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When you are studying any matter, or considering any philosophy, ask yourself
only what are the facts and what is the truth that the facts bear out. Never let
yourself be diverted, either by what you wish to believe, or by what you think
would have beneficent social effects if it were believed. But look only, and solely,
at what are the facts.

Bertrand Russell
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ABSTRACT

There has been significant recent interest in the mechanics community to apply machine

learning methods to design and predict the properties of metamaterials. Metamaterials are

distinguished by their programmability, enabling the achievement of novel functionalities

typically absent in conventional materials. Understanding metamaterials necessitates unrav-

eling the intricate nonlinear relationship between design choices and mechanical properties.

Machine learning (ML) stands out from traditional approaches by its capability to accurately

approximate nonlinear relationships and rapidly predict properties across an extensive num-

ber of unexplored materials. While ML methods have enabled many breakthroughs, at least

two critical questions remain unanswered. The first pertains to whether the assumptions

underlying ML models remain validated when applied to real-world mechanics problems.

The second question is whether ML models can facilitate the design of novel metamaterials

with limited prior information. This thesis is aimed at addressing these questions.

The first study aims to address the limitations of traditional ML models. These models

assume that the training (observed) data and testing (unseen) data are independent and
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identically distributed (i.i.d). However, when applied to real-world mechanics problems with

unknown test environments, these standard ML approaches can be very sensitive to data

distribution shifts, and can break down when evaluated on test datasets that violate the i.i.d.

assumption. In contrast, out-of-distribution (OOD) generalization approaches assume that

the data contained in test environments are allowed to shift. To date, multiple methods have

been proposed to improve the OOD generalization of ML methods. However, most of these

OOD generalization methods have been focused on classification problems, driven in part by

the lack of benchmark datasets available for OOD regression problems. Thus, the efficiency

of these OOD generalization methods on regression problems, which are typically more

relevant to mechanics research of metamaterials than classification problems, is unknown.

To address this, a fundamental study of OOD generalization methods for regression problems

in mechanics has been performed. Specifically, three OOD generalization problems are

identified: covariate shift, mechanism shift, and sampling bias. For each problem, two

benchmark examples are created that extend the Mechanical MNIST dataset collection,

and the performance of popular OOD generalization methods on these mechanics-specific

regression problems is investigated. The numerical experiments show that in most cases,

while the OOD algorithms perform better compared to traditional ML methods on these

OOD generalization problems, there is a compelling need to develop more robust OOD

methods that can generalize the notion of invariance across multiple OOD scenarios. Overall,

it is expected that this study, as well as the associated open access benchmark datasets, will

enable further development of OOD methods for mechanics specific regression problems.

The second study aims to design chiral metamaterials that can either violate reciprocity,

or exhibit elastic asymmetry or odd elasticity. While these properties are highly desirable to

enable mechanical metamaterials to exhibit novel wave propagation phenomena, it remains

an open question as to how to design passive structures that exhibit both significant non-

reciprocity and elastic asymmetry. In this study, several design spaces are defined for
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chiral metamaterials leveraging specific design parameters, including the ligament contact

angles, the ligament shape, and the circle radius. Having defined the design spaces, machine

learning approaches, and specifically Bayesian optimization, are leveraged to determine

optimally performing designs within each design space satisfying maximal non-reciprocity

or stiffness asymmetry. Finally, multi-objective optimization by determining the Pareto

optimum is performed to find chiral metamaterials that simultaneously exhibit high non-

reciprocity and stiffness asymmetry. The analysis of the underlying mechanisms reveals

that chiral metamaterials that can display multiple different contact states under loading in

different directions are able to simultaneously exhibit both high non-reciprocity and stiffness

asymmetry. Overall, this study demonstrates the effectiveness of employing ML to bring

insights to a novel domain with limited prior information, and more generally will pave the

way for metamaterials with unique properties and functionality in directing and guiding

mechanical wave energy.

viii



Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Out of Distribution Generalization . . . . . . . . . . . . . . . . . . 2

1.1.2 Nonreciprocal and Asymmetric Chiral Metamaterials . . . . . . . . 7

1.2 Outlines of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Mechanical MNIST – Data Distribution Shift 12

2.1 Mechanical MNIST Collection . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 OOD Experiment 1: Covariate Shift . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 OOD Experiment 2: Mechanism Shift . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 OOD Experiment 3: Sampling Bias . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Mechanical MNIST – EMNIST Letters Collection . . . . . . . . . . . . . . 23

3 OOD Generalization Algorithms and Performance 29

3.1 Algorithms and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Empirical Risk Minimization (ERM) . . . . . . . . . . . . . . . . 31

3.1.2 Invariant Risk Minimization (IRM) . . . . . . . . . . . . . . . . . 31

ix



3.1.3 Risk Extrapolation (REx) . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.4 Inter Gradient Alignment (IGA) . . . . . . . . . . . . . . . . . . . 35

3.1.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Machine Learning Models . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Hyperparameter Tuning and Performance Evaluation Metrics . . . . . . . . 38

3.3.1 Model Selection and Hyperparameter Tuning . . . . . . . . . . . . 38

3.3.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1 ML Model Performance on the Covariate Shift Dataset . . . . . . . 41

3.4.2 ML Model Performance on the Mechanism Shift Dataset . . . . . . 44

3.4.3 ML Model Performance on the Sampling Bias Dataset . . . . . . . 47

3.4.4 Common Findings Across All Datasets . . . . . . . . . . . . . . . 49

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Chiral Metamaterials 55

4.1 Stiffness Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Contact Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Strain Energy Components . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Optimization Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.1 Non-Reciprocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.2 Elastic Asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.3 Multi-Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Design Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Non-Reciprocal and Asymmetric Elastic Chiral Metamaterials Optimization 70

5.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1 Data Representation . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.2 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 73

x



5.2 Bayesian Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.1 Surrogate Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.2 Acquisition Function . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.3 Pareto Front . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.1 Non-Reciprocity Optimization . . . . . . . . . . . . . . . . . . . . 81

5.3.2 Elastic Asymmetry Optimization . . . . . . . . . . . . . . . . . . . 84

5.3.3 Multi-Objective Optimization . . . . . . . . . . . . . . . . . . . . 87

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Summary 94

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2.1 Challenges of OOD Generalization on Shuffled Data . . . . . . . . 95

6.2.2 Deep Learning for Metamaterials Design . . . . . . . . . . . . . . 97

6.3 Data and Code Availability . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A Appendix 99

A.1 Details of Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.2 Additional Metrics and Visualization for OOD Evaluation . . . . . . . . . . 99

A.3 Sensitivity Analysis for Finite Element Simulation . . . . . . . . . . . . . 115

A.4 Contact Modes for Optimal Designs . . . . . . . . . . . . . . . . . . . . . 119

A.5 Data Distribution for Multi-objectives . . . . . . . . . . . . . . . . . . . . 119

A.6 Pareto Front for Multi-objective Optimization . . . . . . . . . . . . . . . . 124

References 128

Curriculum Vitae 145

xi



List of Tables

4.1 Design parameter ranges within each design space. . . . . . . . . . . . . . 69

A.1 Training hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.2 Hyperparameter selection results where λ is the penalty weight for each

OOD generalization method (IRM,REx, IGA), and t is the anneal step (or

epoch) after which the penalty weight will be introduced during training. . . 100

A.3 The performance of four algorithms (ERM, IRM, REx, IGA) on the co-

variate shift data from the Mechanical MNIST Collection. The RMSE

on each dataset is calculated using both eqn. 3.10 and 3.11 based on 15

predictions given by the corresponding ML model trained with 15 different

initialization. In addition, the mean and standard deviation for the change in

strain energy from the train, validation, and test datasets are also given. . . . 106

A.4 The performance of four algorithms (ERM, IRM, REx, IGA) on the covari-

ate shift data from the Mechanical MNIST - EMNIST Letters Collection.

The RMSE on each dataset is calculated using both eqn. 3.10 and 3.11

based on 15 predictions given by the corresponding ML model trained with

15 different initialization. In addition, the mean and standard deviation for

the change in strain energy from the train, validation, and test datasets are

also given. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xii



A.5 The performance of four algorithms (ERM, IRM, REx, IGA) on the mech-

anism shift data from the Mechanical MNIST Collection. The RMSE

on each dataset is calculated using both eqn. 3.10 and 3.11 based on 15

predictions given by the corresponding ML model trained with 15 different

initialization. In addition, the mean and standard deviation for the change in

strain energy from the train, validation, and test datasets are also given. . . . 108

A.6 The performance of four algorithms (ERM, IRM, REx, IGA) on the mecha-

nism shift data from the Mechanical MNIST - EMNIST Letters Collec-

tion. The RMSE on each dataset is calculated using both eqn. 3.10 and 3.11

based on 15 predictions given by the corresponding ML model trained with

15 different initialization. In addition, the mean and standard deviation for

the change in strain energy from the train, validation, and test datasets are

also given. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.7 The performance of four algorithms (ERM, IRM, REx, IGA) on the sam-

pling bias data from the Mechanical MNIST Collection. The RMSE

on each dataset is calculated using both eqn. 3.10 and 3.11 based on 15

predictions given by the corresponding ML model trained with 15 different

initialization. In addition, the mean and standard deviation for the change in

strain energy from the train, validation, and test datasets are also given. . . . 110

A.8 The performance of four algorithms (ERM, IRM, REx, IGA) on the sam-

pling bias data from the Mechanical MNIST - EMNIST Letters Collec-

tion. The RMSE on each dataset is calculated using both eqn. 3.10 and 3.11

based on 15 predictions given by the corresponding ML model trained with

15 different initialization. In addition, the mean and standard deviation for

the change in strain energy from the train, validation, and test datasets are

also given. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

xiii



List of Figures

2·1 Illustration of the covariate shift dataset. (a-i) Equibiaxial extension bound-

ary conditions and elastic modulus distribution for a representative example

from each environment. (a-ii) Deformation of each example in (a-i) after

the completion of the equibiaxial extension simulations. (b) Input distribu-

tion of all environments described by the coefficient of the first principle

component obtained through PCA performed on the input elastic modulus

distribution of training data. (c) Output distribution of all environments

defined as the total change in strain energy of the domain. Note that in (b-c)

the histograms and boxplots are two ways of showing the same data. . . . . 16

2·2 Illustration of the mechanism shift dataset. (a-i) Equibiaxial extension

boundary conditions and elastic modulus distribution for a representative

example from each environment. (a-ii) Deformation of each example in

(a-i) after the completion of the equibiaxial extension simulations. (b)

Input distribution of all environments described by the coefficient of the

first principle component obtained through PCA performed on the input

elastic modulus distribution of training data. (c) Output distribution of all

environments defined as the total change in strain energy of the domain.

