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Abstract

This paper develops an approach to detect identification failure in moment

condition models. This is achieved by introducing a quasi-Jacobian matrix com-

puted as the slope of a linear approximation of the moments on an estimate of the

identified set. It is asymptotically singular when local and/or global identifica-

tion fails, and equivalent to the usual Jacobian matrix which has full rank when

the model is globally and locally identified. Building on this property, a simple

test with chi-squared critical values is introduced to conduct subvector inferences

allowing for strong, semi-strong, and weak identification without a priori knowl-

edge about the underlying identification structure. Monte-Carlo simulations and

an empirical application to the Long-Run Risks model illustrate the results.
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1 Introduction

The Generalized Method of Moments (GMM) of Hansen and Singleton (1982) is a powerful

estimation framework which does not require the model to be fully specified parametrically.

Under regularity conditions, the estimates are consistent and asymptotically Gaussian. In

particular, the moments should uniquely identify the finite-dimensional parameters. This is

very difficult to verify in practice and, as noted in Newey and McFadden (1994), is often

assumed. Yet, when identification fails or nearly fails, the Central Limit Theorem provides

a poor finite sample approximation for the distribution of the estimates. This has motivated

a vast amount of research on tests which are robust to identification failure. An empirically

relevant problem, which remains less explored, is of determining, for a given set of estimating

moments, whether local and global identification actually hold.

The contribution of this paper is two-fold: first, it introduces a quasi-Jacobian matrix

which is singular under both local (first-order) and global identification failure and is informa-

tive about the coefficients involved in the identification failure. This is the main contribution

of the paper as it provides an approach similar to Cragg and Donald (1993) and Stock and

Yogo (2005) but in a non-linear setting. Second, the information is used to construct an

identification robust subvector test which does not require a priori knowledge of the iden-

tification structure. The test is asymptotically non-conservative under strong identification.

It is asymptotically efficient for strongly just-identified models.

The quasi-Jacobian matrix is the best linear approximation of the sample moment func-

tion over a region of the parameters where these moments are close to zero. To find the best

linear approximation, a sup-norm (or ℓ∞-norm) loss is used to minimize the largest devia-

tion from the linear approximation. This is known as a Chebyshev approximation problem

which can be solved fairly quickly using convex optimization software. In the population,

the quasi-Jacobian has full rank if, and only if, the parameters are both globally and locally

identified. When either global or local identification fails, it is singular in all directions as-

sociated with the identification failure. (Non)-singularity of the quasi-Jacobian can be used

to check whether identification holds numerically when it is not feasible analytically.

The asymptotic behaviour of the quasi-Jacobian matrix is studied under three identi-

fication regimes: including strong, semi-strong, and weak (or set) identification. Under

strong identification, the moment conditions are informative, have a unique solution, under

semi-strong identification are less informative but sufficiently so that for estimates to be

consistent and asymptotically Gaussian. Antoine and Renault (2009), Andrews and Cheng

(2012) showed that: under (semi)-strong identification, standard inference methods such as
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the t-test with standard normal critical values are asymptotically valid.1 Under weak and

set identification, the moments are insufficiently informative compared to sampling uncer-

tainty and multiple distant solutions to the moment conditions appear plausible, even in

large samples, so that the parameters cannot be consistently estimated and standard infer-

ence methods are not asymptotically valid. The Supplement also considers higher-order local

identification, where the solution is unique but not locally identified; it can be consistently

estimated but with non-Gaussian limiting distribution. Under (semi)-strong identification,

the quasi-Jacobian is shown to be asymptotically equivalent to the usual Jacobian: after

re-scaling, it is asymptotically non-singular. Under higher-order and weak identification

the quasi-Jacobian is asymptotically singular with eigenvalues vanishing in directions where

identification fails. It is thus informative about the presence of identification failures and

which directions are not identified.

Building on these results, this paper constructs a simple test procedure for subvector

hypotheses on the parameters θ = (θ′1, θ
′
2)

′ ∈ Rdθ of the form:

H0 : θ1 = θ10 vs. H1 : θ1 ̸= θ10. (1)

Subvector inference as described in (1) is quite prevalent in empirical work where only a

few structural parameters θ1 are typically of interest. The remaining θ2 nuisance parameters

describe other features of the data generating process needed for estimation. For instance,

in the empirical application only 2 preference parameters are of interest while the remaining

10 coefficients parameterize the law of motion for consumption and dividends which is not

of immediate interest. The paper relies on the Anderson and Rubin (1949, AR) test statistic

for simplicity. The critical values take the form χ2
dg−d where dg is the number of moments

and d is determined using an Identification Category Selection (ICS) procedure based on

the singular values of the quasi-Jacobian matrix. This is a projection inference procedure

where the ICS step estimates the number of (semi)-strongly identified nuisance parameters

to reduce the degrees of freedom.

Monte-Carlo simulations illustrate the results for a simple consumption-based asset pric-

ing model. In the empirical application, the procedure is used to conduct joint inference on

risk-aversion and the inverse elasticity of substitution in the long-run risks model of Bansal

and Yaron (2004). The results suggest that several nuisance parameters are weakly identified

1The term (semi)-strong will refer to cases where identification can be either strong or semi-strong.

Antoine and Renault (2009) further distinguish between nearly-strong and nearly-weak identification. Under

the latter, the limiting distribution may be non-Gaussian. Here, when this is the case, it will be referred to

as higher-order local identification.
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but not all; some are (semi)-strongly identified. This implies that standard inferences based

on t or Wald statistics are not asymptotically valid and full projection inference is valid, but

conservative. Given the number of parameters in the application, the standard approach of

performing test inversion using a grid search is very computationally demanding. Instead, an

adaptive sampling procedure based on the Population Monte Carlo (PMC) principle draws

uniformly on level sets of the objective function. This makes it possible to conduct robust

inference on more complex models like the empirical application: the quasi-Jacobian and

5,000 uniform draws on the confidence set are computed in about 4 hours on a desktop

computer.

Structure of the Paper

After a review of the literature and an overview of the notation, Section 2 introduces the

setting, the procedure and provides more details about the quasi-Jacobian, the test, and

the identification regimes. Section 3 derives the asymptotic behaviour of the quasi-Jacobian

matrix, and Section 4 results for the test. Section 5 gives Monte-Carlo evidence for the

results, and Section 6 the empirical application. Appendices A, B provide proofs for the

main results. The Supplement includes sample R code to compute the quasi-Jacobian and

for inference, a description of the PMC algorithm used to generate draws, and additional

results for higher-order identification.

Related Literature

The literature on the identification of economic models is quite vast, and an extensive review

is given in Lewbel (2018). Within this literature, this paper mainly relates to three topics:

local and global identification of finite-dimensional parameters in the population, detection

of identification failure in finite samples, and identification robust inference.

Koopmans and Reiersol (1950) provide one of the earliest general formulations of the

identification problem at the population level. To paraphrase the authors, the main problem

is to determine whether the distribution of the data, assumed to be generated from a given

class of models, is consistent with a unique set of structural parameters. In the likelihood

setting, Fisher (1967), Rothenberg (1971) introduced sufficient conditions for local and global

identification. Komunjer (2012) provides weaker global identification conditions for GMM.

In linear models, global identification amounts to a rank condition on the slope of the

moments. This insight was used in pre-testing linear IV models for identification failure
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using a first-stage F-statistic or rank tests, Cragg and Donald (1993), Stock and Yogo (2005),

Kleibergen and Paap (2006). Pre-tests based on the null of strong identification appear in

Hahn and Hausman (2002) for linear IV and Inoue and Rossi (2011), Bravo et al. (2012)

for non-linear models. Pre-testing for strong identification could make size control difficult

when the pre-test has low power. For non-linear models, Wright (2003) uses a rank test

and Antoine and Renault (2020) a distorted J-statistic to detect local identification failure.

Arellano et al. (2012) develop a test for underidentification of a single coefficient.

Given the impact of (near) identification failure on standard inferences, a large body of

literature has developed identification robust tests. Much of the literature is concerned with

inference on the full parameter vector, e.g. Anderson and Rubin (1949), Stock and Wright

(2000), Kleibergen (2005), Andrews and Mikusheva (2016). Projection inference can be used

to conduct subvector inference from these tests (Dufour, 1997). Alternatively, Bonferroni

methods combined with a C(α) test can be used, Chaudhuri and Zivot (2011), Andrews

(2017). For homoskedastic linear IV models, Guggenberger et al. (2012) propose critical

values for a subset Anderson-Rubin test which improve power over full projection inference.

In the same setting, Guggenberger et al. (2019) propose a data-driven choice of critical values

based on a measure of identification strength of the nuisance parameters, and Kleibergen

(2021) considers subvector conditional Likelihood-Ratio inference. This paper relies on the

Anderson-Rubin statistic for inference, which is the simplest to implement. More powerful

test statistics exist such as the conditional quasi-Likelihood Ratio. The main challenge there

is in computing the critical values by simulation, which requires to repeatedly minimize

non-linear and potentially multi-modal objective functions.2

Given knowledge about the source of a potential identification failure, and a specific struc-

ture in the underlying model Andrews and Cheng (2012, 2013, 2014), Cheng (2015), Han and

McCloskey (2019), Cox (2020) propose identification robust tests which are asymptotically

non-conservative and powerful under strong identification. These papers rely on a data-

driven choice of critical value; it is determined by an ICS statistic built from model-specific

knowledge about the source and form of the identification failure. This paper proposes and

studies an ICS statistic which does not rely on model-specific information to determine iden-

tification status. The choice of robust critical values can coincide with Andrews and Cheng

(2012)’s least-favorable critical value, see Appendix H.2 for an example. Andrews (2017)

proposes an ICS based on the singular values of sample Jacobian which measures local but

2This is difficult for non-convex problems, see e.g. Nemirovsky and Yudin (1983, Section 1.6.2) for the

complexity of the minimization problem and Nesterov (2018, p14-16) for the practical implications and

software limitations.
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not global identification strength. His test applies to GMM and likelihood problems.

Under higher-order identification, estimates are consistent but the delta-method is not

valid. The limiting distribution is non-standard (Rotnitzky et al., 2000), Dovonon and Hall

(2018). This issue is known but much less studied than weak and set identifications. Dovonon

et al. (2019) study identification robust tests under second-order identification, and Lee and

Liao (2018) conduct standard inference under known second-order identification structure.

Notation

For any matrix (or vector) A, ∥A∥ =
√∑

i,j A
2
i,j =

√
trace(AA′) is the Frobenius (Eu-

clidian) norm of A. For any square matrix A, λj(A) refers to the j-th eigenvalues of A,

in increasing order if A is symmetric positive semi-definite; λmax(A) and λmin(A) refer to

its largest and smallest eigenvalue, respectively, λ1(A), . . . , λd(A) are the first d eigenvalues

of A in increasing order. For a weighting matrix Wn(θ), the norm ∥ḡn(θ)∥2Wn
is computed

as ḡn(θ)
′Wn(θ)ḡn(θ). The abbreviation wpa 1 will be used to abreviate “with probability

approaching 1.” For ε > 0, Bε(θ) is a closed ε-ball around θ.

2 Setting and Assumptions

Following Hansen and Singleton (1982), the econometrician wants to estimate the solution

vector θ0 to the system of unconditional moment equations:

g(θ0, γ0)
def
= Eγ0(ḡn(θ0)) = 0, (2)

where θ0 = (θ′10, θ
′
20)

′ ∈ Θ = Θ1 × Θ2, a compact subset of Rdθ , dim(ḡn) = dg ≥ dθ.

ḡn(θ) = 1/n
∑n

i=1 g(zi, θ) is the sample vector of moment conditions, (zi)i=1,...,n is a sample

of iid or stationary random variables. The parameter γ0 ∈ Γ indexes the true distribution

of the data (zi), including the true θ0. It has the form Γ = {γ = (θ, ω), θ ∈ Θ, ω ∈ Ω}. Ω

indexes features of the data generating process beyond θ that are relevant to identification

and weak convergence. Γ = Θ × Ω is a compact subset of a metric space with a metric

∥θ − θ̃∥ + d(ω, ω̃) between γ = (θ, ω) and γ̃ = (θ̃, ω̃) that induces weak convergence for

(zi, zi+m) for any i,m ≥ 1.3 The operator Eγ0 denotes the expectation under γ = γ0.

g(θ, γ0) = Eγ0(ḡn(θ)) is then the population vector of moment conditions evaluated at the

3For reduce the number of coefficients involved in the notation below, this distance will be written as

∥θ − θ̃∥+ d(γ, γ̃). See Andrews and Cheng (2012, p2162) for a discussion of these conditions.
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true γ0 ∈ Γ and a coefficient θ. Throughout, it is assumed that θ0 is such that g(θ0, γ0) = 0.

The function g(·, γ) is assumed to be continuously differentiable on Θ for all γ.

Given the sample moments ḡn and a sequence of positive definite weighting matrices

Wn(θ) converging to W (θ), the GMM estimator θ̂n solves the sample minimization problem:

θ̂n = argminθ∈Θ ḡn(θ)
′Wn(θ)ḡn(θ), (3)

where Θ = Θ1 ×Θ2 is the optimization space.

Assumption 1 (Parameter Space, Sample Moments, Weighting Matrix). i. Γ and Θ ⊂ Rdθ

are compact; Θ is a convex, compact subset of Rdθ such that Θ ⊂ Θ and ∪θ∈ΘBη(θ) ⊆ Θ for

some η > 0; for all (θ, γ) ∈ Θ × Γ and all ε > 0, Bε(θ, γ) ∩ (Θ × Γ) is non-singleton and

connected, ii. for any sequence (θn, γn) → (θ0, γ0) ∈ Θ × Γ: supθ∈Θ
√
n∥ḡn(θ) − g(θ, γn)∥ =

Op(1), and
√
nḡn(θn)

d→ N (0, V0) where V0 is finite and non-singular, iii. supθ∈Θ ∥Wn(θ) −
W (θ)∥ = op(1). Wn and W are Lipschitz continuous in θ; there exists λW , λW such that

0 < λW ≤ λmin(Wn(θ)) ≤ λmax(Wn(θ)) ≤ λW <∞, for all θ.

Assumption 1 i. implies that Θ strictly contains Θ so that issues arising when a parameter

is on the boundary are not considered here.4 The connected neighborhood condition plays

the role of Assumption ACP iv. in Andrews and Cheng (2012, p2165). It implies that we can

find sequences γn along a continuous path in Γ leading to γ0 such that 0 < ∥γn − γ0∥ → 0.

Together with a continuity condition in Assumption 3 below, it allows to interpolate converg-

ing subsequences into converging sequences of parameters in one of the desired identification

categories. This is similar to Assumption B2 in Andrews et al. (2020) and Assumption 14

in Cox (2020). Condition ii. is a uniform convergence condition, implied by a uniform CLT.

Condition iii. ensures that ∥ · ∥Wn is equivalent to ∥ · ∥ so that the choice of Wn does not

alter the identifiability of the parameters.

2.1 Outline of the Procedure

The following steps provide a general overview of the computation of the quasi-Jacobian

matrix, the ICS, and test procedure used in the paper. In the following, the matrix P⊥
θ1

is

an orthogonal projection matrix, projecting on the space orthogonal to θ1. It can be written

as P⊥
θ1

= diag(0dθ1 , 1dθ2 ) so that it only selects elements associated with θ2. The matrix V n

4See Cox (2020) for results on identification and boundary robust inference.
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is a weighted average of estimates of var[
√
ngn(θb)], with weights proportional to K̂n(θb),

described in more details below.5

Computing the quasi-Jacobian and the test statistic:

1. Inputs bandwidth κn, kernel K, cutoff λn, number of draws B

2. quasi-Jacobian Matrix

i. Draw (θb)b=1,...,B uniformly on the level set {θ ∈ Θ, ∥ḡn(θ)∥Wn ≤ κn}
ii. Compute the intercept An,∞ and slope Bn,∞ in the ℓ∞-norm regression:

(An,∞, Bn,∞) = argminA,B

(
sup

b∈{1,...,B}
∥gn(θb)−A−Bθb∥K̂n(θb)

)
, (4)

where K̂n(θb) = K(∥gn(θb)∥Wn/κn).

iii. Compute the variance Σn:

(µn,Σn) = argminΣ,µ

(
sup

b∈{1,...,B}
(log |Σ|+ ∥θb − µ∥2Σ−1)K̂n(θb)

)
, (5)

3. Identification Category Selection

i. Compute the singular values (λjn)j=1,...,dθ of V
−1/2
n Bn,∞P⊥

θ1
Σ
−1/2
n P⊥

θ1

ii. Compute d̂n, the number of singular values λjn greater than λn

4. Subvector Inference

i. Compute the test statistic: AR(θ10) = infθ2∈Θ2 n∥ḡn(θ10, θ2)∥2V̂ −1
n

ii. Reject H0 : θ1 = θ10 at the 1− α confidence level if AR(θ10) > χ2
dg−d̂n

(1− α)

In the procedure, χ2
dg−d̂n

(1−α) is the 1−α quantile of a χ2 distribution with dg−d̂n degrees
of freedom, dg is the number of moment conditions. In the following, the number of draws

B is assumed to be sufficiently large for the finite-B approximation error to be negligible.

The ℓ∞ regression (4) is known as a Chebyshev (or minimax) approximation problem and

can be cast as a linear programming problem (Boyd and Vandenberghe, 2004, p293). It can

be solved with a few lines of code using the cvx convex optimization toolkit.6 (5) is also

solved using cvx. Finally, note that, in the procedure, the intercept An,∞ and the mean µn

are nuisance parameters, only Bn,∞ and Σn are used in steps 3-4. On the computation side:

Appendix F outlines a sequential Algorithm to sample on the level set (step 2i.), the quasi-

Jacobian is only computed once; it is defined whether the sample moments are differentiable,

5For iid data, var[
√
ngn(θb)] is approximated using 1

n

∑n
i=1 g(zi, θb)g(zi, θb)

′−gn(θb)gn(θb)
′; for dependent

data a HAC estimator is used.
6See Supplemental Appendix G for sample R code which implements the method.
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or not. The standard Jacobian requires differentiability and needs to be evaluated at every

grid point. Instead of the ℓ∞ loss, one could use the ℓ2-norm which yields least-squares

solutions (An,LS, Bn,LS). Some technical difficulties arise because the identified set typically

has measure zero, and stronger assumptions are required to derive the properties of Bn,LS

compared to Bn,∞. The re-scaling in step 3 is discussed below. The following provides

further details about the steps outlined above.

2.2 Linear Approximations and the quasi-Jacobian Matrix

The quasi-Jacobian matrix Bn,∞ is defined as the slope of a local linear approximation for

ḡn(·) over an estimate of the identified set.

Definition 1. (Sup-Norm Approximation) Let K be a kernel function and κn a bandwidth.

The sup-norm approximation (An,∞, Bn,∞) solves:

(An,∞, Bn,∞) = argminA,B

(
sup
θ∈Θ

[
∥A+Bθ − ḡn(θ)∥K̂n(θ)

])
, (6)

where K̂n(θ) = K (∥ḡn(θ)∥Wn/κn). The quasi-Jacobian refers to the slope matrix Bn,∞.

In practice, the minimization problem (6) is solved over a finite grid as in (4). The grid

can be generated using Monte-Carlo or quasi-Monte-Carlo methods (Robert and Casella,

2004; Lemieux, 2009). In the simulations, the Sobol sequence was used. In the empirical

application, dθ = 12 is relatively large, and the set of θ where K̂n(θ) > 0 is fairly narrow;

the acceptance rate is very low. A very large number of draws would be needed to find

sufficiently many θb with non-zero weight, i.e. K̂n(θb) > 0. The empirical application relies

on a sequential sampling principle called Population Monte Carlo (Cappé et al., 2004). It

constructs a sequence of proposal distributions that approximate the target distribution

with increasing accuracy, see Appendix F for details. These proposals can be re-purposed

to compute confidence sets, reducing the additional time required for test inversion. It can

also be used to compute Bn,∞ for different values of κn as a sensitivity analysis.

Assumption 2 (Kernel, Bandwidth). i. K(x) > 0 if x ∈ [0, 1), K(x) = 0 if x ≥ 1. K is

continuous on [0, 1), ii.
√
nκn → ∞,

√
nκ2n → 0.

