
pathway (projects to higher regions), while IS and II project from higher regions to
lower ones, in accordance with general neuroanatomical studies.
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2.2.5 Predictive Module

Figure 2.3: Architecture of the final predictive module. A The structure of each
module, where rates (‘R’) of each submodule represent the firing rate of a given
population of neurons, and weights are labeled according to their source and tar-
get submodules. Units are coloured by their laminar location, also denoted by sub-
script (G)ranular, (S)uperficial, (I)nfragranular, and (D)istal. Weights are coloured
by according to their primary function in the feedforward (cyan), feedback (ma-
roon) or local (black) pathways. B Zooming out to show connectivity among mul-
tiple predictive modules. For the lowest module feedforward activity comes from
the external stimulus P(t), while for higher regions it comes from lower level super-
ficial neural activity (RS of A). For the highest level, feedback activity comes from
an OU process representing background fluctuations, while lower regions receive
it from higher level infragranular activity (RI of A).

The goal here is to introduce a learning rule which can effectively utilize the sepa-

rate feedback pathway to self-supervise learning in lower cortical regions. In order

to reach this we perform three key modifications

Dual-Compartment Units Results from the intermediate models (see results) in-

dicate that in the BPTT approach having a branching feedback pathway decreases

the accuracy of backpropogation based credit assignment. However, several lines
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of research have suggested that the feedback component of cortical microcircuits

is critical for guiding learning in biological systems (Magee & Grienberger, 2020;

Larkum, 2013; Greedy et al., 2022). A common thread in each of these approaches

is that the feedback pathway terminates on the distal dendrites of pyramidal neu-

rons, and provides a mechanism through which to gate traditional Hebbian-like

learning on the feedforward path synapses. Thus, in order to implement a similar

rule, we modify the superficial and deep units of our model to implement a mean-

rate version of the dual-compartment spiking pyramidal model. Each pyramidal

neuron now contains an additional term in their dynamics:

DL(t) = tanh(
∑

WIDL
RI(t))

τ
dvL
dt

= −vL(t) +DL(t) +
∑
N∈A

WNLRN(t)

RL(t) = tanh(vL(t))

(2.5)

Here, the first term indicates the distal dendritic potential for a given unit, which

is follows its own activation function based on the sum of feedback activities RI

The second term specifies that the ‘soma’ of the dual compartment model follows

the same leaky-integrator dynamics of equation 2.4, but also receives a 1:1 input

from its own distal component, representing passive intracellular coupling of these

compartments.

Learning Rule Previous models of biological learning have suggested that the

distal dendritic potentials (DL) can guide learning by changing either burst rate

(Payeur et al., 2021) or intracellular calcium levels (Bittner et al., 2017; Larkum,

2013). We will model the burst-based rule explicitly in the spiking model, but for

the rate model implement this simply as a unit-by-unit gating of learning rate.
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We then identify the overall goal of the network, which is to minimize temporal

discrepancies in the sum of inputs. Given the temporal error, and a feedback signal

for guiding learning, we propose a three-factor learning rule:

EL(t) = (vL(t)− vL(t− 1))

∆WPrePost = ηrpre(t)⊗DL(t)⊙ Epost(t)

(2.6)

Where ⊙ represents the Hadamard product, ⊗ the outer product, and η is a

learning-rate (set at 0.01). The outer product of the presynaptic and postsynap-

tic terms is identical to the associative term found in many learning rules (Koho-

nen, 1982), but now contains an additional ‘pushing’ term in the minimization of

temporal change (Greedy et al., 2022), and further modulated by the degree of

feedback prediction. Weights were initialized as shown in table 2.2, and learning

occurred on every time step, regardless of whether the frame was forced or rollout,

with the exception of validation trials.

Dynamic Vs Static Connections The learning rule proposed above is reliant on

a feedback gating signal as well and has an explicit term to modify weights in

order to minimize feedforward prediction errors (Brea et al., 2016), posing two is-

sues. First, because the learning rule is locally greedy, there is a global minimum

error of all synapses reach zero, resulting in a constant zero error-term. Secondly,

the gating term is reliant on the distal compartment of pyramidal units, indicating

that the rule can not apply to the granular units. However, experimental evidence

has suggested that error-driven gating primarily occurs in the pyramidal neurons

and other physiologically similar populations. We therefore implement the gran-

ular layer as a reservoir, and do not update the weights terminating onto these

layers (see Table 2.2). When combined with random initial conditions (see below)
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the reservoir dynamics allow the granular layers to avoid the global minimum of

zero activity, and push other layers from the same region. Additionally, we leave

the feedback weights, terminating on the distal compartments at their initial condi-

tions, as the calcium or burst-dependent inspiration for the gating term is not valid

for these synapses. Pragmatically, this means the predictive module implements a

form of feedback alignment (Lillicrap et al., 2016). Overall, it is only the feedfor-

ward synapses onto pyramidal units that are expected to undergo the error-driven

learning we investigate here.

Connectionpre−post Updates? Initial Distribution

Recur
WXG−XG No Gauss(0, 1

2
√
N
)

WXS−XS Yes Gauss(0, 1
2
√
N
)

WXI−XI Yes Gauss(0, 1
2
√
N
)

Intra WXG−XS Yes Unif(− 1
2
√
N
, 1
2
√
N
)

WXS−XI Yes Unif(− 1
2
√
N
, 1
2
√
N
)

Inter
WXS−Y G No Unif(− 1

2
√
N
, 1
2
√
N
)

WY I−XS No Gauss(0, 1
2
√
N
)

WY I−XI No Gauss(0, 1
2
√
N
)

Table 2.2: Initialization of weights in the predictive module. Weights are denoted
as PreregionPreLamina-PostregionPostLamina, where X indicates a given region,
and Y is X+1; G is “granular” (lamina 4), S is “superficial” (Lamina 2/3) and I is
“infragranular” (Lamina 5/6). Feedback weights (going from Y to X) indicate con-
nections targeting the postsynaptic learning-gate, rather than the strong somatic
potential.

Noise There are two sources of noise in the model we implement here. First,

on each trial the activity of all units (and distal compartments) is randomly ini-

tialized. Secondly, for the upper-most module there is no higher level to provide

feedback activity to the distal dendrites, and we replace this instead with a small

OrnsteinUhlenbeck (OU) process of mean zero, τ of 2 timesteps, and σ of 0.05.
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Readout Because the predictive module does not directly optimize for readout

of the target signal by a readout weight, we instead optimize readout weights (W)

for each layer of the predictive module by constrained least-squares (‘Ridge’ in

sklearn) such that the error term:

E =
∑

(Y (t)−WR(t))2 + λ||W ||22 (2.7)

was minimal, where Y (t) is the signal we are attempting to decode, and λ is a

constant (0.01) which penalizes large readout weights. Weights were optimized

by a 5-fold cross-validation from the full forcing period, and reused to create the

decoded signal.
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2.2.6 Spiking Model

Figure 2.4: Spiking Model Architecture. Each box represents a cortical region, and
coloured blocks represent lamina (matching those in Fig 2.3). L2/3, L4, and L5/6
each contain an excitatory population (Pyramidal and stellate, as triangles/circles),
along with a loosely balanced inhibitory population (parvalbumin interneurons,
squares). Layer L1 consists only of an inhibitory population of somatostatin neu-
rons, and the distal dendrites of layer L2/3 and L5/6 pyramidal neurons. Feed-
forward activity begins in layer L4, propagates to layer L2/3, and then diverges to
intra-columnar L5/6, and inter-columnar L4. Feedback activity travels from L5/6
to inter-columnar L1, where it guides burst rate of upstream pyramidal neurons.
B The full spiking model, where each grey block is as in A. External stimuli are en-
coded according to a Poisson process and randomly projected into L4 of the lowest
cortical region. The activity of each region is then read out with an independently
trained decoder. C Structure of the decoder in. For a given lamina we record the
membrane potential from all excitatory neurons (i), from which we extract spike
trains (ii). The spike train is convolved by an idealized postsynaptic potential(iii)
to give an output signal (iv) which is read out by optimized weights (W) to give
the reconstructed signal (v).
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Next, we implemented a spiking neural network, trained to perform the same

sum-of-sinusoids task set as above. As with the predictive module, the repeating

anatomical connective motifs of this model are inspired by the canonical cortical

microcircuit (Douglas et al., 1989). Now however, we introduce several additional

components such as inhibition and short-term potentiation, that are necessary for

translation to a spiking setup. Each introduced set of parameters follows general

findings from neuroanatomical studies. All spiking simulations are performed in

BindsNET and utilize a simple forward method (timestep of 0.1ms) to implement

the dynamics described in the equations below. On each timestep all of the incom-

ing activities to each neural population are collected before any updates are made.

Each population of neurons then updates according to its local dynamics before

weights are updated according to short-term or long-term updates.

Overall structure As shown in 2.4A. Each region of the spiking model consisted

of 3 lamina: granular, supragranular, and infragranular, similar to the predictive

module. Now however, each of these three lamina contained a population of ex-

citatory neurons, modeled as stellate cells for granular, and pyramidal neurons

for supragranular and infragranular, along with a loosely coupled population of

parvalbumin (PV) interneurons. All excitatory populations consisted of 4000 units,

and inhibitory populations consisted of 1000 units, reflecting proportions found in-

vivo. An incoming signal first passes through the granular layer, to supragranular,

where it then diverges to the local infragranular neurons and the granular neurons

of the next cortical region. Feedback activity travels from infragranular neurons to

the distal dendrites of superficial and deep layers of the previous cortical region

(Larkum, 2013). Connection patterns were initialized based on experimental find-

ings (Haeusler & Maass, 2007), summarized in Table 2.3. Connection weights were
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uniformly distributed at +/- 10% of the mean weight given in the table, and 1-p of

those weights, were set to zero.

Short Term Plasticity Short term plasticity (STP) was modeled in all synapses ac-

cording to the Markram Tsodyks model (Markram et al., 1998), modeling depletion

of neurotransmitters and presynaptic calcium potentiation:

dR

dt
=

1−R(t)

D
− u(t)R(t)δ(t− tspike)

du

dt
=

U − u

F
− f [1− u(t)]δ(t− tspike)

(2.8)

STP parameters for each type of connection are summarized in table 2.8, and are

chosen to match short-term facilitation (STF) or short-term depression (STD). The

purpose of the STP dynamics are two-fold. First, they regulate the overall level of

activity in the network, even as long-term weights are modified by the learning

rule described below. Secondly, they allow a filtering of quick (STD) or slower

(STP) spiking activities, as described in-depth in (Naud & Sprekeler, 2018). This

second attribute is important for the learning rule described below.
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Pre Post ||W || (pA) p Delay (ms) STP LTP
L4E L4E 29 0.17 2 EE None
L4E L4I 60 0.19 1 EI None
L4I L4I -41 0.5 1 II None
L4I L4E -23 0.1 1 IE None

L2/3E L2/3E 45 0.26 2 EE BDP
L2/3E L2/3I 50 0.21 1 EI None
L2/3I L2/3I -36 0.25 1 II None
L2/3I L2/3E -17 0.16 1 IE None
L5/6E L5/6E 45 0.09 2 EE BDP
L5/6E L5/6I 24 0.1 1 EI None
L5/6I L5/6I -32 0.6 1 II None
L5/6I L5/6E -32 0.12 1 IE None
L4E L2/3E 60 0.28 2 EE BDP

L2/3E L5/6E 37 0.55 2 EE BDP
L5/6E L1D 15 .2 1 F None
L5/6E L1I 15 .2 1 F None

L1I L1D -15 .2 1 D None

Table 2.3: Connectivity between lamina and regions in the spiking model. Weights
were initialized to the mean weight given in this table, with probability p, then al-
lowed to evolve. STP column refers to the parameters given in table 2.8. For pre
and post populations, E refers to excitatory population somatic compartments, I
refers to inhibitory somatic compartments, and D refers to distal dendritic compo-
nents (pyramidal neurons only).

Neural Dynamics As with other recent studies, pyramidal neurons were imple-

mented with two compartments, representing the somatic and distal dendrites:

Cs
dVs

dt
=

Cs

τs
(Vs − EL) + gsf(Vd) + Is − ws

dws

dt
=

−ws

τs

(2.9)

V ≥ VTh →


V (t+) = Vreset

w(t+) = w(t−) + b

(2.10)
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Where f(Vd) is represents the voltage/calcium gated channels in the dendritic

compartment

f(Vd) =
1

1 + e−(Vd−Ed)/Dd
(2.11)

gs is then the passive coupling parameter from the distal dendrites to the soma.

And for the dendritic compartment

Cd
dVd

dt
= −Cd

τd
(Vd − EL) + gdf(Vd) + c(S(t)) + Id − wd

dws

dt
= −wd

τd
+ aw(Vd − EL)

(2.12)

Here, S(t) represents the backpropagating action potential from the somatic com-

partment, which takes the form of a 2ms long pulse, delayed by 0.5ms from the

time of the somatic spike(δ(t)):

S(t) =

t−0.5∫
t−2.5ms

δ(t)dt(max 1) (2.13)

This dual compartment approach allows separate control of firing rate and

burst-rate, enabling multiplexing of feedforward and feedback activity. Similar

to the DL term from the predictive module, the distal dendritic compartment is re-

ceives feedback activity, and is responsible for controlling the learning rate of the

somatic compartment, through rules described below (Payeur et al., 2021). In order

to maintain the overall level of bursting in these neurons, an additional somato-

statin (SOM) population of neurons was added which receives the same feedback

activity as the distal dendrites, and provides a level of normalization keeping the

burst rate approximately linear to the overall level of feedback activity (Vercruysse

et al., 2021). The spiking properties of neurons in the network are illustrated in
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part B and C of Fig 2.4. All other neurons were implemented with adaptive ex-

ponential integrate and fire models (see section 2.5.3.1), with parameters to match

their physiology (Naud et al., 2008).

2.2.6.1 Inputs and Readout

Each compartment received a multicomponent input current, consisting of an ex-

ternal stimulus-dependent component, a synaptic component, and a stochastic

background noisy input.

Ii = Iexti + IBG
i + Isyni

(2.14)

The synaptic current Isyn is calculated as:

dIsynij

dt
= −Isynij /τCij

+WijRδj(t− dij) (2.15)

Here, the spike train of presynaptic action potentials is delayed by a connection

specific period dij before being modified by the short term plasticity term R and

scaled by the synaptic weight matrix W. This modified impulse train is added at

each point to a low-pass filter of the postsynaptic current, τ (5ms for inhibitory con-

nections and 1ms for excitatory connections) allowing the postsynaptic synaptic

potential (PSP) to follow the typical double-exponential pattern. The background

input is necessary to keep units in the same lamina in a decorrelated state. This

background was modeled separately for each compartment as an OU process, with

parameters specific to each compartment type (see table 2.9). The background in-

put was separately modeled as an OU process for each compartment:

d

dt
IBG
i =

µ− IBG
i

τOU
+ σ

√
2/τOUϵi (2.16)
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Finally, the external input was zero for all units, with the exception of granular

units in the lowest cortical region. For this region we encoded the external posi-

tion as a Poisson random variable and processed this in the same manner as other

synaptic inputs:

δ(t) ∼ Pois(P (t))

dIext

dt
= −Iext/τCij

+WInput−4δ(t)

(2.17)

Where WInput−4 is initialized according to the distribution patterns for intrare-

gional weights onto the granular lamina in table 2.3

2.2.6.2 Learning Rule

We next translate the predictive module learning rule to a spiking version, which

reflects the recently proposed Burst-propagation rule (Payeur et al., 2021). As

with the predictive module, we are only modeling the ‘prediction-driven’ aspects

of learning, that is the portions of learning which are driven by top-down ex-

pectations which travel along the activity of infragranular activity to distal den-

drites. The feedback pathway (L5/6-to-Distal dendrites) remained static, and this

model therefore implements a version of feedback alignment (Lillicrap et al., 2016).

With these structural changes in place, we now replace the predictive-error-driven

learning rule from above with a direct implementation of Burst-Dependent Plas-

ticity (BDP, Eq 2.18) (Payeur et al., 2021).

Feedforward excitatory synaptic weights onto pyramidal neurons were up-

dated using the recently proposed burst-propagation rule, implemented at every

time step except for validation trials: (Payeur et al., 2021)
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dwij

dt
= η{[ Bi︸︷︷︸

Burst?

−( P̄i︸︷︷︸
P(Burst)

) Ei︸︷︷︸
event?

] Ẽj︸︷︷︸
pre eligibility trace

}

Ēi(t) =
1

τavg

∞∫
0

Ei(t− τ)e−τ/τavgdτ

B̄i(t) =
1

τavg

∞∫
0

Bi(t− τ)e−τ/τavgdτ

P̄i(t) =
B̄i(t)

Ēi(t)

(2.18)

Where Ei is 1 when the neuron emits either a single spike, or the second spike

within a 16ms window, and Bi is 1 only for the second spike during a 16ms win-

dow. Thus Ēi(t) and B̄i(t) are time-weighted averages of the ‘event’ and ‘burst’

rates. P̄i(t) is therefore the probability that an event is the second spike of a burst.

Interpretation Intuitively, this learning rule is a modified pre-post product rule,

where postsynaptic term (typically a Boolean indicating a spike) is replaced by

Bi − P̂iEi. This term means that weights will increase if the postsynaptic neu-

ron fires the second spike of a burst, and decrease when the postsynaptic neuron

fires a singlet or first spike of a burst. Because P̂ is primarily driven by the distal

dendritic inputs (Naud & Sprekeler, 2018), this means that the feedback term is

responsible for driving learning. We can directly compare this spike-based model

to our gated-and-error-driven associative rule from the continuous model. Both

equations contain a short-timescale representation of presynaptic activity, either as

the low-passed activation (Rpre(t) in the PM), or as a synaptic spike-trace (Ej(t) in

BDP). The feedback gating term from PM (D(t)) is analogous to the Burst Rate (B)

in BDP. The most difficult analogy is how the error driven term from the predictive

module (D(t)∗(v(t)−v(t−1))) relates to the error-driven aspect of BDP (Bi−Pi∗Ei).
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However, one can see the mapping if we consider the BDP framework with a small

population of neurons all of which have nearly-balanced distal dendritic inputs.

This BDP error term can then be approximated as F (D(t), v(t))−D(t)lowpass ∗ v(t)),

where F incorporates the slight nonlinear effect of distal and basal potentials on

burst probability. This revised BDP now resembles the error term from the predic-

tive module, by incorporating the difference between an instantaneous and low-

passed activity rate.

Readouts were performed by convolution of the recorded spike-train of interest

with a synaptic kernel (Fig 2.4C). A linear readout for this convolved signal was

then created by minimal least-squares linear weighting (Eq 2.21). We note that this

readout term, and corresponding error terms, are never provided to the model,

and are only used for interpreting the function of the network.