Note that in (b-c) the histograms and boxplots are two ways of showing the

same data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

xiv



2·3 Illustration of the sampling bias dataset. (a) Relationship between the

spurious feature and the target (the total change in strain energy) for each

environment. Note that only 500 randomly selected data points for each

environment (with the exception of the 200 available data points for the

training environment 2) are shown to aid in visualization. The color of each

plot background represents the logarithmic selection probability of each

area (b) Input distribution of all environments described by the coefficient

of the first principle component obtained through PCA performed on the

input elastic modulus distribution of training data. (c) Output distribution of

all environments defined as the total change in strain energy of the domain.

Note that in (b-c) the histograms and boxplots are two ways of showing the

same data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2·4 Illustration of the EMNIST covariate shift dataset. (a-i) Equibiaxial exten-

sion boundary conditions and elastic modulus distribution for a representa-

tive example from each environment. (a-ii) Deformation of each example

in (a-i) after the completion of the equibiaxial extension simulations. (b)

Input distribution of all environments described by the coefficient of the

first principle component obtained through PCA performed on the input

elastic modulus distribution of training data. (c) Output distribution of all

environments defined as the total change in strain energy of the domain.

Note that in (b-c) the histograms and boxplots are two ways of showing the

same data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

xv



2·5 Illustration of the EMNIST mechanism shift dataset. (a-i) Equibiaxial

extension boundary conditions and elastic modulus distribution for a rep-

resentative example from each environment. (a-ii) Deformation of each

example in (a-i) after the completion of the equibiaxial extension simula-

tions. (b) Input distribution of all environments described by the coefficient

of the first principle component obtained through PCA performed on the

input elastic modulus distribution of training data. (c) Output distribution of

all environments defined as the total change in strain energy of the domain.

Note that in (b-c) the histograms and boxplots are two ways of showing the

same data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2·6 Illustration of the EMNIST sampling bias datasets. (a) Relationship between

the spurious feature and the target (the total change in strain energy) for

each environment. Note that only the 500 randomly selected data points

for each environment (with the exception of the 200 available data points

for training environment 2) are shown to aid in visualization. The color of

each plot background represents the selection probability of each area (b)

Input distribution of all environments described by the coefficient of the

first principle component obtained through PCA performed on the input

elastic modulus distribution of training data. (c) Output distribution of all

environments defined as the total change in strain energy of the domain.

Note that in (b-c) the histograms and boxplots are two ways of showing the

same data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3·1 Example illustration for IRM. . . . . . . . . . . . . . . . . . . . . . . . . . 32

3·2 Illustration of model structures of the MLP model and the modified LeNet

introduced in Section 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

xvi



3·3 Example of how penalty weight influences the training error history of a

modified LeNet. The penalty weight is formally introduced after the anneal

step (15000). (a) training error history of ERM and IRM with penalty weight

is equal to 10−6 (b) training error history of ERM and IRM with penalty

weight is equal to 10−7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3·4 The performance of four algorithms (ERM, IRM, REx, IGA) on the co-

variate shift datasets defined in Section 2.2. The RMSE is calculated using

eqn. 3.10. (a) The performance of a MLP model(a-i) and a modified LeNet

model(a-ii) trained by four algorithms on training, validation, and testing

data from Mechanical MNIST Collection. (b) The performance of a MLP

model(b-i) and a modified LeNet model(b-ii) trained by four algorithms on

training, validation, and testing data from Mechanical MNIST - EMNIST

Letters Collection. Additional visualization of these results can be found in

Appendix A.2, which shows a comparison of prediction vs. ground truth,

and Appendix A.2 which shows representative samples of different error

levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3·5 The performance of four algorithms (ERM, IRM,REx, IGA) on mechanism

shift data defined in Section 2.3. The RMSE is calculated using eqn. 3.10.

(a) The performance of a MLP model(a-i) and a modified LeNet model(a-ii)

trained by four algorithms on training, validation, and testing data from

Mechanical MNIST Collection. (b) The performance of a MLP model(b-i)

and a modified LeNet model(b-ii) trained by four algorithms on training,

validation, and testing data from Mechanical MNIST - EMNIST Letters

Collection. Additional visualization of these results can be found in Ap-

pendix A.2, which shows a comparison of prediction vs. ground truth, and

representative samples of different error levels. . . . . . . . . . . . . . . . 45

xvii



3·6 The performance of four algorithms (ERM, IRM,REx, IGA) on the sampling

bias data defined in Section 2.4. The RMSE is calculated using eqn. 3.10.

(a) The performance of a MLP model(a-i) and a modified LeNet model(a-ii)

trained by four algorithms on training, validation, and testing data from

Mechanical MNIST Collection. (b) The performance of a MLP model(b-i)

and a modified LeNet model(b-ii) trained by four algorithms on training,

validation, and testing data from Mechanical MNIST - EMNIST Letters

Collection. Additional visualization of these results can be found in Ap-

pendix A.2, which shows a comparison of prediction vs. ground truth, and

representative samples of different error levels. . . . . . . . . . . . . . . . 48

4·1 Illustration of the chiral metamaterial in Shaat and Park (2023). The

ligament was tied to two rigid circles at the ends. The ligament shape was

fixed and the contact angle was 600 on both sides. . . . . . . . . . . . . . . 56

4·2 Illustration of the chiral metamaterial undergoing displacement from four

directions. The reaction force of the right rigid circles in the x and y

directions are denoted as Fx and Fy. The stiffness values are calculated using

the formula ki j = Fi/u j when u j is nonzero. A superscript “+” is added to

the displacement and stiffness symbol when the displacement is positive,

and “−” when the displacement is negative. . . . . . . . . . . . . . . . . . 58

4·3 Mechanical model of the chiral structure under compression and extension.

(a) Chiral structure under (i) compression load and (ii) extension load. The

contact area of the deformed structure is highlighted with red color. (b)

Equivalent mechanical model illustrating the contact mechanism with roller

supporters substituting the contact area. (c) Distribution of Bending Moment

and Axial Force along the beam. . . . . . . . . . . . . . . . . . . . . . . . 59

xviii



4·4 Bending and Stretching Energy distribution along the elastic ligament. (a)

The schematic of the chiral structure. The design has a smaller stiffness

k−xx under compression loads, and a larger stiffness k+xx under extension

loads. (b) The bending and stretching distribution along the ligament under

compression load. (c) The bending and stretching distribution along the

ligament under extension load. The three figures (a)(b)(c) share the same x

coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4·5 Illustration of Pareto front for the multi-objective optimization of chiral

metamaterial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4·6 Illustration of (a) the design parameters and (b) the design spaces of the

chiral metamaterial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5·1 Illustration of the feature representation of a chiral metamaterial . . . . . . 71

5·2 Illustration of a representative chiral structure subjected to loads from four

different directions and the corresponding force-displacement response ob-

tained from finite element (FEM) simulation. The contact area is highlighted

in pink. Stiffness is determined as the coefficient of linear fitting applied to

the FEM data using the least squares method. . . . . . . . . . . . . . . . . 72

5·3 Illustration of the rotation transformation for data augmentation. The aug-

mented geometry is obtained by rotating the original geometry by 180

degrees. The original and the augmented structure have the same properties

in terms of their stiffness values in all directions. . . . . . . . . . . . . . . 74

5·4 Optimal designs for maximizing eight non-reciprocity objectives after 10

iterations of Bayesian Optimization. Each figure shows the optimal design

for the (a) objective f1, (b) objective f2, (c) objective f3, (d) objective f4,

(e) objective f5, (f) objective f6, (g) objective f7 and (h) objective f8. The

title above each structure indicates the corresponding stiffness values. . . . 82

xix



5·5 Two examples of contact modes under loads from different directions. The

highlighted pink color indicates the contact areas after the deformation.

(a) The contact modes for the optimal design of objective f1 = |k−xx/k+xx|.

The stiffness value k−xx is obtained during the (a-i) compression, and k+xx is

obtained during the (a-ii) extension. (b) The contact modes optimal design

of objective f4 = |k−yy/k+yy|. The stiffness value k+yy is obtained during the

(b-i) anti-clockwise rotation, and k−yy is obtained during the (b-ii) clockwise

rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5·6 Optimal designs for maximizing eight asymmetry objectives after 10 itera-

tions of Bayesian Optimization. Each figure shows the optimal design for

the (a) objective g1, (b) objective g2, (c) objective g3, (d) objective g4, (e)

objective g5, (f) objective g6, (g) objective g7 and (h) objective g8. The title

above each structure indicates the corresponding stiffness values. . . . . . . 85

5·7 Two examples of contact modes under loads from different directions. The

highlighted pink color indicates the contact areas. (a) The contact modes

for the optimal design of objective g1 = |k−xy/k−yx|. The stiffness value k−yx is

obtained during the (a-i) compression, and k−xy is obtained during the (a-ii)

clockwise rotation. (b) The contact modes for objective g8 = |k+yx/k+xy|. The

stiffness value k+yx is obtained during the (b-i) extension, and k+xy is obtained

during the (b-ii) anti-clockwise rotation. . . . . . . . . . . . . . . . . . . . 87

5·8 The Pareto front and the corresponding designs for optimizing (a) Multi-

Objective 1: f1 and g1, (b) Multi-Objective 2: f1 and g3, (c) Multi-Objective

3: f1 and g1. The title above each structure indicates the corresponding

objective values for the structure. . . . . . . . . . . . . . . . . . . . . . . . 89

xx



5·9 The contact modes for the optimal design shown in Fig. 5·8(c). The high-

lighted pink color indicates the different contact areas between the rigid

circle and the elastic ligament under (a) Compression, (b) Extension, (c)