The kernel is assumed to have compact support. The uniform kernel, K(x) = 1x∈[−1,1],

was used in the simulations and empirical results.7 The first condition ensures that K̂n(·)
7The estimated Bn,∞ is nearly numerically identical using the cosine or Epanechnikov kernels.
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selects the identified set with wpa 1 under weak identification. The second ensures that

Bn,∞ only captures the first-order Jacobian term in local expansions under (semi)-strong

identification. Otherwise, it would also capture nonlinear terms from the remainder.

2.3 Test Procedure

To illustrate the usefulness of detecting identification failure, consider the following simple

data-driven test procedure. It is based on the Anderson-Rubin statistic for non-linear GMM

models as described in Stock and Wright (2000). To test null hypotheses of the form H0 :

θ1 = θ10, compute the sample statistic:

ARn(θ10) = inf
θ2∈Θ2

n
(
ḡn(θ10, θ2)

′V̂ −1
n (θ10, θ2)ḡn(θ10, θ2)

)
,

where V̂n(θ) consistently estimates the asymptotic variance limn→∞ var(
√
nḡn(θ)). The test

rejects at a nominal level α ∈ (0, 1) if ARn(θ10) > χ2
dg−d̂n

(1− α) where χ2
dg−d̂n

(1− α) is the

1−α quantile of a chi-square distribution with dg − d̂n degrees of freedom. d̂n ∈ {0, . . . , dθ2}
is computed using an identification category selection (ICS) procedure based on the quasi-

Jacobian and its singular values. The procedure, described below, evaluates the number of

nuisance parameters in θ2 which are potentially weakly/set identified. Using d̂n = 0 yields

the largest critical value and amounts to full projection inference (Dufour and Taamouti,

2005). Using d̂n = dθ2 yields the smallest critical value which provides valid, non-conservative

inferences when all of the nuisance parameters are strongly identified. Intermediate values

of d̂n improve power compared to full projection while ensuring robustness if a subset of the

nuisance parameters is weakly identified. A confidence set for θ1 collects all values of θ1 for

which ARn(θ1) ≤ χ2
1−α(dg − d̂n) using the same d̂n.

The choice of d̂n should be invariant to rescaling the sample moments ḡn and/or the

parameters θ. To this end, the procedure relies on two normalization matrices: V̄n =∫
Θ
V̂n(θ)π̂n(θ)dθ and Σn, where π̂n(θ) = K̂n(θ)/

∫
Θ
K̂n(θ)dθ. V̄n an average of asymptotic

variance estimators for limn→∞ nvar(ḡn(θ)). It is used to ensure the procedure is invariant

to re-scaling and rotating the sample moments. Σn is the ℓ∞-covariance matrix minimizing

supθ∈Θ
(
log |Σ|+ ∥θ − µ∥2Σ−1

)
K̂n(θ) over µ and Σ. These quantities are readily available

from the steps required to compute Bn,∞. It is important to use an estimate of the vari-

ance Σn of θ on Θn rather than the variance of Bn,∞ or of the sample Jacobian. When the

model is set or weakly identified, the variance Σn - which measures the size of the set Θn
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- does not go to zero in directions where identification fails.8 The variance of Bn,∞ or the

Jacobian could be arbitrarily small, however.9 Hence, Bn,∞Σ
−1/2
n is vanishing in directions

where identification fails and is invariant to rescaling the coefficients θ.

Let P⊥
θ1
be the projection matrix on the orthogonal of the span of θ1, compute the singular

values of the normalized V̄
−1/2
n Bn,∞P

⊥
θ1
Σ

−1/2
n :

λjn = λj(P
⊥
θ1
Σ−1/2

n P⊥
θ1
B′

n,∞V̄
−1
n Bn,∞P

⊥
θ1
Σ−1/2

n P⊥
θ1
)1/2,

where λj denotes the j-th eigenvalue in increasing order so that 0 ≤ λ1n ≤ · · · ≤ λdθn. By

projection, the smallest dθ1 singular values are equal to zero. Take λn → 0, a decreasing

sequence such that κn = o(λn), and compute:

d̂n = #{j ∈ {dθ1 + 1, . . . , dθ}, λjn > λn},

where # counts the number of singular values λjn which are greater than the threshold λn.

Choice of Tuning Parameters: A default choice is the uniform kernel K(x) = 1x∈[−1,1].

Then, the role of the pair (κn,Wn) is to estimate the solution set of parameter(s) θ0 such

that g(θ0, γ0) = 0. For this choice of kernel, if a law of the iterated logarithm applies,

then, pointwise, liminfn→∞K̂n(θ0) = 1 almost surely using Wn(θ0) = var[
√
ngn(θ0)]

−1 and

κn =
√

2 log[log(n)]/n.10 In that sense, efficient weighting and κn =
√

2 log log(n)/n are

asymptotically optimal and makes K̂n(θ) invariant to linear transformations of the moments.

The role of the normalized Bn,∞ and the threshold λn is analogous to the ICS procedure

in Andrews and Cheng (2012, Section 5.2), and the subsequent literature. Here, it is shown

that if d nuisance parameters are weakly identified then at least d singular values are Op(κn).

Hence, wpa 1, they are smaller than λn, if λn = o(κn). As a result, d̂n is no greater than

the number (semi)-strongly identified nuisance parameters wpa 1, which leads to valid in-

ferences under weak identification. Typically, using larger values of λn in an ICS procedure

is desirable for robust inference since it correctly detects identification failures with greater

probability in finite samples. However, it also makes the test more conservative under semi-

strong identification since it incorrectly detects identification failure with greater probability.

8Lemma D4 shows that Σ
−1/2
n is bounded above under weak identification in directions where identifica-

tion fails.
9Take g(zi; θ) = 0, for all θ, zi a.s.. The variances of both Bn,∞ and the Jacobian are zero; yet, Σn ̸= 0.

10A law of the iterated logarithm implies limsupn→∞
√

n/(2 log[log(n)])∥gn(θ0)∥Wn
= 1 almost surely,

also K(x) = 1 for all x ∈ [−1, 1], see e.g. Petrov (1995, Ch7); and Kosorok (2008, p31), van der Vaart and

Wellner (1996, p379, footnote b) for references applying to empirical processes, which are not pointwise.
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This implies a trade-off between power for semi-strongly identified models with robustness

for weakly identified models. The normalization Σ
−1/2
n in the procedure improves on this by

making the behaviour of the ICS statistic more distinct between these two regimes. The nor-

malization Bn,∞P
⊥
θ1
Σ

−1/2
n P⊥

θ1
preserves the asymptotic singularity under weak identification

but the normalized matrix diverges at a κ−1
n −rate when identification is strong.

2.4 The quasi-Jacobian

The main component of the procedure is the quasi-Jacobian. To better understand the main

differences with the Jacobian, the following derives its properties for n = ∞, using a positive

definite W (θ) and the uniform kernel K(x) = 1x∈[−1,1]. Take

(A∞, B∞) = lim
κ→0

(
argminA,B( sup

∥g(θ,γ0)∥W≤κ

∥g(θ, γ0)− A−Bθ∥)

)
,

where the sup is taken over θ ∈ Θ with κ > 0. To compute the Jacobian, ∂θg(θ0, γ0), one

would use the set ∥θ − θ0∥ ≤ κ; the main difference is the choice of neighborhood.

This difference suggests that, unlike the Jacobian, the properties of the quasi-Jacobian

depend on the set Θ0 = {θ ∈ Θ, g(θ, γ0) = 0}, which collects all solutions to the moment

condition. For any given value γ0 ∈ Γ, there are three possibilities, either: i. Θ0 is non-

singleton, ii. Θ0 = {θ0} is singleton and ∂θg(θ0, γ0) is singular, or iii. Θ0 = {θ0} is singleton

and ∂θg(θ0, γ0) has full rank. Under i., θ0 is not globally identified. Under ii. and iii. θ0 is

globally identified but only locally identified under iii. Consistency and asymptotic normality

require iii., i.e. strong identification, and standard inference need not be asymptotically valid

under i. or ii. The following Theorem relates the rank of B∞ to identifications i., ii., and iii.

Theorem 1 (quasi-Jacobian, n = ∞). Take γ0 ∈ Γ. Suppose 0 < λW ≤ λmin(W (θ)) ≤
λmax(W (θ)) ≤ λ <∞ and g(·, γ0) is continuously differentiable for all θ ∈ Θ. Suppose there

are ε, C > 0 and α > 1 such that when Θ0 = {θ0} is singleton: ∥g(θ)− g(θ0)− ∂θg(θ0)(θ −
θ0)∥ ≤ C∥θ − θ0∥α for all ∥θ − θ0∥ ≤ ε. Then the quasi-Jacobian B∞ is such that:

(1) B∞ singular if, and only if: Θ0 non-singleton or, Θ0 singleton and ∂θg(θ0, γ0) singular,

(2) For Θ0 singleton and ∂θg(θ0, γ0) full rank: B∞ = ∂θg(θ0, γ0),

(3) For Θ0 non-singleton: B∞(θ10 − θ20) = 0 for all {θ10, θ20} ⊆ Θ0,

(4) For Θ0 singleton and ∂θg(θ0, γ0) singular: B∞v = 0 whenever ∂θg(θ0, γ0)v = 0.
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The dependence of Θ0, B∞ on γ0 is omitted to simplify notation. The condition for

globally identified models holds with α = 2 if g(·, γ0) is twice continuously differentiable

with bounded second derivative around θ0. Theorem 1 shows that B∞ is singular as soon as

γ0 is such that global or local identification fails (1). An immediate implication of Theorem

1 is that for all v ̸= 0 such that B∞v ̸= 0, PvΘ0 = Pv{θ0}; i.e. the parameter is point

identified in direction v. This contrasts with the Jacobian which can have full rank without

global identification. B∞ is singular in all directions in which global identification fails (3),

or local identification fails (4); these directions may vary depending on γ0. B∞ has full rank

only if γ0 is such that both global and local identification hold (2). Theorem 1 holds for

both just and over-identified models. The identified set Θ0 can be arbitrary, e.g. discrete.

The results do require correct specification, Θ0 non-empty, for the quasi-Jacobian B∞ to be

well defined. Even though Theorem 1 is fairly general, the main results will be restricted to

settings where either i. Θ0 is non-singleton, or iii. Θ0 is singleton and ∂θg(θ0, γ0) has full

rank. Additional results for ii. are given in Appendix I.

The Jacobian generally does not have property (1) or (3). When using projection methods

for subvector inference, one can concentrate out nuisance parameters that are both globally

and locally identified. The Jacobian can only determine the latter which is not sufficient

for consistency. The following illustrates (3) and gives a sketch of the proof using a simple

non-linear model where Θ0 is non-singleton but the Jacobian has full rank for all θ ∈ Θ0.

Intuition for linear models. For linear models, the sup-norm approximation is exact

with B∞ = E(xix′i) and E(zix′i) for OLS and IV, respectively. The quasi-Jacobian coincides

with the Jacobian and it is singular when the regressors are multicollinear or the instruments

are not relevant. Both are singular in directions where the rank condition fails.

Non-linear models: a pen and pencil example. Consider a simple MA(1) process:

yt = σ(et + ϑet−1), et
iid∼ (0, 1),

where θ = (ϑ, σ2) ∈ R × R+ are the parameters of interest. The model is estimated using

the following set of moment conditions (the dependence on γ is omitted in this example):

g(θ) := E
(
y2t − σ2(1 + ϑ2), ytyt−1 − ϑσ2

)′
= 0.

Whenever ϑ0 ̸∈ {−1, 0, 1} and σ2
0 > 0, this system of equations has two distinct solutions:

θ10 = (ϑ0, σ
2
0) and θ

2
0 = (1/ϑ0, ϑ

2
0σ

2
0). Imposing invertibility (i.e. |ϑ0| < 1), or non-invertibility

12



(i.e. |ϑ0| > 1) restores identification so that, intuitively, only one dimension is unidentified.

Both solutions are locally identified: the Jacobian ∂θg(θ) has full rank at both values; it

is uninformative about the global identification failure in this example. The goal of this

example is to show that B∞ is informative about the lack of global identification and the

direction in which identification fails. Without the quasi-Jacobian, one would need to check

with pen and pencil whether g(θ) = 0 has multiple solutions, or not.

The first step is to find a one-to-one linear reparameterization β = (β′
1, β

′
2)

′ such that β1 is

uniquely identified but β2 is not. Let v2 = (θ10−θ20)/∥θ10−θ20∥ and pick any orthogonal v1 ⊥ v2

such that ∥v1∥ = 1. By construction: v′1(θ
1
0 − θ20) = 0 and v′2(θ

1
0 − θ20) = ∥θ10 − θ20∥2 > 0.

This implies that θ10 and θ20 are equal in direction v1 but distinct in direction v2. Pick

β1 = v′1θ, β2 = v′2θ. As desired: the mapping is one-to-one, with β1 uniquely and β2 set

identified. Property (3) in Theorem 1 implies that directions in which B∞ is non-singular

must be associated with a unique value for θ0. This first step illustrates how these directions

can be constructed from the set Θ0. Importantly, the linear reparametrization need not be

computed explicitly in practice, as explained below.

The second step is to show that B∞ is informative about the identification failure and

contains information about the reparametrization above. In the MA(1) model, the set Θ0 =

{θ10, θ20} has two points. Take κ > 0 and compute the intercept and slope Aκ,∞, Bκ,∞:

(Aκ,∞, Bκ,∞) = argminA,B

(
sup

θ∈Θ,∥g(θ)∥≤κ

∥g(θ)− A−Bθ∥

)
,

here using the uniform kernel K(x) = 1x∈[−1,1], and W = I for analytical simplicity. Notice

that for (A,B) = 0, supθ∈Θ,∥g(θ)∥≤κ ∥g(θ)∥ ≤ κ. Also, because ∥g(θ10)∥ = ∥g(θ20)∥ = 0 ≤ κ,

the solution Aκ,∞, Bκ,∞ is such that ∥g(θ)− Aκ,∞ − Bκ,∞θ∥ ≤ κ for θ ∈ {θ10, θ20}. Using the

triangular inequality and its reverse, this implies ∥Bκ,∞(θ10−θ20)∥ ≤ 2κ+∥g(θ10)∥+∥g(θ20)∥ =

2κ. Now, express this in terms of the direction vector v2 constructed above:

∥Bκ,∞v2∥ ≤ 2κ

∥θ10 − θ20∥
→ 0, as κ↘ 0.

In the limit, the quasi-Jacobian B∞ is singular in the direction v2 where identification

fails. This implies that v2 is a right-singular vector associated with the singular value 0.

The singular value decomposition of B∞ is informative about the directions of identification

failure and the linear reparametrization from the first step. While the linear reparamerization

requires knowledge of Θ0 and computing all possible θ10 − θ20 with {θ10, θ20} ⊆ Θ0, Theorem

1 implies that the right-singular vectors of B∞ associated with the singular value 0 span all

directions of identification failure θ10 − θ20.
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Figure 1: MA(1): singular values of the Jacobian, unscaled and scaled quasi-Jacobian

Note: bandwidth κn =
√
2 log(log[n])/n, cutoff λn =

√
2 log[n]/n (blue diamonds). Model: MA(1) with

true value θ10 = (ϑ0, σ
2
0) = (0.5, 1). σmax, σmin: largest and smallest singular values. Wn = V̂ −1

n where V̂n =
HAC estimate of var[

√
ngn(θ)].

In large samples and under Assumptions 1-2, ∥Bn,∞v2∥ ≤ 2κn/∥θ10 − θ20∥ wpa 1 (using

the same K, W ). As a result, for any sequence λn such that κn = o(λn), σmin(Bn,∞) ≤ λn

wpa 1 which signals the identification failure, as desired. To illustrate, Figure 1 compares

the distribution of the largest and smallest singular values of the Jacobian ∂θgn(θ̂n), quasi-

Jacobian Bn,∞, and scaled quasi-Jacobian V
−1/2

n Bn,∞Σ
−1/2
n with the same cutoff λn. The

scaling makes the singular values scale invariant. The Jacobian fails to detect the lack of

identification, even for large n (left panel) and also with the scaling V
−1/2

n ∂θgn(θ̂n)Σ
−1/2
n . The

quasi-Jacobian detects the identification failure since the smallest singular value is below the

cutoff. However, the largest singular value is also close to the cutoff. With the scaling, the

largest singular value diverges while the smallest one shrinks to zero (right panel).

2.5 Drifting Sequences of Parameters, Identification Regimes

The test procedure described above is said to be robust to identification failure if it has

asymptotic null rejection probability bounded above by the nominal size, i.e.:

lim sup
n→∞

sup
γ∈Γ,θ=(θ′10,θ

′
2)

′∈Θ
Pγ

(
ARn(θ10) > χ2

1−α(dg − d̂n)
)
≤ α.

In the limit, the worst-case rejection rate should be no greater than the nominal size α.

Following Andrews and Cheng (2012), this can be determined from the asymptotic properties

of the test for specific sequences of parameters (θn, γn) ∈ Θ× Γ.
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Assumption 3 (Identification). There exists a continuous function δ(·) ≥ 0 and a strictly

positive function h(·) > 0 such that for any (θn, γn) ∈ Θ× Γ where g(θn, γn) = 0 and ε > 0:

inf
θ∈Θ,∥θ−θn∥≥ε

∥g(θ, γn)∥ ≥ δ(γn)h(ε).

There exists a ε > 0 and a constant C > 0 such that for 0 < ε ≤ ε:

inf
θ∈Θ,∥θ−θn∥≥ε

∥g(θ, γn)∥ ≤ Cδ(γn)h(ε).

The function δ indicates whether the solution θ0 to the moment condition g(θ, γ0) = 0 is

unique for a given γ = γ0. The second part of the assumption implies that when δ(γ0) = 0,

there is at least one θ ̸= θ0 such that g(θ, γ0) = 0. Sequences such that γn → γ0, δ(γ0) = 0,

satisfy δ(γn) → 0 since δ is continuous. The properties of θ̂n depend on the rate at which δ(γn)

converges to zero. Under Assumptions 1 and 3, Lemma A1 shows that ∥θ̂n−θn∥ = op(1), the

estimator is consistent, if
√
nδ(γn) → ∞. When

√
nδ(γn) = O(1), the estimator is generally

not consistent, see e.g. Stock and Wright (2000).

In the MA(1) example, pick Θ = {ϑ0, σ
2
0} ∈ (R/{−1, 0, 1}) × (R+/{0}), then δ(γ) = 0

regardless of γ as long as the two distinct solutions θ10, θ
2
0 ∈ Θ. The second inequality only

holds for ε < ∥θ10 − θ20∥, with C = 1, which implies ε ∈ (0, ∥θ10 − θ20∥).
To give another example, consider a linear IV regression: g(θ, γ) = Eγ[zi(yi − x′iθ)] =

Eγ[zix
′
i](θn−θ) using yi = x′iθn+ui and Eγ(uizi) = 0. Here ∥g(θ, γ)∥ ≥ σmin(Eγ[zix

′
i])∥θn−θ∥

so that δ(γ) = σmin(Eγ[zix
′
i]) and h(ε) = ε. The inequality holds with equality, i.e. C = 1,

when θn−θ is the right singular vector of Eγ[zix
′
i] associated with the smallest singular value.

Here δ(γ0) = 0 implies Eγ0 [zix
′
i] singular, and the model is underidentified.11

The dichotomy between δ and h in Assumption 3 allows to construct a measure of global

identification strength used to categorize the sequences γn.
12 Let Γ0 = {γ ∈ Γ, δ(γ) = 0}

and Γ1 = Γ/Γ0. Γ0 collects all DGPs such that θ0 is not uniquely identified, and in Γ1

those that are point identified. Let Γ0(∞) = {γn ∈ Γ, γn → γ0 ∈ Γ0,
√
nδ(γn) → ∞},

Γ0(b) = {γn ∈ Γ, γn → γ0 ∈ Γ0, limn→∞
√
nδ(γn) = b <∞}. In the following, any converging

sequence γn will be assumed to belong to one of Γ0(b) for some b ≥ 0, Γ0(∞), or converges

in Γ1. These will be referred to as weak, semi-strong, and strong sequences.