2.3 RESULTS & DISCUSSION

2.3.1 Overall Model Comparisons

We begin with a high level summary of means-square error performance across all

models and identification of hyperparameters. Table 2.4 shows a summary of best

hyperparameter sets for each model type, identified by minimum validation (full

rollout/autonomous) error at any point in training. Trends for each model-types

best parameter set are described in their corresponding sections below. Overall,

the LSTM and baseline Elman RNN models show the lowest local error, support-

ing the general claim that these machine learning models, which utilize backpro-

pogation through time, are highly accurate at predicting dynamics in the short

term. However, when evaluating the full rollout condition, the leaky-integrator

approach outperforms the LSTM, and this performance is further improved by
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incorporating the novel learning rule of the predictive module.

Model Base Hyperparameters Train Error Val Error

Baseline RNN
Units: 32, 64, 128
Depth: 1, 2, 3, 4
Learning Rate: 10−2, 10−3, 10−4

0.004 0.144

LSTM
Units: 32, 64, 128
Depth: 1, 2, 3, 4
Learning Rate: 10−2, 10−3, 10−4

0.002 0.119

Stacked RNN
Units: 32, 64, 128
Depth: 2, 3, 4
Learning Rate: 10−2, 10−3, 10−4

0.063 0.125

Leaky Integrator
Units: 32, 64, 128
Depth: 2, 3, 4
Learning Rate: 10−2, 10−3, 10−4

0.060 0.082

Separate FF & FB
Units: 32, 64, 128
Depth: 2, 3, 4
Learning Rate: 10−2, 10−3, 10−4

0.108 0.109

Predictive Module
Units: 32, 64, 128
Depth: 2, 3, 4
Learning Rate: 10−2, 10−3, 10−4

0.008 0.027

Spiking Model N/A 0.067 0.070

Table 2.4: Summary of performance across all tested models, including hyperpa-
rameters searched. Each row shows a model class, as separated out in the methods
section. The bolded parameters in the second column indicate the best hyperpa-
rameter set, chosen by minimum validation error. The best models for local error
(LSTM) and validation error (predictive module) are identified by bolding of their
MSE.
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2.3.2 Baseline Model

Figure 2.5: Performance of the baseline RNN. A Performance over training for
both the local training ratio (blue) and validation ratio of zero (orange) as teaching
ratio decreases. Initially, local loss approaches zero and the model is able to very
accurately predict the next input, given the ground truth. As training progresses,
both the partially driven and rollout system approach the same performance. B
Showing example outputs for the partially driven (blue), and full rollout (orange)
systems compared to the target signal (green) at three points in training. (Top)
Early in training, the network predicts the next input accurately, given the ground
truth, but decays to zero when run in full rollout mode. (Middle) Midway through
training, the network can predict a few timesteps into the future accruing noise
(blue) and snap back to the correct trajectory when a teaching frame occurs. At this
point, the full rollout configuration will tend to maintain an output close to the last
observed value. (Bottom) Late in training, the network is severely dampened, and
will quickly create a constant-zero output, changing briefly when teaching frames
occur (blue shifts away from orange for periods when teaching appears).

This network initially learns to predict the next input with a high degree of accu-

racy, but fails to predict in an undriven state (Fig 2.5 A). As training progresses, the

network continues to learn short-term predictions (Fig2.5 B, middle). During this

stage of training the BPTT network has learned some of the longer term dynamics,
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and will poorly fit 1-2 cycles before decaying to a constant output (orange trace).

At this point small sequences of frames without the ground truth tend to cause

network activity to diverge from the target, but quickly return when the external

stimulus is presented again. In the final stages of learning the BPTT network per-

forms very similarly to the full-rollout case from partway through training. From

these examples we conclude that while the baseline model is able to accurately act

as a predictive auto-encoder, the network is never able to predict beyond a handful

of frames faithfully.
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2.3.3 Intermediate Models

Figure 2.6: Intermediate Models, showing stepwise changes in overall perfor-
mance. Top Left Beginning with a stacked bidirectionally connected RNN, but
reconstructing from the ‘top’ layer, BPTT is unable to converge even for largely
externally driven (early blue) cases. Top Right Continuing with a stacked RNN,
but now reconstructing from the activity of the lowest layer, the network is more
closely able to match the performance of the baseline model. This suggests that
having sensory-driven feedforward inputs is critical to utilizing the hidden repre-
sentations derived by other regions. Bottom Left By replacing the RNN dynamics
with leaky integrators both the probabilistic and full rollout conditions improve.
The training performance (blue) still does not perform as well as baseline mod-
els, but the full rollout condition (orange) now more closely matches the external
dynamics. Bottom Right The introduction of separate feedforward and feedback
pathways, while anatomically realistic, decreases performance for both training
and validation forcing.

Investigating the learning curves of the intermediate models gives us a high level

understanding of what architectural changes the backpropogation approach is able

to make use of. In the stacked RNN (Fig 2.6) performance on both the teacher and

full rollout conditions is significantly lower than the performance of the baseline

RNN. This suggests that the reciprocal connections interfere with BPTT over long

periods, consistent with the observation that the baseline model performed best

with a lower number of layers. When utilizing the same bidirectional connectiv-
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ity and reading out from the lowest layers (‘Bottom Readout RNN’) however, the

short-term prediction increases significantly, though still higher than the baseline.

The fully autonomous mode though now has a minimum error that is lower than

the baseline, suggesting the the bottom readout approach allows useful informa-

tion from the hidden layers to integrate into the primarily externally driven signal

without disrupting the overall dynamics.

Continuing to utilize a bottom-readout approach and replacing the RNN dy-

namics with a leaky integrator further decrease the validation-mode error (MSE

0.082), far below the minimum achieved in the baseline models (MSE 0.119). How-

ever, the speed with which teacher learning occurs is significantly lower, as indi-

cated by the slower decent of the blue line in Figure 2.6. When introducing sep-

arate pathways for feedforward and feedback information, performance was sig-

nificantly worse for both the local forcing (MSE 0.108) and full rollout (MSE 0.109)

cases, where the system primarily learned only to replicate the first frequency com-

ponent of the target signal. Similar to the initial findings of the top-readout stacked

RNN, this suggests that the BP based method is not able to utilize the additional

pathway.
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2.3.4 Predictive Module

Figure 2.7: Performance of the predictive module approach. A Overall perfor-
mance over training. The training-forcing condition (blue) quickly approaches per-
formance similar to the backprop-based methods, showing that the lowest region
quickly encodes the next-frame location. Compared to the baseline and interme-
diate models however, the validation (fully autonomous) mode also increases in
accuracy quickly, showing that the network is learning to follow the external dy-
namics, rather than a weighted history of recent activity. B Example traces at early,
mid, and late stages of training. In the early condition (top) the conditions match
closely, though the autonomous mode has a tendency to undershoot local peaks.
By mid training (middle) the autonomous mode now closely follows the ground
truth. In late training (bottom) the predictions continue to match the target. C De-
coding additional signals from each region of the model. (Left) Brown, yellow, and
pink boxes indicate separate decoders trained for position, acceleration, and veloc-
ity for each of the regions, for a total of nine separately trained decoders. D Right
Shows the accuracy for each of these decoders over the course of training. The
lowest region most strongly codes for position (brown), with decreasing accuracy
for decoding higher derivatives. The intermediate region can most strongly de-
code velocity (yellow), while the highest has the strongest tuning for acceleration
(pink).

Under the predictive module framework, the network is able to quickly learn to

reproduce the next observed frame (Fig 2.7 A, blue), but initially does not pre-
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dict well without external drive. However, within the first 200 epochs, the net-

work begins to faithfully predict trajectories in both the partially-driven and un-

driven states, with a slight undershooting of local peaks in the undriven state.

Over the course of training the partially-driven error continues to stay low, despite

a decreasing rate of external stimulus, while autonomous error approaches simi-

lar performance (down to 0.027 minimum autonomous error, down from 0.082 in

the leaky-integrator intermediate model). In addition to investigating how well

the predictive module network learned to predict long temporal delays, we were

interested in what role each of those regions played in the overall learned repre-

sentations. We attempted to decode not only the position, but also the temporal

derivatives of this variable, utilizing three separate decoders for each module Each

decoder was optimized by cross-validated least-squares minimization between the

ground-truth signal and the supragranular activity on each trial (Eq 2.21). We

found that each module most strongly represented increasing temporal deriva-

tives of position (i.e. distance, velocity and acceleration). This suggests that the

later modules are encoding temporal derivatives of lower-level variables, which in

turn provide contextual information to lower regions, further increasing predictive

power. The multiple transformations between each module’s output and the feed-

back signal allows for learned coefficients and non-linearities in how that feedback

signal affects the current prediction.
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Figure 2.8: Predictive Module activity on a more complicated task. Performance
of the predictive module approach. A Showing decoded position along the first
dimension at various points in training. At all points the local forcing ratio
closely (blue) closely matches the ground truth (orange). Early in training the au-
tonomous dynamics quickly diverge from ground truth, are lower magnitude. In
mid training(middle) the autonomous teacher-forcing (blue) will tend to diverge
from ground-truth, but comes back when a sample is presented. The autonomous
trajectory appears to match the general switching behavior of the Lorenz equa-
tions. Later in training (bottom) the autonomous mode stays close to ground truth
for long periods before diverging due to chaotic behavior. However, the general
behavior still matches the dual-mode oscillations of the ground truth. B Showing
the first two dimensions at various points in training, only for the second half of
the trial. During early training (top) the autonomous trajectory is off center and
lower magnitude than ground truth and semi-forcing case. During mid training
(middle) the fully autonomous trajectory fills regions that the ground truth does
not. Later in training (bottom) the autonomous trajectory more fully matches the
2D regions that the ground truth visits.

In order to test how this model generalizes to more complex tasks we next

tested the model on the Lorenz equations, a set of deterministic differential equa-

tions known for their sensitivity to initial conditions. As with the sum of sinusoids

task, decoding is performed by training on the forced (first half) of a trial, and us-

ing the learned weights to decode for the second half of the trial. We find, that by

the end of training the network is able to accurately recreate the general attractor

dynamics of the task (Fig 2.8A, bottom). Consistent with the nature of the task,

the exact trajectories diverge when the internal representation is near the origin.
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At the midpoint in training (Fig 2.8A, middle) the autonomous trajectory similarly

matches the general dynamics of the task, but tends to visit locations that the un-

derlying dynamics do not (Fig 2.8B, middle). However when partial teacher forc-

ing is present, the external stimulus is sufficient to keep the decoded position near

the ground truth. For the fully trained model (epoch 950) we attempted to decode

temporal derivatives of the internal position generated by the position decoding.

Consistent with the above results, we found that the magnitude of instantaneous

position change was strongly represented in the second region but not the first or

third. The third region did not strongly encode position or speed (MSE greater

than 0.14 in both cases). ą
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2.3.5 Spiking Model

Figure 2.9: Summary of spiking model decodability. (Left) Showing the read-
out architecture, identical to the setup for the predictive module. (Right) Show-
ing decodability of position and temporal derivatives over training in superficial
pyramidal neurons after convolving by a postsynaptic readout kernel (see meth-
ods). The optimized decoders show that the lowest region again encodes position,
with velocity being most strongly encoded in the second region, and region 3 most
strongly encoding acceleration terms.

As shown in Fig 2.9, the spiking network showed similar capabilities for function

to the predictive module presented in Fig 2.7. The spiking network is able to accu-

rately predict at long time-scales. The L2/3 neurons in region 1 (bottom) most

accurately encodes position, the L2/3 neurons in region 2 (middle) most accu-

rately encode velocity, and the L2/3 neurons in region 3 (top) encode acceleration

(Fig 2.9). Thus, the region most directly connected to the external input mimics

the dynamics of spatiotemporal patterns, while the more distal regions generate

abstracted signals which can help guide lower-level activity, but do not directly

mimic the inputs.
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2.4 CONCLUSIONS

We examined how an architecture inspired by connective motifs from the neocor-

tex might predict the spatiotemporal dynamics of external stimuli. Using a con-

tinuous firing rate approximation, we found that incorporating a leak-term with a

hierarchical network in which reconstruction occurs at the input layers (Fig 2.6D)

significantly improves long-term prediction compared to standard backpropaga-

tion approaches. By then incorporating a laminar structure, in which deeper re-

gions gate learning in lower regions, we were able to further increase these predic-

tions (Fig 2.7). Investigating the activity patterns in various layers of this network,

we found that successive regions were predicting temporal derivatives of activity

in their inputs, such that deeper layers represent further temporal derivatives of

the external stimulus. This finding highlights general patterns of cortical hierarchy

which suggest that low-level sensory cortices give rise to higher level cortex which

provides less physically grounded representations.

Utilizing a spiking model based on previous work (Naud & Sprekeler, 2018;

Payeur et al., 2021), we showed that a biologically plausible learning rule can like-

wise result in a network that develops intrinsic connectivity that enables predic-

tion of external stimuli, without an extrinsic teaching signal. Instead, the dynamics

within each cortical region appear to follow the temporal derivative of their inputs,

and must align the dynamics with more abstracted activity from higher cortical re-

gions.

Previous work has investigated how reservoir networks may learn to predict

complex time series (Denève et al., 2017) with external negative feedback sys-

tems, or by optimized networks (Sussillo & Abbott, 2009) akin to the sequence-

to-sequence approach (Boerlin et al., 2013). However, the present work focused on
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how a potential interaction of multiple cortical regions forming a hierarchy might

develop a representation of network dynamics. The arrangement of a hierarchical

system not only resulted in an improved performance, but also resulted in a struc-

tured organization of temporal information along the hierarchy. Essential to this

performance was feedback along the hierarchy, which allowed higher order infor-

mation to be integrated in superficial neurons of lower cortical regions (Haeusler

& Maass, 2007). The different roles of somatostatin and parvalbumin allowed ac-

tivity to continue stably when external input is absent, as proposed in recent work

(Hertäg & Sprekeler, 2020).

Future Directions There were several purposeful simplifications in this study,

that can be expanded upon in future studies. Because the focus here was on trans-

lating biologically inspired learning rules to a self-supervised temporal prediction

setting, we utilized a low-dimensional and deterministic stimulus. Without addi-

tional architectural changes, such as convolution or topologically organized con-

nections which are essential for receptive field generation (Gilbert & Li, 2013), the

degree to which this network can be scaled up to behaviorally relevant tasks such

as object recognition are limited. We also implemented long-term plasticity only

on a minority of connections. This is done in order to stay within the realm of self-

supervised signals, but neglects the potentiation of inhibitory synapses (Vogels

et al., 2011) and granular-terminating connections which may be important for the

formation of purely associative subnetworks. Despite these simplifications, the

current model shows how a neural system can utilize a hierarchical organization

to closely track the dynamics of external stimuli. Future studies may investigate

uses of this model in more complex scenarios, which may lead to predictions about

the functional phenotypes of cells that arise throughout the cortex.
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2.5 ADDITIONAL METHODS

2.5.1 Task Parameters

Param Sin1 Lower Sin1 Upper Sin2 Lower Sin2 Upper
a 1 1 0.5 2.0
f 0.15 0.30 1.5 * f1 2.0 * f1
p -pi pi -pi + p1 pi + p1

Table 2.5: Task Parameters

2.5.2 Predictive Module

2.5.3 Spiking Model

2.5.3.1 AdEx Dynamics

C
dV

dt
= −gL(V − EL)− gL∆T exp(

V − VT

∆T

) + I − w

τw
dw

dt
= a(V − EL)− w

(2.19)

V ≥ VTh →


V (t+) = Vreset

w(t+) = w(t−) + b

(2.20)
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Parameter Somatostatin Neurons Parvalbumin Neurons L4 Stellate
C (pF) 100 100 200
gL (nS) 5 5 12
El (mV) -70 -70 -70
VT (mV) -62 -48 -50
∆T (mV) 4 2 2

a (nS) -.5 0 2
τw (ms) 100 1 300

b 10 0 60
Vr (mv) -65 -55 -58
τs (ms) 10 10 5

Table 2.6: Stellate and interneuron parameters

Parameter Soma Dendrite Description
C 370pF 170pF Membrane Capacitance
τ 7ms 16ms Membrane time constant
EL -70mV -70mV Reversal potential
g 1200pA 1300pA Passive coupling from gated dendritic channels
τw 30ms 100ms Recovery variable time constant
c N/A 2600pA Strength of backpropogating action potential
aw N/A -13pA Strength of passive leak current in dendrites

Table 2.7: Pyramidal Neuron parameters. Soma column corresponds to Eq 2.9,
and dendrite column to values in Eq 2.12

Type D (s) F (s) U f
EE 1.1 .05 .5 .1
EI .125 1.2 .05 .1
II .144 .06 .32 .1
IE .7 .02 .25 .1
F .1 .1 .02 .1
D .02 1 0.9 .1

Table 2.8: Parameter sets used for the short-term dependent plasticity.
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Compartment µ(pA) τou(ms) σ(pA)
Somatostatin 0 2 450
Parvalbumin 0 2 450

Stellate 0 2 450
Pyramidal Soma 70 2 450
Pyramidal Dend -270 2 450
Region 3 Dend -23 2 450

Table 2.9: Parameters for the OU noisy input. The final region distal dendrites
received different input in order to compensate for the lack of feedback activity
and maintain a burst rate similar to other regions.

2.5.3.2 Synaptic Readout

Spiking models were decoded by convolving a given spike train with an idealized

dual-exponential post-synaptic kernel:

Ireadout(t) =
(t− δ)

τr
∗ e−(t−δ)/τr (2.21)

Where τr is the synaptic readout time constant of 10ms. On each trial, the readout

weights (W) were optimized by constrained least-squares (‘Ridge’ in sklearn) such

that the error term:

E =
∑

(Y (t)−WIreadout(t))
2 + λ||W ||22 (2.22)

was minimal, where Y (t) is the signal we are attempting to decode (eg: P(t),

P’(t),...), and λ is a constant (0.01) which penalizes large readout weights. These

same readout weights are then used during the probabilistic rollout to create the

decoded rollout signal. Readout weights are optimized for each epoch.
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2.5.4 FORCE

As a second type of baseline, we implemented FORCE training. This type of train-

ing, and its resulting outputs, differ greatly from BPTT approaches, and provide

additional insight as to how a network may fail at the presented tasks. This net-

work consists of a single recurrent network of leaky integrators, and a linear read-

out. At each point in time, the value from the readout node is fed back into the

network according to a random weight matrix, similar to the rollout mode in the

BPTT models. Notably, the only weights that adjust are the weights from the read-

out node back into the network, thus reducing the number of learned parameters

compared to the BPTT approach. These readout weights are adjusted quickly ac-

cording to the recursive-least-squares (RLS) learning rule. During the rollout pe-

riod this network performs similarly for both local and teacher ratios. This is be-

cause the tight control between the readout term and network activity is directly

optimizing the ‘autonomous‘ mode of function. However, as learning progresses

and and the network must operate in the presence of unreliable teaching signals,

both the local and validation errors increase significantly. This change occurs be-

cause the network is able to drift slightly during the autonomous periods, resulting

in an inaccurate correlation of presynaptic activity (Eq 2.24) which results in RLS

driving learned readout weights incorrectly. This illustrates how a network that

may perform well initially, even at full rollout, degrades in the presence of unreli-

able external signals.
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Figure 2.10: FORCE Training. A Setup for training of FORCE. During teacher
frames (top) the readout value z(t) is subtracted from the goal readout P(t). This
error signal is used to adjust the readout weights Who During autonomous frames,
the system evolves the same as during teaching, but the readout weights are not
updated. B Example of training FORCE networks. (Top) During the first trial, the
network is able to closely follow the inputs signal, due to the quick adjustment of
readout weights. During full autonomous (orange) however, the network begins
to diverge, indicating that the 150 frames presented during full teacher are not
sufficient to train the readout weights. During the second trial (Second row) the
network is able to perform both the probabilistic autonomous and full autonomous
conditions. However, as training progresses (third and bottom row) the network
produces a noisy and chaotic output. The unreliable teaching signal has driven the
readout weights and correlation matrix from their initially tuned regime, and even
full teaching frames can not bring the network back to reliable readout.