Clockwise Rotation, and (d) Anti-Clockwise Rotation. The structure sat-

isfies the most objectives in terms of achieving both non-reciprocity and

asymmetry that are summarized in Section 5.3.3. . . . . . . . . . . . . . . 91

A·1 The performance of the four algorithms (ERM, IRM, REx, IGA) on the

covariate shift data defined in Section 2.2. Every white point represents the

RMSE given by a single model initialized with different seeds. The color-

filled points show the RMSE of the aggregated mean prediction calculated

by eqn. 3.10. (a) The performance of a MLP model (a-i) and the modified

LeNet model (a-ii) trained by the four algorithms on training, validation, and

testing data from the Mechanical MNIST Collection. (b) The performance

of a MLP model (b-i) and a modified LeNet model (b-ii) trained by the four

algorithms on training, validation, and testing data from the Mechanical

MNIST - EMNIST Letters Collection. . . . . . . . . . . . . . . . . . . . . 102

A·2 The performance of the four algorithms (ERM, IRM, REx, IGA) on the

mechanism shift data defined in Section 2.3. Every white point represents

the RMSE given by a single model initialized with different seeds. The color-

filled points show the RMSE of the aggregated mean prediction calculated

by eqn. 3.10. (a) The performance of a MLP model (a-i) and the modified

LeNet model (a-ii) trained by the four algorithms on training, validation, and

testing data from the Mechanical MNIST Collection. (b) The performance

of a MLP model (b-i) and a modified LeNet model (b-ii) trained by the four

algorithms on training, validation, and testing data from the Mechanical

MNIST - EMNIST Letters Collection. . . . . . . . . . . . . . . . . . . . . 103

xxi



A·3 The performance of the four algorithms (ERM, IRM, REx, IGA) on the

sampling bias data defined in Section 2.4. Every white point represents the

RMSE given by a single model initialized with different seeds. The color-

filled points show the RMSE of the aggregated mean prediction calculated

by eqn. 3.10. (a) The performance of a MLP model (a-i) and the modified

LeNet model (a-ii) trained by the four algorithms on training, validation, and

testing data from the Mechanical MNIST Collection. (b) The performance

of a MLP model (b-i) and a modified LeNet model (b-ii) trained by the four

algorithms on training, validation, and testing data from the Mechanical

MNIST - EMNIST Letters Collection. . . . . . . . . . . . . . . . . . . . . 104

A·4 The aggregated mean prediction versus the ground truth of the change in

strain energy for OOD generalization algorithms (IRM, REx, IGA) and

ERM on the test environment 1 of each OOD dataset on Mechanical MNIST.113

A·5 The aggregated mean prediction versus the ground truth of the change in

strain energy for OOD generalization algorithms (IRM, REx, IGA) and

ERM on the test environment 1 of each OOD dataset on Mechanical MNIST

- EMNIST Letters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A·6 The sampled cases of three groups: lowest error (bottom 10% RMSE),

median error (45%−55% RMSE) and highest error (top 10% RMSE) from

the Mechanical MNIST, and the corresponding ground truth and predicted

change in strain energy given by LeNet. . . . . . . . . . . . . . . . . . . . 116

A·7 The sampled cases of three groups: lowest error (bottom 10% RMSE),

median error (45%−55% RMSE) and highest error (top 10% RMSE) from

the Mechanical MNIST - EMNIST Letters, and the corresponding ground

truth and predicted change in strain energy given by LeNet. . . . . . . . . . 117

xxii



A·8 Visualization of the mesh on a representative chiral structure. The finest

mesh size is 0.02 and the coarsest mesh size is 0.4. Graded meshing was

performed using the commercial software ABAQUS. . . . . . . . . . . . . 118

A·9 The relationship between calculated stiffness values and the selected finest

mesh size for the chiral structure depicted in Fig. A·8. The final adopted

finest mesh size is 0.02, highlighted in red. . . . . . . . . . . . . . . . . . . 118

A·10 The contact modes for the optimal designs of the eight nonreciprocity

objectives (a-i) f1, f2, f3, f4 and (a-ii) f5, f6, f7, f8. For each objective, the

optimal design and the contact modes during the loading in which the

stiffness values are obtained are depicted. . . . . . . . . . . . . . . . . . . 121

A·11 The contact modes for the optimal designs of the eight asymmetry objectives

(a-i) g1,g2,g3,g4 and (a-ii) g5,g6,g7,g8. For each objective, the optimal

design and the contact modes during the loading in which the stiffness

values are obtained are depicted. . . . . . . . . . . . . . . . . . . . . . . . 123

A·12 The data distribution of 16 pairs of non-contradictory multi-objectives for

non-reciprocity and asymmetry multi-objectives. The red dashed lines indi-

cate thresholds of x = 1 and y = 1 for valid designs. The x-axis denotes one

non-reciprocity objective and the y-axis denotes one asymmetry objective,

as defined in Sections 4.4.1 and Section 4.4.2 respectively. . . . . . . . . . 124

A·13 The data distribution of 16 pairs of contradictory multi-objectives for non-

reciprocity and asymmetry multi-objectives. The red dashed lines indicate

thresholds of x = 1 and y = 1 for valid designs. The x-axis denotes one

non-reciprocity objective and the y-axis denotes one asymmetry objective,

as defined in Sections 4.4.1 and Section 4.4.2 respectively. . . . . . . . . . 125

xxiii



A·14 The data distribution of 24 pairs of challenging multi-objectives for non-

reciprocity and asymmetry multi-objectives. The red dashed lines indicate

thresholds of x = 1 and y = 1 for valid designs. The x-axis denotes one

non-reciprocity objective and the y-axis denotes one asymmetry objective,

which is the objective that is challenging to optimize. The definition of

non-reciprocity and asymmetry can be found in Sections 4.4.1 and Section

4.4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A·15 Optimal designs for the three multi-objectives outlined In Section 5.3.3. (a)

Three Pareto optimal designs for Multi-Objective 1, discovered from design

space 2. (b) One Pareto optimal design for Multi-Objective 2, discovered

from design space 1. (c) Four Pareto optimal designs for Multi-Objective 3,

discovered from design space 4. . . . . . . . . . . . . . . . . . . . . . . . 127

xxiv



List of Abbreviations

EI . . . . . . . . . . . . . Expected Improvement
ERM . . . . . . . . . . . . . Empirical Risk Minimization
FEA . . . . . . . . . . . . . Finite Element Analysis
FEM . . . . . . . . . . . . . Finite Element Method
GP . . . . . . . . . . . . . Gaussian Process
IGA . . . . . . . . . . . . . Inter Gradient Alignment
i.i.d. . . . . . . . . . . . . . independent and identically distributed
IRM . . . . . . . . . . . . . Invariant Risk Minimization
MIP . . . . . . . . . . . . . Maximal Invariant Predictor
ML . . . . . . . . . . . . . Machine Learning
MLP . . . . . . . . . . . . . Multilayer Perceptron
OOD . . . . . . . . . . . . . Out-of-Distribution
PCA . . . . . . . . . . . . . Principal Component Analysis
ReLU . . . . . . . . . . . . . Rectified Linear Unit
REx . . . . . . . . . . . . . Risk Extrapolation
RMSE . . . . . . . . . . . . . Root Mean Squared Error
UCB . . . . . . . . . . . . . Upper Confidence Bound

xxv



1

Chapter 1

Introduction

1.1 Background

Traditionally, the mechanical behavior of macroscale solid metamaterials is obtained through

laboratory experiments, or by simulation methods such as the finite element method

(FEM) (Lee et al., 2021; Svolos et al., 2022; Liu et al., 2021c; Süli, 2012), while the

mechanics of smaller length scale structures can be obtained using molecular dynamics

simulations (Park et al., 2006; Bian and Nicola, 2021). These methods are generally accurate

and reliable, but can be extremely time-consuming and computationally expensive if there

exists a large parameter space to search for an optimal design that maximizes specific

functionalities and properties. Both human intuition and expert knowledge in mechanics can

accelerate this process, but expert knowledge is expensive per se. Thus, to make the meta-

material design and analysis process more efficient and broadly accessible, there has been

significant recent interest in the application of machine learning (ML) methods (Guo et al.,

2021; Alber et al., 2019; Peng et al., 2021; Huang et al., 2021; Bock et al., 2019; Morgan

and Jacobs, 2020; Pilania, 2021). There are several compelling reasons why ML methods

have become a viable approach for addressing mechanics problems of metamaterials. First,

by learning from an existing collection of data samples, ML methods have shown the ability

to accurately predict metamaterial properties(Hadash et al., 2018; Mohammadzadeh and

Lejeune, 2022; Kim et al., 2022; Zhang and Garikipati, 2020; Mianroodi et al., 2021; Saha

et al., 2021; Prachaseree and Lejeune, 2022; Mozaffar et al., 2019; Fuhg et al., 2022; Wang

et al., 2021; Chen et al., 2019; Su et al., 2021; Chen et al., 2021a). Second, because it takes
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only seconds for a trained ML model to predict the target properties of thousands of new

samples, this significant savings in computational expense enables the rapid and efficient

exploration of large design spaces in search of new materials, material designs, and structural

designs (Chen and Gu, 2020; Hanakata et al., 2020; Sanchez-Lengeling and Aspuru-Guzik,

2018; Kollmann et al., 2020; Forte et al., 2022; Liu et al., 2020; Challapalli et al., 2021;

Gongora et al., 2020; Ni and Gao, 2021; Kobeissi et al., 2022). Third, as a data-driven

method that makes predictions by statistically learning the correlation between input feature

vectors and the target outputs, ML methods do not require any preliminary expert knowledge

for either the learning or prediction processes. Fourth, the accuracy and reliability of ML

models can be continuously enhanced by adding more data through modern techniques such

as active learning (Chen and Gu, 2020; Gongora et al., 2020; Liang et al., 2021; Liu et al.,

2021d) and reinforcement learning (François-Lavet et al., 2018; Sui et al., 2021; Wang and

Sun, 2019; Wang et al., 2019). Finally, these ML methods are often transferable such that a

ML model trained on a large dataset often only requires minimal additional data when being

adapted to a new yet related mechanics problem (Lejeune and Zhao, 2021; Lu et al., 2020;

Goswami et al., 2022).