Assumption 4 (Strong and Semi-Strong Sequences). Let (θn, γn) → (θ0, γ0) where γ0 ∈ Γ1,

or γn ∈ Γ0(∞). Let Hn = (∂θg(θn, γn)
′∂θg(θn, γn))

−1/2. For any rn = o(1), suppose the

11Additional derivations for a non-linear regression model are given in Appendix H.
12A similar decomposition can be found in Chen (2007, p5589) to isolate the effect of the sieve dimension

k on the shape of the objective in nonparametric estimation.
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following holds: i. ∂θg(θ, γ) is continuous in θ and γ; ∂θg(θn, γn) has full rank for all

n ≥ 1, ii. n × λmin (∂θg(θn, γn)
′∂θg(θn, γn)) → ∞, λmax (∂θg(θn, γn)

′∂θg(θn, γn)) ≤ λ <

∞, iii. sup∥∂θg(θn,γn)(θ−θn)∥≤rn

√
n∥[ḡn(θ) − ḡn(θn)] − [g(θ, γn) − g(θn, γn)]∥

p→ 0, iv. there

exists ε > 0, C > 0 such that for ∥θ − θn∥ ≤ ε, ∥g(θ, γn)∥ ≥ C∥∂θg(θn, γn)(θ − θn)∥, and
sup∥∂θg(θn,γn)(θ−θn)∥≤rn ∥g(θ, γn)−g(θn, γn)−∂θg(θn, γn)(θ−θn)∥ = O(r2n), v, ∂θg(θn, γn)Hn →
R0, where R0 is a full rank matrix.

Assumption 4 provides sufficient conditions to establish asymptotic normality of θ̂n − θn

at a potentially slower than
√
n-rate. Condition i. is standard and ensures the model is

locally identified. Condition ii. allows the Jacobian to be vanishing at a slower than
√
n-

rate in some directions. Conditions iii. is a stochastic equicontinuity condition. Condition

iv. implies that the Taylor remainder is quadratic under the weaker norm ∥∂θg(θn, γn)(·)∥,
which is the relevant norm for convergence when γn ∈ Γ0(∞). Indeed, Lemma A2 estab-

lishes that
√
n∥∂θg(θn, γn)(θ̂n − θn)∥ = Op(1). Condition iv. excludes settings where the

non-linear remainder dominates the first-order term.13 Condition v. is analogous to As-

sumption 3iv in Antoine and Renault (2012). It requires a rescaling for which the Jacobian

is non-singular in the limit. For instance, under a singular value decomposition of the form

∂θg(θn, γn) = UDnV
′, we have ∂θg(θn, γn)Hn = UV ′ = R0. The rescaling corrects for the

possibly vanishing, but non-zero, terms in the diagonal Dn. Antoine and Renault (2021,

Sec2.2) discuss conditions relating to Assumption 4 in more detail.

Proposition 1 (Asymptotic Distribution for (Semi)-Strong Sequences). Let (θn, γn) →
(θ0, γ0). Let ARn(θ1n) = infθ2∈Θ2 ∥ḡn(θ1n, θ2)∥2Vn

, if Assumptions 1, 3 and 4 hold then:

ARn(θ1n)
d→ χ2

dg−dθ2
.

Proposition 1 implies that the test is asymptotically valid for any choice of d̂n ∈ {0, . . . , dθ2}
and asymptotically non-conservative if d̂n = dθ2 wpa 1. Furthermore, for just-identified mod-

els QLRn(θ1) = ARn(θ1), and the test is asymptotically efficient if d̂n = dθ2 wpa 1.

Linear reparameterization. As in the MA(1) example, the derivations rely on a one-to-

one linear reparameterization β =Mθ = (β′
1, β

′
2)

′ with β1 uniquely and β2 set identified. The

following steps construct the reparameterization, which is not implemented in practice: the

span of right-singular vectors associated with singular values below λn consistently estimates

the span of identification failure. The following applies to just and over-identified models.

13These second or higher-order identification issues are not considered in the main text, additional results

for the quasi-Jacobian under higher-order identification are given in the Supplement.
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First, take γ0 ∈ Γ, collect all solutions to the moment conditions Θ0 = {θ ∈ Θ, g(θ, γ0) =

0}. Let V2 = span({v2 = θ10 − θ20, (θ
1
0, θ

2
0) ∈ Θ0 × Θ0}) and V1 = V ⊥

2 . If V2 = {0}, then
V1 = Rdθ which implies that Θ0 is a singleton; i.e. the parameters are uniquely identified.

This is the case when γ0 ∈ Γ1. If {0} ⊂ V2 strictly, then V1 ⊂ Rdθ strictly; i.e. the parameters

are set identified. This is the case when γ0 ∈ Γ0. As in the MA(1) example, by projection

PV1(θ
1
0 − θ20) = 0 for any two θ10, θ

2
0 ∈ Θ0; i.e. the solution is unique on V1. In contrast, for

any non-zero v2 ∈ V2, there exists two distinct θ10, θ
2
0 ∈ Θ0 × Θ0 s.t. v′2(θ

1
0 − θ20) ̸= 0, by

construction. Define β1 as the projection of θ on V1 and β2 the projection on V2. The matrix

M combines the bases of V1 and V2. As illustrated by the MA(1) example, it may not be

possible to improve on this linear reparameterization with a non-linear one without some

further structure on the moments or the model. The reparameterization is defined up to a

rotation on V1 and V2, respectively.

For testing H0 : θ1 = θ10, the identification status of the nuisance parameters θ2 matters.

Consider a further sub-decomposition (β1, β21, β22) where only β22 is unidentified under the

restriction θ1 = θ10. To find it, take V22 = span({θ10 − θ20, (θ
1
0, θ

2
0) ∈ Θ0 ×Θ0, Pθ1θ

1
0 = Pθ1θ

2
0 =

θ10}) and follow the same steps as above. By construction, V22 is a subset of V2, also θ1 is in

V ⊥
22 and β22 is the subset of θ2 which is unidentified under H0.

14

Now consider sequences (θn, γn) → (θ0, γ0) with γ ∈ Γ0. Combine the linear reparam-

eterization with the continuity of g with respect to θ and γ to find, using the Maximum

Theorem, that for all (θn, γn) → (θ0, γ0), any ε > 0, and letting βn =Mθn:
15

inf
∥β1−β1n∥≥ε,β2

∥g(β1, β2, γn)∥
n→∞−→ inf

∥β1−β10∥≥ε,β2

∥g(β1, β2, γ0)∥ > 0, (7)

inf
d(β2,B0

2)≥ε,β1

∥g(β1, β2, γn)∥
n→∞−→ inf

d(β2,B0
2)≥ε,β1

∥g(β1, β2, γ0)∥ > 0, (8)

sup
β2∈B0

2

∥g(β1n, β2, γn)∥
n→∞−→ sup

β2∈B0
2

∥g(β10, β2, γ0)∥ = 0, (9)

where B0
2 = PV2Θ0 is the identified set for β2 when (θ, γ) = (θ0, γ0). The first limit implies

β1 is consistently estimable, while the second and third imply that the population objective

function becomes flat (only) on B0
2. The decomposition so far separates β1 point identified

from β2 set unidentified when γ = γ0.
16

14Note that, by linearity and by construction, span(PV22) = span(PV22P
⊥
θ1
) ⊆ span(PV2P

⊥
θ1
).

15To apply the Maximum Theorem, note that by continuity of g(·, γ0) and compactness of Θ, both Θ0

and B0
2 are compact subsets of Rdθ and Rdβ2 , respectively. Similar equations can be derived for (β1, β21, β22)

with the added constraint θ1 = θ1n.
16Note that for the class of models considered in Andrews and Cheng (2012), their parameter β which is

point identified and determines identification strength is included in the vector β1 constructed here.
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If there is a single source of identification failure, then supβ2∈B0
2

√
n∥g(β1n, β2, γn)∥ is de-

termined by a scalar subset of γn, and is bounded above for weak sequences. To illustrate,

consider the linear IV example again with a single endogenous regressor xi and one instru-

ment zi. In this case
√
n∥g(β1n, β2, γn)∥ =

√
n|cov(xi, zi)| × |β2 − β2n| depends on the scalar

√
n|cov(xi, zi)| being bounded which characterizes weak sequences. In the case with multi-

ple sources of identification failure, there may be mixed identification strength, and some

components of β2 may be (semi)-strongly identified, so the reparameterization needs to be

further refined. This is deferred to Appendix E.

Assumption 5 (Weak Sequences). Let (θn, γn) → (θ0, γ0) with γn ∈ Γ0(b). Let Bn = {β ∈
B,M−1β = (θ′1n, θ

′
2)

′, θ2 ∈ Θ2} be the null-constrained space for β. There exists δ̃(·) ≥ 0

continuous satisfying
√
nδ̃(γn) → ∞ and h̃(·) strictly positive, and two non-empty and non-

singleton sets B0
2 ⊂ Rdβ2 and B0

22 ⊂ Rdβ22 such that for any ε > 0:

i. infβ2,∥β1−β1n∥≥ε ∥g(β1, β2, γn)∥ ≥ δ̃(γn)h̃(ε), lim supn→∞ supβ2∈B0
2

√
n∥g(β1n, β2, γn)∥ <

∞ and infβ1,d(β2,B0
2)≥ε ∥g(β1, β2, γn)∥ ≥ δ̃(γn)h̃(ε),

ii. infβ22,∥β1−β1n∥+∥β21−β21n∥≥ε ∥g(β1, β21, β22, γn)∥ ≥ δ̃(γn)h̃(ε),

lim supn→∞ supβ22∈B0
22

√
n∥g(β1n, β21n, β22)∥ <∞, and infβ1,β21,d(β22,B0

22)≥ε ∥g(β1, β2, γn)∥ ≥
δ̃(γn)h̃(ε), where the infs are taken over the constrained space (β′

1, β
′
21, β

′
22)

′ ∈ Bn.

Assumption 5 adds this additional structure to (7)-(9), where β1 are assumed semi-

strongly and β2 weakly identified. The first part Assumption 5i. implies β1 is consistently

estimable, allowing for some components to be semi-strongly identified. The second and

third part imply the objective function is flat with respect to β2 but only on the identified

set B0
2. For the quasi-Jacobian, the lim supn→∞ supβ2∈B0

2

√
n∥g(β1n, β2)∥ < ∞ implies that

∥gn(β1n, β2)∥Wn ≤ κn uniformly in β2 ∈ B0
2 with increasing probability so that Step 2.i of

the procedure consistently estimates the identified set and all directions of identification

failure. Similarly, condition ii. repeats the conditions under the restriction that θ1 = θ1n.

The parameters (β1, β21) correspond to the directions that are consistently estimable. To

simplify notation, the Proposition below denotes as ϕ these dθ − dθ1 − dβ22 = dϕ coefficients

that are consistently estimable and semi-strongly identified under H0 : θ1 = θ1n.

Proposition 2 (Asymptotic Distribution for Weak Sequences). Let (θn, γn) → (θ0, γ0).

Suppose there is a linear reparameterization Mϕ invertible, Mϕθ = (θ′1, ϕ
′, β′

22)
′, such that the

moment function ϕ→ ḡn(θ1n, ϕ, β22n) satisfies Assumptions 1, 3 and 4, then:

ARn(θ1n) ≤ inf
ϕ
∥ḡn(θ1n, ϕ, β22n)∥2V −1

n

d→ χ2
dg−dϕ

.
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Proposition 2 implies that the test procedure has limiting null rejection probability

bounded by the nominal size for weak sequences as long as d̂n ≤ dβ1 +dβ21 −dθ1 = dϕ wpa 1,

since Pγn

(
ARn(θ1n) ≥ χ2

1−α(dg − d̂n)
)
≤ Pγn

(
infϕ∈Φ ∥ḡn(θ1n, ϕ, β22n)∥V −1

n
≥ χ2

1−α(dg − dϕ)
)
+

o(1) → α. Note that Assumption 3 with respect to ϕ is implied by Assumption 5 ii.

3 Asymptotic Behaviour of the quasi-Jacobian

As discussed above, the properties of the ICS and test procedure are tied to those of the

quasi-Jacobian under different identification regimes. The following derives the large sample

behaviour of the sup-norm and least-squares quasi-Jacobian matrices Bn,∞ under strong,

semi-strong, and weak identification.

3.1 Strong and Semi-Strong Sequences

Theorem 2 (quasi-Jacobian and Jacobian Equivalence). Let Bn,∞ denote the quasi-Jacobian.

Suppose (θn, γn) → (θ0, γ0) with γ0 ∈ Γ1 or γn ∈ Γ0(∞). Suppose that Assumptions 1, 2,

and 4 hold. If κ−1
n δ(γn) → ∞ and κ2n = o (λmin(∂θg(θn, γn)

′∂θg(θn, γn)), then:

[Bn,∞ − ∂θg(θn, γn)]Hn = op(n
−1/2κ−1

n ),

An,∞ +Bn,∞θn − ḡn(θn) = op(n
−1/2),

where n−1/2κ−1
n → 0 by assumption and Hn = (∂θg(θn, γn)

′∂θg(θn, γn))
−1/2.

The proof is given in Appendix B. Theorem 2 implies that, for (semi)-strong sequences,

the quasi-Jacobian, and the Jacobian are asymptotically equivalent after re-scaling to a

non-singular limit. For non-smooth moments, where the sample Jacobian is not defined

as in quantile-IV regression or SMM estimation of discrete choice models, Bn,∞ can be

used in the sandwich formula to compute standard errors for θ̂n. Assumption 4 v. implies

λmin(Hn∂θg(θn, γn)
′∂θg(θn, γn)Hn) = λmin(R

′
0R0) + o(1) → 1, hence:

λmin(B
′
n,∞Bn,∞) = λmin

(
∂θg(θn, γn)

′∂θg(θn, γn)
)
(1 + op(1)) .

For sufficiently strong sequences such that λ2n = o (λmin(∂θg(θn, γn)
′∂θg(θn, γn))), where λn is

the cutoff in Section 2.3, this implies that d̂n = dθ2 wpa 1.

3.2 Weak Sequences

Theorem 3 (Asymptotic Singularity of the quasi-Jacobian). Suppose (θn, γn) → (θ0, γ0) with

γn ∈ Γ0(b), b ∈ [0,∞) and Assumptions 1, 2, 3, 5 hold. For any v = (0dβ1 , β
1′
2 − β2′

2 )
′, with
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β1
2 , β

2
2 ∈ B0

2 ×B0
2 in the identified set for β2, ∥Bn,∞M

−1v∥ ≤ Op(κn). Let λj(B
′
n,∞Bn,∞) ≥ 0

denote the eigenvalues of B′
n,∞Bn,∞ in increasing order, then:

dβ2∑
j=1

λj(B
′
n,∞Bn,∞) ≤ Op(κ

2
n).

In particular, λmin(B
′
n,∞Bn,∞) ≤ Op(κ

2
n).

Theorem 3 shows that when θ is not uniquely identified, the quasi-Jacobian vanishes

at a κn rate in all directions associated with the identification failure. The span of these

directions has dimension dβ2 so that Bn,∞ vanishes on a subspace of dimension dβ2 . Hence,

small singular values are indicative of an identification failure, and the number of weakly

identified coefficients. The constants involved in the Op terms are made explicit in the

proof. The following Proposition extends these results to Bn,∞P
⊥
θ1
, which focuses on the

identification status of the nuisance parameters only. For both results, the proof is similar

to the derivations used for the MA(1) example.

Proposition 3 (quasi-Jacobian after Projection). Suppose (θn, γn) → (θ0, γ0) with γn ∈
Γ0(b), b ∈ [0,∞) and Assumptions 1, 2, 3, 5 hold. For any v = (0dβ1+dβ21

, β1′
22 − β2′

22)
′, with

β1
22, β

2
22 ∈ B0

22 × B0
22 the identified set for β22 under the null, ∥Bn,∞M

−1v∥ ≤ Op(κn). Let

λj(P
⊥
θ1
B′

n,∞Bn,∞P
⊥
θ1
) ≥ 0 denote the eigenvalues of P⊥

θ1
B′

n,∞Bn,∞P
⊥
θ1

in increasing order:

dθ1+dβ22∑
j=1

λj(P
⊥
θ1
B′

n,∞Bn,∞P
⊥
θ1
) ≤ Op(κ

2
n).

4 Asymptotic Properties of the Test Procedure

As discussed above, the ICS procedure used to compute d̂n relies on two normalizations

that ensure invariance to rescaling of the sample moments and/or the parameters. The first

normalizing matrix is Σn computed in the procedure outlined above. Σ
−1/2
n is shown to

be bounded above in directions associated with the identification failure in Lemma D4, so

that Proposition 3 extends to the normalized Bn,∞P
⊥
θ1
Σ

−1/2
n P⊥

θ1
. Under strong identification,

Lemma D3 implies that Σ
−1/2
n = O(κ−1

n ) so that Bn,∞P
⊥
θ1
Σ

−1/2
n P⊥

θ1
diverges at a κ−1

n rate in

dθ − dθ1 directions. As a result, Bn,∞P
⊥
θ1
Σ

−1/2
n P⊥

θ1
vanishes at a κn-rate in directions where

identification fails, and diverges at a κ−1
n -rate when all parameters are strongly identified.

The second normalizing matrix is V n =
∫
Θ
V̂n(θ)π̂n(θ)dθ, where V̂n(θ) is an estimator

of the asymptotic variance limn→∞ varγn(
√
ngn(θ)). The Assumption below requires V̂n(θ)
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consistent and asymptotically non-singular so that the normalization does not alter the

asymptotic properties of Bn,∞P
⊥
θ1
Σ

−1/2
n .

Assumption 6. V (θ, γ) = limn→∞ varγ(
√
ngn(θ)) is non-singular and 0 < λV ≤ λmin(V (θ, γ)) ≤

λmax(V (θ, γ)) ≤ λV <∞ for all θ ∈ Θ, γ ∈ Γ, supθ∈Θ,γ∈Γ ∥V̂n(θ)− V (θ, γ)∥ = op(1).

Theorem 4 (Asymptotic Size). Suppose Assumptions 1-5 hold. Let λn → 0 such that κn =

o(λn). Let d̂n = #
{
j ∈ {dθ1 + 1, . . . , dθ}, λj(P⊥

θ1
Σ

−1/2
n P⊥

θ1
B′

n,∞V
−1

n Bn,∞P
⊥
θ1
Σ

−1/2
n P⊥

θ1
) > λ2n

}
,

then for any α ∈ (0, 1):

lim sup
n→∞

sup
γ∈Γ,θ=(θ′10,θ

′
2)

′∈Θ
Pγ

(
ARn(θ10) > χ2

dθ−d̂n
(1− α)

)
≤ α.

For any sequence γn ∈ Γ0(∞) ∪ Γ1 such that λ2n = o(λmin(∂θg(θn, γn)
′∂θg(θn, γn)):

lim
n→∞

Pγn

(
ARn(θ1n) > χ2

dθ−d̂n
(1− α)

)
= α.

Theorem 4 establishes the uniform validity of the test procedure described in Section 2.3

under strong, semi-strong, and weak sequences. First, it is shown that the normalizations

do not affect the predictions of Theorems 2, 3, and Proposition 3. Then, since Θ and Γ

are compact, the worst-case rejection probability is attained by a converging subsequence

which, using the stated assumptions, can be interpolated into a converging sequence in

either Γ0(b) for some b ∈ [0,∞), Γ0(∞), or converging in Γ1. The result then relies on two

properties. The first is that d̂n ≥ dβ22 under weak identification, and the second is that

ARn(θ1n) = infθ2∈Θ2 ARn(θ1n, θ2) ≤ ARn(θ1n, ϕ̂n, β22n) which has a standard chi-squared

limiting distribution with degrees of freedom that only depend on the dimension of ḡn,

and the number of identified nuisance parameters. For just-identified models, the resulting

procedure is efficient under strong identification since it uses the smallest valid critical value,

and is equivalent to a quasi-Likelihood ratio test. For over-identified model, the test uses

the smallest valid critical value for the projected AR test so it is non-conservative within

that class. The results above can be extended to some other existing robust test statistics.