Units in the FORCE network are simple recurrent networks with a leak term,

and a linear readout. The update of the system was defined as:

τ
dv

dt
= −v(t) +Whhr(t) +WihI(t) +WzhZ(t− 1)

r = tanh(v(t))

z(t) = Whor(t)

(2.23)

Where r(t) represents the “firing rate” of the hidden units, z(t) the activity of the

readout units, and I(t) represents the task-dependent input signal. At every time
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step a running average of presynaptic correlations was updated:

Q(t) = Q(t− 1)− Q(t− 1)r(t)rT (t)Q(t− 1)

1 + rTQ(t− 1)r(t)
(2.24)

On time steps where learning occurred,readout weights were updated according

to the recurrent least squares (RLS) algorithm:

e(t) = z(t)− y(t)

Who(t) = Who(t− 1)− e(t)Q(t)r(t)

(2.25)

Weights were initialized and parameters set as standard (Sussillo & Abbott, 2009)

and reported in table 2.10, Weights were initialized according to a Gaussian distri-

bution, and clamped to zero with a probability 1-p (see table for values).

τ 10ms
NI 2
Nh 1000
Nz 2
Wih Gauss(0, 1√

NI
), p=0.1

Whh 1.5 ∗Gauss(0, 1√
Nh

), p=0.1
Whz 0, p=1
Wzh Unif(−1, 1), p=1

Table 2.10: Parameters used for FORCE network. Weight parameters indicate the
probability distribution that initial values were drawn from.
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CHAPTER 3

Egocentric boundary vector tuning of the retrosplenial cortex

This chapter has appeared as a published article: Alexander, A. S., Carstensen, L.

C., Hinman, J. R., Raudies, F., Chapman, G. W., & Hasselmo, M. E. (2019). Ego-

centric boundary vector tuning of the retrosplenial cortex. Science Advances 6(8),

eaaz2322

3.1 INTRODUCTION

Spatial cognition is a critical component of intelligent behavior. The ability to

effectively recall and navigate between known goals relies on stored representa-

tions of spatial interrelationships. Further, episodic experiences can be thought

of as situated within a stored mental map indicating the places in which events

occurred. Spatial representations that support both navigation and episodic mem-

ory are observed in many brain regions, including the hippocampus and medial

entorhinal cortex, where neurons exhibit receptive fields that are correlated with

the position or orientation of the animal relative to the array of locations and cues

that define the structure of the outside world. This viewpoint-invariant coordinate

system is commonly referred to as the allocentric reference frame (Hafting et al.,

2005; O’Keefe & Dostrovsky, 1971; Taube et al., 1990). Although it has been repeat-

edly shown that intact function of allocentric spatial circuits is critical for spatial

memory and navigation (Morris et al., 1982; Steffenach et al., 2005), it is impor-

tant to consider that all spatial information enters the brain via sensory organs and

their corresponding processing streams. Accordingly, knowledge of the position

of a prominent landmark and a neighboring goal location would be, at least ini-

tially, incorporated into a stored spatial map in egocentric coordinates relative to
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the animal itself (Bicanski & Burgess, 2018; Byrne et al., 2007). Further, enacting

navigational plans can be based on stored allocentric representations but would

ultimately require translation into sequences of actions anchored in an egocentric

reference frame (e.g., one turns clockwise relative to their own previous orienta-

tion position) (Bicanski & Burgess, 2018; Byrne et al., 2007; Whitlock et al., 2012).

Neural mechanisms by which egocentric and allocentric coordinate systems are in-

terrelated are still the subject of intense examination. Computational models have

predicted that cortical networks capable of integrating allocentric and egocentric

information for either constructing or using stored spatial representations require

neurons with egocentric sensitivity to external locations (Bicanski & Burgess, 2018;

Byrne et al., 2007). Most investigations into egocentric representations in uncon-

strained animals have focused on the neural substrates of path integration, a nav-

igational computation wherein self-location is approximated via continuous inte-

gration of angular and linear displacement (Mittelstaedt, 1980). Neural correlates

of these movement variables have been reported in several structures (Whitlock

et al., 2012; Cho & Sharp, 2001; Hinman et al., 2016; McNaughton et al., 1994;

Wilber et al., 2014). Only recently have externally anchored egocentric representa-

tions that extend beyond self-motion been reported (Gofman et al., 2019; Hinman

et al., 2019; LaChance et al., 2019; Peyrache et al., 2017; Wang et al., 2018a; Wilber

et al., 2014). Egocentric representations of this nature may anchor to environmen-

tal boundaries. Boundaries present a unique intersection between egocentric and

allocentric coordinate systems, as they have fixed positions that define the nav-

igable allocentric space and simultaneously restrict the egocentric affordances of

the agent such as what can be viewed or what motor plans can be executed. En-

vironmental bounds or walls extend along large regions of an environment and
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thus enable extended interaction from multiple allocentric or egocentric perspec-

tives. Egocentric neural responses have now been reported in multiple areas such

as lateral entorhinal cortex (Wang et al., 2018a), dorsal striatum (Hinman et al.,

2019), and postrhinal cortices (Gofman et al., 2019; Wang et al., 2018a). However,

none of these regions have the reciprocal inter-connectivity between egocentric

and allocentric spatial circuitry that might mediate bidirectional reference frame

transformations. From a connectivity standpoint, the retrosplenial cortex (RSC) is

an excellent candidate to examine egocentric representations during navigation.

Further, theoretical work has posited that RSC forms a computational hub for sup-

porting coordinate transformations (Bicanski & Burgess, 2018; Byrne et al., 2007;

Clark et al., 2018; Rounds et al., 2018). RSC is composed of two interconnected

subregions, dysgranular and granular, which have slightly different connectivity

with cortical and subcortical regions. Dysgranular RSC (in mice agranular RSC)

is positioned along the dorsal surface of the brain and has biased interconnectiv-

ity with association, sensory, and motor processing regions that code in egocentric

coordinates (van Groen & Wyss, 1992; Vogt & Miller, 1983). In contrast, granu-

lar RSC has strong reciprocal innervation with the hippocampal formation and

associated structures that are primarily sensitive to the allocentric coordinate sys-

tem (van Groen & Wyss, 1992). Despite having dense reciprocal connectivity with

numerous regions known to support spatial cognition, few reports have exam-

ined spatial response properties of neurons within the RSC. Most assessments of

functional properties of RSC neurons have occurred in rodents performing track

running tasks (Alexander & Nitz, 2017, 2015; Mao et al., 2017; Miller et al., 2019;

Smith et al., 2012). Track running experiments have revealed that RSC neurons

exhibit spatial correlates with conjunctive sensitivity to allocentric and egocentric
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coordinate systems (among others) (Alexander & Nitz, 2015). Conjunctive tun-

ing of this type has been shown in modeling work to facilitate spatial coordinate

transformations, further supporting a role for RSC in the required transformation

between these two spatial reference frames (Bicanski & Burgess, 2018; Pouget &

Sejnowski, 1997). However, grid cells, head direction cells, place cells, and other

forms of well-characterized spatial receptive fields have primarily been examined

in two-dimensional (2D) environments. Only a few experiments have studied RSC

in similar conditions, and all such reports have focused on head direction encod-

ing (Cho & Sharp, 2001; Chen et al., 1994; Jacob et al., 2017). To examine externally

referenced egocentric representations in RSC capable of supporting both naviga-

tion and reference frame transformations, we recorded from both RSC subregions

while rats freely explored familiar 2D environments. We report that subsets of

RSC neurons exhibit a variety of spatially stable activation patterns in egocentric

and allocentric coordinate systems. These findings support predictions from com-

putational modeling related to translation between spatial reference frames and

highlight important navigation-related variables encoded in association cortex (Bi-

canski & Burgess, 2018; Byrne et al., 2007).

3.2 RESULTS

3.2.1 RSC neurons exhibit stable spatial activity during free exploration

We recorded 555 neurons extracellularly in RSC in either hemisphere from male

Long-Evans rats (n = 7) during free exploration. To enable comparisons between

functional properties of neurons recorded in dysgranular versus granular subre-

gions of RSC, we estimated tetrode placement and depth for each session (Fig.

3.1A, n = 130 sessions). Of the total population, 41.5% (n = 230/555) were recorded
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Figure 3.1: Caption on next page

from dysgranular RSC, 15.1% (n = 84/555) from the border between dysgranular

RSC and granular RSC, and 43.4% (n = 241/555) within granular RSC. For baseline

sessions, rats foraged for scattered reward in 1.25-m2 arenas with observable fixed

distal cues.

RSC neurons exhibited complex firing rate fluctuations, as rats randomly for-

aged within open arenas (Fig. 3.1B). To assess the spatial stability of these represen-

tations for each neuron individually, we began by examining correlations between

2D spatial firing ratemaps constructed from first and second halves of each exper-
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Egocentric boundary vector representations of RSC neurons during free explo-
ration. (A) Locations of RSC tetrode tracts where neurons with egocentric bound-
ary sensitivity were observed. (B) Example 2D ratemaps (top), trajectory plots
(middle), and head direction tuning plots (bottom) for three RSC neurons with
significant stability in spatial firing. The location of individual spikes is shown
with colored circles, which indicate the corresponding head direction of the ani-
mal according to the legend on the left. (D) Schematic for construction of EBRs.
Left and middle panels: An example spike is mapped with respect to egocentric
boundary locations in polar coordinates. (E) 2D ratemaps, trajectory plots, and
EBRs for three example RSC EBCs with animal-proximal receptive fields. (F) Same
as in (E) but for three RSC EBCs with animal-distal receptive fields. (H) Differ-
ence in strength of EBC tuning when a speed threshold was applied (MRLvel)
versus no speed threshold (MRL). (I) Difference in strength of EBC tuning when
egocentric bearing was referenced to head direction (MRLHD) rather than move-
ment direction (MRLMD). (J) Polar histogram of preferred orientation of receptive
field across all RSC EBCs. Yellow and blue bars correspond to EBCs recorded in
the left and right hemisphere, respectively. (K) Distribution of preferred distance
of all RSC EBC receptive fields. (L) Polar scatter plot of preferred orientation ver-
sus preferred distance. Circle size indicates the area of the egocentric boundary
vector receptive field.

imental session (Fig. 3.1C). Across the full population of RSC neurons, 45.8% of

cells (n = 254/555) had spatial correlations greater than the 99th percentile (ρ =

0.23) of the distribution of correlations observed following 100 random shifts of

the complete spike train for each neuron relative to spatial position (Fig. 3.1C).

In some cases, RSC neurons with spatially anchored responses had slight differ-

ences in basic firing properties from those that were not spatially stable. Of par-

ticular interest and consistent with the presence of spatial receptive fields, RSC

neurons with spatially reliable activity had significantly more spatial coherence

and broader peak firing rate dispersion than nonstable cells. Spatially anchored

firing patterns were also observed at more ventral recording sites, where it was

difficult to resolve whether the recording tetrode was in RSC or the cingulum bun-

dle. Recordings from these sites were not included in the pool of RSC neurons for
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analysis.

3.2.2 Egocentric boundary vector responsivity of RSC

Of neurons with stable spatial firing in the open field, several had receptive fields

that were qualitatively proximal to environmental boundaries (Fig. 3.1B, right).

Inspection of the relationship between each spike and the head direction or move-

ment direction of the animal revealed that these responses manifested when the

animal was oriented in a similar manner relative to any wall, suggesting that the

receptive field was defined in an egocentric manner. As such, these responses

were reminiscent of egocentric boundary cells (EBCs) recently reported in the dor-

sal striatum (Hinman et al., 2019), lateral entorhinal cortex (Wang et al., 2018a), and

postrhinal cortex (Gofman et al., 2019; LaChance et al., 2019). To test this explicitly,

we constructed egocentric boundary ratemaps (EBRs) using procedures previously

described (Fig. 3.1D) (Hinman et al., 2019). Briefly, for each behavioral frame, the

distance to the nearest wall in each 3°offset from the animals head direction or

movement direction was calculated (Fig. 3.1D). The same process is repeated for

the position of each spike from each neuron, and then ratemaps in polar coordi-

nates were constructed by dividing the number of spikes by the total behavioral

occupancy in seconds. From each EBR, we computed the mean resultant length

(MRL) of angular tuning for the full session as well as the absolute difference in

angular tuning direction and distance between first and second halves of the base-

line session. RSC cells were determined to exhibit significant egocentric boundary

sensitivity if they met the following criteria: (i) they had an MRL for the session

that was greater than the 99th percentile of the distribution of resultants computed

following repeated shifted spike train randomizations, (ii) they had an absolute
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difference of mean directional tuning between halves of the baseline session that

was less than 45°, and (iii) the change in preferred distance relative to the full ses-

sion was less than 50% for both halves. Using these metrics, 17.3% (n = 96/555) of

RSC neurons were determined to be EBCs (Fig. 3.1, E to G). Application of a speed

threshold (>5 cm/s) modestly increased the MRL and size of the EBC population

(Fig. 3.1H, n = 106/555, 19.1%; median MRL difference = 0.006, interquartile range

(IQR) = 0.0012 to 0.013; Wilcoxon signed-rank, z = 4.70, P = 2.65 Œ 1006). From

this result, we hypothesized that egocentric receptive fields of EBCs were defined

by the movement direction of the animal rather than head direction, which can be

computed even when the animal is motionless. RSC neurons (21.4%, n = 119/555)

were determined to be EBCs when referenced to movement direction, but egocen-

tric boundary vectors were overall more strongly tuned to head direction (Fig. 3.1I,

EBC MRL with head direction = 0.22, IQR = 0.17 to 0.29; EBC MRL with movement

direction = 0.14, IQR = 0.11 to 0.20, Wilcoxon signed-rank test for zero difference,

z = 9.61, P = 7.60 Œ 1022). A subpopulation of the recorded population, 16.4% (n =

91/555), were detected as EBCs when using either head direction or movement di-

rection as the angular reference. However, a subpopulation of neurons were only

detected as EBCs when using head direction (n = 15/555) or movement direction (n

= 28/555). Because the directional estimates are largely dependent on one another

and there were no differences in the stability of receptive fields for EBCs detected

using either, we pooled these populations (n = 134/555, 24.1%).

3.2.3 Properties of RSC egocentric boundary vector receptive fields

Subpopulations of RSC EBCs exhibited either increased or decreased activation

when the animal occupied a particular orientation and distance relative to envi-
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ronmental boundaries (Fig. 3.1, E to G). In accordance with previous literature,

we refer to those neurons that were inhibited as inverse EBCs (Fig. 3.1G) and neu-

rons with excitatory receptive fields as EBCs (Fig. 3.1, E and F). Identification of the

center of mass of EBC receptive fields (either excitatory or inhibitory) revealed a bi-

modal distribution of preferred orientations that was best fit by a two-component

Von Mises mixture model with means of 108.1°(L) and 249.3°(R) relative to directly

in front of the animal (Fig. 3.1J; number of Von Mises mixture components deter-

mined via sequential improvement in log-likelihood ratio and cross-validation).

EBCs were recorded in both hemispheres, and there was a contralateral relation-

ship between the preferred orientation and the hemisphere in which the neuron

was recorded, with larger numbers of rightward EBC receptive fields recorded

in the left hemisphere and vice versa (Fig. 3.1J, right-hemi EBCs preferring left

side = 32/54, 59.3%; left-hemi EBCs preferring right side = 55/80, 68.8%; Watson-

Williams test, F = 41.93, P = 1.7 Œ 109). The distribution of preferred distances

was skewed toward animal-proximal receptive fields, with numerous EBCs hav-

ing receptive fields extending beyond range of direct somatosensory stimulation

of whiskers (Fig. 3.1K). Further, the size of EBC receptive fields increased as a

function of the preferred distance of the egocentric vector, indicating that the reso-

lution of the representation was dependent on proximity to boundaries (Fig. 3.1L,

Spearmans ρ = 0.59, P = 5.1 ∗ 1014). The presence of EBCs with preferred distances

distal to the animal suggested that the EBC response property was not dependent

on physical interaction with arena borders.
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3.2.4 EBC responses are localized within dysgranular RSC but lack topographic

organization

Egocentric boundary vector sensitivity was primarily observed in dysgranular

RSC, where 38.7% (n = 89/230) of neurons recorded were classified as EBCs. In

contrast, EBCs were observed in 9.9% (n = 24/241) of granular RSC and 25.0% (n

= 21/84) of intermediary area cells between the two subregions. By and large, the

distribution of EBCs among RSC subregions was consistent across animals. The

EBC response property was observed across a wide range of anterior/posterior

(A/P) coordinates spanning most of the RSC but had no further anatomical orga-

nization beyond subregion specificity (range = 2.9 to 6.8 mm relative to bregma).

The distribution of spike waveform widths across all RSC neurons was bimodal,

with identified EBCs primarily found in the cluster of neurons with longer dura-

tion waveforms (k-means clustering on waveform width, cluster 1 median = 0.15

s, IQR = 0.15 to 0.18 s, EBCs in cluster 1, n = 9/175, 5.1%; cluster 2 median = 0.31

s, IQR = 0.31 to 0.34 s; EBCs in cluster 2, n = 125/380, 32.9%). Further, EBCs had

overall low mean firing rates (EBCs = 1.62 Hz, IQR = 0.90 to 2.75 Hz, not-EBCs =

3.58 Hz, IQR = 1.15 to 8.51 Hz). Together, the EBC subpopulation was determined

to be primarily composed of putative principal neurons, suggesting that the EBC

signal is propagated across RSC subregions or into other brain regions. EBCs could

often be simultaneously recorded, which enabled an analysis of potential topog-

raphy in the distribution of preferred distance and orientation of the egocentric

boundary vector. Overall, 142 pairs of RSC EBCs were co-recorded across 29 ses-

sions. Of these pairs, 31.7% (n = 45/142) were recorded on the same tetrode, while

the remaining 68.3% of EBC pairs (n = 97/142) were concurrently recorded on dif-

ferent tetrodes. To assess whether there was organization to preferred orientation
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and distance as a function of proximity of two EBCs (i.e., observed on the same

or different tetrodes), we next calculated the difference in receptive field center of

mass for both angular and distance components for all pairs. Neither preferred

distance nor orientation was statistically different for EBCs recorded on the same

versus different tetrodes (absolute difference in preferred distance same tetrode

= 7.5 cm, IQR = 5 to 12.5 cm; absolute difference in preferred distance different

tetrode = 10 cm, IQR = 2.5 to 17.5 cm; Wilcoxon rank sum test, z = 1.44, P = 0.15;

absolute difference in preferred orientation same tetrode = 63°, IQR = 20.25 to 93°;

different tetrodes = 66.0°, IQR = 24.0 to 114.1°; Wilcoxon rank sum test, z = 1.08, P

= 0.28). Accordingly, we conclude that there is a lack of topographic organization

of egocentric boundary vector tuning in the RSC.