Despite these significant benefits, at least two critical questions remain unanswered

before the potential of ML methods can fully be realized in the context of mechanics

problems of metamaterials. The first pertains to whether the assumptions underlying ML

models remain validated when applied to real-world mechanics problems. The second

question is whether ML models can facilitate the design of novel metamaterials with limited

prior information. These critical challenges and the corresponding solutions proposed are

elucidated in the subsequent sections.

1.1.1 Out of Distribution Generalization

One of the most important problems of ML models is that the excellent performance on

test data is established on the assumption that the training and testing data are independent
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and identically distributed (i.i.d.) (Shen et al., 2021; Sagawa et al., 2019; Guo et al.,

2020). However, the data distribution of test environments in practical mechanics problems

is usually unknown, and in general the data distribution of test environments and the

training environments is not guaranteed to be i.i.d. for practical applications. Generating

the ML model to test environments for which the data distribution is not identical to the

data distribution of the training data that the ML is trained on is known as an out-of-

distribution (OOD) generalization problem. While the performance of ML methods on

i.i.d. generalization problems is typically excellent given a sufficiently large training dataset,

ML models have been shown to be very brittle when applied to OOD problems even for

easy-to-learn computer vision tasks (Arjovsky et al., 2019; Sagawa et al., 2020; Nagarajan

et al., 2020). For example, after learning from a training dataset with the majority of the

datapoints being blue-ish and a minority of the datapoints being green-ish, the accuracy of

ML models on a cat vs. dog classification task drops by more than 20% on a test dataset

in which all datapoints are green-ish(Nagarajan et al., 2020). Similarly, when most of the

cow pictures in the training dataset on which the ML model is trained are collected from

common contexts like pastures and grassy fields, the ML model fails to recognize the cows

in uncommon contexts like waves and beaches (Beery et al., 2018).

These results, and the results of many other studies (Kurakin et al., 2018; Geirhos

et al., 2018; Tsipras et al., 2018; Ye et al., 2021; Hu et al., 2021; Izmailov et al., 2021;

Goodfellow et al., 2014), suggest that when unseen test data and training data are not i.i.d.,

the predictions of a ML model built on this assumption should be called into question.

Because material design through data-driven methods requires exploring large unseen

domains through learning on limited available data, the i.i.d. assumption will often be

violated in this context (Forte et al., 2022). With poor knowledge of the data distribution

of the unseen data, the poor generalization of ML models on OOD problems can lead

to erroneous predictions on test data from unseen distributions and result in unreliable
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predictions, and in the context of material design, propose designs that are far from optimal.

For example, when designing composite materials with high strength and stiffness, Kim

et al. (2021) showed that when the ML model is trained on training data with lower strength

and stiffness and used to predict data with higher strength and stiffness, the prediction

accuracy drops dramatically, resulting in being trapped in local minima for forward material

design. As one line of research, the detection of OOD data is of interest because it is related

to the reliability of ML model predictions (DeVries and Taylor, 2018; Ming et al., 2022;

Yang et al., 2021; Berger et al., 2021). For example, methods following a Bayesian approach

that measure the uncertainty of ML predictions have been applied to OOD detection (Wang

and Aitchison, 2021; Henning et al., 2021; Xie et al., 2022b,a). In addition to detecting

OOD data, designing ML models that generalize better to OOD samples is an important

new direction for applying ML methods to problems in mechanics.

Recently, to improve the robustness and generalizability of ML models, researchers have

designed algorithms that embed the prior known physics into ML models when the underly-

ing physics of the training and testing environments are similar and partially known. For

example, the well-known approach of physics-informed neural networks (PINNs) embeds

partial differential equations (PDEs) into neural networks during the learning process (Raissi

et al., 2019, 2020; Cuomo et al., 2022; Cai et al., 2021). In addition, equivariant neural

networks embed known structural symmetries into neural networks, such that the neural net-

works are robust towards the changes caused by permutation, translation or rotation (Fuchs

et al., 2020; Satorras et al., 2021; Smidt et al., 2021; Cohen et al., 2019). Another approach,

sparse identification of nonlinear dynamics (SINDy), assumes that a dynamical system

can be described by a parsimonious model with few key items and parameters, which can

be identified by sparse regression. Proponents of this approach argue that parsimonious

models are able to maintain accuracy while preventing over-fitting. Essentially, reducing the

complexity of the model is a strategy to improve its generalizability (Brunton et al., 2016;
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Champion et al., 2019; Quade et al., 2018). Overall, the methods listed here approach OOD

problems by leveraging prior physical knowledge of the system and extracting governing

equations from the data. While these approaches are quite powerful, formulating predictive

models in this manner is not necessarily suitable for all problems. For example, these

approaches often do not extend naturally for making predictions on unseen heterogeneous

domains. Alternatively, other recent works in mechanics have focused on methods that

improve the robustness of ML models to new domains by active or transfer learning (Kim

et al., 2021; Lookman et al., 2019; Lejeune and Zhao, 2021), which updates the current

learned model by further collecting a few representative data points from the new test

domain. This field is referred as domain adaptation (Wang and Deng, 2018; Csurka, 2017;

Farahani et al., 2021), which assumes that the data from the test domain is available such that

a few data can be collected from the test domain based on some available prior knowledge

of the test data distribution (Shen et al., 2021).

In contrast, OOD generalization, which is also known as domain generalization (Zhou

et al., 2021; Shen et al., 2021), considers a broader situation in which the ML model will

be generalized to domains that are unseen and unknown. This unknown distribution of

future target datasets prevents us from augmenting the training dataset in a manner that is

informed by the characteristics of the new target domain. To improve OOD generalization

without collecting new data, ML models are encouraged to learn the causal correlation

between inputs and outputs that will not change from training to test environments (Peters

et al., 2016; Schölkopf, 2022; Bühlmann, 2020; Weichwald and Peters, 2021), i.e, stable

correlations. This is because the failure of the traditional ML models, i.e. Empirical Risk

Minimization (ERM) (Sagawa et al., 2020; Nagarajan et al., 2020), on OOD generalization

problems can be due to data being mixed and shuffled before training, which makes it

difficult for ML models to learn whether a feature of the data is stable (referred to as

“invariant”) or unstable (referred to as “spurious”) when the data distribution shifts from one
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environment to another (Arjovsky et al., 2019). Inspired by this, recently many methods

have been proposed to improve OOD generalization by not shuffling data collected from

different environments but instead learning the stable features across these environments

(or domains) (Zhou et al., 2021; Shen et al., 2021). Specifically, these OOD generalization

methods consider data collected from multiple environments, while setting two goals for

a ML model trained on these environments. First, the ML model is trained to perform

well on all training environments, which can be achieved by ERM by minimizing the loss

between the predicted value and the ground truth. Meanwhile, the ML model is also trained

to perform consistently across all environments, which is achieved by adding a penalty term

to the loss function (Arjovsky et al., 2019; Koyama and Yamaguchi, 2020; Krueger et al.,

2021; Mahajan et al., 2021). Furthermore, there are many other works that prevent a ML

model from learning spurious features by different approaches like distributionally robust

optimization (Sagawa et al., 2019; Duchi and Namkoong, 2018), game-theoretic ML (Ahuja

et al., 2020), and selective rationalization techniques (Chang et al., 2020). Compared to

ERM, researchers have shown that these methods perform better on OOD classification

tasks like recognizing digits in the colored MNIST dataset (Arjovsky et al., 2019), in which

the color of a digit is the spurious and unstable feature that varies across training and testing

datasets.

While many methods have been proposed to improve OOD generalization, applying these

advances to problems in mechanics is not straightforward for multiple reasons. First, the

vast majority of the OOD generalization algorithms have been applied to classification, and

not regression problems (Krueger et al., 2021; Koyama and Yamaguchi, 2020; Piratla et al.,

2020; Gulrajani and Lopez-Paz, 2020). As a result, the performance of these approaches on

regression problems remains poorly understood. Second, there are only a few distribution

shift benchmark datasets for validating the efficiency of these methods. To address this,

Koh et al. (Koh et al., 2021) presented WILDS as a benchmark dataset which is a collection
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of ten distribution shift datasets from different fields like tumor identification and genetic

perturbation classification. However, all ten datasets in WILDS are classification problems,

which is again an issue for advancing methods relevant to mechanics as regression problems

dominate the mechanics field. At present, due to the unavailability of benchmark regression

datasets with data distribution shifts, the efficiency of OOD algorithms on regression

problems is usually evaluated on synthetic data of artificially constructed toy problems which

do not fully represent the challenges associated with practical regression problems (Liu et al.,

2021a; Kuang et al., 2020; Tripuraneni et al., 2021). Therefore, to address this gap in the

literature, this thesis aims to perform a fundamental study of OOD generalization methods

for regression problems in mechanics. Specifically, three OOD generalization problems

are identified: covariate shift, mechanism shift, and sampling bias, and two benchmark

datasets are created for each problem based on extensions to the Mechanical MNIST dataset

collection, with access information given in Section 6.3. The experiment results show that

for most cases, while the OOD algorithms outperform traditional ML methods on OOD

generalization problems in mechanics, there is a compelling need to develop more robust

OOD methods that can generalize notions of invariance across multiple OOD scenarios.

Overall, the insights of this study, as well as the benchmark datasets developed, are expected

to facilitate further development of OOD methods for regression problems.

1.1.2 Nonreciprocal and Asymmetric Chiral Metamaterials

There has been significant recent interest in the topics of reciprocity (Nassar et al., 2020b),

and elastic asymmetry within the broader mechanics community. Reciprocity implies that

if we push a structure on one side (X), the other side (Y) will move by a certain amount.

If we push the opposite side (Y) with the same force, side X will move the same amount.