For instance, the K-statistic of Kleibergen (2005) is such that, under additional regularity

conditions, Kn(θ1n) = infθ2∈Θ2 Kn(θ1n, θ2) ≤ Kn(θ1n, ϕ̂n, β22n) which also has a chi-squared

limiting distribution with reduced degrees of freedom.

5 Monte-Carlo Simulations

The finite-sample properties of the quasi-Jacobian matrix and the test procedure are illus-

trated using a consumption capital asset pricing model (CAPM) as in Wright (2003, Sec3).
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Let δ, γ measure time preference and relative risk aversion. Ct, Dt, Rt are real consump-

tion, dividends, and the gross asset return at time t. The Euler equation is: Et[δRt+1(Ct+1/Ct)
−γ−

1] = 0, where Ct+1/Ct measures consumption growth. Rt depends endogenously on yt+1 =

(ct+1, dt+1)
′, where ct+1 = log(Ct+1/Ct) and dt+1 = log(Dt+1/Dt), which follows a first-order

vector autoregressive (VAR) process: yt+1 = µ + Φyt + ut+1, where ut+1
iid∼ N (0,Λ). The

sample moments are:

gn(θ) =
1

n

n∑
t=1

[δRt+1(Ct+1/Ct)
−γ − 1]Zt,

where Zt = (1, Rt, Ct/Ct−1)
′. Tauchen (1986) illustrates how (µ,Φ,Λ) affects the finite-

sample properties of θ̂n = (δ̂n, γ̂n). The following considers three DGPs: Rank Failure

(RF), Near Rank Failure (NRF) and Full Rank (FR).17 Wright (2003) explains that they

correspond to θ = (δ, γ) being set, weakly, and strongly identified. NRF is calibrated to

match annual U.S. data (Kocherlakota, 1990, Sec3).

Table 1: CAPM - VAR parameters used in the simulations

Rank Failure Near Rank Failure Full Rank

µRF = (0.018, 0.013)′ µNRF = (0.021, 0.04)′ µFR = (0.00, 0.00)′

ΦRF =

 0 0

0 0

 ΦNRF =

 −0.161 0.017

0.414 0.117

 ΦFR =

 −0.5 0

0 −0.5


ΛRF =

 0.0012 0.0017

0.0017 0.0146

 ΛNRF =

 0.0012 0.00177

0.00177 0.014

 ΛFR =

 0.01 0

0 0.01


Note: the parameters (µ,Φ,Λ) describe the dynamics of consumption and dividend growth yt = (ct, dt)

′.

Table 2 reports rejection rates for the method in Section 2.1 (Proj1), full projection

inference using χ2
3 (Proj2) and χ

2
2 (Proj3) critical values as well a t-test with standard normal

critical value (tn). The empirically relevant sample sizes are n = 100, 250. n = 500, 1000

illustrate large sample properties. The parameter space is Θ = [0.7, 1.1]× [0, 10]. The t-test

does not control size in RF and NRF. It is closer to nominal size for FR. However, as Figure

H5 in Appendix H.2 shows, another global solution θ̂n ≃ (0.7, 10) is estimated in about 1%

and 0.05% of the replications for n = 100, 250. Here, the parameters are locally strongly

identified, but not globally. The sample Jacobian would not detect this issue which leads to

17RF, NRF and FR correspond to RF1, NRF1 and FR in Wright (2003, p326).
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some over-rejection for the t-test. In comparison, the proposed procedure (Proj1) has null

rejection rates below nominal size across sample sizes and DGPs.

Figure 2: CAPM - distribution of largest and smallest singular values

Note: True value (δ0, γ0) = (0.97, 1.3). 2000 Monte Carlo replications. Wn = V̂n(θ)
−1 where V̂n is a HAC

estimate of var[
√
ngn(θ)]. bandwidth κn =

√
2 log(log[n])/n, cutoff (blue diamonds) λn =

√
2 log[n]/n =

0.30, 0.21, 0.16, 0.12 for n = 100, 250, 500, 1000. σmax, σmin: largest and smallest singular values. Median
values of σmin for n = 100, 250, 500, 1000: 4 · 10−3, 2 · 10−3, 2 · 10−3, 1 · 10−3 (RF), 4 · 10−3, 3 · 10−3, 3 · 10−3,
4 · 10−3 (NRF), and 1.7, 1.9, 1.8, 1.8 (FR).

Wright (2003, Sec3), Antoine and Renault (2009, Sec5) explain that one coefficient is

always strongly identified. Table 2 and Figure 2 confirm this. The procedure finds γ to be

weakly identified in nearly all replications for RF, NRF, and δ strongly identified. For FR,

the procedure finds γ weakly identified in 14% and 0.5% of replications when n = 100, 250.

Table 2: CAPM – rejection rates, frequency for detecting identification failure

Rank Failure Near Rank Failure Full Rank

n AR1 AR2 AR3 tn < λn AR1 AR2 AR3 tn < λn AR1 AR2 AR3 tn < λn

100
δ 0.01 0.01 0.03 0.02 1.00 0.01 0.01 0.03 0.02 1.00 0.04 0.02 0.05 0.07 0.14
γ 0.05 0.02 0.05 0.00 0.00 0.05 0.02 0.05 0.00 0.00 0.04 0.01 0.04 0.06 0.00

250
δ 0.02 0.02 0.05 0.09 1.00 0.02 0.02 0.03 0.07 1.00 0.04 0.02 0.04 0.05 0.01
γ 0.05 0.02 0.05 0.00 0.00 0.05 0.02 0.05 0.00 0.00 0.04 0.02 0.04 0.06 0.00

500
δ 0.02 0.02 0.04 0.17 1.00 0.01 0.01 0.04 0.08 1.00 0.05 0.02 0.05 0.05 0.00
γ 0.04 0.02 0.04 0.00 0.00 0.04 0.02 0.04 0.00 0.00 0.06 0.02 0.06 0.05 0.00

1000
δ 0.02 0.02 0.05 0.22 1.00 0.02 0.02 0.04 0.05 0.98 0.05 0.02 0.05 0.05 0.00
γ 0.05 0.02 0.05 0.00 0.00 0.04 0.02 0.04 0.00 0.00 0.05 0.02 0.05 0.05 0.00

Note: Nominal size = 5%. 2000 Monte Carlo replications. AR1, AR2, AR3: projection inference using AR

statistic and χ2 critical values with 3− d̂n, 3, and 2 degrees of freedom; d̂n ∈ {0, 1}. tn: t-test with standard
normal critical values. < λn: frequency (in %) of singular values below cutoff λn after projecting out the
parameter of interest. Rows for δ show results for H0 : δ = δ0. Rows for γ show results for H0 : γ = γ0.
κn =

√
2 log(log[n])/n, λn =

√
2 log(n)/n, Wn = V̂n(θ)

−1 where V̂n is a HAC estimate of var[
√
ngn(θ)].

Figure 3 compares the power of the proposed procedure (AR1) with full projection infer-

ence (AR3), and projection inference with the nuisance parameter concentrated out (AR2)

as well as the t-test when appropriate (FR with n = 250, 500, 1000). The results show power

improvement over full projection inference when the nuisance parameter is strongly iden-
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Figure 3: CAPM - power comparison
n = 100 n = 250

n = 500 n = 1000

Note: Nominal size = 5%. Dashed vertical lines: true value (δ0, γ0) = (0.97, 1.3). 250 Monte Carlo

replications. Estimates computed for continuously-updated GMM with Wn = V̂n(θ)
−1 where V̂n is a HAC

estimate of var[
√
ngn(θ)]. AR1, AR2, AR3: projection inference using AR statistic and χ2 critical values

with 3− d̂n, 3, and 2 degrees of freedom; d̂n ∈ {0, 1}. tn: t-test with standard normal critical values.
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tified, i.e. when testing hypotheses about γ. When the model is strongly identified (FR),

the procedure is less powerful than the t-test because of over-identification. Result for a

just-identified specification with Zt = (1, Rt)
′ and a larger κn are given in Appendix H.2.

Another example in that Appendix compares the procedure with Andrews and Cheng (2012)

for a non-linear regression.

6 Application to the Long-Run Risks Model

To illustrate the empirical content which can be gained from the quasi-Jacobian for inference,

consider a simulated method of moments estimation of the long-run risks (LRR) model

(Bansal and Yaron, 2004). There are two latent variables representing a persistent component

to the level of consumption growth x1,t and stochastic volatility x2,t:

x1,t = ρx1,t−1 + ϕef(x2,t−1)et, x2,t = σ2 + ν(x2,t−1 − σ2) + σwwt,

where f(x) =
√
x if x ≥ σ2 and f(x) = σ2/

√
2σ2 − x as in Calvet and Czellar (2015, p346).

Consumption and dividend growth gt, dd,t are then given by:

gt = µ+ x1,t−1 + f(x2,t−1)ηt, gd,t = µd + ϕx1,t−1 + ϕdf(x2,t−1)ut,

where (et, wt, ηt, ut) ∼ N (0, I) iid. Given an Epstein-Zin utility function, equilibrium condi-

tions imply that financial variables, log-price dividend ratio zm,t, market return rm,t and the

risk-free rate ra,t can be written as:

zm,t = A0,m + A1,mx1t + A2,mx2,t,

rm,t = κ0,m + κ1,mzm,t+1 − zm,t + gd,t+1,

ra,t = A0,r + A1,rx1,t + A2,rx2,t

where the coefficients (A0,m, A1,m, A2,m, κ0,m, κ1,m, A0,r, A1,r, A2,r) are computed numerically

as a solution of a non-linear system of equations involving the full vector of 12 parameters

θ = (ρ, ϕe, σ, ν, σw, µ, µd, ϕ, ϕd, δ, γ, ψ
−1) where δ is the discount factor, γ risk-aversion, and

ψ−1 the inverse intertemporal elasticity of sustitution (IES). See Bansal and Yaron (2004) for

details. The variables above need to be further time-aggregated from the monthly decision

interval to match the quarterly frequency of the data. There are a number of estimations of

this model using one of SMM and Indirect Inference,18 GMM,19, or Bayesian estimation20

18See Bansal et al. (2007); Hasseltoft (2012); Calvet and Czellar (2015); Grammig and Küchlin (2018).
19See Constantinides and Ghosh (2011); Bansal et al. (2012, 2016).
20See Schorfheide et al. (2018).
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There are, however, several concerns for the identifiability of the parameters. Calvet and

Czellar (2015) show that the latent variables (x1,t, x2,t) cannot be recovered from the data for

uncountably many values of θ, resulting in highly irregular GMM and likelihood objective

functions. Grammig and Küchlin (2018) find that the stochastic volatility component is

poorly identified and calibrate ν = σw = 0. However, stochastic volatility in long-term

consumption growth has important implications for asset prices (Schorfheide et al., 2018).

Several papers report estimates with very small standard errors (see Grammig and Küchlin,

2018, Table 7, p24), but estimates can vary a lot across estimations. This suggests that some

parameters are likely not globally identified but might be locally identified.

The following considers joint inference for the two preference parameters θ1 = (γ, ψ−1).

The remaining coefficients are θ2 = (ρ, ϕe, σ, ν, σw, µ, µd, ϕ, ϕd, δ). Amongst these nuisance

parameters, it seems reasonable to think that several are (semi)-strongly identified. However,

the asset pricing coefficients (A0,m, . . . ) are highly non-linear functions of θ so it is arguably

more difficult to pin down exactly how many and which ones are well identified. Nevertheless,

the results in this paper imply that Bn,∞P
⊥
θ1

can determine how many nuisance parameters

are weakly identified with high probability.

The moment conditions used for inference are based on matching the following sample

with simulated moments: means of all variables, variances of gt, gd,t, zm,t, AR(2) coefficients

of gt, and autocorrelation of g2t .
21 These just-identified moments match quantities of interest

that are commonly reported in calibrations or post-estimation, see e.g. Beeler and Camp-

bell (2012). The estimation is conducted using U.S. data shared by Grammig and Küchlin

(2018) for (gt, gd,t, zm,t, rm,t, ra,t) over 1947Q2-2014Q4, totalling in n = 271 observations.

The simulated moments are computed over S = 2 samples. The bounds for the optimiza-

tion space Θ are ρ ∈ [0.9, 0.995], ϕe ∈ [0, 0.1], σ ∈ [10−4, 0.1], ν ∈ [0, 0.995], 105 × σw ∈
[0, 2], µ ∈ [−0.035, 0.035], µd ∈ [−0.035, 0.035], ϕ ∈ [0, 10], ϕd ∈ [0, 10], δ ∈ [0.93, 1.2], γ ∈
[0.05, 25], ψ−1 ∈ [0.01, 3]. Computations are conducted in R and C++ using Rcpp.

Table 3: Long-Run Risks: singular values of Jacobian and quasi-Jacobian

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 λ11 λ12

V̄
−1/2
n ∂θḡn(θ̂n)Σ

−1/2
n 8.106 4.106 7.105 1.105 8.104 255 22 1.68 0.30 0.04 < 10−2 < 10−2

V̄
−1/2
n Bn,∞Σ

−1/2
n 2.108 1.107 1.106 4.105 2.104 208 0.94 0.42 0.06 0.01 < 10−2 < 10−2

V̄
−1/2
n Bn,∞P⊥

θ1
Σ

−1/2
n P⊥

θ1
2.108 1.107 1.106 4.105 2.104 208 0.95 0.06 0.04 0.01 0.00 0.00

Note: Bn,∞,Σn computed using B = 1000 draws, κn =
√

2 log(log(nS))/n = 0.12, ns = n× (1 + 1/S).

21A quasi-difference zm,t − 0.95zm,t−1 is applied beforehand because zm,t is very persistent making V̂n

nearly singular, the quasi-differencing solves this issue and makes the estimation below more stable.
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Table 3 compares the spectrum of the normalized Jacobian and quasi-Jacobian.22 Using

the threshold λn =
√

2 log(nS)/n = 0.21 implies that Bn,∞ detects 5 directions of identifica-

tion failure, with an additional singular value just above the threshold. In comparison, the

gradient is small in 3 directions. After projecting out θ1 = (γ, ψ−1), there are 7 singular val-

ues above the threshold, indicating 7 (semi)-strongly identified parameters. Hence, inference

for (γ, ψ−1) relies on a χ2
5(0.95) = 11.1 critical value. In comparison, full projection relies on

χ2
12(0.95) = 21, and standard inference χ2

2(0.95) = 6.

Figure 4: Long-Run Risks: joint 95% confidence set for (γ, ψ−1)

Figure 4 reports 5000 draws of θ1 such that ARn(θ1) ≤ χ2
5(0.95) using the Population

Monte Carlo algorithm in Appendix F, plus their convex hull in blue. Values for γ are

contained in [5.41, 25] and ψ−1 ∈ [0.01, 0.90]. This excludes several regions of interest. First,

we can reject H0 : ψ ≤ 1 at the 95% confidence level, i.e. the IES is strictly greater

than unity. Second, we can reject H0 : γ = ψ−1 and conclude that the utility function is

not CRRA. Finally, the confidence set favours H1 : γ > ψ−1 over H0 : γ ≤ ψ−1. Under

H1, households prefer an early resolution of uncertainty; their preference for consumption

smoothing is less than their relative risk aversion. Although not reported here, note that full

projection inference cannot reject some of these null hypotheses. As a robustness check with

respect to tuning parameters, Appendix H.3 finds the same results using χ2
6 critical values

(Figure H14) and using a larger value for κn (Table H6).

22The estimate θ̂n used for the Jacobian is computed by using the calibration in Bansal and Yaron (2004)

as starting value, and alternating between the Nelder-Mead and bobyqa optimizers until convergence. Note

that different seeds for the simulated samples yield very different estimates but similar fitted moments.

Also, the sample gradient is not available analytically; it is computed by finite differences which here is quite

sensitive to the choice of step size.
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7 Conclusion

This paper introduces a quasi-Jacobian matrix which is asymptotically equivalent to the

usual Jacobian matrix under strong and semi-strong identification but is asymptotically

singular when global identification fails. This can be useful because the Jacobian is not

always informative about global identification failures. While the inference procedure relies

on the AR statistic, extending the results to the robust score test is straightforward, as

discussed earlier. For overidentified models, it could be interesting to extend the theory to

more powerful test statistics such as the CQLR/AR test in Andrews (2017). Another concern

could be that a given choice of moments does not identify the parameters but another set of

moments might. This is a moment selection problem. In that case, it could be interesting

to extend the quasi-Jacobian to a continuum of moment conditions which can be used for

conditional GMM estimation (Carrasco and Florens, 2000); allowing the use of all available

information rather than selecting finite dimensional moments.
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Appendix A Preliminary Results

A.1 Preliminary results for Section 2

Lemma A1 (Strong and Semi-Strong Sequences: Consistency). Let (θn, γn) → (θ0, γ0). If

γn ∈ Γ0(∞) or γ0 ∈ Γ1 and Assumptions 1, 3 hold, then ∥θ̂n − θn∥ = op(1).

Lemma A2 (Strong and Semi-Strong Sequences: Asymptotic Normality). Let (θn, γn) →
(θ0, γ0). If γn ∈ Γ0(∞) or γ0 ∈ Γ1 and Assumptions 1, 3, 4 hold, then

√
nH−1

n (θ̂n − θn)
d→ N (0,Σ0),

where Hn = (∂θg(θn, γn)
′∂θg(θn, γn))

−1/2, Σ0 = (R′
0W0R0)

−1R′
0W0R0(R

′
0W0R0)

−1, W0 =

W (θ0).

Appendix B Proofs for the main results

B.1 Proofs for Section 2

Proof of Theorem 1: For simplicity, the derivations for this Theorem rely on K(x) =

1x∈(−1,1), see derivations for Section 3 for derivations with other kernels. For κ > 0,

let (Aκ,∞, Bκ,∞) = argminA,B(sup∥g(θ)∥W≤κ ∥g(θ) − A − Bθ∥). By construction, B∞ =

limκ→0Bκ,∞. To simplicify notation, denote g(θ) = g(θ, γ0) and ∂θg(θ) = ∂θg(θ, γ0). There

are three cases to consider:

Case 1) Take {θ10, θ20} ⊆ Θ0 non-singleton with θ10 ̸= θ20. Take κ > 0, then 0 = ∥g(θ10)∥W =

∥g(θ20)∥W ≤ κ, by construction. Also by construction, sup∥g(θ)∥W≤κ ∥g(θ)−Aκ,∞ −Bκ,∞θ∥ ≤
sup∥g(θ)∥W≤κ ∥g(θ)∥ ≤ λ

−1/2
W κ. As a result, ∥g(θ)− Aκ,∞ − Bκ,∞θ∥ ≤ λ

−1/2
W κ for θ ∈ {θ10, θ20}

and the triangular inequality implies ∥Bκ,∞(θ10 − θ20)∥ ≤ 2λ
−1/2
W κ. Take the limit as κ→ 0 to

find B∞(θ10 − θ20) = 0 where θ10 − θ20 ̸= 0. Hence, B∞ is singular.

Case 2) Θ0 = {θ0} is singleton and ∂θg(θ0) is singular. Take any vector v ∈ span(∂θg(θ0))
⊥

with ∥v∥ = 1. For the following, consider θ = θ0+κ
1/αrv for some r ∈ R such that κ1/α|r| ≤ ε.

Then ∥g(θ)∥W = ∥g(θ) − g(θ0) − κ1/αr∂θg(θ0)v∥ ≤ λWCκ|r|α ≤ κ for all |r| ≤ (λWC)
−1/α.

As in Case 1), ∥g(θ)−Aκ,∞−Bκ,∞θ∥ ≤ λ
−1/2
W κ for all θ = θ0+κ

1/αrv with |r| ≤ (λWC)
−1/α.

Then ∥Bκ,∞(θ − θ0)∥ ≤ ∥g(θ)−Aκ,∞ −Bκ,∞θ∥+ ∥g(θ0)−Aκ,∞ −Bκ,∞θ0∥ ≤ 2λ
−1/2
W κ. Take

r ̸= 0, fixed, then θ − θ0 = rκ1/αv and ∥Bκ,∞v∥ ≤ 2r−1λ
−1/2
W κ1−1/α → 0 as κ → 0 since

α > 1. This implies B∞v = 0; B∞ is singular.