3.2.5 Egocentric boundary vector tuning in secondary motor cortex and poste-

rior parietal cortex but not medial entorhinal cortex

In three animals, a subset of more anterior recording tetrodes were positioned

in secondary motor cortex (M2, from bregma: A/P: 1.1 to 2.9 mm, medial/lat-

eral (M/L): 0.8 to 1.2 mm), and 56 neurons were recorded there. Of M2 neurons,

37.5% reached EBC criterion (n = 21/56). Similarly, 95 neurons across five rats were

recorded in posterior parietal cortex (from bregma: A/P: 3.7 to 5.9 mm, M/L: 1.5

to 2.4 mm) and a subpopulation of 21.1% (n = 20/95) reached EBC criterion. EBCs

and inverse EBCs were observed in both structures, and receptive fields had sim-

ilar angular and distance distributions as those observed in RSC. In contrast, only

3.0% (n = 9/297) of medial entorhinal cortex neurons recorded in similar condi-

tions reached EBC criterion, indicating that the egocentric vector signal was gen-

erally not present within the region(Wang et al., 2018a).
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3.2.6 EBC responsivity is not explained by self-motion correlates

In free exploration, spatial locations near environment boundaries uniquely re-

strict the behavioral affordances of the animal. Many observed EBC receptive

fields were proximal to the rat, firing only when the animal was close to bound-

aries and thus most limited in its possible actions. We next tested whether the

manifestation of egocentrically referenced boundary vector tuning was in actuality

reflective of self-motionrelated firing that was stereotyped near borders. We began

by constructing self-motionreferenced firing ratemaps during open-field sessions

(Whitlock et al., 2012). The angular difference between movement direction (∆θ)

and the Euclidian distance in 2D location was calculated across a sliding 100-ms

window for every position of the animal throughout a free exploration session (Fig.

3.2A, left). These displacement values were converted to Cartesian coordinates ref-

erenced to the previous location of the animal at each step, thus producing a map

of the distance and direction of movement of the animal for all position samples

within the exploration session (Fig. 3.2A, middle and right).

Firing rate as a function of these displacement values is presented for represen-

tative RSC neurons in Fig. 3.2 (C to F). The zero-line intersection indicates the po-

sition of the animal at the beginning of each 100-ms window, and the x and y axes

reflect displacement in lateral and longitudinal dimensions, respectively. Thus,

values to the right of the vertical zero line reflect the activity of the neuron when

the animal moved to the right relative to the previous position and direction of its

body axis, and the distance that the action took the animal is reflected in the posi-

tion of the value along the y axis. To quantify the stability of self-motion tuning, we

correlated self-motion ratemaps for each neuron that were individually computed

from interleaved temporal epochs (1 s in duration) within the free exploration ses-
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Figure 3.2: Caption on next page
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RSC egocentric boundary vector representations cannot be explained purely by
self-motion correlates. (A) Schematic of generation of self-motion referenced
ratemaps. Left: Example angular and distance translation across 100-ms tempo-
ral windows for two hypothetical position samples. Middle: Corresponding lat-
eral and longitudinal translation for left examples in self-motion referenced coor-
dinates. Right: Heat map depicting mean occupancy in seconds for lateral and
longitudinal translation combinations across a complete experimental session. d,
distance displacement; , angular displacement; colored arrows depict individual
position samples 100 ms apart; gray arrow, hypothetical trajectory. (B) In pink,
cumulative density functions for self-motion ratemap stability values (Spearmans
ρ) for all RSC neurons (randomization in gray). Red vertical line shows 95th per-
centile of randomized distribution and its intersection with the real distribution of
spatial stability. Percentage of neurons above red horizontal line have significant
self-motion stability. (C) Left: Self-motion stability score (x axis) versus absolute
ratio of activity on left versus right halves of self-motion ratemaps (y axis) for all
RSC neurons. Blue dots correspond to identified RSC EBCs. Red lines and cor-
responding values correspond to 95th percentiles of randomized distributions for
both metrics. Neurons with values in upper right region were determined to have
significant angular displacement tuning. Right: Example RSC neuron with signif-
icant firing rate modulation for clockwise movements. (D) On the left, same as
in (C) but for self-motion stability score versus absolute correlation between mean
firing rate and longitudinal displacement (speed). Right: Example RSC neuron
with significant firing rate modulation as a function of longitudinal displacement.
(E) Example RSC EBC with stable self-motion correlates. (F) Example RSC EBC
without stable self-motion correlates.

sion. A subset of RSC neurons (15.3% (n = 85/555)) exhibited self-motionrelated

activity that had greater stability than the 95th percentile of the distribution of

stability correlation values calculated following permutation tests (Fig. 3.2B). Of

this subpopulation, 28.2% (n = 24/85) had firing rate modulation that was biased

for leftward or rightward movements (Fig. 3.2C), while 34.1% (n = 29/85) were

sensitive to longitudinal movements consistent with speed tuning (Fig. 3.2D). Of

the EBC population, 20.9% (n = 28/134) met the stability criteria, indicating that a

small subpopulation of neurons exhibiting egocentric boundary vector tuning had

stable self-motion correlates (Fig. 3.2E). However, the vast majority of RSC EBCs

did not exhibit self-motion correlates, confirming that egocentric boundary vector
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tuning was primarily not an epiphenomenon of movement-related activity near

borders (Fig. 3.2F, n = 106/134, 79.1%).

Beyond EBCs, the present analysis demonstrated overall limited self-motion

tuning in RSC during free exploration. This observation shines new light on previ-

ously reported turn-sensitive neurons in RSC during track running tasks (Alexan-

der & Nitz, 2015). In previous work, the magnitude of clockwise or counterclock-

wise activation during track running was demonstrated to be generally insensi-

tive to the magnitude of angular velocity on a trial-by-trial basis. In combination

with the lack of self-motion tuning during free foraging observed here, the results

collectively suggest that reported egocentric correlates in RSC are externally refer-

enced and unrelated to the speed of angular movement.

3.2.7 Generalized linear models demonstrate robust egocentric vector tuning

of RSC EBCs

Self-motion is necessarily conflated with egocentric boundary vector tuning be-

cause the response primarily manifested during movement. An EBC may exhibit

stable firing rate fluctuations as a function of self-motion that are driven by the ego-

centric boundary vector receptive field, not the action state of the animal. For ex-

ample, an EBC with a receptive field to the animals left may also show self-motion

tuning for clockwise movements as a result of the animal being more likely to turn

clockwise when there is a wall occupying the egocentric receptive field. Yet, the

same neuron may not be activated when the animal turns clockwise in other loca-

tions within the environment that do not satisfy the egocentric boundary vector.

Thus, although informative about the prevalence of self-motion sensitivity in RSC,

a different approach was required to tease out the influence of self-motion and
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other potential spatial covariates on EBC activity patterns. We next implemented

a generalized linear model (GLM) framework to predict the probability of spiking

at each time point as a function of the relative influence of classes of allocentric,

self-motion, or EBC-related predictors (Fig. 3.3A). Allocentric predictors included

the head direction of the animal and x and y positions within the arena. Self-

motionrelated predictors included linear speed and angular displacement (i.e., the

differential of animal movement direction in 100-ms windows)

EBC-related predictors were more complicated as a single position sample or

spike had relationships to multiple locations along boundaries simultaneously. Ac-

cordingly, the EBC predictor could take many forms. To minimize the number of

subpredictors, EBC predictors were composed of the animals distance and ego-

centric bearing to the center of the arena. Unlike arena boundaries, the center of

the arena is a single coordinate that can be described as a function of individual

angular and distance components or their conjunction for each position sample.

Critically, EBCs were found to exhibit robust egocentric bearing and distance tun-

ing to the center of the arena, making the predictor a reasonable counterpart to

referencing single unit activity to arena walls.

We assessed the overall influence of each predictor class (allocentric, self-motion,

and EBC-related) on model fit by constructing a nested GLM, dropping each pre-

dictor class, and then making comparisons between resulting model fits. Figure 3B

depicts the difference of Akaike information criteria (dAIC), a metric of the decre-

ment to model fit, for both EBCs and non-EBCs between the full model and re-

duced models, with all allocentric, self-motion, or egocentric boundary predictors

removed. Larger dAIC values indicate greater impact of the predictor class within

the full model. Models without EBC and allocentric predictors had significant dif-
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Figure 3.3: Egocentric vector tuning is more robust than allocentric or self-motion
correlates using a generalized linear modeling framework. (A) Example GLM pre-
dictors composing allocentric, self-motion, and egocentric vector classes with cor-
responding actual and predicted firing rates and spike trains over a 5-s window.
(B) Boxplots depicting median and quartiles of log-transformed dAIC scores for
models, with all allocentric, self-motion, or egocentric vector predictors removed
(blue bars, EBCs; gray bars, non-EBCs). Larger dAICs indicate greater error in
model fit with removal of a predictor class. (C) Comparison of dAIC scores for
models with egocentric vector versus allocentric predictors removed (left) or ego-
centric vector versus self-motion predictors removed (right) for EBCs (blue) and
non-EBCs (gray). Rightward shifts indicate greater error in model fit for mod-
els with removed egocentric vector predictors. (D) For two example RSC EBCs,
predicted GLM spike trains from all models were used to construct EBRs and tra-
jectory plots. Left column: Actual EBR and corresponding trajectory plot below.
Second column: For the same cell, an EBR and corresponding trajectory plot for
the GLM constructed using all egocentric vector, allocentric, and self-motion pre-
dictors. Final three columns: EBRs and trajectory plots for each reduced model
and corresponding dAIC scores. (E) Comparison of dAIC scores for models with
the egocentric bearing versus the egocentric distance removed reveal greater im-
pact of egocentric bearing for EBCs
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ferences in fit between EBCs and non-EBCs (Fig. 3.3B, Kruskal-Wallis, χ2 = 270.73,

P = 1.95 ∗ 10−56, post-hoc Scheffe test EBC predictors, P = 1.73 ∗ 10−39, post-hoc

Scheffe test allocentric predictors, P = 0.03). There was no difference between these

subpopulations of RSC neurons for the removal of self-motion covariates from the

model, further supporting that EBCs were not more sensitive to speed or angu-

lar displacement than the remainder of the RSC population (Fig. 3.3B, post hoc

Scheffe test self-motion predictors, P = 0.17).

A clear divergence emerged in the importance of EBC-related predictors for

the EBC and non-EBC subpopulations. As reflected in the difference in magnitude

of dAIC, EBC predictors had greater impact than either allocentric or self-motion

predictors for the EBC population (Fig. 3.3C, blue; dAICEBC − dAICAllo for EBCs

= 186.8, IQR = 33.8 to 450.9; dAICEBC − dAICSM for EBCs = 238.8, IQR = 44.1

to 507.1) in contrast to the non-EBC population, which had similar dAIC scores

(near 0) for models lacking EBC predictors and other predictor classes (Fig. 3.3C,

gray; dAICEBC − dAICAllo for non-EBCs = 15.3, IQR = 113.3 to 9.8; dAICEBC −

dAICSM for non-EBCs = 0.05, IQR = 22.5 to 29.8). Overall, the impact of EBC-

related predictors relative to other predictor classes was significantly greater for

EBC versus non-EBC sub-populations (dAICEBC-dAICAllo for EBCs versus non-

EBCs, Wilcoxon rank sum, z = 12.0, P = 1.68 ∗ 1033; dAICEBC − dAICSM for EBCs

versus non-EBCs, Wilcoxon rank sum, z = 11.2, P = 2.60 ∗ 10−29). EBCs observed in

both parietal cortex and M2 were also substantially more influenced by egocentric

vector predictors than either allocentric or self-motion predictor classes (parietal

cortex: dAICEBC-dAICAllo for EBCs versus non-EBCs, Wilcoxon rank sum, z =

3.01, P = 0.003; dAICEBC − dAICSM for EBCs versus non-EBCs, Wilcoxon rank

sum, z = 4.55, P = 5.35 ∗ 10−6; M2: dAICEBC − dAICAllo for EBCs versus non-EBCs,
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Wilcoxon rank sum, z = 3.72, P = 1.96 ∗ 10−4; dAICEBC − dAICSM for EBCs versus

non-EBCs, Wilcoxon rank sum, z = 3.42, P = 6.29 ∗ 10−4).

These results suggested that although models without allocentric or self-motion

predictors could yield significantly decreased model fit, the vast majority of EBC

neurons were significantly more affected by EBC predictors. Two example EBCs

in Fig. 3.3D illustrate this point, wherein a spike train generated from the output

of each model was used to construct trajectory plots and EBRs. In both cases, the

model lacking egocentric orientation and distance information yields a trajectory

plot and EBR that is substantially poorer at reconstructing the actual data than any

other reduced model. Although egocentric predictors were the dominant influ-

ence on EBC activation, all EBCs were statistically affected by the removal of more

than one predictor category (assessed via chi-square tests of log-likelihood ratios,

P < 0.001). In this manner, the GLM analyses also revealed that RSC EBCs were

conjunctively sensitive to the position of arena boundaries in egocentric coordi-

nates and allocentric heading or location simultaneously. This feature of EBC re-

sponsivity is consistent with theoretical work proposing a transformation between

egocentric and allocentric spatial representations within RSC (Bicanski & Burgess,

2018).

3.2.8 GLM confirms vectorial representation

The use of the GLM framework provided an opportunity to verify that RSC neu-

rons with egocentric boundary sensitivity actually formed vector representations

of the relationships between environmental boundaries and the animal. By drop-

ping out egocentric bearing and egocentric distance from the model individually,

we were able to investigate the relative influence of the individual components
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of the egocentric boundary vector in isolation for each neuron. Significant model

decrements were observed in 93.3% (n = 125/134) of EBCs following removal of

the egocentric bearing component and 55.9% (75/134) of EBCs were affected by

the removal of egocentric distance predictors. Overall, the magnitude of error to

model fit was substantially greater when egocentric bearing was removed, indi-

cating that, although both distance and orientation components are critical for

egocentric boundary vector responsiveness, the directional component more ro-

bustly drives neurons exhibiting this tuning preference (Fig. 3.3E, difference in

dAIC for egocentric bearing versus egocentric distance = 2269.7, IQR = 1283.3 to

3767.5; Wilcoxon signed-rank test, z = 9.7, P = 2.96 Œ 1022). Consistent with ob-

servations from the GLM, the number of detected EBCs decreased as the allowed

variability in preferred distance across the session was systematically decreased

(i.e., detected EBCs were required to have more reliable distance tuning across the

session). These results indicate that although a large proportion of RSC neurons

can be described as having egocentric boundary vectors, a number of neurons are

primarily responsive to egocentric boundary bearing as observed in the lateral en-

torhinal and postrhinal cortices (Gofman et al., 2019; LaChance et al., 2019; Wang

et al., 2018a).

3.2.9 EBCs respond to local, not distal, environmental features

Characterization of EBC properties and self-motion correlates were conducted in

baseline sessions in which the open arena remained in a fixed location relative

to the experimental room and fixed distal cues therein. We next conducted a se-

ries of experimental manipulations of the relationship between the familiar arena

and the testing room to confirm that EBC response properties were defined by the
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relationships between environmental boundaries and the animal itself. First, we

rotated the open field 45°to maximally disrupt correspondence between arena and

distal walls or cues present within the recording environment to verify that EBC

responses were anchored to local boundaries and not the broader recording room.

Under these conditions, we recorded a total of 65 RSC neurons (across four rats

and 14 sessions), of which 44.6% (n = 29/65) had EBC sensitivity. Consistent with

EBC responses being referenced to the rat, receptive fields in rotated arenas main-

tained the same orientation and distance with respect to the animal, although arena

boundaries now fell along completely different allocentric axes (Fig. 3.4, A to C;

difference between baseline and rotated preferred orientation = 9°, IQR = 11.25 to

33.0°; Wilcoxon signed-rank test, z = 1.17, P = 0.24; difference between baseline and

rotated preferred distance = 3.0 cm, IQR = 3.0 to 5 cm; Wilcoxon signed-rank test,

z = 1.44, P = 0.15). Although vector tuning remained intact, there were slight but

significant changes to ratemap coherence between baseline and rotation sessions,

which suggested that the quality of the egocentric boundary receptive field was

decremented across conditions (Fig. 3.4D; difference between baseline and rotated

ratemap coherence = 0.02, IQR = 0.01 to 0.04; Wilcoxon signed-rank test, z = 2.12,

P = 0.03).

Consistency in tuning could emerge if the allocentric map anchored to local

boundaries rather than distal cues. This was not the case, as a population of simul-

taneously recorded head direction cells (n = 4; Fig. 3.4A, right) exhibited similar

mean tuning across the rotated and nonrotated conditions (n = absolute median

tuning difference = 11.9°, absolute maximum tuning difference = 20.9°). Accord-

ingly, arena rotation experiments dissociated the directional component of EBCs

from the allocentric reference frame of head direction cells.
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Figure 3.4: Caption on next page
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EBCs are anchored to local boundaries, respond in novel environments, and lose
sensitivity in arenas without explicit borders (A) Left: Trajectory plot and EBR for
an example EBC with similar egocentric boundary vector tuning in baseline exper-
imental session (top) and a second session in an environment rotated 45°(bottom).
Right: Example head direction neuron sustains directional tuning across both con-
ditions. (B) Preferred orientation of EBC receptive fields in all arena manipula-
tion sessions subtracted from the preferred orientation in baseline sessions. (C)
Preferred distance of EBC receptive fields in all arena manipulation sessions sub-
tracted from the preferred distance in baseline sessions. (D) EBC receptive field
coherence in all arena manipulation sessions subtracted from receptive field co-
herence in baseline sessions. (E) Trajectory plot and EBR for an example EBC with
similar egocentric boundary vector tuning in baseline experimental session (top)
and a second session in an expanded arena (bottom). (F) Trajectory plot and EBR
for an example EBC with similar egocentric boundary vector tuning in baseline
experimental session (top) and a second session in a novel arena (bottom). (G)
Trajectory plot and EBR for two example EBCs between baseline session (top) and
session with walls removed (bottom). Left EBC has a more distal receptive field
and exhibits similar egocentric boundary vector tuning. Right EBC has a more
proximal receptive field and has disrupted tuning in arena with no walls. (H) For
EBCs recorded in arenas without walls, the preferred orientation at baseline plot-
ted against the change in EBC receptive field coherence between the two sessions
is shown. (I) Same as (H) but for change in coherence as a function of baseline
preferred distance.

3.2.10 EBC responsivity is anchored to boundaries, not the center of the envi-

ronment

RSC EBCs exhibited egocentric vector sensitivity to both arena boundaries and

the center of the environment, which we used to our advantage in GLM analyses.