This idea has been codified through the well-known Maxwell-Betti reciprocity, which can

be written as

FX uY→X = FY uX→Y (1.1)
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There is significant interest in finding structures that can break reciprocity, either stati-

cally (Coulais et al., 2017; Shaat, 2020), or dynamically (Wang et al., 2023; Nassar et al.,

2017; Trainiti and Ruzzene, 2016; Wang et al., 2018; Goldsberry et al., 2019; Fang et al.,

2021; Lu and Norris, 2021, 2022; Patil et al., 2022; Wallen et al., 2018; Kuznetsova et al.,

2017; Attarzadeh et al., 2020). The major motivation for this has been related to non-

reciprocal wave propagation, in which structures enable wave propagation in one direction,

but support different levels of wave propagation in other directions. Most approaches to

accomplishing this have involved active structures, in which the elastic stiffness and/or

density can be actively modulated in space and time to enable non-reciprocal wave propaga-

tion (Nassar et al., 2017; Trainiti and Ruzzene, 2016; Wang et al., 2018). In contrast, passive

approaches to generating non-reciprocal structures have been less studied, due to challenges

in creating passive structures that violate reciprocity (Wang et al., 2023; Goldsberry et al.,

2019; Fang et al., 2021; Lu and Norris, 2022; Attarzadeh et al., 2020). This has generally

been accomplished using passive structures that exhibit a nonlinearity in which the elastic

stiffness of a structure is bilinear, or different depending on the direction of loading (Wang

et al., 2023; Lu and Norris, 2022; Goldsberry et al., 2019).

In addition to non-reciprocal elasticity, there has recently emerged significant interest

in creating structures that exhibit asymmetric elasticity (Scheibner et al., 2020; Chen et al.,

2021b; Tan et al., 2022; Yin and Liu, 2023; Zhang et al., 2020a). This interest has emerged

because the mechanical behavior of linear elastic, isotropic solids is typically described by a

free energy function, which carries the implication that its elasticity tensor is symmetric.

However, Scheibner et al. recently proposed the notion of odd elasticity, for those linear

elastic isotropic solids whose mechanical behavior cannot be described by a free energy

function (Scheibner et al., 2020). As a result, odd elastic solids have a non-symmetric elas-

ticity tensor, where the mechanical response to different loads (in contrast to the difference

in mechanical response to different directions for non-reciprocal elasticity) is not the same.
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For example, a solid extension could induce shear, while the same shear would induce a

different amount of extension. It has been shown that such odd elastic solids could induce

interesting dynamic phenomena, including non-Hermitian wave propagation (Chen et al.,

2021b). However, similar to non-reciprocal solids, it has been considerably easier to achieve

asymmetric elasticity using active, rather than passive solids.

Recently, Shaat and Park (2023) proposed a chiral metamaterial that exhibits both

non-reciprocal and asymmetric elasticity. While chiral metamaterials have been widely

studied over the past decade (Wu et al., 2019; Fernandez-Corbaton et al., 2019; Liu and Hu,

2016; Liu et al., 2012; Chen et al., 2013; Nassar et al., 2020a; Shaat and Park, 2023), the

mechanism enabling this behavior is that of contact, in which the ligament connecting two

rigid circles is initially in a state of contact with both circles. Non-reciprocal (i.e. directional)

elasticity is realized because while the ligament remains in contact with both circles under

tension, and thus is stiff, it loses contact with the circles under compression, and is thus

elastically soft. Similarly, asymmetric elasticity results because in certain directions of

loading, the ligament remains in contact, while in other directions of loading it does not.

This, in conjunction with the chirality that couples different deformation modes, enables

asymmetric elasticity to occur.

An important open question that remains is whether passive solids with tunable me-

chanical properties that are both non-reciprocal and asymmetric can be created, and further

what the mechanisms are that would allow such a combination of properties to be realized.

Because the design space for the chiral metamaterial is relatively large, encompassing

potential factors such as circle diameter, ligament contact area, and ligament geometry, one

approach to realizing these properties is by utilizing a machine learning model to learn the

combination of factors enabling these properties to be realized using starting with the base

two circles, one ligament system.

To conduct the chiral metamaterial optimization, several design spaces for chiral meta-
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materials leveraging specific design parameters are defined, including the ligament contact

angles, the ligament shape, and the circle radius. Having defined the design spaces, machine

learning approaches, and specifically Bayesian optimization, are leveraged to determine

optimally performing designs within each design space satisfying maximal non-reciprocity

or stiffness asymmetry. Finally, multi-objective optimization is performed by determining

the Pareto optimum and obtaining chiral metamaterials that simultaneously exhibit high

non-reciprocity and stiffness asymmetry. The analysis of underlying mechanisms reveals

that chiral metamaterials that can display different contact states under loading in different

directions can simultaneously exhibit both high non-reciprocity and stiffness asymmetry.

Overall, this work demonstrates the effectiveness of employing ML to bring insights to

a novel domain with limited prior information, and more generally will pave the way for

metamaterials with unique properties and functionality in directing and guiding mechanical

wave energy.

1.2 Outlines of the Thesis

This thesis is organized as follows:

Chapter 2 introduces three different kinds of OOD regression problems under the scope

of mechanics problems for heterogeneous metamaterials: Covariate shift, Mechanism shift,

and sampling bias. Built upon the Mechanical MNIST and Mechanical EMNIST benchmark

dataset (Lejeune, 2020), two corresponding benchmark examples are created for each type

of OOD problem.

Chapter 3 evaluates the performance of different ML algorithms on the benchmark

dataset created in Chapter 2. Specifically, Section 3.1 provides a review of the ERM method

and introduces three popular OOD generalization algorithms (invariant risk minimization,

or IRM (Arjovsky et al., 2019), risk extrapolation, or REx (Krueger et al., 2021), and inter-

gradient-alignment, or IGA (Koyama and Yamaguchi, 2020)) for solving OOD problems. In
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Section 3.4, OOD generalization performance of ERM and the OOD algorithms on the OOD

problems on metamaterial prediction is demonstrated and discussed. Finally, Section 3.5

gives the main conclusions of this study.

Chapter 4 delves into the non-reciprocity and asymmetry characteristics of chiral meta-

materials, analyzing their behavior through Finite Element Simulation. The objective

function for optimization is explicitly defined, aiming to get chiral metamaterial designs that

exhibit either non-reciprocity and asymmetry, or both. Furthermore, the design parameters

of chiral metamaterial are broaden and four distinct design spaces are proposed, enabling

comprehensive exploration of optimal chiral designs.

In Chapter 5, the chiral metamaterial is characterized by its high-level geometric features,

and data augmentation technique is utilized to increase the training datasets. The Bayesian

optimization is employed to seek optimal chiral metamaterials for both single and multi-

objective optimization. Subsequently, the identified optimal designs are presented and the

relationship between the geometry, the contact mechanisms, and the non-reciprocity and

asymmetry properties of chiral metamaterials are revealed. Finally, the main conclusions of

this study are drawn in Section 5.4.
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Chapter 2

Mechanical MNIST – Data Distribution Shift

2.1 Mechanical MNIST Collection

The original MNIST dataset (LeCun et al., 1998), the inspiration for Mechanical MNIST, is

a benchmark image dataset of labeled handwritten digits (0-9) with consistent preprocessing

and formatting. Each image in the dataset is a digit represented by a 28×28 pixel bitmap.

For the original MNIST dataset, the standard goal is to train a ML model to classify the

correct digit based on the input pixel bitmap (Kussul and Baidyk, 2004; Cireşan et al., 2010;

An et al., 2020). Inspired by the original MNIST dataset, the Mechanical MNIST dataset

was created as a benchmark dataset specifically for problems in mechanics (Lejeune, 2020).

In Mechanical MNIST, the images are no longer bitmaps without physical meaning, but

instead represent the elastic modulus distribution of a heterogeneous block of material.

In Mechanical MNIST, to ensure the elastic modulus values for the image bitmaps have

non-zero values and lie within a reasonable range, the 28×28 MNIST image bitmaps are

transformed into a map of elastic moduli following the equation:

E =
b

255.0
∗ (s−1)+1 (2.1)

where b is the corresponding value of the grayscale bitmap in the range 0−255 and s is set

to 100 for the original iteration of the dataset. After the transformation defined by eqn. 2.1,

the elastic modulus distribution of the heterogeneous material lies in the range from 1 to s.

In the original contribution to the Mechanical MNIST dataset collection, four different
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mechanical processes (Confined Compression, Shear, Equibiaxial Extension and Uniaxial

Extension) are considered. In all cases, these mechanical processes are simulated via the

Finite Element Method (FEM) using the open source software FEniCS (Logg and Wells,

2010; Logg et al., 2012). This study focus on the Equibiaxial Extension load case as

detailed in the work Lejeune (2020). Note that this dataset is publicly accessible under an

open source license, with access information given in Section 6.3. For the ML problems

discussed in this study, the feature vectors X will contain the modulus distribution of each

sample, and the target interest y will contain the change in strain energy after the sample is

subject to equibiaxial extension, and thus y is a scalar value for each sample. Specifically,

the finite element simulation is performed with a dimensionless study and a compressible

Neo-Hookean constitutive law. In addition, the Poisson’s ratio was set to 0.3 throughout

the sample, and the applied extension displacement is d = 7.0 on each boundary, which

corresponds to 50% of the square domain side length. Given this basic problem definition,

the Mechanical MNIST Dataset Collection is sampled and extended to be suitable for OOD

experiments. The details of this work are given in the following Sections.

2.2 OOD Experiment 1: Covariate Shift

2.2.1 Problem Definition

Covariate shift is one of the most common OOD shifts. It happens when only the marginal

distribution P(X) changes from the training environment to the testing environment (Ptr(X) ̸=

Pte(X)), while the conditional distribution P(y|X) remains unchanged(Ptr(y|X)=Pte(y|X)) (Shen

et al., 2021; Zhou et al., 2021). In simpler terms, covariate shift occurs when the input

distribution changes while the output distribution does not. Real world covariate shift

datasets are readily available for classification problems. For example, in the colored

MNIST dataset (Arjovsky et al., 2019), the same digit appears in different colors between

the testing and training environments. In the PACS (Li et al., 2017) dataset, dog images
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are collected from Photo, Art, and Cartoon environments for the training dataset but from a

Sketch environment for the testing dataset. In the Waterbird dataset (Sagawa et al., 2019),

waterbird photographs are mostly taken under a water background in the training dataset,

but mostly taken with a land background in the testing dataset.