Case 3) Θ0 = {θ0} is singleton and ∂θg(θ0) has full rank. Continuity and global identifica-

tion imply ∥g(θ)∥W ≥ κ for some κ > 0 and all ∥θ − θ0∥ ≥ ε. Consider 0 < κ < κ so that
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∥g(θ)∥W ≤ κ implies ∥θ − θ0∥ ≤ ε. Let 0 < σ = σmin(∂θg(θ0)) ≤ σmax(∂θg(θ0)) = σ < ∞.

For these values of θ, λ
1/2
W σ∥θ − θ0∥ − λ

1/2

W C∥θ − θ0∥α ≤ ∥g(θ)∥W ≤ λ
1/2

W σ∥θ − θ0∥ +

λ
1/2

W C∥θ − θ0∥α. We can further assume, without loss of generality, that κ and thus ε

are sufficiently small that 1/2λ
1/2
W σ∥θ− θ0∥ ≤ λ

1/2
W σ∥θ− θ0∥−λ

1/2

W C∥θ− θ0∥α and λ
1/2

W σ∥θ−
θ0∥+ λ

1/2

W C∥θ− θ0∥α ≤ 2λ
1/2

W σ∥θ− θ0∥. Re-write θ = θ0 + κv for some vector v, then ∥v∥ ≤
(2λ

1/2

W σ)−1 implies ∥g(θ)∥W ≤ κ. Likewise, ∥v∥ > (1/2λ
1/2
W σ)−1 implies ∥g(θ)∥W > κ. Pick

(A,B) = (−∂θg(θ0)θ0, ∂θg(θ0)), then by construction: sup∥g(θ)∥W≤κ ∥g(θ)−Aκ,∞ −Bκ,∞θ∥ ≤
sup∥g(θ)∥W≤κ ∥g(θ)− g(θ0)− ∂θg(θ0)(θ− θ0)∥ ≤ sup∥g(θ)∥W≤κC∥θ− θ0∥α ≤ C(1/2λ

1/2
W σ)−ακα.

Pick any ∥v∥ ≤ (2λ
1/2

W σ)−1, then ∥g(θ) − Aκ,∞ − Bκ,∞θ∥ ≤ C(1/2λ
1/2
W σ)−ακα and ∥g(θ0) −

Aκ,∞−Bκ,∞θ0∥ ≤ C(1/2λ
1/2
W σ)−ακα. Then ∥g(θ)−g(θ0)−Bκ,∞[θ−θ0]∥ ≤ 2C(1/2λ

1/2
W σ)−ακα.

This implies ∥[∂θg(θ0)− Bκ,∞]κv∥ ≤ [2C(1/2λ
1/2
W σ)−α + C∥v∥α]κα since θ − θ0 = κv. Then

∥[∂θg(θ0)−Bκ,∞]v∥ ≤ [2C(1/2λ
1/2
W σ)−α +C∥v∥α]κα−1 → 0 using α > 1. Since this holds for

any vector v ̸= 0 with ∥v∥ ≤ (2λ
1/2

W σ)−1, this implies that B∞ = ∂θg(θ0) and, in addition,

Bκ,∞ = ∂θg(θ0) +O(κα−1).

For the statements in the Theorem: Case 1) implies results (3), Case 2) implies result (4)

and, case 3) implies result (2). For results (1), Θ0 non-singleton or, Θ0 singleton and ∂θg(θ0)

singular implies B∞ singular. Θ0 singleton and ∂θg(θ0) full rank imply B∞ = ∂θg(θ0) full

rank.

Proof of Proposition 1: Note that Assumptions 1, 3 and 4 hold for the moment function

θ2 → ḡn(θ1n, θ2). Applying Lemma A2, we have:

√
nH−1

2n (θ̂2n − θ2n) = −
(
∂θ2g(θn, γn)

′V −1
0 ∂θ2g(θn, γn)

)−1

∂θ2g(θn, γn)
′V −1

0 ḡn(θn) + op(1),

where H2n = [∂θ2g(θn, γn)
′∂θ2g(θn, γn)]

−1/2. By construction of the test statistic, we have:

ARn(θ1n) = ∥ḡn(θ1nθ̂2n)∥2V −1
n

. We also have:

ḡn(θ1n, θ̂2n)

=

(
I − ∂θ2g(θn, γn)H2n

(
H2n∂θ2g(θn, γn)

′V −1
0 ∂θ2g(θn, γn)H2n

)−1

H2n∂θ2g(θn, γn)
′V −1

0

)
ḡn(θn)

+ op(n
−1/2).

The leading term converges to (I−R20(R
′
20V

−1
0 R20)

−1R′
20V

−1
0 ), where ∂θ2g(θn, γn)H2n → R20

which has rank dθ2 . This limit is an orthogonal projection matrix with rank dg−dθ2 . Hence,

by the continuous mapping theorem: ∥ḡn(θ1nθ̂2n)∥2V −1
n

d→ χ2
dg−dθ2

.

34



B.2 Proofs for Section 3

B.2.1 Strong and semi-strong sequences.

Proof of Theorem 2 for Bn,∞: Pick a ε > 0 such that Assumption 4 iv. holds, then

using κ−1
n δ(γn) → ∞:

inf
∥θ−θn∥≥ε

∥ḡn(θ)/κn∥Wn ≥ λW

[
κ−1
n δ(γn)h(ε)−

1√
nκn

sup
θ∈Θ

√
n∥ḡn(θ)− g(θ, γn)∥

]
= λWκ

−1
n δ(γn)h(ε) + op(1) → +∞,

which implies sup∥θ−θn∥≥ε K̂n(θ) = 0 wpa 1. Take ∥θ− θn∥ ≤ ε, using Assumption 4 iv. and

using the change of variable θ = θn + κnHnh with ∥κnHnh∥ ≤ ε we have:

∥ḡn(θ)/κn∥Wn ≥ λ

(
C∥∂θg(θn, γn)Hnh∥ −

1√
nκn

sup
θ∈Θ

√
n∥ḡn(θ)− g(θ, γn)∥

)
.

The term on the right-hand-side is a op(1) by assumption. The squared norm ∥∂θg(θn, γn)Hnh∥2 =
trace (h′Hn∂θg(θn, γn)

′∂θg(θn, γn)Hnh) = ∥h∥2 by construction ofHn. Hence, ∥ḡn(θ)/κn∥Wn >

1 wpa 1 uniformly in ∥h∥ ≥ 2 so that K̂n(θ) = 0 wpa 1.

For any θ such that ∥h∥ ≤ 2, ∥∂θg(θn, γn)(θ − θn)∥ = κn∥∂θg(θn, γn)Hnh∥ ≤ 2κn so that

Assumption 4 iv. applies with rn = 2κn. For any two candidates A,B we have wpa 1:

sup
θ∈Θ

∥ḡn(θ)− A−Bθ∥K̂n(θ)

= sup
∥h∥≤2

∥ḡn(θn + κnHnh)− [A−Bθn]− κnBHnh∥K̂n(θn + κnHnh)

= sup
∥h∥≤2

∥[ḡn(θn)− A+Bθn] + κn[∂θg(θn, γn)−B]Hnh+ op(n
−1/2) + o(κn)∥K̂n(θn + κnHnh)

≥ sup
∥h∥≤1/4

∥[ḡn(θn)− A+Bθn] + κn[∂θg(θn, γn)−B]Hnh+ op(n
−1/2) + o(κn)∥K,

for infx∈[0,1/2]K(x) = K > 0 by Assumption 1 ii., using K̂n(θ) ≥ infx∈[0,1/2]K(x) wpa 1 for

∥h∥ ≤ 1/4 by similar derivations as above.

Pick Bn = ∂θg(θn, γn) and An = ḡn(θn)−Bnθn then supθ∈Θ ∥ḡn(θ)−An −Bnθ∥K̂n(θ) =

op(n
−1/2). By contradiction, suppose

√
n∥An,∞+Bn,∞∥ ̸→ 0 and/or

√
nκn∥[Bn−Bn,∞]Hn∥ ̸→

0, in probability. Then for any θ = θn + κnHnh with ∥h∥ < 1/4, we have wpa 1:

n1/2∥ḡn(θ)− An,∞ −Bn∞θ∥K̂n(θ)

= n1/2∥ḡn(θn) + κn∂θg(θn, γn)Hnh− An,∞ −Bn,∞[θn + κnHnh]∥K̂n(θ) +Op(
√
nκ2n)

≥ n1/2∥ḡn(θn) + κn∂θg(θn, γn)Hnh− An,∞ −Bn,∞[θn + κnHnh]∥K + op(1)

= n1/2∥[ḡn(θn)− An,∞ −Bn,∞θn] + κn[∂θg(θn, γn)−Bn,∞]Hnh∥K + op(1) ̸→ 0,
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in probability for at least one ∥h∥ < 1/4 while the same quantity converges in probability

to zero when evaluated at An, Bn. For instance if
√
n∥An,∞ + Bn,∞∥ ̸→ 0, pick h = 0.

This contradicts the approximate minimizer property of An,∞, Bn,∞. We conclude that

[∂θg(θn, γn)−Bn,∞]Hn = op(n
−1/2κ−1

n ) and An,∞ +Bn,∞θn = ḡn(θn) + op(n
−1/2).

B.2.2 Weak sequences.

Definition B2. Define the span of the identification failure in the full space B and the

constrained space Bn respectively as:

V⋆ = span
(
(0dβ1 , β

1′
2 − β2′

2 )
′, β1

2 , β
2
2 ∈ B0

2 × B0
2

)
,

V 0
⋆ = span

(
(0dβ1+dβ21

, β1′
22 − β2′

22)
′, β1

22, β
2
22 ∈ B0

22 × B0
22

)
.

Proof of Theorem 3: Let B̃n,∞ = Bn,∞M
−1. After applying the reparameterization, we

have:

sup
β∈B

∥gn(β)− An,∞ − B̃n,∞β∥K̂n(β) ≤ inf
A,B

sup
β∈B

∥gn(β)− A−Bβ∥K̂n(β) + o(κn)

≤ sup
β∈B

∥gn(β)∥K̂n(β) + o(κn).

For any β such that K̂n(β) > 0, we have: ∥gn(β)∥Wn ≤ κn and then ∥gn(β)∥ ≤ λ−1
W κn. By

continuity of K on [0, 1] we have K̂n(β) ≤ K for some constant K > 0 so that:

∥gn(β)− An,∞ − B̃n,∞β∥K̂n(β) ≤ Kλ−1
W κn + o(κn),

for any β ∈ B. Then, using the reverse triangular inequality:

∥An,∞ − B̃n,∞β∥K̂n(β) ≤ ∥gn(β)∥K̂n(β) +Kλ−1
W κn + o(κn) ≤ 2Kλ−1

W κn + o(κn),

By definition of V⋆, we can find pairs (βj
n, β̃

j
n) j = 1, . . . , dβ2 with βj

n = (β1n, β
j
2), β̃

j
n =

(β1n, β̃
j
2) for two (βj

2, β̃
j
2) ∈ B0

2 × B0
2 such that the vectors vj = βj

n − β̃j
n, j = 1, . . . , dβ2 are

linearly independent. By assumption, we have:

sup
β=(β1n,β2),β2∈B2

∥gn(β)∥Wn ≤ λW

(
sup
β∈B

∥gn(β)− g(β, γn)∥+ sup
β2∈B0

2

∥g(β1n, β2, γn)∥

)
,

which is a Op(n
−1/2) = op(κn). This implies that ∥gn(β)/κn∥Wn ≤ 1/2 with wpa 1 uniformly

in β = (β1n, β2), β2 ∈ B0
2 so that K̂n(β) ≥ infx∈[0,1/2]K(x) = K with wpa 1 uniformly on the
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same set. In turn, we have wpa 1 for all j:

∥An,∞ − B̃n,∞β
j
n∥ ≤ 2KK−1λ−1

W κn + o(κn),

∥An,∞ − B̃n,∞β̃
j
n∥ ≤ 2KK−1λ−1

W κn + o(κn).

Using the triangular inequality, we have wpa 1 and uniformly in j:

∥Bn,∞M
−1vj∥ = ∥B̃n,∞v

j∥ ≤ ∥An,∞ − B̃n,∞β
j∥+ ∥An,∞ − B̃n,∞β̃

j∥ ≤ 4KK−1λ−1
W κn + o(κn).

Let V =M−1(v1, . . . , vdβ2 ). By linear independence, PV = V (V ′V )−1V ′ is well defined and:

∥Bn,∞PV ∥2 = ∥Bn,∞V (V ′V )−1V ′∥2 ≤ [λmin(V
′V )]−1dβ2 [4KK

−1λ−1
W κn + o(κn)]

2,

wpa 1. For any v ∈ V⋆, PV v = v hence ∥Bn,∞v∥ ≤ ∥Bn,∞Pv∥ ∥v∥ ≤ Op(κn) wpa 1.

To find the other two results note that B′
n,∞Bn,∞ is Hermitian, and PV is an orthogonal

projection matrix by construction. Hence PV admits an eigen decomposition of the form

Obckdiag(Idβ2 , 0dθ−dβ2
)O∗ with OO∗ = Id; O

∗ is the conjugate transpose of O and bckdiag

builds a block-diagonal matrix. Using this decomposition we have:

trace
(
PVB

′
n,∞Bn,∞PV

)
= trace

(
O∗

dβ2
B′

n,∞Bn,∞Odβ2

)
,

where Odβ2
, O∗

dβ2
are the first dβ2 columns/rows of O and O∗, respectively, which satisfy

O∗
dβ2
Odβ2

= Idβ2 . As an implication of the minimax principle (Bhatia, 1997, Problem III.6.11,

p77) and the equality above, we have the following inequality:

dβ2∑
j=1

λj(B
′
n,∞Bn,∞) = min

UU∗=Idβ2

trace
(
UB′

n,∞Bn,∞U
∗)

≤ trace
(
PVB

′
n,∞Bn,∞PV

)
≤ [λmin(V

′V )]−1dβ2

[
4KK−1λ−1

W κn + o(κn)
]2
,

wpa 1. This concludes the proof.

Proof of Proposition 3: Following the steps in the proof of Theorem 3, we can construct

a basis for V 0
⋆ ⊆ V⋆ using vj = (0, θj22 − θ̃j22) with pairs (θj22, θ̃

j
22) ∈ B0

22 × B0
22. Since θ1 = θ1n

is fixed, we have Pθ1PV⋆ = 0 and P⊥
θ1
PV⋆ = PV⋆ for the basis V⋆ =M−1(v1, . . . , vdβ22 ). Hence,

∥Bn,∞P
⊥
θ1
PV⋆∥ ≤ Op(κn) and ∥Bn,∞P

⊥
θ1
Pθ1∥ = 0. By the minimax principle, these imply the

desired inequality :
∑dθ1+dβ22

j=1 λj(P
⊥
θ1
B′

n,∞Bn,∞P
⊥
θ1
) ≤ Op(κ

2
n).
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B.3 Proofs for Section 4

Proof of Theorem 4: First, we show that normalizations do not affect the results of

Proposition 3 for weak sequences. This amounts to showing that Bn,∞P
⊥
θ1
Σ

−1/2
n has dθ1+dβ22

singular values that are Op(κn). From Proposition 3, there exists a linearly independent

family V⋆ = M−1(v1, . . . , vdβ22 ) such that MV⋆ ∈ V 0
⋆ ⊆ V 0 (from Definition B2) and

∥Bn,∞PV⋆∥ = Op(κn) where PV⋆ = V⋆(V
′
⋆V⋆)

−1V ′
⋆ . Similarly ∥Σ−1/2

n M−1PV⋆∥ ≤ C̃ from

Lemma D4. Also because Id = Pθ1 + P⊥
θ1

where Pθ1M
−1PV⋆ = 0 by design, we have:

∥Σ−1/2
n P⊥

θ1
M−1PV⋆∥ ≤ C̃. Then using the minimax characterization of singular values (Bha-

tia, 1997, Problem III.6.5), we have:

σi+j−1(Bn,∞P
⊥
θ1
Σ−1/2

n P⊥
θ1
M−1PV⋆) ≤ σi(Bn,∞P

⊥
θ1
)σj(Σ

−1/2
n P⊥

θ1
M−1PV⋆).

Then σj(Σ
−1/2
n P⊥

θ1
M−1PV⋆) ≤ σmax(Σ

−1/2
n P⊥

θ1
M−1PV⋆) ≤ C̃, and σi(Bn,∞P

⊥
θ1
) ≤ Op(κn) for

1 ≤ i ≤ dθ1 + dβ22 from Proposition 3. Since PV⋆ has rank dβ22 and is orthogonal to the rank

dθ1 matrix Pθ1 for which Bn,∞P
⊥
θ1
Σ

−1/2
n P⊥

θ1
Pθ1 = 0, we have that σℓ(Bn,∞P

⊥
θ1
Σ

−1/2
n P⊥

θ1
M−1) ≤

Op(κn) for 1 ≤ ℓ ≤ dθ1 + dβ22 , in increasing order.23 Also σmin(M
−1) is strictly positive and

bounded below, because M is invertible, so that: σℓ(Bn,∞P
⊥
θ1
Σ

−1/2
n P⊥

θ1
) ≤ Op(κn) as well.

Likewise, Assumption 6 implies that σmin(V
−1/2

n ) ≥ λ
−1/2

V +o(1) which then also implies that

σℓ(V
−1/2

n Bn,∞P
⊥
θ1
Σ

−1/2
n P⊥

θ1
) ≤ Op(κn) for 1 ≤ ℓ ≤ dθ1 + dβ22 as desired.

Now we are interested in establishing the asymptotic size of the test. Let (θn, γn) be a

sequence in Θ× Γ such that

lim sup
n→∞

Pγn

(
ARn(θ1n) > χ2

dg−d̂n
(1− α)

)
= lim sup

n→∞
sup

γ∈Γ,θ=(θ′10,θ
′
2)

′∈Θ
Pγ

(
ARn(θ10) > χ2

dg−d̂n
(1− α)

)
,

as noted in Andrews et al. (2020, p501), such a sequence always exists. There always ex-

ists at least one subsequence of (θn, γn) which achieves the lim sup above, i.e. for some

φ1 : N → N strictly increasing: limn→∞ Pγφ1(n)

(
ARφ1(n)(θ1φ1(n)) > χ2

dg−d̂φ1(n)
(1− α)

)
=

lim supn→∞ Pγn

(
ARn(θ1n) > χ2

dg−d̂n
(1− α)

)
. Assumption 1 i. implies that Θ×Γ is sequen-

tially compact so that this subsequence admits a convergence sub-subsequence in Θ × Γ,

i.e. for some φ2 : N → N strictly increasing: (θφ2◦φ1(n), γφ2◦φ1(n)) → (θ0, γ0) ∈ Θ × Γ and

limn→∞ Pγφ2◦φ1(n)

(
ARφ2◦φ1(n)(θ1φ2◦φ1(n)) > χ2

dg−d̂φ2◦φ1(n)
(1− α)

)
has the same limit.

Now, if we can find a converging sequence (θm, γm),m ≥ 1, in one of Γ0(b), for some b ≥ 0,

Γ0(∞), or converging in Γ1 such that (θm, γm) = (θφ2◦φ1(n), γφ2◦φ1(n)) when m = φ2 ◦ φ1(n)

23Pick i = ℓ and j = 1 and notice that the matrix is bounded above on a subspace of dimension dθ1 +dβ22
.
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then the limiting rejection probability for the subsequence can be derived from the limiting

rejection probability of the full sequence (θm, γm). Suppose (θφ2◦φ1(n), γφ2◦φ1(n)) → (θ0, γ0) ∈
Θ × Γ1. Pick (θm, γm) = (θφ2◦φ1(n), γφ2◦φ1(n)) when m = φ2 ◦ φ1(n) and (θm, γm) = (θ0, γ0)

otherwise. (θm, γm) is a converging sequence with γ0 ∈ Γ1. If (θ0, γ0) ∈ Θ × Γ0, then√
φ2 ◦ φ1(n)δ(γφ2◦φ1(n)) is a sequence taking values in [0,+∞)∪ {+∞}, the positive part of

the extended real line which is a compact space. This implies that
√
φ2 ◦ φ1(n)δ(γφ2◦φ1(n))

admits at least one subsequence
√
φ3 ◦ φ2 ◦ φ1(n)δ(γφ3◦φ2◦φ1(n)) which converges in [0,+∞)∪

{+∞}. Let φ = φ3 ◦ φ2 ◦ φ1 index the resulting subsequence of (θn, γn). There are now two

possibilities: either
√
φ(n)δ(γφ(n)) → ∞ or

√
φ(n)δ(γφ(n)) → b ∈ [0,∞).