This occurs because arena boundaries have a fixed relationship relative to the cen-

ter of the environment. Accordingly, an obvious question is whether the egocen-

tric boundary response is in actuality defined as an egocentric vector to the center

of the arena. We addressed this possibility by comparing preferred orientation

and distance for 13 RSC EBCs (from four rats across 11 sessions) between base-

line arenas and open fields expanded up to 1.75 m2 (Fig. 3.4E). If EBC responses
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were anchored to boundaries, we anticipated that the orientation and preferred

distance would remain consistent across both conditions. Conversely, if the re-

ceptive field was defined by a vector to the center of the arena, then the distance

component of the egocentric boundary vector would remain fixed to this point.

In this scenario, the preferred distance would either move away from the animal

in expanded arenas or potentially scale with the arena expansion. We observed

that the preferred orientation, preferred distance, and ratemap coherence were not

altered between baseline and expanded field sessions, confirming that EBCs were

anchored to boundaries and not the center of the arena (Fig. 3.4, B to D, differ-

ence between baseline and expanded preferred orientation = 6°, IQR = 15.75 to

32.25°; Wilcoxon signed-rank test, signed-rank = 55.5, P = 0.51; difference between

baseline and expanded preferred distance = 3 cm, IQR = 5.0 to 3.5 cm; Wilcoxon

signed-rank test, signed-rank = 30, P = 0.51; difference between baseline and ro-

tated ratemap coherence = 0.01, IQR = 0.04 to 0.01; Wilcoxon signed-rank test,

signed-rank = 31, P = 0.34).

3.2.11 EBC responsivity is stable in novel environments

Neurons within the broader neural spatial circuitry such as grid cells, head di-

rection cells, and place cells exhibit consistent, albeit remapped, spatial receptive

fields in novel environments. We next questioned whether egocentric boundary

vectortuned neurons of RSC would exhibit similar stability in their selectivity. We

recorded 17 RSC cells including 8 EBCs in familiar then novel environment ses-

sions (Fig. 3.4F, four rats across five sessions). Neither distance nor orientation

components of the egocentric boundary vector were altered in the novel environ-

ment relative to baseline, illustrating that EBCs are not experience dependent and
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do not remap between environments (Fig. 3.4, B and C, difference between base-

line and novel preferred orientation = 9°, IQR = 12 to 52.5°; Wilcoxon signed-rank

test, signed-rank = 23.5, P = 0.48; difference between baseline and novel preferred

distance = 1.5 cm, IQR = 5 to 0 cm; Wilcoxon signed-rank test, signed-rank = 3, P

= 0.31). Coherence of EBC receptive fields was unchanged between environments,

providing evidence that the resolution of the egocentric location signal was robust

in both familiar and novel arenas (Fig. 3.4D; difference between baseline and novel

ratemap coherence = 0.01, IQR = 0.02 to 0.06; Wilcoxon signed-rank test, signed-

rank = 22, P = 0.64).

3.2.12 Stability of EBC subpopulations requires physical boundaries

Sensory information originating from multiple modalities likely underlies the ego-

centric nature of the RSC boundary vector responses. There are two reasons to

believe that somatosensation may inform the preferred orientation and distance of

a subset of EBCs. First, many RSC neurons with egocentric boundary vector tun-

ing had preferred distances that were proximal to the animal and within or near

whisker range (the preferred distance was less than 10 cm for a subset of 24.7% of

EBCs; Fig. 3.1K). Second, the preferred orientation of EBCs spanned all egocentric

bearing angles but was biased laterally (in a contralateral manner), perhaps reflect-

ing whisker interaction with borders (Fig. 3.1J). As such, we questioned whether

the presence of a physical boundary was required for EBC spatial tuning and/or

particular subsets of EBC receptive fields. To this end, baseline sessions were com-

pared to recordings in environments that were bordered by drop-offs with no arena

walls (n = 35 neurons from seven sessions across three rats). Twenty-five neurons

recorded under these conditions exhibited EBC sensitivity in the baseline session
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(Fig. 3.4G). EBCs detected in the baseline session had similar preferred orienta-

tions but more distal preferred distances in sessions with no physical walls (Fig.

3.4, B and C, difference between baseline and no walls preferred orientation = 0°,

IQR = 63.75 to 27.75°; Wilcoxon signed-rank test, z = 1.02, P = 0.31; difference be-

tween baseline and no walls preferred distance = 10.0 cm, IQR = 25.75 to 4.5 cm;

Wilcoxon signed-rank test, z = 3.86, P = 1.12 Œ 104). In addition, the overall coher-

ence of the egocentric receptive field was significantly decreased in the absence of

physical walls and fewer EBCs were detected in these sessions (Fig. 3.4D; differ-

ence between baseline and no walls ratemap coherence = 0.16, IQR = 0.05 to 0.22;

Wilcoxon signed-rank test, z = 3.94, P = 8.1 Œ 105; EBCs with no walls = 48.6%, n

= 17/35; EBCs with walls = 68.6%, n = 24/35). Collectively, these results suggest

that the EBC population signal is degraded in the absence of explicit borders. De-

spite this fact, numerous EBCs sustained their preferred egocentric vector across

conditions. To investigate why some neurons were disrupted and not others, we

next examined the difference in receptive field coherence as a function of baseline

preferred orientation and distance. There was no relationship between the base-

line preferred orientation of the neuron and the magnitude of degradation of the

spatial signal with no physical walls (Fig. 3.4H, circular-linear correlation, = 0.17,

P = 0.71). In contrast, the more proximal the egocentric boundary receptive field

was to the animal at baseline, the more decreased the tuning was in an arena with

no physical walls (Fig. 3.4I, Spearmans correlation, = 0.50, P = 0.01). These results

support the idea that the subset of animal-proximal EBCs (Fig. 3.1E) may rely on

somatosensory interaction with borders, while EBCs with more animal-distal re-

ceptive fields (Fig. 3.1F) are preserved in environments with no physical walls

because they rely on other sensory modalities.
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3.2.13 RSC EBCs are insensitive to environmental geometry, which yields a

directional representation of environment shape

Boundaries are unique environmental features in that they both restrict naviga-

tional affordances and define the spatial structure of the broader environment. Ac-

cordingly, the presence of boundary-sensitive neurons within RSC indicates that

the region is capable of detecting features of environmental geometry. In a square

open field like the one used for baseline experimental sessions, there are two pri-

mary defining features of environmental geometry: (i) conjunctions of walls form-

ing 90°corners and (ii) boundaries that are orientated along two axes of allocentric

environmental directions. As such, we questioned whether EBCs would maintain

their preferred tuning in circular environments that excluded both of these geo-

metric features. We recorded 23 RSC EBCs as animals free foraged in square and

circular environments across two experimental sessions each day (Fig. 3.5A, total

RSC neurons recorded under these conditions = 32 across four rats and 10 ses-

sions). As with most other environmental manipulations, EBC boundary vectors

were unchanged when the geometry of the environment was altered (Fig. 3.5B, dif-

ference between square and circle preferred orientation = 9.0°, IQR = 28.5 to 15.75°;

Wilcoxon signed-rank test, z = 1.14, P = 0.25; difference between square and circle

preferred distance = 3.0 cm, IQR = 8.0 to 2.75 cm; Wilcoxon signed-rank test, z =

1.60, P = 0.11; difference between square and circle ratemap coherence = 0.01, IQR

= 0.03 to 0.03; Wilcoxon signed-rank test, z = 0.76, P = 0.44).

A notable feature of many EBCs (Fig. 3.5A, left), but not all (Fig. 3.5A, right),

was the structure of head direction tuning between square and circular environ-

ments. EBCs would typically have four-pronged directional tuning that aligned

with the orientation of the walls in square environments (Fig. 3.5A, left top). How-
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Figure 3.5: RSC EBCs are insensitive to environmental geometry, which generates
a directional representation of environment shape. (A) Trajectory plots, EBRs, and
head direction tuning plots for two example RSC EBCs for experimental sessions
in a square (top) and circular environment (bottom). (B) Preferred orientation, pre-
ferred distance, and EBC receptive field coherence from recording sessions in the
circular arena subtracted from the corresponding metrics in square arena sessions.
(C) Head direction tuning plots for all RSC neurons (in the same order) in the
square arena (left) and circular arena (right). Color depicts intensity of activation
(blue is zero firing rate; yellow is maximum firing rate). Bottom in black: The aver-
age head direction tuning across the full population of RSC neurons for the square
and circular environments. Gray dashed lines depict 90°axes. (D) Arena classifi-
cation accuracy for linear discriminant analysis on head direction tuning from (C).
Teal, actual classification; gray, classification after randomizing arena identity. Red
dashed line is statistical chance.
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ever, as a consequence of consistent egocentric boundary vector tuning in envi-

ronments of different shapes, EBC tuning yielded directionally uniform tuning in

circular environments (Fig. 3.5A, left bottom). Figure 5C depicts head direction

tuning plots for the full population of RSC neurons recorded in square and circu-

lar arenas. When the mean population head direction tuning was examined, dis-

tinct peaks fell at the four cardinal directions in square arenas, but no such peaks

were observed in their circular counterparts (Fig. 3.5C, bottom plots). We hypothe-

sized that differences between directional tuning, as a consequence of the presence

of EBCs, would allow downstream regions to disambiguate environments of dif-

ferent geometries. To test this, we trained a linear classifier on a random 80% of

the directional tuning curves from both environments and attempted to predict

which environment the other 20% of head direction tuning curves were recorded

within (Fig. 3.5D, linear discriminant classifier, n = 100,000 iterations). Consis-

tent with the hypothesis that geometry could be decoded from a population with

EBC tuning, the arena could be identified correctly with 67.7% accuracy (IQR = 50

to 75%), which was statistically significant from both statistical chance (Wilcoxon

signed-rank with 50% accuracy median, z = 218.2, P = 0) and a classifier ran with

arena identity randomized (randomized arena identity = 50%; IQR = 41.7 to 58.3%;

Wilcoxon rank sum test, z = 188.4, P = 0). We conclude that regions having ego-

centric boundary vector tuning may provide punctate directional signals to down-

stream regions such as the medial entorhinal cortex that can be compared to other

directional inputs to inform circuits about environment geometry.
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3.2.14 A subpopulation of RSC EBCs are theta-modulated

In building off of geometry detection in RSC EBC ensembles, a natural next ques-

tion is how might these egocentric positional signals be integrated within the broader

spatial circuitry. Previous work has demonstrated that RSC local-field potentials

feature a prominent theta oscillation during active movement that is strongly co-

herent with theta rhythms observed in the dorsal hippocampal formation (Alexan-

der et al., 2018; Borst & Anderson, 2017). Spatial representations in regions with

strong theta rhythmicity, such as medial entorhinal cortex or hippocampus, are

strongly influenced by boundaries and environmental geometry (Muller & Kubie,

1987; O’Keefe & Burgess, 1996; Keinath et al., 2017; Kinsky et al., 2018; Krupic et al.,

2015). We next questioned whether RSC neurons exhibiting egocentric boundary

vector sensitivity were potentially synchronized with these areas via theta oscilla-

tions. Consistent with previous work, we observed a strong RSC theta oscillation

and that individual RSC neurons engaged with the theta oscillation (Fig. 3.6, A

and B). A small subpopulation of RSC neurons exhibited theta rhythmic spiking

(as revealed by autocorrelations of their spike trains) and were phase-locked to

the locally recorded theta oscillation (Fig. 3.6B; 4%, n = 22/555). A larger subset of

RSC neurons did not have detectable theta rhythmic spiking but were significantly

phase-locked to the theta oscillation (Fig. 3.6C; 27.6%, n = 153/555, see Materials

and Methods).

Virtually no EBCs exhibited intrinsically theta rhythmic spiking (0.08%, n =

1/134), but 25.4% of EBCs (n = 34/134) were phase-locked to RSC theta oscilla-

tions (Fig. 3.6D). The strength of theta modulation (MRL) was similar for theta-

modulated non-EBCs and EBCs (Fig. 3.6E, non-EBC MRL = 0.13, IQR 0.10 to 0.18;

EBC MRL = 0.11, IQR = 0.09 to 0.14, Wilcoxon rank sum test, z = 1.59, P = 0.11).
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Figure 3.6: A subset of RSC EBCs is theta-modulated. (A) Two examples of RSC
theta oscillation (gray) and spike train of simultaneously recorded neurons (blue).
Bottom left: Scale bar and schematic depicting correspondence between oscillation
and theta phase. (B) Left: Circular histogram depicting spike counts as a function
of theta phase for the neuron in the top row of (A). Density of spikes near 2 indi-
cates that the neuron is locked to the peak of the theta phase. Right: Spike train
autocorrelogram for the same neuron shows theta rhythmic spiking. (C) Same as
in (B) but for the neuron depicted in the bottom row of (A). This neuron is signifi-
cantly theta phase-modulated but does not exhibit theta rhythmic spiking. (D) Ex-
ample theta phase-modulated EBCs. Top row: Circular histogram of spike counts
versus theta phase. Bottom row: Corresponding EBRs. (E) Strength of theta phase
modulation as measured by the MRL for non-EBCs (gray) and EBCs (blue). EBCs
have theta modulation significantly similar to non-EBCs with significant phase re-
lationships. (F) Preferred theta phase for all EBCs (blue) and non-EBCs (gray).
EBCs tended to prefer the falling phase of the theta oscillation, while non-EBCs
preferred the rising phase.
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Non-EBC theta-locked RSC neurons were biased to firing during the rising phase

of the theta rhythm, whereas theta-locked EBCs preferred the falling phase (Fig.

3.6F, non-EBCs phase = 3.55 rad, IQR = 1.94 to 4.87 rad; EBCs phase = 2.31 rad,

IQR = 1.64 to 5.07 rad; Watson-Williams test, F = 45.4, P = 3.14 Œ 1010). These

results confirm that a subpopulation of RSC EBCs are phase-locked to theta oscil-

lations present in RSC, consistent with recent modeling work suggesting periodic

modulation as a mechanism for comparing current sensory input about the envi-

ronment against stored spatial representations (Bicanski & Burgess, 2018).

3.3 DISCUSSION

3.3.1 RSC spatial representations facilitate reference frame transformations

The current data support and extend the functional role of RSC in reference frame

transformations. Specifically, the RSC population exhibits sensitivity to multiple

spatial coordinate systems, an essential characteristic of circuitry capable of gen-

erating such translations. In the current work, we report a large subset of spa-

tially reliable neurons that encode the position of boundaries in egocentric coor-

dinates. Referred to as EBCs, these neurons robustly encoded a vectorial repre-

sentation of the distance and orientation of any boundary relative to the animal

itself (i.e., in an egocentric reference frame) (Gofman et al., 2019; Hinman et al.,

2019; LaChance et al., 2019; Wang et al., 2018b). Egocentric boundary representa-

tions are predicted to form a critical component of the coordinate transformation

circuit, as the response property could function to inform the broader spatial cir-

cuitry about the position of external landmarks in a viewpoint-dependent manner

(Bicanski & Burgess, 2018; Byrne et al., 2007). RSC neurons also exhibited multiple

forms of allocentric modulation. Nearly half of RSC neurons exhibited reliable and
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spatially anchored responses during free foraging behavior. Spatially stable cells

had complex 2D spatial representations that, in some cases, were reminiscent or

possibly descended from spatial non-grid cells observed in medial entorhinal cor-

tex (Diehl et al., 2017), allocentric boundary vector cells and axis-tuned neurons of

dorsal subiculum (Hartley et al., 2000; Lever et al., 2009; Olson et al., 2017), and/or

location-modulated head direction cells of post-subiculum (Peyrache et al., 2017).

A second form of allocentric response was observed in a subset of RSC neurons

that exhibit allocentric head direction sensitivity. These forms of allocentric spatial

information may be processed or compared with egocentric boundary vector in-

formation within theta time scales. Both subsets of neurons exhibited theta phase

modulation, which is well known to synchronize information processing through-

out the broader allocentric spatial circuit. When paired with the unique anatom-

ical connectivity of RSC with both egocentric and allocentric processing regions,

the presence of neurons, such as EBCs, that are sensitive to one or more spatial

coordinate systems signifies that the region is capable of interrelating external and

internal spatial information for the initial construction and use of stored spatial

representations. This fact may explain the diversity of impairments observed in

spatial navigation, learning, and memory that occur following damage, lesion, or

inactivation of the area (Vann et al., 2009).

3.3.2 The RSC egocentric boundary vector code is context independent, which

generates a directional code that reflects environment geometry

EBC spatial receptive fields were activated when the animal was positioned with

both a specific orientation and distance from an environmental boundary. EBCs

maintained their preferred vector tuning preference in rotated, expanded, and
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novel arenas (Fig. 3.4). Accordingly, the EBC signal does not remap across en-

vironments, thus providing a stable, context invariant, positional metric. This sta-

bility can be contrasted to the vast majority of allocentric representations, such as

place cells, grid cells, or head direction cells, that are known to either show global

or rate remapping, translations, or rotations between environments (Muller & Ku-

bie, 1987; Fyhn et al., 2007; Yoganarasimha et al., 2006). In contrast, border cells

of medial entorhinal cortex and boundary vector cells of dorsal subiculum main-

tain similar tuning preferences in a context invariant manner analogous to that

observed in the EBCs shown here (Solstad et al., 2008; Lever et al., 2009). It re-

mains to be seen what interactions exist between cells having these different types

of boundary-anchored receptive fields; however, the current data suggest that

boundary-sensitive neurons may provide a foundational map upon which other

spatial representations can be situated. Like border and boundary vector cells, RSC

EBC vector representations did not remap in environments of different geometries

(Solstad et al., 2008; Lever et al., 2009). However, because EBCs respond in a di-

rectionally dependent manner along every environmental border, the mean direc-

tional tuning of the RSC population reflected the shape of the environment (Fig.

3.5). Here, we demonstrated that this directional signal could be used to distin-

guish arena shape. Relative positions of boundaries have repeatedly been shown

to alter or anchor allocentric spatial representations, especially in medial entorhi-

nal grid and hippocampal place cells ((Muller & Kubie, 1987; O’Keefe & Burgess,

1996; Kinsky et al., 2018; Krupic et al., 2015; Barry et al., 2007). Medial entorhi-

nal cortex receives excitatory projections, both directly and indirectly, from RSC

and projects into hippocampus. We hypothesize that the RSC arena geometryre-

lated directional signal may serve to provide excitatory drive at specific allocentric
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head directions to inform the circuit about the relative angles among borders. The

invariance of EBC response fields and their relationship to environmental geome-

try may also support or drive route-referenced spatial representations observed in

RSC and parietal cortex, which are anchored to space as defined by the route itself

(Alexander & Nitz, 2015; Miller et al., 2019; Nitz, 2006). These route-centric activity

patterns are often modulated by the geometric shape of the trajectory, which could

be partially explained by EBCs responding to specific environmental features such

as corners, repeating egocentric views, or some conjunction of EBC responsivity

and other spatial covariates (Whitlock et al., 2012; Alexander & Nitz, 2017; Nitz,

2006). Accordingly, future work is needed to assess the relationship between EBC

sensitivity in the open field and responses of RSC and parietal cortex in linearized

environments.