In contrast to classification problems, covariate shift in regression problems have been

much less studied due to the limited availability of relevant regression focused benchmark

datasets. This lack of benchmark data motivated us to introduce an open source benchmark

dataset to investigate mechanics relevant problems with covariate shift. The introduction of

this dataset is in the next Section.

2.2.2 Dataset Description

As shown in eqn. 2.1, the Mechanical MNIST dataset input patterns are transformed from

the original MNIST dataset through an environmental control factor s. The elastic modulus

E of blocks that make up the digit are close to s while the elastic modulus E of the blocks

in the background is set to 1. When s is much larger than 1 (e.g., s = 100), the blocks in

the digit area are much stiffer than the soft blocks in the background. Thus the digit will

barely deform and almost all deformation during equibiaxial extension loading occurs in the

blocks in the background. As a result of this large stiffness mismatch, the effect of changing

the environmental factor s within the range s = 50−100 on the total change in strain energy

of the domain is small. Therefore, altering s within this range is an appropriate strategy for

inducing a covariate shift as defined in Section 2.2.1. Following this strategy, the details of

two training environments and two test environments is summarized below:

• Training Environment 1: s = 100, data size = 2500 (2000 for training, 500 for

validation)

• Training Environment 2: s = 90, data size = 2500 (2000 for training, 500 for valida-

tion)
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• Testing Environment 1: s = 75, data size = 2000

• Testing Environment 2: s = 50, data size = 2000

The input and output distributions of training and testing environments are shown

in Fig. 2·1. In Fig. 2·1a, one representative example is sampled from each of the four

environments. For each example, the elastic modulus distribution and the corresponding

deformation after equibiaxial extension are presented. Fig. 2·1b is a visualization of the

input parameter space of each environment with Principal Component Analysis (PCA).

Specifically, PCA is employed to reduce the high-dimensional input feature space (784

parameters) to the first principal component and plot the distribution of this one-dimensional

variable in Fig. 2·1b with both a histogram and a redundant boxplot to aid in visualization.

Note that because the unseen environments are considered unknown, the PCA model is

fit exclusively on the data from the training environment. Fig. 2·1c is a visualization of

the output strain energy via the same approach. In these plots, the training and testing

environments are distinguished by red and grey hues respectively. As Fig. 2·1b-c shows, in

this covariate shift problem, the input feature distribution shifts substantially between the

different environments while the distribution of the strain energy output barely changes. In

addition, it is worth noting that the difference between the two training environments s = 100

and s = 90 is substantially smaller than the difference between training environments and

testing environments, which comprises s = 75 and s = 50.

2.3 OOD Experiment 2: Mechanism Shift

2.3.1 Problem Definition

The notion of concept drift has emerged in ML to describe the change in relationship

between input and output data over time. Standard examples of concept drift include not

accounting for the season when predicting temperature, or changes in how people use mobile

phones over time (Tsymbal, 2004; Lu et al., 2018). The elements underpinning the concept



16

(a-i)

(a-ii)

(b) (c)

Train Env-1

 (s = 100)

Train Env-2

 (s = 90)

Test Env-1

 (s = 75)

Test Env-2

 (s = 50)

Figure 2·1: Illustration of the covariate shift dataset. (a-i) Equibiaxial exten-
sion boundary conditions and elastic modulus distribution for a representative
example from each environment. (a-ii) Deformation of each example in (a-i)
after the completion of the equibiaxial extension simulations. (b) Input distri-
bution of all environments described by the coefficient of the first principle
component obtained through PCA performed on the input elastic modulus
distribution of training data. (c) Output distribution of all environments
defined as the total change in strain energy of the domain. Note that in (b-c)
the histograms and boxplots are two ways of showing the same data.

drift, or change in the underlying data distribution P(X ,y), are referred to as the hidden

context.
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While primarily used in other areas, this notion is also applicable to mechanics and

physics, in which the governing equations do not change over time, but can give inaccurate

or physically unreasonable outputs when the control variable increases or decreases signif-

icantly. For example, continuum mechanics can break down if the representative length

scale is small enough to be comparable to the atomic lattice spacing, or classical mechanics

can break down when velocities approach the speed of light. To distinguish these examples

from the term concept drift in which the data shift is typically caused by a time-dependent

shift of the hidden context, this phenomenon is referred to as a mechanism shift in this work.

In brief, a mechanism shift is when the data shift is caused by a change in the underlying

mechanisms that control the mapping between the input and the output. The introduction of

the mechanism shift dataset is in the next Section.

2.3.2 Dataset Description

According to the discussion in Section 2.2.2, changing the value of s when s is large

(s = 50−100) has little effect on the distribution of the strain energy. Both the training data

and the testing data in Section 2.2.2 follow this same underlying deformation mechanism

where the embedded digit behaves approximately as a rigid body embedded in a soft

surrounding matrix. In this Section, the test environments in which s is smaller (10−25), i.e,

the elastic mismatch between the digit and the background matrix is smaller, are considered.

With a lower stiffness mismatch, equibiaxial extension loading will cause the digit to deform,

and thus changing s will influence the distribution of the final change in strain energy.

Following this strategy, the training environments are kept the same as in Section 2.2.2 while

introducing two new test environments and summarizing these new test environments along

with the previous training environments below:

• Training Environment 1: s = 100, data size = 2500 (2000 for training, 500 for

validation)
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• Training Environment 2: s = 90, data size = 2500 (2000 for training, 500 for valida-

tion)

• Testing Environment 1: s = 25, data size = 2000

• Testing Environment 2: s = 10, data size = 2000

The input and output distributions of training and testing environments are shown in

Fig. 2·2. As shown in Fig. 2·2(a-i) and (a-ii), compared to the representative examples from

the training environments (s = 100, s = 90), the deformation of the blocks near the digit is

much smoother for the representative examples from the test environments (s = 25, s = 10).

Due to this deformation mechanism change, the distribution of the strain energy ∆ψ also

shifts, as shown in Fig. 2·2(c). Therefore, in contrast to the scenario posed in Section 2.2.2,

the scenario posed here contains both a shift in the input distribution and a shift in the output

distribution. The bi-leveled distribution shift caused by the Mechanism shift makes it a

larger challenge for the OOD generalization.

2.4 OOD Experiment 3: Sampling Bias

2.4.1 Problem Definition

Sampling bias happens when the data that is selected for training a ML model is not

representative of the entire data pool that will be explored once the model is deployed. The

presence of sampling bias makes it more difficult to find causal effects in the dataset by

potentially introducing spurious correlations between input features and output properties,

thus causing failures in OOD generalization. Sampling bias can exist in any empirical

research if the underlying causal relationship is unknown (Winship and Mare, 1992; Winship

and Morgan, 1999). For example, although ImageNet (Deng et al., 2009) has a very large

sampling size with more than 14 million images, CNNs trained on ImageNet show bias by

recognizing an animal by its texture rather than by its shape (Geirhos et al., 2018).
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(a-i)

(a-ii)

(b) (c)

Train Env-1

 (s = 100)

Train Env-2

 (s = 90)

Test Env-1

 (s = 25)

Test Env-2

 (s = 10)

Figure 2·2: Illustration of the mechanism shift dataset. (a-i) Equibiaxial
extension boundary conditions and elastic modulus distribution for a rep-
resentative example from each environment. (a-ii) Deformation of each
example in (a-i) after the completion of the equibiaxial extension simulations.
(b) Input distribution of all environments described by the coefficient of the
first principle component obtained through PCA performed on the input
elastic modulus distribution of training data. (c) Output distribution of all
environments defined as the total change in strain energy of the domain. Note
that in (b-c) the histograms and boxplots are two ways of showing the same
data.
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Studying the OOD problems caused by sampling bias is critical for material design by

data-driven methods. This is because collected samples usually contain some form of bias,

and thus predictions made by ML models may be a function of a spurious relationship that

will not exist in the testing environment. To study the OOD shift caused by sampling bias,

Kuang et al. (2020) introduced a selection mechanism in which data points are selected

by a selection probability determined by spurious relationships between the dataset inputs

and outputs. Liu et al. (2021b) later applied state-of-the-art OOD algorithms on synthetic

data generated by this selection mechanism and showed that they outperform traditional ML

methods that do not account for the presence of sampling bias. Although it is convenient

to perform experiments on synthetic data where spurious features directly augment the

input feature vector, real-world problems often contain sampling biases that are far more

subtle. Thus, additional benchmark datasets to examine the performance of ML models

in the face of sampling bias remain an important need that the broader field is currently

lacking. To provide a benchmark data resource for OOD studies on sample selection bias, a

sampling bias dataset within the Mechanical MNSIT dataset collection is introduced in the

next Section.

2.4.2 Dataset Description

The input for the Mechanical MNIST dataset is the elastic modulus map for each material

domain, which contains no inherent spurious features as every component of the input vector

is the Young’s modulus E of a block domain and thus contributes to the final change in

strain energy of the domain. However, the dataset does potentially contain implicit spurious

features embedded in the input vectors that can incorrectly be regarded as causal of the

output by a ML model during the training process. In other words, certain characteristics of

the input distribution may be spuriously correlated with the simulation output. And, more

critically, defining spurious features and intentionally selecting them when establishing

training and testing environments can be achieved on the Mechanical MNIST dataset. To
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induce spurious correlations, the sum of the modulus of each block domain Vi = ∑
784
j=1 E j

is defined as an implicit spurious feature. Then, data points are sampled from the original

Mechanical MNIST distribution (s = 100) through a biased selection mechanism. Each

point in the original distribution has a selection probability Pi that is designed to induce

sampling bias in a controlled fashion through the distribution control parameters r. To

establish Pi, the selection probability of data point i, the sum of modulus Vi, and the final

change in strain energy yi are considered. The biased selection mechanism, inspired by the

mechanism defined in Kuang et al. (2020), then takes the form:

Pi = |r|−5| ỹi−sign(r)Ṽi | (2.2)

where |r| ≥ 1 and sign(r) is a sign function with sign(r) = 1 if r > 0 and sign(r) = −1

if r ≤ 0. In addition, the implicit spurious feature Vi and the output distribution of y are

normalized through the functions:

Ṽi =
Vi − Vmean

Vstd
and ỹi =

yi − ymean

ystd
(2.3)

where Vmean = 10925.34 and Vstd = 3360.66 for the sum of modulus implicit feature V of the