Suppose
√
φ(n)δ(γφ(n)) → ∞. Pick (θm, γm) = (θφ(n), γφ(n)) when m = φ(n). For

φ(n) < m < φ(n + 1), pick (θm, γm) = (θφ(n), γφ(n)) as well. By construction
√
mδ(γm) =√

mδ(γφ(n)) >
√
φ(n)δ(γφ(n)) → ∞ so that γm ∈ Γ0(∞). By construction d̂n ∈ {0, . . . , dθ2},

hence Proposition 1 implies that

Pγm

(
ARm(θ1m) > χ2

dg−d̂m
(1− α)

)
≤ Pγm

(
ARm(θ1m) > χ2

dg−dθ2
(1− α)

)
→ α,

for any α ∈ (0, 1). This in turn implies that:

lim
n→∞

Pγφ(n)

(
ARφ(n)(θ1φ(n)) > χ2

dg−d̂φ(n)
(1− α)

)
= lim

m→∞
Pγm

(
ARm(θ1m) > χ2

dg−d̂m
(1− α)

)
≤ α.

Suppose
√
φ(n)δ(γφ(n)) → b ∈ [0,∞). Pick (θm, γm) = (θφ(n), γφ(n)) for any m = φ(n).

For φ(n) < m < φ(n + 1), define bm = min[
√
φ(n)δ(γφ(n)),

√
φ(n+ 1)δ(γφ(n+1))]; note

that limm→∞ bm = b. Suppose, without loss of generality, that bm =
√
φ(n)δ(γφ(n)). Take

ε = d(γ0, γφ(n)). If ε = 0, then γφ(n) = γ0 ∈ Γ0 and bm = 0. If bm = 0, pick (θm, γm) =

(θφ(n), γφ(n)). If ε > 0 and bm > 0, Assumption 1 i. implies that the closure of Bε(γ0) ∩ Γ

is connected. Hence, there exists a continuous map: (θ, γ) : [0, 1] → Θ × Γ such that

(θ(0), γ(0)) = (θ0, γ0) and (θ(1), γ(1)) = (θφ(n), γφ(n)) and ∥θ(u)−θ0∥+d(γ(u)−γ(0)) ≤ ε for

any u ∈ [0, 1]. By continuity of δ : Γ → R+, the image of u→ δ◦γ(u) is a closed interval which

contains 0 = δ(γ0) and δ(γφ(n)) > 0. For each m, the values 0 and bm are both contained

in the image
√
m[δ ◦ γ([0, 1])], so that there exists a um such that

√
mδ ◦ γ(um) = bm. Pick

(θm, γm) = (θ(um), γ(um)). If bm is attained at φ(n+1), repeat the above with φ(n+1) instead

of φ(n). By construction ∥θm − θ0∥+ d(γm, γ0) ≤ max[∥θφ(n) − θ0∥+ d(γφ(n), γ0), ∥θφ(n+1) −
θ0∥+ d(γφ(n+1), γ0)] → 0 and limm→∞

√
mδ ◦ γ(um) = limm→∞ bm = b ∈ [0,∞). This implies

that γm ∈ Γ0(b) with b ∈ [0,∞). As shown above, for this converging sequence we have
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d̂m ≤ dϕ wpa 1. Using Proposition 2:

Pγm

(
ARm(θ1m) > χ2

dg−d̂m
(1− α)

)
≤ Pγm

(
ARm(θ1m) > χ2

dg−dϕ
(1− α)

)
+ o(1) → α.

Then, we have: limn→∞ Pγφ(n)

(
ARφ(n)(θ1φ(n)) > χ2

dg−d̂φ(n)
(1− α)

)
≤ α. Putting everything

together, we have: lim supn→∞ Pγn

(
ARn(θ1n) > χ2

dg−d̂n
(1− α)

)
≤ α for the original se-

quence (θn, γn).

For the second part of the Theorem, note that κ2n = o(λ2n) = o(λmin(∂θg(θn, γn)
′∂θg(θn, γn))

so Theorem 2 applies. Now, from the proof of Lemma D3: κ−2
n H

1/2
n ΣnH

1/2
n

p→ Σ̃, which is

the arg-minimizer of the limiting sup-norm minimization and is non-singular because of the

log-determinant. Hence, λmin(Σ
−1/2
n ) ≥ κ−1

n λmin(H
−1
n )λmin(Σ̃) + op(κ

−1
n ) . Now, this implies:

λdθ1+1(P
⊥
θ1
Σ−1/2

n P⊥
θ1
B′

n,∞V
−1

n Bn,∞P
⊥
θ1
Σ−1/2

n P⊥
θ1
)

≥ λmin(Σ
−1/2
n )2λdθ1+1(P

⊥
θ1
B′

n,∞V
−1

n Bn,∞P
⊥
θ1
)

≥ λ−1
V [λmin(Σ

−1/2
n )]2λmin(B

′
n,∞Bn,∞)(1 + op(1))

≥ λ−1
V [λmin(Σ

−1/2
n )]2λmin(∂θg(θn, γn)

′∂θg(θn, γn))(1 + op(1)),

where the last inequality follows from Assumption 6 and the discussion after Theorem 2.

Since λmin(Σ
−1/2
n ) is bounded below, we have λdθ1+1(P

⊥
θ1
Σ

−1/2
n P⊥

θ1
B′

n,∞V
−1

n Bn,∞P
⊥
θ1
Σ

−1/2
n P⊥

θ1
) >

λ2n wpa 1. This implies d̂n = dθ2 wpa 1 and:

Pγn(ARn(θ1n) > χ2
dg−d̂n

(1− α)) = Pγn(ARn(θ1n) > χ2
dg−dθ2

(1− α)) + o(1) → α,

which concludes the proof.
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Appendix C Proofs for the preliminary results

C.1 Preliminary results for Section 2

Proof of Lemma A1: First, using (a− b)2 ≥ a2/2− b2 for any (a, b) ∈ R2 we have:

ḡn(θ)
′Wn(θ)ḡn(θ)

≥ 1

2
∥g(θ, γn)∥2(λW + ∥Wn(θ)−W (θ)∥)− ∥ḡn(θ)− g(θ, γn)∥2(λ̄W + ∥Wn(θ)−W (θ)∥)

≥ 1

2
∥g(θ, γn)∥2(λW + op(1))−Op(n

−1),

uniformly in θ ∈ Θ. The second inequality is:

ḡn(θn)
′Wn(θn)ḡn(θn) = ∥ḡn(θn)− g(θn, γn)∥2Wn

≤ Op(n
−1),

since g(θn, γn) = 0. Pick any ε > 0. For any approximate minimizer θ̂n such that ∥ḡn(θ̂n)∥2Wn
≤

infθ∈Θ ∥ḡn(θ)∥2Wn
+ o(n−1), using the two inequalities above:

P
(
∥θ̂n − θn∥ ≥ ε

)
≤ P

(
inf

∥θ−θn∥≥ε
∥ḡn(θ)∥2Wn

≤ ∥ḡn(θn)∥2Wn
+ o(n−1)

)
≤ P

(
1

2
inf

∥θ−θn∥≥ε
∥g(θ, γn)∥2(λW + op(1)) ≤ Op(n

−1)

)
≤ P

(
[
√
nδ(γn)]

2 ≤ Op(1)
)
→ 0,

since
√
nδ(γn) → ∞ for sequences converging in Γ0(∞) or Γ1.

Proof of Lemma A2: For any approximate minimizer θ̂n such that ∥ḡn(θ̂n)∥2Wn
≤ infθ∈Θ ∥ḡn(θ)∥2Wn

+

o(n−1), we have ∥θ̂n − θn∥ = op(1) by Lemma A1 and:

o(1) ≥ n
[
ḡn(θ̂n)

′Wn(θ̂n)ḡn(θ̂n)− ḡn(θn)
′Wn(θn)ḡn(θn)

]
= n

[
ḡn(θ̂n)

′W (θn)ḡn(θ̂n)− ḡn(θn)
′W (θn)ḡn(θn)

]
(1 + op(1))

= n
[
(ḡn(θn) + g(θ̂n, γn)− g(θn, γn))

′W (θn)(ḡn(θn) + g(θ̂n, γn)− g(θn, γn))

− ḡn(θn)
′W (θn)ḡn(θn)

]
(1 + op(1))

= n
[
2ḡn(θn)

′W (θn)(g(θ̂n, γn)− g(θn, γn))

+ (g(θ̂n, γn)− g(θn, γn))
′W (θn)(g(θ̂n, γn)− g(θn, γn))

]
(1 + op(1))

= n
[
2ḡn(θn)

′W (θn)∂θg(θn, γn)(θ̂n − θn)

+ [∂θg(θn, γn)(θ̂n − θn)]
′W (θn)[∂θg(θn, γn)(θ̂n − θn)]

]
(1 + op(1)) .

1



By assumption, W (θn) → W (θ0) positive definite so the above implies:

n∥∂θg(θn, γn)(θ̂n − θn)∥2 ≤ o(1) +
√
n∥∂θg(θn, γn)(θ̂n − θn)∥Op(1).

As in Newey and McFadden (1994) completing the square above implies [
√
n∥∂θg(θn, γn)(θ̂n−

θn)∥+Op(1)]
2 ≤ O(1). Taking the square root on both sides yields:

√
n∥∂θg(θn, γn)(θ̂n − θn)∥ = Op(1).

Define θ̃n = θn −
(
∂θg(θn, γn)

′W (θn)∂θg(θn, γn)
)−1

∂θg(θn, γn)
′W (θn)ḡn(θn). By continuity of

∂θg(θ, γ) and W , we have:
√
nH−1

n (θ̃n − θn) = (R′
0W0R0)

−1R′
0

√
nḡn(θn) + op(1)

d→ N (0,Σ0).

To conclude the proof we need to prove that
√
nH−1

n (θ̃n − θ̂n) = op(1). Using similar

calculations as above, we have:

n
[
ḡn(θ̃n)

′Wn(θ̃n)ḡn(θ̃n)− ḡn(θn)
′Wn(θn)ḡn(θn)

]
= n

[
2ḡn(θn)

′W (θn)∂θg(θn, γn)(θ̃n − θn)

+ [∂θg(θn, γn)(θ̃n − θn)]
′W (θn)[∂θg(θn, γn)(θ̃n − θn)]

]
(1 + op(1)) .

By construction of θ̃n, −∂θg(θn, γn)′W (θn)ḡn(θn) = (∂θg(θn, γn)
′W (θn)∂θg(θn, γn))

(
θ̃n − θn

)
.

This implies the following equalities:

ḡn(θn)
′W (θn)∂θg(θn, γn)(θ̃n − θn) =

(
θ̃n − θn

)′
(∂θg(θn, γn)

′W (θn)∂θg(θn, γn))
(
θ̃n − θn

)
,

ḡn(θn)
′W (θn)∂θg(θn, γn)(θ̂n − θn) =

(
θ̃n − θn

)′
(∂θg(θn, γn)

′W (θn)∂θg(θn, γn))
(
θ̂n − θn

)
.

Since θ̂n is an approximate minimizer, we have:

o(1) ≥ n
[
ḡn(θ̂n)

′Wn(θ̂n)ḡn(θ̂n)− ḡn(θ̃n)
′Wn(θ̃n)ḡn(θ̃n)

]
= n

[
ḡn(θ̂n)

′Wn(θ̂n)ḡn(θ̂n)− ḡn(θn)
′Wn(θn)ḡn(θn)

]
− n

[
ḡn(θ̃n)

′Wn(θ̃n)ḡn(θ̃n)− ḡn(θn)
′Wn(θn)ḡn(θn)

]
= n

[
[∂θg(θn, γn)(θ̂n − θn)]

′W (θn)[∂θg(θn, γn)(θ̂n − θn)]

+ [∂θg(θn, γn)(θ̃n − θn)]
′W (θn)[∂θg(θn, γn)(θ̃n − θn)]

− 2
(
θ̃n − θn

)′
(∂θg(θn, γn)

′W (θn)∂θg(θn, γn))
(
θ̂n − θn

) ]
(1 + op(1))

≥ nλW∥∂θg(θn, γn)(θ̂n − θ̃n)∥2 (1 + op(1)) ,

which implies
√
n∂θg(θn, γn)(θ̂n − θ̃n) = op(1) and concludes the proof.
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Appendix D Supplemental Results

The following results concern the matrix Σn used for re-scaling in the procedure. The

derivations follow very closely those in Theorems 2 and 3.

Lemma D3. Suppose K is the uniform kernel and the Assumptions for Theorem 2 hold,

then H
1/2
n ΣnH

1/2
n ≤ Op(κ

2
n).

Proof of Lemma D3. As in the proof of Theorem 2, let θ = θn + κnHnh. Take Σn =

κ2nH
−1/2
n Σ̃nH

−1/2
n for Σ̃n ≥ 0, µn = θn + κnHnh̃n. Then wpa 1:

(µn, Σ̃n) = argminh̃,Σ̃[ sup
∥h∥≤2

∥h− h̃∥2
Σ̃−1 − log |Σ̃−1| − log |κnH−1

n |]K̂n(θn + κnHnh)

→ argminh̃,Σ̃[ sup
∥h∥≤2

∥h− h̃∥2
Σ̃−1 − log |Σ̃−1|]K(∥R0h∥),

using the argmax Theorem and taking the p-limit on the right-hand-side. The − log |κnH−1
n |

term can be removed because K̂n ∈ {0, 1} for the uniform kernel so it does not alter the

supremum and the infimum. This implies that κ−2
n H

1/2
n ΣnH

1/2
n = Σ̃n = Op(1) as desired.

Lemma D4. Suppose K is the uniform kernel and the Assumptions for Theorem 3 hold,

then there exists C > 0 such that ∥Σ−1/2
n M−1v∥2 ≤ C, wpa 1 for any v = (0, β1

2 − β2
2) with

β1
2 , β

2
2 ∈ B0

2. This implies that ∥Σ−1/2
n M−1PV2∥ ≤ C̃, wpa 1 for some finite constant C̃.

Proof of Lemma D4. Pick v ̸= 0 as stated in the Lemma. Let β1 = (β1n, β
1
2),β

2 =

(β1n, β
2
2) so that v = β1 − β2. Because K is the uniform Kernel, after a change of variable,

µ̃n, Σ̃n =M−1µn,M
′−1ΣnM

−1 are the minimizers of:

inf
µ̃,Σ̃

sup
K̂n(β)=1

∥β − µ̃∥2
Σ̃−1 − ∥β1 − µ̃∥2

Σ̃−1 ≤ 2 sup
β

∥β∥22,

inf
µ̃,Σ̃

sup
K̂n(β)=1

∥β − µ̃∥2
Σ̃−1 − ∥β2 − µ̃∥2

Σ̃−1 ≤ 2 sup
β

∥β∥22,

wpa 1, because K̂n(β
1) = K̂n(β

2) = 1 wpa 1 under the Assumptions, and the infimum is less

than for (µ̃, Σ̃) = (0, I). This implies that |∥β1− µ̃n∥2Σ−1
n
−∥β2− µ̃n∥2Σ̃−1

n
| ≤ 2 supβ ∥β∥. Using

∥β1− µ̃n∥2Σ̃−1
n

= ∥v∥2
Σ̃−1

n
+ ∥β2− µ̃n∥2Σ̃−1

n
+2⟨Σ̃−1/2

n v, Σ̃
−1/2
n (β2− µ̃n)⟩, we have |∥β1− µ̃n∥2Σ̃−1

n
−

∥β2− µ̃n∥2Σ̃−1
n
| = |∥v∥2

Σ̃−1
n

+2⟨Σ̃−1/2
n v, Σ̃

−1/2
n (β2− µ̃n)⟩| = |∥v∥2

Σ̃−1
n

−2⟨Σ̃−1/2
n v, Σ̃

−1/2
n (β1− µ̃n)⟩|.

Apply the triangular inequality to find wpa 1: ∥v∥2
Σ̃−1

n
≤ 4 sup∥β∥22 := C. To get the first

inequality, note that ∥v∥2
Σ̃−1

n
= ∥v′M ′−1Σ

−1/2
n Σ

−1/2
n M−1v∥2 = ∥Σ−1/2

n M−1v∥22. The second

inequality, can be derived using the same steps used in the proof of Theorem 3 and the

minimax principle.
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Appendix E Linear Reparameterization, Continued

The following gives additional details about the linear reparameterization in Section 2, and

describes the additional steps to use when there are multiple sources of identification. To

simplify the discussion, it will focus on two specific examples.

The main idea is that if there are multiple but finitely many sources of identification

failure, we can construct a finite partition of B2 where each subset is associated with a

common rate (semi-strong, weak). Then, refine the reparameterization by using only the

subset(s) corresponding to weak identification. When there is a single (scalar) source of

identification failure, the partition β1, β2 presented in the main text systematically has β2

weakly identified for weak sequences because the objective function becomes flat at the same

rate on the entire set B2. The partition only has one element which is B2 itself.

Example 1: Linear IV regression First, consider the linear IV regression, now with

multiple instruments. Let yi = x′iθ0 + ui with moment condition Eγ(zi[yi − x′iθ]) = 0. It

can be re-written as Eγ(zix
′
i[θ0 − θ]) = 0, if Eγ(ziui) = 0. As seen from the discussion

of Assumption 3, identification fails for any γ0 such that σmin[Eγ0(zix
′
i)] = 0. Because the

moment condition is linear in θ for this example, the linear reparameterization described in

Section 2 is such that V2 = kern[Eγ0(zix
′
i)], where kern is the kernel, or null space, of the

matrix. When the matrix has full rank V2 = {0} and the solution θ0 is unique.

Consider sequences γn → γ0 such that Eγn(zix
′
i) = UΛnV

′ where Λn = diag(λ1n, . . . , λkn)

is diagonal, and U, V are semi-unitary: U ′U = V ′V = Ik. The span V2 covers directions

associated with the singularity, i.e. all columns Vj, j ∈ {1, . . . , k}, of V where limn→∞ λjn =

λj0 = 0. Consider only sequences such that the limit bj = limn→∞
√
nλjn exists in R+ ∪

{+∞}.1 Split the indices in two sets: J1 = {1 ≤ j ≤ k, bj = +∞} and J2 = {1 ≤ j ≤ k, bj <

+∞}. Clearly J1 ∩ J2 = ∅ and J1 ∪ J2 = {1, . . . , k}. Take V2 to be the span associated with

the columns Vj, j ∈ J2. Then complete the reparameterization by taking β1 in the orthogonal

of V2. Since the reparameterization is defined up to a rotation, suppose for simplicity that

V is ordered such that β = V ′θ and, note that: ∥g(β, γn)∥2 = (βn − β)′Λn(βn − β), where

βn = V ′θn. Assumption 5 can now be verified from this representation. Here the sources of

identification failure are indexed by the singular values λj, j ∈ {1, . . . , k}, and the parameter

space is partitioned into k different directions: V ′
j θ, j ∈ {1, . . . , k}, associated with the λj.

1Note that
√
nλjn takes values in the extended real line R+ ∪ {+∞} which is compact so we can always

find a converging subsequence in the extended real line. This step appears in the proof of Theorem 4.
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Example 2: Non-Linear regression Consider the regression setup in Cheng (2015):

yi =
∑k

j=1 gj(xi, πj)δj + w′
iξ + ui, θ = (π, δ, ξ), each δj here is scalar. The coefficient πj is

unidentified if the corresponding δj = 0. This is related to the example used in Section 5. For

a vector of instruments zi, take the moment condition Eγ(zi[yi−
∑k

j=1 fj(xi, πj)δj−w′
iξ]) = 0

which can be re-written as:

Eγ

(
zi(

k∑
j=1

[fj(xi, πj0)− fj(xi, πj)] δj0 +
k∑

j=1

fj(xi, πj)(δj0 − δj) + w′
i(ξ0 − ξ)])

)
.