3.3.3 EBCs are primarily restricted to the dysgranular RSC

A notable anatomical feature of the EBC population was that it was primarily lo-

calized to the dysgranular subregion of RSC. Dysgranular RSC has connectivity

weighted toward egocentric coordinate systems, as it is reciprocally innervated by

cortical regions important for processing sensory and motor information as well as

association areas such as parietal cortex wherein egocentrically referenced spatial

responses have been observed (9, 13, 14, 20). Further, the concentration of EBCs in

dysgranular RSC is consistent with theoretical work proposing a circuit for trans-

lating between egocentric and allocentric coordinate systems that includes parietal

cortex, RSC, and the extended hippocampal formation as primary hubs (Bican-

ski & Burgess, 2018; Byrne et al., 2007; Clark et al., 2018; Rounds et al., 2018). Of

note, dysgranular RSC was shown by Jacob et al. to have bidirectional head di-
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rection cells that respond to local reference frames in multicompartment environ-

ments with distinct contextual cues (Jacob et al., 2017). This sensitivity ultimately

yields allocentric directional tuning plots that are bimodal. In the current work,

strongly tuned EBCs commonly exhibited quad-modal allocentric directional tun-

ing that was aligned with the four walls of square environments. This similarity

in directional tuning response of EBCs and bidirectional head direction cells and

their colocalization in dysgranular RSC raises questions as to the nature of the

relationship or interactions between these functional subpopulations. One possi-

bility is that neurons in dysgranular RSC are prone to represent the locations of

spatial landmarks using egocentric vectors and that EBCs and bidirectional head

direction cells are both special cases constrained by their respective experimental

setups. In the case of EBCs reported here, the vector may anchor to boundaries

because borders are the only landmarks present in the open field that can cause

activation of the receptive field. In the work of Jacob et al., the egocentric vector

may respond to borders as well as local visual landmarks or doorways between

two compartments. The bimodal directional tuning in the latter experiment may

arise from constrained egocentric sampling along two axes as a consequence of the

multicompartment environment segmenting two opposing walls. This proposed

egocentric vector encoding of environment features in RSC may underlie func-

tional correlates of local heading orientation, scene processing, or goal location in

RSC in humans (Chrastil et al., 2015; Vass & Epstein, 2013; Marchette et al., 2014).

3.3.4 A network of vector-based egocentric spatial representation

In addition to RSC, EBCs were also observed in both parietal and secondary mo-

tor cortices (M2) but not medial entorhinal cortex, which is commonly thought to
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represent space in allocentric coordinates. The presence of EBCs in parietal cortex

converges nicely with previous work, demonstrating egocentric bearing sensitiv-

ity of neurons within the region to visual cues positioned along boundaries (Wilber

et al., 2014). Computational models exploring circuitry for reference frame trans-

formations and spatial imagery initially predicted EBCs to exist in parietal cortex

(Byrne et al., 2007). However, egocentric responses were initially reported in lateral

entorhinal cortex, dorsal striatum, and postrhinal cortex (Gofman et al., 2019; Hin-

man et al., 2019; Wang et al., 2018a) and now, here in RSC, parietal cortex and M2.

Accordingly, a picture of a distributed network of interconnected regions with ego-

centric vector representations is beginning to emerge. Given the presence of EBCs

in several midline structures, it is possible that EBCs are also present in the anterior

cingulate cortex as well as thalamic structures that innervate midline associative

cortex. In the current report, we observe lateralization of the preferred orientation

of EBC receptive fields that is contralateral with the hemisphere that the neuron is

within. This may offer clues as to the origin of the egocentric signal. Specifically,

it suggests that EBCs are likely to be driven directly by contralaterally projecting

thalamic afferents or early cortical processing regions, which also have this form

of lateralization. Regardless, future investigations should focus on dependencies

among the regions currently implicated, as the EBC network may have functional

and anatomical connectivity resembling the well-characterized extended head di-

rection cell network.
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3.4 MATERIALS AND METHODS

3.4.1 Subjects

Male Long-Evans rats (n = 7; Charles River Laboratories, Wilmington, MA) were

housed individually in plexiglass cages and kept on a 12-hour light/dark cycle.

Rats had continuous access to food during a habituation period lasting approxi-

mately 1 week. After this period, animals were food-restricted until they reached

85 to 95% of their weight during free feeding. Water was available continuously.

All procedures were approved by the Institutional Animal Care and Use Commit-

tee at Boston University.

3.4.2 Data Analysis

3.4.2.1 2D spatial ratemaps and spatial stability

Animal positional occupancy within an open field was discretized into 3 cm Œ 3

cm spatial bins. For each neuron, the raw firing rate for each spatial bin was calcu-

lated by dividing the number of spikes that occurred in a given bin by the amount

of time the animal occupied that bin. Raw firing ratemaps were smoothed with

a 2D Gaussian kernel spanning 3 cm to generate final ratemaps for visualization.

Individual raw firing ratemaps were also computed after dividing the session into

halves. To assess spatial stability of an individual RSC neuron, the similarity of

the two raw firing ratemaps from nonoverlapping halves of the recording session

was calculated using the nonparametric Spearmans rank correlation coefficient.

To determine whether a given spatial stability value was greater than expected by

chance, we next conducted randomization tests wherein the spike train for each

RSC neuron was circularly shifted relative to spatial position 100 times, and indi-
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vidual firing ratemaps were constructed for nonoverlapping halves that were then

correlated. The spatial stability correlation values following randomizations were

collapsed into a single distribution for all neurons and randomizations, and the

99th percentile of all values was calculated. RSC neurons with real spatial stability

correlations greater than this threshold were determined to have robust 2D spatial

stability.

3.4.2.2 Construction of EBRs

EBRs were computed in a similar manner as 2D spatial ratemaps but referenced

relative to the animal rather than the spatial environment. The position of the

boundaries relative to the animal was calculated for each position sample (i.e.,

frame). For each frame, we found the distance, in 2.5-cm bins, between arena

boundaries and angles radiating from 0°to 360°in 3°bins relative to the rats po-

sition. Critically, angular bins were referenced to the head direction or movement

direction of the animal such that 0°/360°was always directly in front of the animal,

90°to its left, 180°directly behind it, and 270°to its right. Intersections between each

angle and environmental boundaries were only considered if the distance to inter-

section was less than or equal to one-half the length of the most distant possible

boundary (in most cases, this threshold was set at 62.5 cm or half the width of the

arena). In any frame, the animal occupied a specific distance and angle relative to

multiple locations along the arena boundaries, and accordingly, for each frame, the

presence of multiple boundary locations was added to multiple 3°x2.5 cm bins in

the egocentric boundary occupancy map. T he same process was completed with

the locations of individual spikes from each neuron, and an EBR was constructed

by dividing the number of spikes in each 3°x2.5 cm bin by the amount of time that
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bin was occupied in seconds. Smoothed EBRs were calculated by convolving each

raw EBR with a 2D Gaussian kernel (5 bin width, 5 bin SD). For EBR construction

and other analyses in the current work, head direction was the instantaneous an-

gle calculated from the location of two position tracking diodes, and movement

direction was defined as the instantaneous derivative of the position signal. Head

direction was used as the primary directional variable in EBR construction, but a

comparison to movement direction determined the latter to be a less robust signal

for egocentric boundary vector tuning. However, some neurons showed signifi-

cant egocentric boundary tuning in relationship to movement direction rather than

head direction.

3.4.2.3 Head direction cell identification

For each neuron, the MRL of the firing rate as a function of head direction was

calculated as

Rm =
cos(θ̄)

∑n
i=1 Ficos(θi) + sin(θ̄)

∑n
i=1 Fisin(θi)∑n

i=1 Fi

(3.1)

where θ̄was the head direction of firing and Fi and i were the firing rate and head

direction for bin i. Head direction cells were identified as those cells with Rm

greater than 0.20. Head direction cells (n = 27/555; 4.9% of all RSC neurons) were

removed from the possible pool of RSC EBCs.

3.4.2.4 Identification of neurons with egocentric boundary vector tuning

To identify neurons with significant egocentric boundary vector sensitivity, we be-

gan by calculating the mean resultant (MR) of the cells egocentric boundary direc-

tional firing collapsed across distance to the boundary. The mean resultant was
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calculated as

MR = (
n∑

θ=1

m∑
D=1

Fθ,D ∗ ei∗θ)/(n ∗m) (3.2)

where θ is the orientation relative to the rat, D is the distance from the rat, Fθ,D

is the firing rate in a given orientation-by-distance bin, n is the number of orien-

tation bins, m is the number of distance bins, e is the Euler number, and i is the

imaginary constant. The MRL is defined as the absolute value of the mean resul-

tant and characterized the strength of egocentric bearing tuning to environment

boundaries. We next computed the preferred orientation of the EBR as the mean

resultant angle (MRA)

MRA = arctan2(
imag(MR)

real(MR)
) (3.3)

We estimated the preferred distance by fitting a Weibull distribution to the firing

rate vector corresponding to the MRA and finding the distance bin with the maxi-

mum firing rate. The MRL, MRA, and preferred distance were calculated for each

neuron for the two halves of the experimental session independently. Next, the

MRL was computed for each neuron following 100 random, unrestricted, circu-

lar shifts of the spike train relative to position. The 99th percentile of the MRL

distribution across all neurons was determined.

A neuron was characterized as having egocentric boundary vector tuning (i.e.,

an EBC) if it reached the following criteria: (i) the MRL from the baseline session

was greater than the 99th percentile of the randomized distribution, (ii) the abso-

lute circular distance in preferred angle between the first and second halves of the

baseline session was less than 45°, and (iii) the change in preferred distance for

both the first and second halves relative to the full session was less than 50%.



106

To refine our estimate of the preferred orientation and preferred distance of

each neuron, we calculated the center of mass of the receptive field defined after

thresholding the entire EBR at 75% of the peak firing and finding the largest contin-

uous contour (contour in MATLAB). We repeated the same process for the inverse

EBR for all cells to identify both an excitatory and inhibitory receptive field and

corresponding preferred orientation and distance for each neuron.

3.4.2.5 Ratemap coherence, dispersion, and receptive field size

For either EBRs or 2D spatial ratemaps, coherence was defined as the Spearmans

correlation between each spatial bin and the mean firing rate of all adjacent bins.

Dispersion was calculated as the mean within ratemap distance of the top 10%

of firing rate bins. Receptive field size was only calculated for EBRs (described

below) and was defined by the area (percentage of all EBR degree Œ cm bins) of

the largest single contour detected after selecting for bins with firing rates greater

than 75% of the maximum firing rate.

3.4.2.6 Self-motion ratemaps and assessment of self-motion sensitivity

Angular displacement () was calculated by determining the circular difference in

movement direction between two position samples (frames) separated by a 100-ms

temporal window. The total distance (d) traveled between these two frames was

also calculated. The process was repeated for the full recording by sliding a 100-ms

temporal window across all position frames and calculating these values. Angu-

lar displacement and distance traveled were converted to Cartesian coordinates to

generate x- and y-displacement values in centimeters, which corresponded to lat-

eral and longitudinal displacements for each frame across the full recording. 2D
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displacements were binned (1 cm) and convolved with a 2D Gaussian spanning 3

cm. For each neuron, the same process was repeated for displacement values that

co-occurred with spike times to generate a spike occupancy map as a function of

displacement. Self-motion ratemaps were constructed by dividing the spike oc-

cupancy map for each neuron by the total time in each displacement bin. Bins

occupied for less than 267 ms were removed from analyses, as they typically were

observed at extreme displacement values. Self-motion ratemaps for each neuron

were additionally constructed independently from interleaved, nonoverlapping,

1-s periods throughout the entire session to assess stability of self-motion tun-

ing. For quantification of self-motion tuning relative to a randomized distribu-

tion, all aforementioned ratemaps were generated for each neuron 100 times af-

ter randomly shifting the spike train relative to position. Self-motion ratemaps

were quantified for their stability, left- versus right-turning preference (LvR), and

speed modulation. First, stability of self-motion tuning was quantified by correlat-

ing self-motion ratemaps generated from nonoverlapping periods for each neuron

(Fig. 3.2B). Next, turning biases for clockwise versus counterclockwise movements

(LvR FR ratio, Fig. 3.2C) were quantified by computing the ratio of summated fir-

ing for all similarly occupied displacement bins on the right and left sides of the

zero vertical line, respectively. Last, speed modulation was approximated by find-

ing the mean firing rate as a function of longitudinal displacement (i.e., averaging

over columns of self-motion ratemaps) and correlating with the y-displacement

value (Fig. 3.2D). All self-motion ratemap quantification was repeated for all ran-

domized self-motion ratemaps as mentioned above. Stability and turn-bias quan-

tification were computed from displacement bins that were occupied in both self-

motion ratemaps or both halves of an individual self-motion ratemap. All quan-
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tification was completed on nonsmoothed self-motion ratemaps.

3.4.2.7 Generalized linear models

To more directly test to what degree neurons represented egocentric compared to

allocentric variables, we adopted a GLM framework. The probability of spiking

in a given behavioral frame (33 Hz) is described by an inhomogeneous Poisson

process, where the probability of spiking in a given frame is described by the time

varying variable λ

P (spike|t) = e−λ(t)

λ(t) = λFR ∗ λ(t)SelfMovement ∗ λ(t)Egocentric

λFR = β0

λSelfMovement(t) = v1S + v2A

λAllocentric(t) = ρ1x+ ρ2y + ρ3x
2 + ρ4y

2 + ρ5xy + ρ6cos(ϕ) + ρ7sin(ϕ)

λEgocentric(t) = ϵ1d+ ϵ2d
2 + ϵ3sin(θ) + ϵ4cos(θ) + ϵ5d ∗ sin(θ) + ϵ6d ∗ cos(θ)

(3.4)

where βθ defines the baseline firing rate of the neuron. All subscripted variables

are fit coefficients weighting the other (time-varying) variables. S is the running

speed of the animal, and A is the angular displacement of the animal, as described

above. x and y are measurements of the animals position in the environment in pix-

els, and ϕ is the head direction. Last, d is the animals distance from the center of the

environment, and θ is the egocentric angle to the center of the environment. Coef-

ficients were determined by fitting to maximize log-likelihood (MATLAB function

glmfit) of the experimental spike train given the behavioral variables. For statisti-

cal tests, some numbers of the coefficients were set to zero, giving a log-likelihood
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for the reduced model. The difference in likelihood for the full versus reduced

model was compared to a chi-square distribution (degrees of freedom equal to the

number of coefficients set to zero) to generate an analytic P value. While theo-

retically the change in log-likelihood should follow a chi-square distribution, this

is only the case when the spike train has been fit very well (e.g., including all

neuron-neuron coupling terms). In line with previous approaches, we therefore

also compared the change in log-likelihood in two additional manners. First, we

compared the change in log-likelihood to that from 1000 randomly shuffled spike

train, giving an empirical null distribution. Second, when comparing the relative

effects of two variables (that is, comparing two reduced models to each other), we

can derive the dAIC for each of the reduced models and compare their magni-

tudes. Representative spike trains for each model were generated by evaluating

lambda for each behavioral time point (glmeval in MATLAB) and using this as the

input to a random Poisson generator (poissrnd in MATLAB).

3.4.2.8 Classification of arena shape condition from directional tuning

Head direction tuning curves were calculated for each neuron (n = 32) by normal-

izing the number of spikes occurring in a given 10°directional bin by the amount

of time that bin was occupied. Head direction tuning curves were independently

calculated for sessions in square and circular environments and normalized by

peak firing rate. Directional tuning curves were labeled with the arena condition

in which they were sampled and classified. Tuning curves were down-sampled

to include alternating directional bins (every 20°, to ensure the covariance matrix

would be positive definite) and then classified using linear discriminant analy-

sis 100,000 times for arena condition with cross-validation (80% train, 20% test;
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classify in MATLAB) and uniform priors. Classification accuracy was assessed by

finding the percentage of correct labels on the test dataset. A randomized distribu-

tion of classification accuracy was calculated in parallel by randomizing the true

arena condition label of the training set.

3.4.2.9 Assessment of theta phase modulation

For each experimental session, an local field potential (LFP) channel was identified

that was qualitatively noise free. The LFP signal was filtered in the theta frequency

range (6 to 10 Hz), and the phase for each spike from each neuron was estimated

as the instantaneous phase angle of the corresponding Hilbert transform (hilbert

in MATLAB). For each neuron, the MRL and MRA were calculated on the full

spike phase distribution using the circular statistics toolbox (MRL, circr; MRA,

circmean). We next randomly shifted the spike train relative to theta phase 100

times for each neuron to generate a null distribution of MRL values. RSC neurons

with MRLs greater than the 95th percentile of the full distribution of randomized

MRL values were determined to be theta phaselocked.

3.4.2.10 Assessment of theta rhythmic spiking

Spike train autocorrelograms were estimated by generating a histogram of tempo-

ral lags between spikes in a 400-ms temporal window discretized into 20-ms bins.

For each neuron, the power spectrum of the autocorrelogram was computed using

the Fourier transform (fft in MATLAB), and the peak in the theta frequency range

was identified (if it existed). If the mean power within 1 Hz of this theta peak was

50% greater than the mean power for the full power spectrum, the neuron was

determined to exhibit intrinsic theta spiking.
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3.4.2.11 Von Mises mixture models

Distribution of preferred orientation estimates was modeled as mixtures of Von

Mises distributions using orders from 1 to 5. Optimal models were identified as

the model increasing model fit over the one-component model with the next com-

plex model yielding less improvement. Models were cross-validated using ran-

domly selected halves of the preferred orientation distribution. Theta of each Von

Mises component is reported, and a distribution function of the optimal model

was generated to visualize mixture model fit.
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CHAPTER 4

Allocentric Representation and Transformation Learning from Egocentric

Sensory Prediction

4.1 ABSTRACT

Spatial navigation is a fundamental ability that is conserved across a wide range

of species. It involves the formation of coherent representations of one’s loca-

tion in map-like space. Despite a plethora of neurophysiological experiments re-

vealing spatially tuned neurons across the mammalian neocortex and subcorti-

cal structures such as the hippocampus, it remains largely unclear how such rep-

resentations are acquired in the absence of explicit allocentric inputs. Theoreti-

cal neuroscience and machine learning studies have proposed that a type of self-

supervised learning may be responsible for extracting the latent structure of navi-

gational space by contrasting sensory stimuli over time.

In this study, we employ a modular simulation of neocortex/hippocampus

that integrates feedforward pathways onto pyramidal cell soma with feedback

pathways onto distal dendritic arborizations. Our learning rule aims to minimize

the temporal difference in feedforward signal changes by modifying feedforward

synapses to align with feedback activity, thereby implementing a form of con-

trastive and associative learning. We organize these modules into the major cyclic

connectivity pattern of the visual cortex, the retrosplenial cortex, the postrhinal

cortex, the hippocampus and the entorhinal cortex, and train during an open field

foraging-like task in which the network receives sensory signals and self-motion

signals.