Mechanical MNIST training dataset, and ymean = 567.52 and ystd = 47.35 corresponds to the

output change in strain energy y of the Mechanical MNIST training dataset. Parameter r in

this selection mechanism controls the direction and the strength of the spurious correlation:

positive spurious correlation occurs when r > 1, and negative spurious correlation occurs

when r <−1. Specifically, when r > 1, the data points with the implicit spurious feature

Ṽi more highly correlated to their final change in strain energy ỹi will have a larger chance

of being selected; when r < −1, the data points with the negative value of its implicit

spurious feature Ṽi closer to their final change in strain energy ỹi will have a larger chance

of being selected. In addition, larger |r| means larger selection bias. Note that for ease

of implementation of the sampling process, the final selection probability of each data
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point is normalized as P̃i = Pi/∑
n
j=1 Pj where n is the total number of data points. This

ensures that the sum of the probability of all data points is equal to 1, which is statistically

meaningful. Based on this selection mechanism, two training environments and three testing

environments dictated by the selection parameters are created and the details are as below:

• Training Environment 1: r = 15, data size = 9800 (7840 for training, 1960 for

validation)

• Training Environment 2: r =−2, data size = 200 (160 for training, 40 for validation)

• Testing Environment 1: r =−5, data size = 2000

• Testing Environment 2: r =−10, data size = 2000

• Testing Environment 3: r = 1, data size = 2000

Fig. 2·3a illustrates the relationship between the implicit spurious feature Ṽi and the

output ỹi for each environment. The color of each plot background represents the logarithmic

selection probability of each area calculated by eqn. 2.3. Note that the selection probability

is normalized through being divided by 10000, which is the total number of pixel points

that construct the background of the image. In training environment 1 where r > 1, data

with positive spurious correlations will be overrepresented in the environment, thus ỹ≈ Ṽ

throughout the dataset. In training environment 2, testing environment 1, and testing

environment 2 where r < −1, data points with a negative spurious correlation will be

overrepresented in the environment, thus data points around ỹ =−Ṽ have a larger probability

to be selected. In testing environment 3 where r = 1, the selection probability is identical

for every data point (i.e., Pi = 1/n), thus testing environment 3 is a representative sampling

of the entire Mechanical MNIST dataset. Fig. 2·3b-c presents the data input and output

distributions following the format in Fig. 2·1-2·2b and c. As shown in Fig. 2·3a, the implicit

spurious features and the output strain energy are strongly correlated in the training dataset
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but not in the testing datasets. Furthermore, it is worth noting that note that in Fig. 2·3b,

though the data in training environment 1 is from a biased selection, in terms of the first

principle component of PCA, the biased selection data distribution of training environment

1 (mean = -1.38, standard deviation = 216.65) and testing environment 3 (representative

Mechanical MNIST dataset, mean = 65.06, standard deviation=211.18) are within one

standard deviation of each other, which demonstrates that it can be non-trivial to detect the

presence of implicit spurious features.

2.5 Mechanical MNIST – EMNIST Letters Collection

The original Extended MNIST (i.e., EMNIST) dataset is a benchmark image dataset fol-

lowing the same conversion paradigm used to create the MNIST dataset, except that each

image in the original EMNIST Letters dataset is a letter (a-z, A-Z) rather than a digit (0-

9) (Cohen et al., 2017). Identical to the MNIST dataset, each input domain is represented

by a 28×28 pixel bitmap. The Mechanical MNIST – EMNIST Letters dataset is created

following the same process as described in Section 2.1 for Mechanical MNIST. Specifi-

cally, the Mechanical MNIST – EMNIST Letters dataset is created by transforming the

28×28 image bitmaps to a map of the elastic modulus for each input pattern in EMNIST

Letters through eqn. 2.1. Furthermore, a covariate shift dataset is created through the same

process described in Section 2.2, a mechanism shift dataset is created through the same

process described in Section 2.3, and a sampling bias dataset is created through the same

process described in Section 2.4. Note that when creating the sampling bias dataset for

Mechanical MNIST – EMNIST Letters through the selection probability defined in eqn. 2.3,

Vmean = 14151.59 and Vstd = 4045.36 are the mean and standard deviation of the spurious

feature V of the Mechanical MNIST – EMNIST Letters training dataset, and ymean = 708.50

and ystd = 88.24 corresponds to the mean and the standard deviation of the output change in

strain energy y of the Mechanical MNIST – EMNIST Letters training dataset.
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Figure 2·3: Illustration of the sampling bias dataset. (a) Relationship be-
tween the spurious feature and the target (the total change in strain energy)
for each environment. Note that only 500 randomly selected data points for
each environment (with the exception of the 200 available data points for
the training environment 2) are shown to aid in visualization. The color of
each plot background represents the logarithmic selection probability of each
area (b) Input distribution of all environments described by the coefficient
of the first principle component obtained through PCA performed on the
input elastic modulus distribution of training data. (c) Output distribution of
all environments defined as the total change in strain energy of the domain.
Note that in (b-c) the histograms and boxplots are two ways of showing the
same data.
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Section 2.1-2.4 presented the different OOD training and test environments created based

on the Mechanical MNIST dataset in Fig. 2·1-2·3. Here, Fig. 2·4-2·6 shows the distribution

of the EMNIST Letters data. Specifically, Fig. 2·4 illustrates the OOD data distribution

for covariate shift, Fig. 2·5 illustrates the OOD data distribution for mechanism shift, and

Fig. 2·6 illustrates the OOD data distribution for sampling bias.

In the next Chapter, a comprehensive study of the OOD generalization problems in

mechanics based on the benchmark datasets created in this Chapter will be conducted.
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(a-i)

(a-ii)

(b) (c)

Train Env-1

 (s = 100)
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 (s = 90)

Test Env-1

 (s = 75)
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 (s = 50)

Figure 2·4: Illustration of the EMNIST covariate shift dataset. (a-i) Equibi-
axial extension boundary conditions and elastic modulus distribution for a
representative example from each environment. (a-ii) Deformation of each
example in (a-i) after the completion of the equibiaxial extension simulations.
(b) Input distribution of all environments described by the coefficient of the
first principle component obtained through PCA performed on the input
elastic modulus distribution of training data. (c) Output distribution of all
environments defined as the total change in strain energy of the domain. Note
that in (b-c) the histograms and boxplots are two ways of showing the same
data.
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(a-i)
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Figure 2·5: Illustration of the EMNIST mechanism shift dataset. (a-i) Equib-
iaxial extension boundary conditions and elastic modulus distribution for a
representative example from each environment. (a-ii) Deformation of each
example in (a-i) after the completion of the equibiaxial extension simulations.
(b) Input distribution of all environments described by the coefficient of the
first principle component obtained through PCA performed on the input
elastic modulus distribution of training data. (c) Output distribution of all
environments defined as the total change in strain energy of the domain. Note
that in (b-c) the histograms and boxplots are two ways of showing the same
data.
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Figure 2·6: Illustration of the EMNIST sampling bias datasets. (a) Relation-
ship between the spurious feature and the target (the total change in strain
energy) for each environment. Note that only the 500 randomly selected data
points for each environment (with the exception of the 200 available data
points for training environment 2) are shown to aid in visualization. The
color of each plot background represents the selection probability of each
area (b) Input distribution of all environments described by the coefficient
of the first principle component obtained through PCA performed on the
input elastic modulus distribution of training data. (c) Output distribution of
all environments defined as the total change in strain energy of the domain.
Note that in (b-c) the histograms and boxplots are two ways of showing the
same data.
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Chapter 3

OOD Generalization Algorithms and
Performance

3.1 Algorithms and Notation

For the supervised learning problems that we will pursue in this study, the input space is

defined as X ⊆R784 and the output space is defined as y⊆R1. The goal of machine learning

models is to find a predictor fθ(X) that minimizes the loss function l( fθ(X),y). Traditionally,

the training (observed) data and test (unseen) data are assumed to be independent and

identically distributed (i.i.d.). Thus, the optimal predictor can be obtained by minimizing

the loss of the model on the training data. This method is referred to as Empirical Risk

Minimization (ERM). However, out-of-distribution (OOD) generalization problems deviate

from the i.i.d. assumption underlying ERM. In other words, for OOD problems we cannot

assume that the training data and testing data are i.i.d. This means that the distribution

of unseen data is allowed to shift, which is practically relevant to real world problems.

Specifically, OOD generalization approaches acknowledge that the observed training data

are collected from different environments E train = {e1, ...em}, which are only a subset of all

environments Eall. For an OOD generalization method to perform well, this implies that the

predictor fθ(X) obtained through learning from the training environments should perform

well across all unseen environments that are under consideration. This goal can be expressed

by minimizing the worst-case risk defined as:
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ROOD(θ) = max
e∈Eall

Re(θ) (3.1)

where θ represents the parameters of the predictor (e.g., weights for a neural network). To

minimize the OOD risk defined in eqn. 3.1, Arjovsky et al. (Arjovsky et al., 2019) argued

that ML models should learn the causation that truly defines the outcome. In defining

causation, we distinguish it from correlation, where correlation can be either spurious or

causal. A ML model that learns a spurious correlation between input and output can make

accurate predictions in training environments, but not in test environments. This is the main

reason why a ML model driven by ERM fails in OOD generalization. In contrast, a causal

correlation is one that is invariant, and thus does not change across different environments.

As a result, a ML model that learns the causation would perform consistently well across all

environments, which is the ultimate goal of OOD generalization.

Because causation does not change across environments, Arjovsky et al. (Arjovsky

et al., 2019) promoted “invariance” as the main feature of causation and determined that

ML models that perform well in OOD generalization should find a predictor that learns

the invariant correlation across all environments. We call a predictor that reaches this goal

an invariant predictor. In addition to the general requirement for a predictor that it should

perform well on the whole training data set collected from all environments, the invariant

predictor is also required to exhibit a second quality, referred to as “invariance,” which is

defined as having consistent performance across every environment.