Take γ = γ0 such that δj0 = 0 for at least one j. Then Θ0 is non-singleton and includes all

possible values of πj for which δj0 = 0. Suppose γ, zi, xi, zi, and the functions fj are such

that only the coefficients π are potentially unidentified. The linear reparameterization based

on γ0 is such that β2 include all coefficients πj for which δj0 = 0, while β1 includes δ, ξ and

the remaining πj, for which δj0 ̸= 0.

Take a converging sequence γn → γ0. Following the same steps as in the previous

example, let bj = limn→∞
√
n|δjn| ∈ R+∪{+∞}, define J1 and J2 in the same way as above.

As before, apply the reparameterization but now β2 includes the πj with j ∈ J2 and β1

collects all remaining coefficients. Here the sources of identification failure are indexed by

|δj|, j ∈ {1, . . . , k}. This time, the partition separates the directions πj, associated with the

different δj.

Linear Reparameterization with Mixed Identification Strength The goal of the

following is to refine the linear reparameterization give in the main text when there is mixed

identification strength, so as to have β1 semi-strongly and β2 weakly identified. The proce-

dure relies on having finitely many sources of identification failure as in the above examples.

In the previous two examples, there were 1 ≤ k < ∞ sources of identification failure.

There, for a sequence γn associated with weak identification, there areK = 2k−1 possibilities

for identification strength. For instance, in Example 2 we have (b1, . . . , bk) ∈ (R+ ∪ {+∞})k

with at least one bj < +∞. For each bj there are two possibilities (bj <∞, bj = ∞) leading

to 2k outcomes, minus 1 where bj < ∞ for all j, which precludes weak identification, in

which case all parameters are (semi)-strongly identified.

With these K ≥ 1 possible combinations, there are K possible subsets S1, . . . , SK ⊆ B2

on which the parameters can be weakly identified. In Example 2, one possible subset is

associated with b1 < ∞ and bj = +∞ for j > 1; here S1 = {π1 ∈ R, πj = πj0, j > 1}. Then
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there are δj(·), δj(·) continuous and hj(·) > 0 such that:

sup
β2∈Sj∪{β2n}

∥g(β1n, β2, γn)∥W ≤ δj(γn)

inf
d(β,{β1n}×(Sj∪{β2n}))≥ε

∥g(β1, β2, γn)∥W ≥ δj(γn)hj(ε).

Now take j⋆ ∈ {1, . . . , K} such that
√
nδj⋆(γn) → ∞ and lim supn→∞ δj⋆(γn) <∞.

If Sj⋆ = B2, all parameters in β2 are weakly identified and Assumption 5 i. follows from

the properties of linear reparameterization and the Maximum Theorem, as explained in the

main text. Otherwise, Sj⋆ ⊂ B2, strictly; only some parameters in β2 are weakly identified.

Let Ṽ2 = span ({v2 = (β1n, β
1
2)− (β1n, β

2
2), (β

1
2 , β

2
2) ∈ Sj⋆ × Sj⋆}) and Ṽ1 = Ṽ ⊥

2 . Let β̃1 =

PṼ1
β and β̃2 = PṼ2

β. By construction, Sj⋆ is at most a singleton on Ṽ1 and a set of dimension

rank(PṼ2
) on Ṽ2, denoted S̃j⋆ .

If rank(PṼ2
) = dβ2 then all directions of β2 are weakly identified and β̃2 = β2 is unchanged.

By construction, lim supn→∞
√
n supβ̃2∈S̃j⋆

∥g(β̃1n, β̃2, γn)∥W = lim supn→∞
√
nδj⋆(γn) < ∞.

To reduce notation, suppose β2n ∈ Sj⋆ , then ∥β1− β̃1n∥ ≥ ε⇒ d(β, {β1n}×(Sj∪{β2n})) ≥ ε,

using ∥β1−β2∥ = ∥PṼ1
(β1−β2)∥+∥PṼ2

(β1−β2)∥. This implies that inf∥β̃1−β̃1n∥≥ε,β̃2
∥g(β̃1, β̃2, γn)∥W ≥

δj⋆(γn)hj⋆(ε) with
√
nδj⋆(γn) → ∞ which yields Assumption 5 i., i.e. β̃1 is semi-strongly

identified and β̃2 is weakly identified on the set S̃j⋆ .

Appendix F Uniform Sampling on Level Sets

As shown in Section 2.1, the computation of the quasi-Jacobian requires uniform draws over

the level set Θn = {θ ∈ Θ, ∥ḡn(θ)∥Wn ≤ κn} and similarly test inversion amounts to finding

the level set {θ ∈ Θ, ∥ḡn(θ)∥2V̂ −1
n

≤ χ2
dg−d̂n

(1− α)} and projecting it onto θ1.

Direct approach: the approach used in Section 5 amounts to importance sampling. Draw

θ1, . . . , θB uniformly distributed on θ and assign weights proportional to 1∥ḡn(θb)∥Wn≤κn . The

weighted sample is uniformly distributed on the level set. The draws (θb)b=1,...,B can be

random or pseudo-random using quasi-Monte Carlo sequences such as the Sobol or Halton

sequence (see Lemieux, 2009, Section 5). The main drawback of this approach is that the

effective sample size can be very small, i.e. few draws have non-zero weight, when the

level set is small relative to the parameter space. In particular, the effective sample size is

approximately B × volume(Θn)/volume(Θ) which tends to be small when the dimension of

θ is moderately large.
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Adaptive Sampling by Population Monte Carlo: the main idea here to is preserve

the simplicity of importance sampling while constructing a sequence of proposal distributions

with a higher acceptance rate. Algorithm 1 below is adapted from the Population Monte

Carlo principle laid out in Cappé et al. (2004). Consider a sequence of level sets: Θjn = {θ ∈
Θ, ∥ḡn(θ)∥Wn ≤ κjn} with κ1n > κ2n > · · · > κJn = κn for some J ≥ 1. By construction

Θn = ΘJn ⊆ · · · ⊆ Θ2n ⊆ Θ1n and volume(Θ1n) ≥ · · · ≥ volume(ΘJn) = volume(Θn). This

implies that it is easier to generate uniform draws on Θ1n than on Θn.

Algorithm 1 Population Monte Carlo Sampling on Level Sets

Inputs: κ1n > · · · > κJn = κn, number of draws B, generating distributions qjb
Initialization:

for b = 1, . . . , B do

draw θ1b ∼ UΘ until ∥ḡn(θ1b )∥Wn ≤ κ1n
set w1

b = 1/B

end for

Sequential Sampling:

for j = 2, . . . , J do

for b = 1, . . . , B do

draw θj⋆b ∼ (θj−1
b , wj−1

b )b=1,...,B and θjb ∼ qjb(·|θj⋆b ) until ∥ḡn(θjb)∥Wn ≤ κjn
set wj

b ∝ w(θj⋆b )/qjb(θ
j
b |θ

j⋆
b )

end for

end for

Output: weighted sample (θJb , w
J
b )b=1,...,B

The following summarizes the algorithm in plain terms. The initialization step is a simple

accept-reject algorithm to generate iid draws on Θ1n. Then given a set of draws j − 1 ≥ 1,

draw uniformly θj⋆b from the weighted sample (θj−1
b , wj−1

b )b=1,...,B and generate θjb using a

transition kernel qjb, for instance a random-walk step θjb ∼ N (θj⋆b ,Σ
j
b). Re-draw both θj⋆b

and θjb until the criterion ∥ḡn(θjb)∥Wn ≤ κjn is met and then set the weight according to the

sampling probability wj
b ∝ w(θj⋆b )/qjb(θ

j
b |θ

j⋆
b ). Repeat this process for each b = 1, . . . , B and

each j = 2, . . . , J . The final weighted sample (θJb , w
J
b )b=1,...,B targets the desired distribution.

There are several choices of tuning parameters in the steps above. First, κjn can be

chosen adaptively to avoid decreasing it too fast or too slow which would result in poor com-

putational performance. In the empirical application, κ1n is set according to median value

of ∥ḡn(θ1b )∥2Wn
from uniform draws θb on Θ; this yields κ21n = 5500. Then κjn is set according

to κ2jn = min(0.9κ2j−1n, qj−1(0.6)) where qj−1(0.6) is the 60% quantile of ∥ḡn(θj−1
b )∥2Wn

. This

guarantees that κjn is strictly decreasing but declines slowly enough to maintain a reasonable
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acceptance rate. To adapt to the shape of each Θjn, the proposal qjn is also constructed

adaptively. For each j ≥ 2, a clustering algorithm is applied to the draws (θjb)b=1,...,B to split

the draws into K = 3 clusters. Then Σj
b is 2 times the variance of the draws from the cluster

in which θjb belongs. This accommodates multimodality in the objective function. The inner

loop, over b = 1, . . . , B, is run in parallel which speeds up the computation significantly. In

the application, the final n × κ2n = ∥ḡn(θ̂n)∥2Wn
+ 2 log log(n) = 10.34 is attained from the

initial n× κ21n = 5500 after J = 45 iterations.

The output of Algorithm 1 is used both to compute Bn,∞ and later for test inversion

by picking ĵ such that ĵ = inf{j = 1, . . . , J, κ2jn ≥ χ2
dg−d̂n

(1 − α)} and running one more

iterations with κ2
ĵ+1n

= χ2
dg−d̂n

(1− α). This yields the 5000 draws shown in Figure 4.

Appendix G Sample Code to Implement to Procedure

The following provides some sample R code to perform the steps outlined in Section 2.1 for
the Monte Carlo example in Appendix H.2.

r e qu i r e ( randtoolbox ) # Used to generate the i n t e g r a t i o n g r id

l i b r a r y ( pracma ) # Used to compute matrix square root

l i b r a r y (CVXR) # CVX fo r R

l i b r a r y (Rmosek) # To use the MOSEK so l v e r in CVX

s e t . s e e d (123)

n = 1e3 # Sample s i z e

B = 1e4 # Number o f draws

# Robust and standard c r i t i c a l va lue s :

c r i t i c a l R = qch i sq (0 .95 , 2 )

c r i t i c a l S = qch i sq (0 .95 , 1 )

# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
# Simulate Data , Def ine Moment Condit ions

# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

c = 1 # c determines i d e n t i f i c a t i o n s t r ength

b1 = c/ sq r t (n) # theta1 = c/ sq r t (n)

b2 = 5 # theta2 i s f i x ed

# Simulate data : x1 , x2 , e , and y = b1∗x1 + b1∗b2∗x2 + e

x1 = rnorm (n)

x2 = rnorm (n)

e = rnorm (n)
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y = b1∗x1 + b1∗b2∗x2 + e

moments ← f unc t i on (b , y , x1 , x2 ) {
# computes the sample moments and the var iance o f the moments

e hat = y − b [ 1 ] ∗ x1 − b [ 1 ] ∗ b [ 2 ] ∗ x2 # r e s i d u a l s

mom = cbind ( e hat , e hat ) ∗ cbind ( x1 , x2 )

mom m = apply (mom, 2 ,mean) # g bar

V = var (mom) # V hat

return ( l i s t ( mom = mom m, V = V ) )

}

ob j e c t i v e ← f unc t i on (b , y , x1 , x2 ) {
# computes the GMM ob j e c t i v e func t i on

mm = moments (b , y , x1 , x2 )

re turn ( t (mm$mom)%∗%so l v e (mm$V,mm$mom) )

}

# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
# Compute the quasi−Jacobian Matrix

# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

# Set the i n t e g r a t i o n g r id :

s = sobo l (B, 2 , scrambl ing=1)

p = cbind ( rep (b1 ,B) , rep (b2 ,B) ) + 2∗( s−1/ 2)

ob j s = rep (NA,B) # Store GMM ob j e c t i v e va lue s

moms = matrix (NA,B, 2 ) # Store sample moments mom

Vs = array (NA, dim=c (2 ,2 ,B) ) # Store va r i ance s V

f o r (b in 1 :B) { # Evaluate the moments on the g r id

mm = moments (p [ b , ] , y , x1 , x2 )

ob j s [ b ] = t (mm$mom)%∗%so l v e (mm$V,mm$mom)

moms [ b , ] = mm$mom
Vs [ , , b ] = mm$V

}

# Se l e c t draws on the l e v e l s e t

ind = which ( ob j s − min( ob j s ) ≤ 2∗ l og ( l og (n) ) /n)
g r id sub = p [ ind , ]

moms sub = moms [ ind , ]

Vs sub = Vs [ , , ind ]

X = cbind (1 , g r id sub ) # r e g r e s s o r s : i n t e r c e p t and theta b

# wr i t e the opt imiza t i on problem f o r CVX
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beta = Var iab le (dim(X) [ 2 ] , dim(moms sub ) [ 2 ] ) # matrix o f c o e f f i c i e n t s (A,B)

objc ← Minimize (norm( moms sub − X %∗% beta , " I" ) ) # l− i n f i n i t y l o s s

prob ← Problem ( objc ) # compi le the problem

r e s u l t ← s o l v e ( prob , s o l v e r="ECOS BB" ) # compute the s o l u t i o n

co e f = r e s u l t $ getValue ( beta ) # ex t r a c t s o l u t i o n

Bn = t ( co e f [ 2 : 3 , ] ) # quasi−Jacobian matrix

# Now compute the norma l i za t i on matrix f o r the left−hand−s ide

V = matrix (0 , 2 , 2 ) # Compute V bar the average var iance matrix

f o r (b in 1 : l ength ( ind ) ) {
V = V + Vs sub [ , , b ] / l ength ( ind )

}

# Now compute the norma l i za t i on matrix f o r the right−hand−side

mu← Var iab le (1 , 2 ) # vecto r o f means

one = matrix (1 , l ength ( ind ) ,1 )

VV = Var iab le (2 , 2 ) # matrix o f va r i ance s

objc ← Minimize ( − l o g d e t (VV) + 0 . 5 ∗norm( ( g r id sub%∗%VV − kronecker ( one ,mu

) )∧2 ," I" ) ) # setup the minimizat ion problem in

CVX

prob ← Problem ( objc ) # compi le

r e s u l t 2 ← s o l v e ( prob , s o l v e r="MOSEK" ) # so l v e us ing MOSEK so l v e r

phi = r e s u l t 2 $ getValue (VV) # ext ra c t s o l u t i o n

# Note that phi = Sigma∧ (−1/ 2) , the problem was reparameter i zed

# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
# Id e n t i f i c a t i o n Category S e l e c t i o n

# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

v = c (1 , 0 ) # vecto r which spans theta1

M = diag (2 )−v%∗%t (v ) # Pro j e c t i on matrix onto the span on theta2

# Normalized quasi−Jacobian matrix

# sqrtm computes the matrix square root and Binv i t s i nv e r s e

Bnorm = ( sqrtm (V) $Binv )%∗%( Bn%∗%M )%∗%phi

# s i n gu l a r va lue s in dec r ea s ing order

s ing = svd (Bnorm) $d
cu t o f f = sq r t (2∗ l og (n) /n) # cu t o f f lambda n f o r ICS

pr in t ( ’ S ingu la r va lue s without p r o j e c t i n g out theta1 : ’ )

p r i n t ( round ( svd ( ( sqrtm (V) $Binv )%∗%( Bn )%∗%phi ) $d , 3 ) )

p r i n t ( ’ S ingu la r va lue s a f t e r p r o j e c t i n g out theta1 : ’ )
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pr in t ( round ( s ing , 3 ) )

p r i n t ( ’ Cutof f : ’ )

p r i n t ( c u t o f f )

# Set c r i t i c a l va lue depending on the s i n gu l a r va lue and c u t o f f

c r = 1∗( s i ng [1]> c u t o f f ) ∗ c r i t i c a l S + 1∗( s i ng [ 1 ] <cutof f ) ∗ c r i t i c a l R

i f ( s i ng [1]> c u t o f f ) {
pr in t ( ’ Nuisance parameter i s semi−strongly i d e n t i f i e d ’ )

} e l s e {
pr in t ( ’ Nuisance parameter i s weakly i d e n t i f i e d ’ )

}

# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
# Subvector I n f e r en c e

# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

# Test H0 : b1 = b10 at the 5% s i g n i f i c a n c e l e v e l

b10 = 0

obj ← f unc t i on (b2 , b10 , y , x1 , x2 ) {
re turn ( ob j e c t i v e ( c ( b10 , b2 ) ,y , x1 , x2 ) )

}

# Anderson−Rubin t e s t s t a t i s t i c

AR = n∗ opt imize ( obj , c (−20 , 2 0 ) , b10=b10 , y=y , x1=x1 , x2=x2 ) $ ob j e c t i v e

i f (AR > cr ) {
pr in t ( ’ Re ject H0 ’ )

} e l s e {
pr in t ( ’ Cannot r e j e c t H0 ’ )

}

# Compute a 95% con f idence s e t :

ind = which ( ob j s ≤ cr )

p r i n t ( ’ Conf idence I n t e r v a l f o r theta1 : ’ )

p r i n t ( c (min (p [ ind , 1 ] ) ,max(p [ ind , 1 ] ) ) )

p r i n t ( ’ True value : ’ )

p r i n t ( b1 )

11



Appendix H Additional Results for Section 5

H.1 Verification of the Main Assumptions

We now verify the main assumptions for the NLS example in Appendix H.2:

yi = θ1x1i + θ1θ2xi2 + ui,

where (x1i, x2i, ui) ∼ N (0, I) iid. The optimization space is Θ = Θ1×Θ2 = [θ1, θ1]× [θ2, θ2],

where −∞ < θ1,2 < 0 < θ1,2 < ∞. We can then set Θ = Θ1 × Θ2 = [θ1 + ε, θ1 − ε] ×
[θ2 + ε, θ2 − ε] for any 0 < ε < minj=1,2(|θj|, |θj|). The parameter space is then Γ = {γ =

(θ, ω) ∈ Θ×Ω}, where Ω indexes the distribution F of (x1i, x2i, ui) which here is very simple

since Ω = {Φ}, the normal distribution above. More general choices of distribution spaces

one could consider could take the form: Ω = {F,EF (x1i, x2i, ui) = (µ1, µ2, 0), ∥(µ1, µ2)∥ ≤
c,EF ((x1i − µ1, x2i − µ2, ui)(x1i − µ1, x2i − µ2, ui)

′) = Σ, 0 < c ≤ λmin(Σ) ≤ λmax(Σ) ≤
C < ∞,EF (∥(x1i, x2i, ui)∥4) ≤ C}. See Andrews and Cheng (2012) for more examples.

Assumption 1 i., ii. hold for this choice of Θ,Θ, and Γ.

The sample moments are ḡn(θ) =
1
n

∑n
i=1(yix1i − θ1, yix2i − θ1θ2)

′ and their population

counterpart is g(θ, γ0) = (θ10 − θ1, θ10θ20 − θ1θ2)
′. They can be re-written as:

g(θ, γ0) = −

 1 0

−θ2 θ10

 θ1 − θ10

θ2 − θ20

 .

The lower triangular matrix has two eigenvalues: 1 and θ10. Hence, we have the following

inequality: ∥g(θ, γ0)∥ ≥ min(1, |θ10|) × ∥θ − θ0∥. This implies that Assumption 3 i. holds

with δ(γ0) = min(1, |θ10|) which is continuous in γ = (θ, ω), and h(ε) = ε. To verify

Assumption 3 ii., take θ = (θ10, θ2), then ∥g(θ, γ0)∥ = |θ10| × ∥θ − θ0∥. We have |θ10| =
min(1, |θ10|)× |θ10|

min(1,|θ10|) ≤ max(1, |θ10|, |θ10|)×min(1, |θ10|).
Assumption 4 i. holds for any θ1n ̸= 0. Condition ii. holds if

√
n|θ1n| → ∞. Condition

iii. is a stochastic equicontinuity condition which can be verified by Lipschitz continuity

and conditions on the parameter space and the distribution of the covariates and the errors.