After training, we compare the overall tuning activity of units in the trained



113

model to known functional phenotypes such as egocentric boundary cells (that re-

spond to sensory-driven egocentric bearing and distance of boundaries), as well

as allocentric head direction and place codes. Moreover, we make a series of mod-

ifications on the environment after learning. Given that the feedback and feedfor-

ward signals in our network have distinct physiological origins, these modifica-

tions result in incongruities in sensory signals and top-down expectations, which

create unique signatures of network dynamics that can be investigated in future

experimental studies.

4.2 INTRODUCTION

A sense of allocentric, or map like space, is essential for navigating to goals which

are outside of the immediate sensory space. The simplest approach to path plan-

ning is known as dead reckoning, or path integration (McNaughton et al., 2006).

In this approach, given an initial starting location, an agent begins to move, and

afferent motor and sensory information, such as running speed (Hinman et al.,

2016; Kropff et al., 2015), rotational velocity (Alexander & Nitz, 2015), and optic

flow (Raudies & Hasselmo, 2012) is integrated over time. Integrating these affer-

ent signals over time yields a net displacement, and could be used as a homing

signal back to the origin location (Mittelstaedt, 1980). However, such an approach

is extremely sensitive in the presence of noise (Hardcastle et al., 2015), would not

persist across multiple experiences, and do not provide a full representation of

space for more difficult navigation involving obstacles. In contrast, animal studies

have shown that animals will mentally simulate planned trajectories in a combina-

tion of forward and backward search, similar to the A* algorithm used in artificial

route planning (Ferbinteanu & Shapiro, 2003; Erdem & Hasselmo, 2012). However,



114

such planning requires that there first be an internal representation of location in

space and that such a representation can be indexed by sensory information.

Egocentric Representations While view-invariant allocentric codes are required

for longer-term navigation, animals rarely, if ever, receive direct allocentric infor-

mation. Instead, the sensory information is encoded in the neocortex, where the

location of stimuli will be relative to an animal, such as an object being distant and

ahead in the visual field, or an object stimulating whiskers on the left side of an ani-

mal. Therefore, even if path integration alone is insufficient for formation of stable

global maps, some degree of processing of sensory and motor information must

occur, creating a transformation from the egocentric reference frame to a global

map-like space. This transformation must also have an inverse transformation,

so that allocentric codes can inform egocentrically centered behavior, though such

transformations may occur in other brain regions (Hinman et al., 2019). Neocorti-

cal regions are known to encode the location and identity of objects relative to an

animal, beginning with primary sensory regions and convergent to association ar-

eas such as the parietal cortex. There have recently been numerous reports of neu-

rons that respond to environmental boundaries in the postrhinal cortex (LaChance

et al., 2019) and retrosplenial cortex (Alexander et al., 2019), as well as other ego-

centric responses, such as the relative location of a visual target (Alexander et al.,

2022) in posterior parietal cortex. The majority of these regions also receive af-

ferent self-movement information and feedback information from the allocentric

regions discussed below. Therefore, these regions are thought to be essential to

transforming sensory information into allocentric codes.
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Allocentric Representations Extensive experimental evidence has shown that

the medial temporal lobe (MTL) and associated structures in mammals contain al-

locentric codes for space. Place cells, found primarily in the hippocampus (O’Keefe

& Dostrovsky, 1971), respond to a single location (or a few locations) in an envi-

ronment but will remap between environments, creating a reusable fabric for al-

locentric codes (Muller & Kubie, 1987). Grid cells in the medial entorhinal cortex

(Colgin et al., 2009) respond in a regular array of locations in the environment and

project bidirectionally to place cells. They may form a basis for performing men-

tal operations between place cell representations (Erdem & Hasselmo, 2012; Bush

et al., 2014). Head direction cells that respond to the current compass direction

of the head are found in many of these regions Taube (2007). These MTL regions

receive connections from the processed egocentric signals discussed above, but it

is not clear how they directly form from those signals.

Learning Allocentric & Egocentric Predictions Temporal prediction of spatial

signals is known to create different latent representations depending on the spe-

cific input and target signals. Computational models that learn to encode future

sensory states from current sensory states and motor information directly lead to

allocentric representations, but do not form the same representations in an auto-

encoder approach without a predictive component (Recanatesi et al., 2021). These

findings suggest that the prediction of sensory inputs extracts the transitions of

sensory information in a reduced two-dimensional latent space, similar to succes-

sor representation (Stachenfeld et al., 2017). Other work has shown that given past

allocentric locations and motor commands and tasked to predict future allocentric

locations, in essentially a form of path integration, hidden units will form even

more compressed representations in the form of regular grid-like activity (Banino
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et al., 2018). More recent work has also shown that simple RNN models will exhibit

a representational state in which principal components code separately for spatial

and contextual information (Low et al., 2023), similar to splitter cells (Ferbinteanu

& Shapiro, 2003) or remapping (Ocko et al., 2018). However, allocentric predictions

of the medial temporal lobe are also responsible for guiding learning in the neo-

cortex, suggesting that stable map-like representations may guide sensory driven

representations in uncertain environments (Doron et al., 2019). These previous

results show that in abstract networks temporal prediction of egocentric sensory

signals gives rise to allocentric codes, and prediction of allocentric codes can lead

to more compressed allocentric codes.

Current Approach: Learned Egocentric-Allocentric Associations While the com-

putational studies discussed above have shown the learning of allocentric spatial

representations from temporal prediction of sensory representations, it remains

unclear how such a representation would be learned in a biological substrate. Here

we make use of the connectivity structure of a previous systems-level model of

spatial cognition (Bicanski & Burgess, 2018; Byrne et al., 2007) (the ‘BBB models’

below). The BBB models hand-coded several functional cell types such as ego-

centric responses and place cells, and showed how they could be trained to drive

each other in either a sensory driven or memory driven manner. We utilize the

same overall connectivity of this previous model, but instead of pre-determining

the functional cell types and then training the weights, we implement a simplified

model of learning. We replace each of the abstract regions from the BBB model

with a biophysically inspired model of canonical microcircuit (chapter 2), coupled

with a learning rule which alters feedforward weights in order to predict future

states.
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4.3 METHODS

4.3.1 General Approach

We utilize a virtual agent moving in a 1m x 1m open field, sampled at 500Hz

(dt=2ms) in order to give appropriate temporal resolution for the neural model-

ing described below. The agent moves according to a parametrically driven ap-

proach described elsewhere (Raudies & Hasselmo, 2012; George et al., 2022) with

equations and parameters chosen (Table 4.1) to realistically replicate the behavior

of rats moving in an environment for 5 hours. Briefly, on each frame the rotational

velocity is modeled as an OrnsteinUhlenbeck (OU) process and running speed is

modeled as a Rayleigh transformed OU process. The agent location and head di-

rection are then generated by integrating these terms over time. Near boundary

locations there was an anti-parallel repulsive force proportional to the distance

from the wall, as well as a perpendicular force. Together, these two forces cre-

ate a slowing down as the agent approaches a wall and causes a thigmotaxis-like

following of the boundaries. We then utilize a three-dimensional rendering soft-

ware (Chevalier-Boisvert, 2018) to generate agent-based visual scenes in colour

and depth (RGB-D). In this rendering each wall is given a different colour in or-

der to provide some grounding information as to the structure of the environment,

and could be a stand in for sensory cues.
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Variable Description (Units) Range x Shape
dt Simulation timestep (s) 0.001
t Time (s) [0, 1200]
X X location (m) [0, 1]
Y Y location (m) [0, 1]
θ Head direction (radians) [−π, π]
S Running Speed (m/s) [0, 0.3]
ω Rotational Velocity (radians/sec) [−π, π]
I Agent RGB View (1) [0, 1] x [60, 80, 3]
D Agent Depth View (m) [0, 1.4] x [60, 80]

Table 4.1: Behavioral Variables for Simulation

Macroscale Connectivity The overall connection between modules is arranged

to reflect the macroscale connections among brain regions strongly implicated in

spatial navigation of rodents (Fig. 4.1). External stimuli come from two major

sources, the egocentric sensory (vision) and the motor / proprioceptive pathway.

The vision pathway begins with the identity, and distance of the visual field ar-

ray projecting to a visual modules termed ‘ventral’ and ‘dorsal’ respectively. Sim-

ilarly, the linear velocity and rotational velocity from the behavioral simulation

project to a singular ‘action’ module. The two visual streams and the action mod-

ule have convergent feedforward pathways onto the retrosplenial cortex, which in

turn projects to the perirhinal cortex, and hippocampus, representing the primary

feedforward visual to allocentric pathway. The entorhinal module also receives

direct feedforward activity from the ‘action’ module and projects to the feedfor-

ward compartment of the hippocampal module. Feedback connections travel in

the opposite order and along the same route. Thus, the dorsal, ventral, and action

modules are the only ones which directly relate to the environment and provide a

basis for interpretation later.
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Figure 4.1: Overall simulation paradigm. A (Left) As an agent (red dot, facing to-
wards arrow) navigates around an environment (grey line), behavioral frames are
generated. (Top) RGB images are encoded with a one-hot paradigm to provide ob-
ject identity. (Bottom) Depth images are also generated, representing early process-
ing along the ventral visual stream. B Behaviorally realistic rotational velocity (left)
and running speed (right) distributions are used to generate the overall trajectory
from A. These variables are separately encoded on each frame into a self-motion
representation. C Show the macroscale connectivity between modules. Black lines
indicate static weights which encode information from the behavioral simulation.
Blue lines indicate inter-area feedforward synapses which target onto the granular
layer of neocortex or dentate gyrus populations and carry overall activation. Red
lines indicate feedback weights which originate from the infragranular layers of
neocortex or the CA1 region of hippocampus and terminate on distal dendrites,
carrying burst rates.
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4.3.2 Neural Dynamics

Microcircuit Connectivity The model that we utilize here relies on separate feed-

forward and feedback pathways, both in the neocortex and hippocampus. Large

scale summaries of cortical microcircuit connectivity (Felleman & Van Essen, 1991;

Haeusler & Maass, 2007) suggests that in neocortex there is a primarily three-layer

separation of granular, superficial, and infragranular layers, which are organized

into a primarily feedforward (granular to superficial) and feedback (infragranu-

lar to distal dendrites) pathways. Hippocampus, with a distinctly different archi-

tecture consists of a different nomenclature. We model hippocampus as dentate

gyrus, consisting of granule cells, and CA3 and CA1 consisting of pyramidal cells.

DG projects to CA3 somatic regions through the mossy fibers which then projects

to CA1 through Schaffer Collaterals (O’Mara, 2005). CA3 and CA1 also receive in-

put to distal dendrites from entorhinal cortex, and exhibit burst transfer functions

similar to that observed in pyramidal neurons of neocortex in response to feedback

(Takahashi & Magee, 2009; Naud et al., 2023). The internal connectivity pattern of

hippocampus is primarily the same as in neocortex. The primary difference that

we address here is that hippocampal formation receives feedforward signal into

the dentate gyrus from both the entorhinal cortex and perirhinal cortex, but also

the distal dendrites by the temporammonic pathway, creating an associative loop

that is not present in neocortex (Anderson et al., 2007).

Within each simulated ‘region’ there exist three distinct populations of 128 con-

tinuous activation units, each of which reflects the mean-field activity of a popula-

tion of neurons which lie in different lamina. In the cortical regions, these regions

correspond to the granular (’G’) layer stellate neurons, superficial (’S’) pyramidal

neurons, and infragranular (’I’) pyramidal neurons. In the hippocampal module,
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these instead correspond to dentate gyrus, CA3, and CA1 respectively.

Following prior work, granular neurons follow the general recurrent neural

network (RNN) formulation reflecting their compact physiology:

τ
dvL
dt

= −vL(t) +
∑
N∈A

WNLRN(t)

rL(t) = σ(vL(t))

(4.1)

Where τ is the population specific time constant (10ms throughout), v represents

the membrane potential. W represents the weights of afferent connections from

presynaptic populations A (in the summation index), including recurrent connec-

tions among a population. For the case of the granular neurons, A is the set of all

external inputs and feedforward afferents (black lines in figure 4.1). σ is the non-

linear activation function converting membrane potential v to action potential r,

and we utilize the sigmoidal activation function.

The pyramidal units contain the same leaky-integrator format for their somatic

potential, but incorporate an additional term representing the potential of the dis-

tal dendrites and overall burst probability:

τ
dvL
dt

= −vL + σ(uL/Dd) +
∑
N∈A

WNLrN

rL = σ(vL)

τu
duL

dt
= −uL + 2

drL
dt

+
∑
N∈B

WNubN

p = σ(u)

bL = rL ⊙ pL

(4.2)

The additional term u represents the distal dendritic compartment, and the sum-



122

mation index B represents the population of neurons projecting to that compart-

ment, compared to those projecting to the soma (summation index A). For superfi-

cial units A is the recurrent connections and activity of the local granular units. For

infragranular units, A is the recurrent connections and activity of the local superfi-

cial units. For both sets of pyramidal neurons, B is the set of feedback connections

(red lines in figure 4.1). p represents the probability of a burst event and follows a

sigmoidal function of the distal dendrites (Naud & Sprekeler, 2018). b represents

the burst rate of the pyramidal neurons and is the direct product of the overall fir-

ing rate and the burst probability. The middle terms in both the somatic potential

and dendritic potential equations represent subthreshold coupling and backprop-

agating action potentials (BAP) respectively, and allow mixing of feedforward and

feedback signals, and increasing the burst rate (b) when these inputs are coincident

in time.

4.3.3 Learning Rule

Consistent with previous studies (Payeur et al., 2021) and the methods reported in

Section 2 we implement a learning rule on the feedforward synapses of pyramidal

units. The learning rule combines a classical “pre-post” term with a top-down gain

based on the difference in instantaneous and long term burst probabilities:

∆WXY = η((pY − p̄Y )⊙ rY )⊗ rX (4.3)

Where X is the presynaptic population and Y is the postsynaptic, and p̄Y repre-

sents the low-pass burst probability on the temporal order of behavioral variables

(equation 2.18, τavg = 1s). The learning rate η is held at 10−4 throughout.

In the implementation here we utilize the numerically evaluated values for pY
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and p̄y. However, for the purposes of this chapter, we provide a relationship be-

tween equation 2.6 and 4.3. In the case of a smoothly varying input the difference

between instantaneous burst probability and low pass average is approximately

the temporal derivative. Then, letting x and y denote individual units for nota-

tional simplicity, and following the chain rule for the derivative of pY :

∆Wxy = η((py − p̄y)ry)rx

= (ηrxry)(py − p̄y)

≈ (ηrxry)
dp

dt

≈ (ηrxry)
dσ(u)

du

du(t)

dt

≈ (ηrxry)(σ(u)(1− σ(u))
1

τu
(−u+ 2

dry
dt

+
∑

Wb)

(4.4)

Evaluating at a given value of u:

∆Wxy(u) ∝ (ηrxry)
dry
dt

F (u) (4.5)

From this formulation the instantaneous change in feedforward synaptic weight is

proportional to the presynaptic activity times the postsynaptic activity (Hebbian

associative learning) times the instantaneous change in unit rate (temporal error)

and multiplied by the distal dendritic potential (feedback gain). Thus, the learning

rule given in 4.3 contains the same terms as those in 2.6, with the additional presy-

naptic activity term and non-linearity on u. Weights are initialized using random

distributions, identical to those in table 2.2.
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4.3.4 Tuning Curves

When attempting to classify the receptive fields of units we utilize a general frame-

work:

R(t) = σ(β0 + βpcλPC(t) + βhdλHD(t) + βlsλLS(t) + βebcλEBC(t) + βgridλgrid(t)) (4.6)

Where R(t) is the activation of a given unit at a single point in time and σ is the non-

linear activation function. In this equation, PC=place cell, HD=head direction cell,

LS=running speed cell, EBC=egocentric boundary cell and grid=grid cell. β0 Is the

baseline bias in activity, and the remaining β terms are strengths of behavioral vari-

able influence on activation. The λ terms represent parametric tuning curves that

match the general shapes of experimental findings and are individually optimized

for each unit:

λpc = e
− 1

2(1−ρ2)
((x−µx

σx
)2−2ρ(x−µx

σx

y−µy
σy

)+(
y−µy
σy

)2)

λhd = (cos (θ − µhd))
k

λls = ⌊βss+ (1− βs)e
− (s−µs)

2

2σ2
s ⌋

λebc = max(I ⊙ |l∈L,r∈Re
−((

l−µl
σl

)2)+( r−µr
σr

)2)
)

λgrid =
1

3
⌊cos (2πxeθ

Λ
+ ϕ) + cos (2π

xeθ+π/3

Λ
+ ϕ) + cos (2π

xeθ+2π/3

Λ
+ ϕ)⌋

(4.7)

Within each subequation behavioral variables are as in table 4.1 and valid ranges

for tuning parameters and their description is in table 4.2. The place-cell term is

a two dimensional Gaussian centered at any point in the environment. The head

direction model is a cosine function with mean µhd and tuning parameter k which

decreases with width of the tuning curve. Running speed tuning is modeled as

the sum of a linear slope and a superimposed Gaussian function, enabling a di-
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verse range of speed-curves including linear increase, saturating responses, and

maximum response models (Alexander et al., 2022). The egocentric boundary cell

predictor is a two dimensional Gaussian displaced from the current location of

the agent by µex and µey relative to the direction of the animal. I is an indicator

function evaluated at 0.1cm increments in the x and y direction relative to the an-

imal for the presence of a boundary, and then rotated to the current movement

direction. The second term of the EBC response is a 2D Gaussian intensity func-

tion evaluated at Rostral-Caudal (r) and Lateral-Medial (l) offsets from the agent

location. The grid cell model is the sum of three spatial sinusoids with frequency

Λ, spaced 60 degrees apart and overall orientation to the environment θ (Burgess

et al., 2007). Finally, we do not explicitly provide an equation for boundary vector

cells (BVCs), since a place field with unconstrained location and covariance is de-

generate with the typical equations used to model BVCs. In the results however

when a unit is significantly modulated by the ‘place cell’ predictor but is elongated

along a boundary we identify it as a BVC instead of a place cell.

Parameter Description Range
σx/y X/Y width of place cell (cm)
ρ X/Y Covariance (angle) of place cell (1)
µx/y X/Y center of place cell (cm)
k Tuning width of HD cell (1) [1/3, 3]
µhd Center of HD cell (rad) [−π, π]
βs1 Slope of speed cell (s/cm) [0, 30]
βs2 Strength of Gaussian speed cell (s/cm) [0, 30]
L Lateral offset from the agent (cm) [-50, 50]
R Rostral offset from the agent (cm) [-50, 50]
µR/L R/L center of egocentric boundary cell (cm) [-50, 50]
θ Angle offset of grid cells (rad) [0, π/3]
ϕ Phase offset of grid cells (rad) [−π, π]
Λ Spatial scale of grid cells (cm) [20, 50]

Table 4.2: Tuning curve parameters fitting or explicitly setting functional cell types
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Measuring Representation Learning After every simulated three minute inter-

val (‘epoch’) we evaluate the tuning of all learned units. This is done by, without

enabling learning, simulating the network on a separately generated 60 minute ses-

sion and then down-sampling the behavior and unit activity to 10Hz (36K frames).