Condition iv holds because the quadratic term vanishes at the same rate as the first-order

term in the Taylor expansion (g(θ, γn) is a polynomial of order 2 which becomes flat wrt θ2

when θ1n → 0). Condition v. can be verified numerically.

For Assumption 5 i., note that ∥g(θ, γn)∥2 = ∥θ1− θ1n∥2+∥θ1θ2− θ1nθ2n∥2 ≥ ∥θ1− θ1n∥2.
Here we can use δ̃(γn) = 1, h̃(ε) = ε. For

√
n∥g(θ1n, θ2, γn)∥ =

√
n|θ1n| × ∥θ2 − θ20∥ ≤

√
n|θ1n| × 2max(|θ2|, |θ2|) → (limn→∞

√
n|θ1n|)2max(|θ2|, |θ2|) < ∞ for weak sequences.

Hence, Assumption 5 i. and ii. hold with B0
2 = Θ2.
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H.2 Additional Simulation Results

Consumption Capital Asset Pricing Model (CAPM) Figure H5 shows the sampling

distribution of the CAPM estimates θ̂n = (δ̂n, γ̂n).

Figure H5: CAPM - distribution of estimates θ̂n = (δ̂n, γ̂n)
n = 100 n = 250

n = 500 n = 1000

Note: true value (δ0, γ0) = (0.97, 1.3): dashed vertical lines. 2000 Monte Carlo replications. Estimates

computed for continuously-updated GMM with Wn = V̂n(θ)
−1 where V̂n is a HAC estimate of var[

√
ngn(θ)].
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Figure H6: CAPM (larger κn) - distribution of largest and smallest singular values

Note: True value (δ0, γ0) = (0.97, 1.3). 2000 Monte Carlo replications. Wn = V̂n(θ)
−1 where V̂n is a

HAC estimate of var[
√
ngn(θ)]. κn = 2

√
2 log(log[n])/n, λn =

√
2 log(n)/n = 0.30, 0.21, 0.16, 0.12 for

n = 100, 250, 500, 1000. σmax, σmin: largest and smallest singular values. Median values of σmin for n =
100, 250, 500, 1000: 3 · 10−3, 2 · 10−3, 2 · 10−3, 1 · 10−3 (RF), 4 · 10−3, 3 · 10−3, 3 · 10−3, 2 · 10−3 (NRF), and
7 · 10−3, 0.85, 1.75, 1.79 (FR).

Table H4: CAPM (larger κn) – size of 95% CIs for δ and γ, frequency for detecting identifi-

cation failure

Rank Failure Near Rank Failure Full Rank

n AR1 AR2 AR3 tn < λn AR1 AR2 AR3 tn < λn AR1 AR2 AR3 tn < λn

100
δ 0.01 0.01 0.03 0.02 1.00 0.01 0.01 0.03 0.02 1.00 0.02 0.02 0.05 0.07 0.97
γ 0.05 0.02 0.05 0.00 0.00 0.05 0.02 0.05 0.00 0.00 0.04 0.01 0.04 0.06 0.00

250
δ 0.02 0.02 0.05 0.09 1.00 0.02 0.02 0.03 0.07 1.00 0.03 0.02 0.04 0.05 0.35
γ 0.05 0.02 0.05 0.00 0.00 0.05 0.02 0.05 0.00 0.00 0.04 0.02 0.04 0.06 0.00

500
δ 0.02 0.02 0.04 0.17 1.00 0.01 0.01 0.04 0.08 1.00 0.05 0.02 0.05 0.05 0.00
γ 0.04 0.02 0.04 0.00 0.00 0.04 0.02 0.04 0.00 0.00 0.06 0.02 0.06 0.05 0.00

1000
δ 0.02 0.02 0.05 0.22 1.00 0.02 0.02 0.04 0.05 1.00 0.05 0.02 0.05 0.05 0.00
γ 0.05 0.02 0.05 0.00 0.00 0.04 0.02 0.04 0.00 0.00 0.05 0.02 0.05 0.05 0.00

Note: 2000 Monte Carlo replications. AR1, AR2, AR3: projection inference using AR statistic and χ2

critical values with 3 − d̂n, 2, and 1 degrees of freedom; d̂n ∈ {0, 1}. tn: t-test with standard normal
critical values. < λn: frequency (in %) of singular values below cutoff λn after projecting out the parameter
of interest. Rows for δ show results for H0 : δ = δ0. Rows for γ show results for H0 : γ = γ0. κn =
2
√
2 log(log[n])/n, λn =

√
2 log(n)/n, Wn = V̂n(θ)

−1 where V̂n is a HAC estimate of var[
√
ngn(θ)].

Table ?? and Figure H10 replicate the results in the main text for a just-identified

specification where Zt = (1, Rt)
′.
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Figure H7: CAPM (larger κn) - power comparison
n = 100 n = 250

n = 500 n = 1000

Note: Nominal size = 5%. True value (δ0, γ0) = (0.97, 1.3): dashed vertical lines. 250 Monte Carlo

replications. Estimates computed for continuously-updated GMM with Wn = V̂n(θ)
−1 where V̂n is a HAC

estimate of var[
√
ngn(θ)]. AR1, AR2, AR3: projection inference using AR statistic and χ2 critical values

with 3− d̂n, 3, and 2 degrees of freedom; d̂n ∈ {0, 1}. tn: t-test with standard normal critical values.
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Figure H8: CAPM (Just-Identified) - distribution of largest and smallest singular values

Note: True value (δ0, γ0) = (0.97, 1.3). 2000 Monte Carlo replications. Wn = V̂n(θ)
−1 where V̂n is a

HAC estimate of var[
√
ngn(θ)]. κn =

√
2 log(log[n])/n, λn =

√
2 log(n)/n = 0.30, 0.21, 0.16, 0.12 for

n = 100, 250, 500, 1000. σmax, σmin: largest and smallest singular values. Median values of σmin for
n = 100, 250, 500, 1000: 2 · 10−3, 1 · 10−3, 9 · 10−4, 6 · 10−4 (RF), 2 · 10−3, 1 · 10−3, 8 · 10−4, 6 · 10−4 (NRF),
and 0.51, 0.98, 0.95, 0.95 (FR).

Table H5: CAPM (Just-Identified) – size of 95% CIs for δ and γ, frequency for detecting

identification failure

Rank Failure Near Rank Failure Full Rank

n AR1 AR2 AR3 tn < λn AR1 AR2 AR3 tn < λn AR1 AR2 AR3 tn < λn

100
δ 0.01 0.01 0.04 0.01 1.00 0.01 0.01 0.04 0.01 1.00 0.04 0.01 0.05 0.05 0.38
γ 0.05 0.02 0.05 0.00 0.00 0.05 0.01 0.05 0.00 0.00 0.05 0.01 0.05 0.06 0.00

250
δ 0.02 0.02 0.04 0.03 1.00 0.01 0.01 0.03 0.05 1.00 0.05 0.02 0.05 0.04 0.04
γ 0.05 0.02 0.05 0.00 0.00 0.04 0.01 0.04 0.00 0.00 0.05 0.01 0.05 0.05 0.00

500
δ 0.02 0.02 0.05 0.08 1.00 0.01 0.01 0.04 0.11 1.00 0.05 0.01 0.05 0.04 0.00
γ 0.05 0.02 0.05 0.00 0.00 0.05 0.01 0.05 0.00 0.00 0.06 0.02 0.06 0.05 0.00

1000
δ 0.01 0.01 0.05 0.09 1.00 0.01 0.01 0.04 0.14 1.00 0.06 0.01 0.06 0.05 0.00
γ 0.05 0.01 0.05 0.00 0.00 0.04 0.01 0.04 0.00 0.00 0.05 0.01 0.05 0.05 0.00

Note: 2000 Monte Carlo replications. AR1, AR2, AR3: projection inference using AR statistic and χ2

critical values with 2 − d̂n, 2, and 1 degrees of freedom; d̂n ∈ {0, 1}. tn: t-test with standard normal
critical values. < λn: frequency (in %) of singular values below cutoff λn after projecting out the parameter
of interest. Rows for δ show results for H0 : δ = δ0. Rows for γ show results for H0 : γ = γ0. κn =√
2 log(log[n])/n, λn =

√
2 log(n)/n, Wn = V̂n(θ)

−1 where V̂n is a HAC estimate of var[
√
ngn(θ)].
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Figure H9: CAPM (Just-Identified) - power comparison
n = 100 n = 250

n = 500 n = 1000

Note: Nominal size = 5%. True value (δ0, γ0) = (0.97, 1.3): dashed vertical lines. 250 Monte Carlo

replications. Estimates computed for continuously-updated GMM with Wn = V̂n(θ)
−1 where V̂n is a HAC

estimate of var[
√
ngn(θ)]. AR1, AR2, AR3: projection inference using AR statistic and χ2 critical values

with 2− d̂n, 2, and 1 degrees of freedom; d̂n ∈ {0, 1}. tn: t-test with standard normal critical values.
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Figure H10: CAPM (Just-Identified) - distribution of estimates θ̂n = (δ̂n, γ̂n)
n = 100 n = 250

n = 500 n = 1000

Note: true value (δ0, γ0) = (0.97, 1.3): dashed vertical lines. 2000 Monte Carlo replications. Estimates

computed for continuously-updated GMM with Wn = V̂n(θ)
−1 where V̂n is a HAC estimate of var[

√
ngn(θ)].

Non-Linear Regression Model. To illustrate the finite-sample properties of the quasi-

Jacobian matrix and the test procedure, consider the following nonlinear regression model:

yi = θ1x1i + θ1θ2x2i + ui, (H.10)
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where (x1i, x2i, ui) ∼ N (0, I) iid. The sample moment conditions are ḡn(θ) =
1
n

∑n
i=1(yix1i−

θ1, yix2i− θ1θ2)
′ with population counterpart g(θ, γ0) = (θ10− θ1, θ10θ20− θ1θ2)

′. For θ10 = 0,

θ2 is unidentified and for θ1n = cn−1/2, c > 0, θ2 is weakly identified, even if θ1 = θ1n is

known and fixed. The reparameterization β = Mθ here is β1 = θ1, β2 = β22 = θ2, M = I,

and B0
2 = B0

22 = [θ2, θ2] where [θ1, θ1] × [θ2, θ2] = Θ1 × Θ2 = Θ. The assumptions used for

the main results are verified for this model in Appendix H.1.

In this simple example, the source of the identification failure is known so that the

type I test procedure in Andrews and Cheng (2012, AC12) will be used as a benchmark.

Let ICSn = |θ̂1n|/σ̂θ̂1n , where θ̂n = (θ̂1n, θ̂2n)
′ is the sample minimizer of ∥ḡn(θ)∥ and σ̂2

θ̂1n

estimates the asymptotic variance of θ̂1n using the sandwich formula. The test statistic is

QLRn(θ1) = ARn(θ1) since the model is just-identified. Let λn be as in Section 2.3. When

ICSn > λn, the test rejects H0 if ARn(θ1) > χ2
1(1 − α). When ICSn ≤ λn, the test rejects

H0 if ARn(θ1) > cLF,1−α where cLF,1−α is the least-favorable 1 − α quantile of ARn(θ1)

over (θ2, γ) ∈ Θ2 × Γ. Note that under H0 : θ10 = 0, ARn(θ10)
d→ χ2

2, regardless of θ20.

Hence, the projection-based critical value in Section 2.3 is the least-favorable critical value,

cLF,1−α = χ2
2(1−α).2 To summarize, this implementation of the Andrews and Cheng (2012)

procedure relies on the same test statistic and critical values as in Section 2.3; the only

difference is the choice of ICS statistic.

Figure H11 reports the finite sample properties of several tests and ICS procedures. The

top panel shows coverage for H0 : θ1 = θ1n = cn−1/2, c ∈ [0, 10], n = 1000, using a Wald

statistic, full projection inference, AC12, and the test procedure from Section 2.3 using the

normalized and unnormalized quasi-Jacobian Bn,∞. The Wald test suffers from severe size

distortion for c ∈ [0, 2] but is accurate for larger values of c. Full projection inference is

robust regardless of c but conservative for c > 0. AC12 and the present procedures have

coverage above the 95% nominal level, the unnormalized procedure is more conservative,

AC12 is non-monotonic. To better understand these patterns, the bottom two panels provide

further information on the ICS procedures. The left panel shows how often ICSn ≤ λn. The

normalized statistic sees a large decline around c = 2 when size distortion is less severe. AC12

is non-monotonic around c = 1 where the Wald statistic, on which it is based, has large size

distortion. The unnormalized statistic declines sharply but later than the normalized one. To

further understand these differences, the right panel plots the distribution of log(1 + ICSn).

The solid horizontal line indicates the cutoff log(1 + λn). The normalized statistic diverges

2A null-imposed least-favorable critical value can also be computed by simulating the distribution of

ARn(θ10) for each H0 : θ1 = θ10 and all possible θ20. This will not be used here to keep computation

manageable.

19



Figure H11: Model (H.10): finite Sample properties of the test and ICS procedures

quickly with c, as identification becomes stronger. This matches the above discussion on the

role of post-multiplying the quasi-Jacobian by Σ
−1/2
n . AC12 is more dispersed, resulting in

more variable outcomes for the ICS procedure as seen in the slow decline in the left panel.

AC12 increases with c at a similar rate as the unnormalized statistic. Finite sample power

properties of these test procedures are reported in Appendix H.2 as well as results using a

larger κn.

Figure H12 below presents the finite-sample power properties of the test procedures used

in Section 5. It shows rejection rates against local alternatives H0 : θ1 = θ1n + an−1/2 where

the true θ1n = cn−1/2. The nuisance parameter θ2 is unidentified for c = 0 and weakly

identified for c ≃ 0. Each panel summarizes the finite-sample power properties for a specific

level of identification strength c.
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Figure H12: Finite Sample Properties Power of Test Procedures

For c = 0 the Projection, AC12, and (un)normalized procedures have identical properties.

For c = 1, AC12 does not detect identification all the time (see Figure H11, bottom left panel)

which leads to small critical value and higher rejection rates than the other methods. For

c ∈ [2, 3], the normalized test procedure relies on χ2
1 critical values and has comparable

power to the Wald test except for a+ c ≃ 0. Recall that for just-identified models, the test

procedure in Section 2.3 is equivalent to a standard QLR test when d̂n = dθ2 which can be

more powerful than the Wald test in finite samples. The normalized ICS procedure is thus

more powerful since it almost always picks d̂n = dθ2 when c ≥ 2 (see Figure H11, bottom

left panel). The Wald test is not reported for c < 2 where it suffers from important size

distortion. AC12 has lower power for c ∈ [2, 4] and similar power properties for c ≥ 5. The

unnormalized procedure is comparable to AC12 for c ∈ [2, 3] and is more powerful for c = 3.
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Figure H13: Finite Sample Properties of Test and ICS Procedures

Note: this choice of κn corresponds to a 99.99981% AR confidence set for the full parameter vector θ.

H.3 Additional Empirical Results

Confidence sets for γ and ψ−1 with a χ2
6 critical value: [5.28, 25] and [0.01, 0.87], respectively.

Using a χ2
6 critical value amounts to using λn ∈ [0.25, 387) in the baseline results (Table 3)

and λn ∈ [0.51, 130) with the larger value for κn (Table H6 below).

Table H6: Long-Run Risks: singular values of Jacobian and quasi-Jacobian, larger κn
λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 λ11 λ12

V̄
−1/2
n ∂θḡn(θ̂n)Σ

−1/2
n 1.106 6.105 2.105 3.104 1.104 145 20 0.61 0.20 0.02 < 10−2 < 10−2

V̄
−1/2
n Bn,∞Σ

−1/2
n 5.106 1.106 4.105 7.104 1.103 169 0.46 0.33 0.12 0.01 < 10−2 < 10−2

V̄
−1/2
n Bn,∞P⊥

θ1
Σ

−1/2
n P⊥

θ1
5.106 1.106 4.105 7.104 1.103 169 0.43 0.32 0.02 < 10−2 0.00 0.00

Note: Bn,∞,Σn computed using B = 1000 draws, κn = 0.43, ns = n × (1 + 1/S). This choice of κn

corresponds to a 99.99981% AR confidence set for the full parameter vector θ.

Figure H14: Joint 95% Confidence Set for (γ, ψ−1) with χ2
5 critical value
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Appendix I Asymptotic Properties of the quasi-Jacobian

under Higher-Order Identification

The following provides pointwise asymptotic results for the quasi-Jacobian matrix when the

model is globally but not locally identified.

Assumption I7 (Higher-Order Identification). Let (θ0, γ0) ∈ Θ × Γ be such that for some

ε > 0 the moments satisfy:

inf
∥θ−θ0∥≥ε

∥g(θ, γ0)∥ ≥ δ,

where δ > 0. For some r ≥ 2, there exists orthogonal projection matrices P1, . . . , Pr and

constants C1 ≥ 0, . . . , Cr−1 ≥ 0, Cr > 0 where
∑

j CjPj has rank dθ and CjCℓPjPℓ = 0 for

any 1 ≤ j < ℓ ≤ r. These constants and projection matrices are such that for some C > 0

and any ∥θ − θ0∥ ≤ ε:

C[
r∑

j=1

Cj∥Pj(θ − θ0)∥j] ≥ ∥g(θ, γ0)∥ ≥
r∑

j=1

Cj∥Pj(θ − θ0)∥j.

Assumption I7 implies that the model is globally identified but local identification fails

so that around θ = θ0, the moment function is not linear but approximately polyno-

mial of order r ≥ 2. If Cj > 0 then ∥g(θ, γ0)∥ is approximately a polynomial of order

j in the directions spanned by Pj. This contrasts with locally identified models where

g(θ, γ0) ≈ ∂θg(θ0, γ0)(θ − θ0) which is locally linear when ∂θg(θ0, γ0) is full rank and the

non-linear remainder terms are negligible. Under this type of local identification failure, the

parameters are consistently estimable but θ̂n has non-standard limiting distribution. Full

vector inference using the Anderson and Rubin (1949) statistic remains valid. As in weakly

identified models, concentrating out locally identified nuisance parameters leads to more

powerful and asymptotically valid inferences.

Theorem I5. Suppose Assumption 1 ii-iii, 2, and I7 hold for γ = γ0, then:

λmin(B
′
n,∞Bn,∞) = Op(κ

2[1−1/r]
n ).

For any vj such that Pjvj = vj and Cj > 0: ∥Bn,∞vj∥ = Op(κ
1−1/j
n ).

Proof of Theorem I5 for Bn,∞: Pick h ∈ R and vj ∈ span(Pj) with ∥vj∥ = 1 for some

j ∈ {2, . . . , r} with Cj ̸= 0. Let θjn = θ0 + κ
1/j
n hvj, by Assumption I7 we have:

∥ḡn(θjn)/κn∥W ≤ λWCj|h|j + n−1/2κ−1
n λW sup

θ∈Θ

√
n∥ḡn(θ)− g(θ, γ0)∥ ≤ 3/4,
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wpa 1 for all |h| ≤ 1/2[λWCj]
−1/j. This implies that K̂n(θjn) ≥ K =∈x∈[0,3/4] K(x) > 0, wpa

1 uniformly in |h| ≤ 1/2[λWCj]
−1/j. Using similar arguments as in the proof of Theorem

3, we have: ∥ḡn(θ) − An,∞ − Bn,∞θ∥K̂n(θ) ≤ Kλ−1
W κn + o(κn), for all θ ∈ Θ. Using the

triangular inequality we have for any h1 ̸= h2 such that |h1,2| ≤ 1/2[λWCj]
−1/j:

∥Bn,∞κ
1/j
n [h1 − h2]vj∥ ≤ K−1Kλ−1

W κn + o(κn),

wpa 1. Since j > 1, this implies that:

∥Bn,∞vj∥ ≤ |h1 − h2|−1K−1Kλ−1
W κ1−1/j

n + o(κ1−1/j
n ),

wpa 1 for each j such that Cj ̸= 0. In particular, we have for j = r that: ∥Bn,∞vr∥ ≤
Op(κ

1−1/r
n ) so that λmin(B

′
n,∞Bn,∞) ≤ v′rB

′
n,∞Bn,∞vr ≤ Op(κ

2[1−1/r]
n ).
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