Down-sampling is performed for computational efficiency of the tuning curve fit-

ting procedure. The activity from this ‘test’ session is then fit to the explicit tuning

curve given in equation 4.6 by gradient descent (SGD, minimum error over 10 ran-

dom initializations of 5-fold verification), as well as submodels that each drop one

of the predictors. β values were constrained to be non-negative during the fitting

process, to match experimental methods in which place, grid, and head direction

cells are positively modulated compared to the mean firing rate. The format of the

λls predictor allows negatively modulated speed cells, as shown in experimental

findings (Hinman et al., 2016; Dannenberg et al., 2019; Alexander et al., 2022). The

non-negativity constraint precludes any explicit ‘negative-EBCs’ (Hinman et al.,

2016), which are instead be detected as having a wide and distal receptive field.

For each sub model we compare the mean-square error in predicted activity com-

pared to the true activity and generate an F-statistic, which is analogous to the log-

likelihood approaches from Chapter 3 but now for a continuous activation function

instead of spike trains. The proportion of units that are statistically significantly

tuned (p<0.001) is measured on each epoch and is reported below. In figures 4.2

and 4.3 all tuning curves are represented as normalized activity in 2D (spatial),

polar (head direction), or 1D (running speed) bins.
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4.4 RESULTS

4.4.1 Learned Responses

We first investigate the final somatic event rate tuning curves and burst-rate tuning

curves, as summarized in Figure 4.2. Speed tuning was present in all regions, with

a total of 87% (890/1024) units being significantly modulated by running speed.

Consistent with expected findings, the feedforward signals of the RSC module con-

tains a number (80/128, 63%) of units which respond to the egocentric boundary

predictor. These can be recognized in figure 4.2 by the strong responses around the

edges of the environment. Another 41 (32%) were classified as head-direction sen-

sitive, though notably no units had significant tuning to both head direction and

EBC tuning. In the feedback layer of RSC, one unit (unit 0 in Figure 4.2) showed

significant EBC response. Half (64/128) of FB RSC units responded to head direc-

tion, and 108 (84%) to movement speed.

Superficial perirhinal units expressed several BVC-like responses, identified as

a response to the place cell predictor, but with a variance along one axis at least

three times greater than along the other (52/128 41% BVC, 23/128 18% PC). These

were largely conjunctive (67/75, 90%) with head direction tuning. Deep PR units

generally expressed the same variables as their superficial counterparts, but with

a more pronounced tendency for place cell (48/128, 38%) than BVC (12/128, 9%)

response.

Hippocampal feedforward units were by large place-cell like (115/128, 89%),

with the remaining portion being non-spatially responsive. The majority of units

were conjunctive with head direction (102/128, 80%). Deep hippocampal units

were tuned to both place (27/128, 21%) and BVC (47/128, 37%), with a slightly
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less tendency to be head direction tuned (45/128, 35%). Two deep hippocampal

units were significantly tuned to the grid predictor, but upon visual inspection

primarily tended to fire at three corners of the environment.

Entorhinal units showed a combination of speed (108/125, 84%) and head di-

rection (42/128, 33%) tuning. A subset of units (18/128, 14%) showed tuning to

location and exhibited a mixture of near-boundary and near-center responses.
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Figure 4.2: Caption on next page
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For each box the feedforward (left) or feedback (right) activity is shown for six
randomly selected units at the end of training. The top row is the occupancy-
normalized mean activity, the middle row is mean response at each running speed,
and the bottom is a polar directional tuning curve at each movement angle (which
is equivalent to head direction in this simulation). RSC-FF Many units exhibit
egocentric-boundary responses, firing near the boundaries of the environment,
regardless of head direction (unit 3). Others respond to head direction (unit 0).
Nearly all respond to movement speed. RSC-FB Compared to FF, there is rela-
tively little spatial modulation, though head direction and speed tuning remain
prominent. PR-FF Spatial tuning (top) tended to be strongly locked to one bound-
ary (unit 3) or corner (unit 1). Head direction and speed tuning are present. PR-FB
Tuning is similar to the FF case. HPC-FF (Top) Place-cell like representations are
found, with centers distributed throughout the environment. (Bottom) A subset
of units are conjunctive with head direction (unit 0), while others are not (unit 1).
HPC-FB Spatial representation is more PR-like, with receptive fields on the bound-
aries of the environment and higher dispersion. EC-FF Spatial modulation exists
for a subset of units, and tends to be anchored to an environmental boundary and
conjunctive with head direction. EC-FB Feedback spatial activity is dispersed, but
head direction tuning is still present.

Order of Learning We also evaluated the rate at which representations converged

to their final value over the course of training. On each epoch we found the mean

correlation coefficient between the holdout session activity at that point in training

and the holdout activity at the end of training (Figure 4.2). Contrary to expecta-

tions, it was neither the most (RSC) or least (HPC) driven representations which

converged most quickly. Instead the perirhinal, which was predominantly respon-

sible for encoding distance to a singular boundary, converged within the first tens

of epochs. This region was then followed by hippocampus and retrosplenial, sug-

gesting that the feedforward weights of perirhinal aligned to their inputs before

the hippocampal module received a consistent enough signal to create place-like

representations. Feedback bursting signals converged more slowly than any of the

feedforward activities (Figure 4.2).
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Figure 4.2: Correlation coefficient of feedforward (top) and feedback (bottom) rep-
resentational similarity on each epoch compared to at the end of training.

4.4.2 Response to Novel Environment

We now consider a case where the feedforward activity violates the trained ex-

pectations. At the end of training we introduce an additional session in which

an unexpected barrier with a unique identity encoding has been inserted into the

middle of the environment (y=0.48 - 0.52, x = 0.25 - 0.75). For clarity of analysis, we

disable learning during these experiments, and measure mean responses across a

simulated 60 minute exposure. The tuning responses of units in this condition are

demonstrated in Figure 4.3, and fitting of the curves is performed as in the baseline

condition, and the chosen example units are the exact ones shown in Figure 4.2.
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Figure 4.3: Figure on next page

In general, individual feedforward allocentric tuning curves were disrupted in

the novel environment, while speed tuning and EBC responses were consistent. In
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Novel Environment Tuning RSC Many units (eg: FF unit 1) continue to exhibit EBC-
like tuning, showing a strong response near the familiar and novel boundary. Head
direction tuning is largely disrupted. PR-FF A number of PR units continue to
show HD tuning. Many spatial tunings have shifted compared to the baseline, but
still tend to fire near an edge of the outer boundary. PR-FB Deep PR activations are
more likely to be tuned to BVC responses than during baseline, but these responses
tend to be wide. HPC Place-cell like representations are largely disrupted. Units
that remain HD tuned tend to have a different preferred direction. EC Some units
remain tuned to head direction, but spatial modulation is largely gone.

superficial RSC, 75 (93%) of the units which were EBC tuned in the baseline contin-

ued to be so in the novel environment, while only 10 (24%) remained modulated by

head direction. In superficial PR all units previously classified as BVCs continued

to be so, but their preferred boundary and x/y standard deviations changed. Hip-

pocampal place-cell tuning was only present in a fraction of the units from baseline

(2/115, 2%). Feedback activity was largely disrupted as much as the corresponding

feedforward activity, with the exception of deep RSC where head direction tuning

was preserved in 93% (60/64) of the original units. Of the feedback PR activity

which was tuned to place-cell predictors in the familiar environment, a significant

portion changed to being BVC tuned (20/48, 42%). Across all regions, feedforward

and feedback, speed tuning was maintained in 793 of the original 890 (89%).

While Figure 4.3 clearly shows that individual unit representations are dis-

rupted in the novel environment, we next asked whether it was necessarily the

case that the information coded by distributed representations was disrupted. To

address this, for each region and each behavioral variables (location, head direc-

tion, and speed) we train a linear decoder to produce the minimum mean-square

error readout both during the familiar and novel environment. For head direction,

the decoder was trained on the mean sum error of sin and cosine components of

the angle. This was done using increments of ten units (1, 11, 21, ... 128) and five
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Figure 4.4: Behavioral Decoding Mean-square error of linear readout of behavioral
variables in each modeled region during foraging in the familiar environment.
Dashed black line indicates chance. Top Location can be significantly read out
in all regions except RSC. Conversely, head direction is most strongly linearly read
out from RSC and PR. Speed is significantly represented everywhere, but is more
redundant in MEC And PR than RSC and HPC. Bottom In the novel environment
with inserted barrier, the decoding is greatly altered. Using the same error scales
as the baseline, location and head direction are not significantly read out from any
regions. Speed continues to be represented in all regions, with a slight decrease in
performance compared to the familiar environment.
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repetitions of 5-fold cross validation. Overall, we find that in the baseline (famil-

iar) condition this distributed readout was able to decode location from all regions

except RSC, head direction from PR And RSC, and movement speed from all re-

gions (Figure 4.4, Top). In contrast, position and head direction information was

not significantly represented, even in a distributed manner, in any regions during

the novel environment (Figure 4.4). Running speed was still coded in all regions,

only slightly less prominently than in the familiar session.

4.5 DISCUSSION

Above we introduced preliminary results of a biophysically inspired model of spa-

tial representation learning. Each module receives a combination of feedforward

event rates and feedback burst rates which helps to guide a synapse update to min-

imize the moment-to-moment changes in somatic potential. After simulating this

system in a passive navigation setting for an extended period, we see the emer-

gence of internal representations which resemble those found in animal studies.

In particular we find the emergence of units similar to egocentric boundary cells

(Alexander et al., 2020) which respond to the presence of a barrier based on its

egocentric displacement relative to the current direction and position of the agent.

As they receive a combination of sensory distance signal (‘dorsal’), self-motion in-

formation (‘action’), and feedback allocentric location (‘PR’ boundary cells), we

hypothesize that these implement a form of transformation from egocentric to al-

locentric signal (Wilber et al., 2014). The next region in the hierarchy then provides

a response based on distance from environmental boundary signal (an allocentric

boundary response) that the final region (‘HPC’) integrates over time to provide

allocentric information even when far from the boundary locations. This place-
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centric code can then provide additional contextual information to the perirhinal

to resolve any ambiguity in feedforward signal, such as two barriers with simi-

lar appearance. The general internal representations we find are in line with both

experimental findings and theoretical (Bicanski & Burgess, 2018) expectations. In

particular, consistent with experimental data, the model shows formation of neural

responses that progress from regions showing egocentric representation of barri-

ers (egocentric boundary cells in retrosplenial) to allocentric representation of bar-

riers (boundary vector cells) to allocentric representation of the spatial location of

the agent (place cells in hippocampus). An interesting comparison can be drawn

between the responses learned here and those learned in Recanatesi et al. (2021),

where a single layer RNN trained in a similar manner produces place-like repre-

sentations but not the types of responses we see in the intermediate RSC and PR

modules. This suggests that the restriction of weights between subsets of RNN

units, via hierarchy, leads to the intermediate representations being beneficial to

overall performance.

When placed in a novel situation (Figure 4.3) the majority of the allocentric

codes are diminished, although self-motion and egocentric related signals persist.

While allocentric codes do not spontaneously adjust to the novel environment in

our model, experimental evidence suggests that remapping may occur within the

first few minutes of exposure to a novel environment (Lee et al., 2012), suggest-

ing that some global modulation of learning rate may be necessary to more fully

replicate experimental findings. We also saw, compared to experimental settings,

a higher portion of units which responded conjunctively to place, head direction,

and movement speed. Introducing some regularization constraints on either the

weights or overall activity level within a layer may help to address these discrep-
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ancies (Clopath et al., 2010).

A notable omission from the current work is that the hippocampal module ex-

hibits all of the same dynamics and learning rules as the cortical modules. While

the general DG -> CA3 -> CA1 connectivity does match the connectivity pattern

of neocortex, the different specifics of short-term facilitation and depression, and

the pattern of inhibitory interneurons is omitted from this model. In particular,

the proximal FF into CA3 is thought to be facilitating rather than depressive. This

means that the input to this region may actually be more responsive to bursting

from CA1 than to event rate, of which the later is assumed in the simplified activa-

tion model presented here. A more fully biophysical model, such as that in 2, may

incorporate these differences. A notable difference from experimental findings is

that none of the learned responses in this model were tuned to grid-like activation,

with the exception of a small number of feedback units in hippocampus. We ex-

pect this is largely due to the absence certain constraints in the behavior of the EC

module. Recent computational work has shown that grid units only arise in spe-

cific constraints to weight matrices and place field structure (Schaeffer et al., 2022).

Additionally, grid cells are thought to arise at least in part due to the presence of

certain rhythmic-inducing components such as medial septal input (Brandon et al.,

2011) or rebound current (Hasselmo & Shay, 2014). Incorporating one or both of

these components in future work could result in grid-like representations.
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CHAPTER 5

Discussion

5.1 SUMMARY OF FINDINGS

In the introductory section, I outlined the various aspects of neural models that

might be manipulated, and how various biological constraints may guide these

changes. In the following chapters I then introduced models which incorporate

these changes in order to predict external dynamics (Chapter 2), convert an ego-

centric stimulus to a latent two dimensional space (Chapter 4), and express inter-

pretable internal representations.

Chapter 2 introduced several stepwise changes in architecture, which progres-

sively incorporate neural hierarchy, simplified dynamics, and separate feedfor-

ward and feedback pathways. While hierarchy and dynamics increased the gen-

eralizability and autonomous performance of the overall system, the increased

modular complexity did not increase this performance further. However, when

combined with a learning rule which specifically utilizes the feedback connection

to gate the rate and direction of learning (eq. 2.6) the performance was increased

beyond what can be achieved with artificial neural networks and backpropaga-

tion through time approaches. Furthermore, because the dynamics of these mod-

ules and the corresponding components of the learning rule have concrete inspira-

tions from biology, we were able to introduce a biophysical spiking version of this

model, which has similar performance to the rate approximation. As important

as the overall performance however, was the finding that the modules in this net-

work strongly encode the temporal derivative of their inputs, suggesting that the

predictive learning rule is able to extract some underlying structure of the stim-
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ulus. While the tasks used in this study are one or three dimensional location

trajectories, scaling up the predictive module to incorporate earlier regions such as

visual cortex may allow predictive learning purely from video stimuli.

Chapter 3 demonstrated a recently discovered functional phenotype in the ret-

rosplenial cortex of behaving rats. This region lies at the intersection of sensory

driven egocentric representations of cortex and the allocentric representations of

medial temporal lobe, and has therefore been postulated to perform a transforma-

tion between these coordinate systems. The novel cell type (egocentric boundary

cells) may perform the substrate for this transformation, and have been found in

other regions implicated in translating two dimensional space to sensory space,

such as posterior parietal cortex, motor cortex, and striatum (LaChance et al., 2019;

Alexander et al., 2019; Hinman et al., 2019).

Inspired by the success of the previous two chapters, Chapter 4 incorporates the

dynamics and learning rules of Chapter 2 into the behavior and macroscale con-

nectivity of Chapter 3, with the goal of investigating the representations learned

and comparing them with experimental findings. Overall, the results show the ex-

pected trend of earlier regions encoding an egocentric (primarily sensory driven)

response, with representations in later regions that are allocentrically informed

(such as the response to distance from a single barrier) and purely allocentric rep-

resentations (place cells). Consistent with experimental findings and expectations,

self motion information was encoded in all regions, allowing the overall move-

ment speed to provide a gain on rate of representational change. Also consistent

with findings, though not directly in line with the egocentric to allocentric trend,

head direction modulation was found in most regions.
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5.2 CURRENT WORK

Immediate research directions center on the preliminary findings presented in Chap-

ter 4. The large scale connectivity of this model was based on cognitive neuro-

science models, but may require modification in order to more directly align with

physiology. Of particular note, the module mediating responses between retro-

splenial cortex and hippocampus, termed “perirhinal”, may more appropriately

be referred to as subiculum or entorhinal cortex. While there are few studies of

perirhinal responses in behaving animals (Burwell et al., 1998), several studies re-

port boundary vector responses, similar to the observed “perirhinal” module re-

sponses, in subiculum and entorhinal cortex (Lever et al., 2009). More closely in-

vestigating the interconnectivity of these candidate regions with the hippocampus

may provide slight modifications in module connectivity, and provide more real-

istic results in the modeled entorhinal cortex. Additional analyses of low dimen-

sional representations in each module, compared to baseline RNN approaches,

may further elucidate how the self-supervised learned representations differ from

those learned with backpropagation (Recanatesi et al., 2021; Low et al., 2023).

5.3 FUTURE DIRECTIONS

The overall goal of computational neuroscience is to understand, and possibly

utilize, how the dynamics and structure of neural systems enable a wide range

of behavior. However, the work presented in chapters 2-4 focuses primarily on

representation learning and utilization. While the performance of the network in

chapter 2 is extremely high, and chapter 4 provides a concrete tie to a more be-

haviorally relevant scenario, there are several aspects of cognition beyond repre-
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sentation learning that have not been addressed by these models. One clear appli-

cation of the predictive learning utilized here is the case of control systems, such

as motor cortex, where any differences in expected proprioceptive state over time

can directly inform improved motor control. Another avenue of research would

be how to integrate the columnar dynamics of pyramidal neurons to implement

approximations of cognitive attention. The feedback dynamics of chapter 2 are

primarily used to guide the learning of feedforward signals, but other researchers

have utilized the same feedforward-feedback contrast to implement forms of rout-

ing (Bastos et al., 2018), consistent with experimental findings that oscillatory fre-

quencies associated with feedback are implicated in attention (Friese et al., 2016;

Richter et al., 2017). While small scale models have been able to incorporate such

dynamics for gating of low-dimensional signals, it has proven difficult to scale

these models to cognitive tasks as removing biological fidelity is often a require-

ment for such scaling, and loss of fidelity quickly approaches BP like algorithms.

As the burst-dependent learning rule presented in Chapter 2 has shown, incorpo-

rating some degree of fidelity can be important for finding new mechanisms of

learning. Therefore, careful consideration must be made when scaling biophysical

models of attention, so that the essential underlying components are not lost.

5.4 CONCLUSION & BROADER IMPLICATIONS

Many recent computational neuroscience studies have attempted to identify bi-

ologically plausible methods of backpropagation of errors (O’Reilly, 2000; Bour-

doukan & Denève, 2017; Naud & Sprekeler, 2018; Payeur et al., 2021). While these

approaches have had some degree of success, they are still fundamentally bio-

logically implausible and limited in that they rely on supervised learning, target
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signals, and explicit errors (though see Sussillo & Abbott (2009); Brea et al. (2016);

Lotter et al. (2020)). Our approach here has instead been to take the same bio-

logically plausible learning rules and organize them into a modular design which

encourages alignment of feedforward and feedback signals, even when the feed-

back signals arise from internal dynamics rather than explicit targets. The results

presented here indicate this approach can produce highly interpretable models,

and may provide a basis for further research into such “internal alignment” ap-

proaches to predictive learning.
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