While the ERM method achieves the general requirement for a predictor, how to get

an invariant predictor that exhibits invariance across different environments is the main

challenge for developing OOD generalization methods. In the remainder of this Section,

we first introduce ERM as a baseline method, and then introduce three additional widely

applied OOD algorithms that aim to find an invariant predictor.
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3.1.1 Empirical Risk Minimization (ERM)

The Empirical Risk Minimization (ERM) approach assumes that the training data and the

test data are i.i.d. Thus, the optimal predictor fθ can be found by minimizing the average

risk of all training environments. The risk form of ERM is defined as:

RERM =
m

∑
e=1

Re(θ) (3.2)

where e denotes each training environment. In brief, ERM makes no special acknowledg-

ments that the problem at hand is an OOD problem. Thus, ERM is typically used to define a

baseline prediction.

3.1.2 Invariant Risk Minimization (IRM)

Motivated by the idea that causation often does not happen explicitly through input variables

of a dataset (e.g., in computer vision the collection of correlated pixels that define a recogniz-

able object are often not explicitly definable), Arjovsky et al. (2019) proposed the Invariant

Risk Minimization (IRM) algorithm to search for an invariant predictor through finding a

data representation for which the optimal predictor is the same for all environments. For-

mally, they define a data representation Φ : X →H that elicits an invariant predictor w◦Φ

across environments E train if there is a classifier w for w̄ : H → Y , that is simultaneously

optimal for all environments, i.e., w ∈ argminw̄:H→Y Re(w̄◦Φ), for all e ∈ E train. Note that

the authors of IRM method used the term “classifier” to denote the last layer w̄ for both

classification and regression problems. Though in this work only regression problems in

mechanics are considered, the term “classifier” is still adopted in order to keep it consistent

with the original IRM paper (Arjovsky et al., 2019). The mathematical form of IRM is given

as:
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min
Φ:X→H
w:H→Y

m

∑
e=1

Re(w◦Φ) subject to w ∈ arg min
w̄:H→Y

Re(w̄◦Φ), for all e ∈ E train . (3.3)

To help interpret the terms in eqn. 3.3 in the context of neural networks, the corresponding

components are schematically illustrated in Fig. 3·1. In this example, training data was

collected from m environments. The input and output data of each training environment is

defined as {Xei,yei}. The data representation Φ that transforms Xei to Hei is the same across

all environments. Determining the associated weights of Φ, wei , is the goal of the IRM

algorithm. The optimal wei for each training environment is found by minimizing the loss

l(ŷei,yei) between ŷei = wei ◦Φ(Xei) and yei , i.e., Ri(wei ◦Φ). Thus, in this example the goal

of eqn. 3.3 is to search for a data representation Φ where wei is identical across all training

environments, i.e., we1 = we2 = . . .= wem .

. . .

Train Environment 1 Train Environment m

. 
. 

. . 
. 

. . 
. 

.

. 
. 

. . 
. 

. . 
. 

.

Figure 3·1: Example illustration for IRM.

Because solving the bi-level optimization problem defined in eqn. 3.3 is very challenging,

Arjovsky et al. (2019) simplified the optimization problem by assuming that the optimal

classifier w is a linear and fixed vector w = w∗. Thus, the risk given by the practical version

of IRM is:
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RIRM =
m

∑
e=1

Re(w∗ ◦Φ) + λ ·
∥∥∇w|w=w∗ Re(w◦Φ)

∥∥2
. (3.4)

For this version of IRM, the goal becomes to find a data representation Φ such that the

optimal wei of each training environments is w∗. The first item of eqn. 3.4 measures the

predictive power of the predictor w∗ ◦Φ on the training data environments. The second

term is the gradient penalty that measures the optimality of the choice w = w∗ for all

training environments. Because the practical form assumes that the optimal w for all training

environments is w = w∗, the gradient of Re(w ◦Φ) should reach its minimum at w = w∗,

i.e., the gradient of Re(w◦Φ) with respect to w should be zero at w = w∗. More discussion

about the relationship between the original objective eqn. 3.3 and the practical objective

eqn. 3.4 can be found in Arjovsky et al. (2019). Then, Arjovsky et al. (2019) set w∗ to be a

fixed scalar w∗ = 1.0 such that the practical form of IRM is given by:

RIRM =
m

∑
e=1

Re(Φ) + λ ·
∥∥∇w|w=1.0 Re(w ·Φ)

∥∥2
. (3.5)

This practical version of IRM is composed of two terms with a penalty weight λ that

controls the balance between the terms. The first term is identical to the ERM term defined

in eqn. 3.2. The second term is the gradient penalty that measures the optimality of the

pragmatic choice w = 1 for all training environments. The evaluation of IRM method on

out of distribution tasks through its practical form eqn. 3.5 is in Section 3.4.

3.1.3 Risk Extrapolation (REx)

Inspired by IRM, Krueger et al. (2021) aim to find an invariant predictor through finding

an “equipredictive” representation Φ which they defined as a data representation with

the property that the distribution Pe(y|Φ) is equal for e ∈ Eall. In order to help build a

geometric intuition of REx, they emphasized that their method is an extension to another

OOD generalization method, Distributionally Robust Optimization (DRO) (Sagawa et al.,
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2019), the objective of which is a risk interpolation defined as:

RRI = max
∑e λe=1

λe≥0

m

∑
e=1

λeRe(θ) (3.6)

The REx method instead considers that the coefficient of the risk from each environment

can be negative such that it allows us to extrapolate to more extreme variations. Since the

final goal of OOD generalization is to minimize the maximal risk (or the worst case risk)

across all environments, they call their method as minimax Risk Extrapolation (MM-REx),

the objective of which is defined as:

RMM-REx = max
∑e λe=1
λe≥λmin

m

∑
e=1

λeRe(θ) (3.7)

where λmin is a hyperparameter that controls how much to extrapolate. To minimize eqn. 3.7,

the optimal solution is obtained at R1 = R2 = . . .= Rm. In other words, REx encourages the

equality of risks from different environments, which can also be achieved by minimizing

the variance of risks across training environments. In practice, they found the optimization

landscape is smoother by using the variance of risks to be the penalty term of the risk

objective. Therefore their practical form of the risk extrapolation is given by:

RREx =
m

∑
e=1

Re(θ)+λVar({R1(θ), . . . ,Rm(θ)}) . (3.8)

Similar to eqn. 3.5, the form of REx is composed of an ERM term and a penalty term

where a penalty weight λ controls the balance between the two terms. In eqn. 3.8, the penalty

term measures the variance of risks across training environments. By directly focusing on

the invariance of risks, the creators of REx argue that it provides robustness to covariate

shift where IRM can easily fail. The veracity of this claim will be evaluated in Section 3.4

through its practical form eqn. 3.8.
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3.1.4 Inter Gradient Alignment (IGA)

Inspired by information theory, Koyama and Yamaguchi (2020) attempts to find a data

representation Φ that maximizes the mutual information between Φ and the output interest y.

In statistics, the mutual information measures the mutual dependence between two variables.

It becomes zero if Φ and y are independent, and becomes largest if Φ is a deterministic

function of y. They called the invariant predictor found by this method as the maximal

invariant predictor (MIP). To seek the MIP, they proposed Inter Gradient Alignment (IGA)

that forces the risk gradient of each training environment to align with each other, i.e.,

∇θR1 = ∇θR2 = . . . = ∇θRm. This was implemented by minimizing the variance of the

gradient of risks across all environments. Thus the risk form of the IGA algorithm is defined

as:

RIGA =
m

∑
e=1

Re(θ)+λ trace(Var({∇θR1(θ), . . . ,∇θRm(θ)})) . (3.9)

Like with eqn. 3.5 and eqn. 3.8, the first term of the IGA equation is an ERM term. In

eqn. 3.9, the second term is the trace of the variance of risk gradient, and λ is a penalty

weight control parameter that controls the balance between the two terms. The mathematical

relationship between MIP objective and IGA algorithms can be found in Koyama and

Yamaguchi (2020)

3.1.5 Limitations

The risk functions of the three algorithms designed for OOD generalization problems all

follow the same form. The first term is an ERM term that corresponds to the general quality

of a predictor, i.e., low error on training data. The second term penalizes the variance of

the predictor across all training environments Etrain, which aims to reach the second quality

of an invariant predictor defined in Section 3.1, i.e., invariance across all environments

Eall. To make sure the invariant predictor for E train is also the invariant predictor for
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Eall, the invariance across E train should imply the invariance across Eall (Arjovsky et al.,

2019). However, this is difficult to realize for real world data. On the other hand, based on

the different assumptions underlying each of these algorithms, they may optimally target

different types of OOD problems, though unfortunately there exists no guide for the optimal

ODD problem for a given OOD algorithm. In Section 3.4 these algorithms will be tested on

the different types of OOD problems defined in Chapter 2 to have a better understanding on

how they perform on different OOD problems specific to mechanics data.

3.2 Machine Learning Models

This Section will briefly introduce the two base models used to test the four algorithms

introduced in Section 3.1 on the three OOD datasets introduced in Chapter 2. The first model

is a Multilayer Perceptron (MLP) Model, while the second model is a LeNet (LeCun et al.,

1998) model which was originally designed for digit classification on the MNIST dataset. In

comparison to the original LeNet model that was designed for classification problems, the

activation (Softmax→ ReLu) and pooling (Avepooling→Maxpooling) layers of the LeNet

model were modified to better serve regression problems from the Mechanical MNIST

dataset. Here, Fig. 3·2 shows the schematic illustrations of the MLP model and the modified

LeNet model. The MLP model is a feedforward Neural Network composed of forward

fully connected layers and ReLU activation layers. The LeNet model is a Convolutional

Neural Network composed of convolutional layers, maxpooling layers and ReLU activation

layers (LeCun et al., 1998).

For the OOD datasets targeting covariate shift and mechanism shift, the true unscaled

modulus values are used as model inputs because the shifts in the output feature strain

energy are controlled by the scale of the modulus. Thus, rescaling the input could impede

the OOD algorithms from learning invariant features between the different environments.

For the OOD dataset targeting sampling bias where s = 100 is applied for all data, the inputs
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Figure 3·2: Illustration of model structures of the MLP model and the
modified LeNet introduced in Section 3.2.

for the models are modulus values that were scaled to be within 0∼ 1 by dividing by 100 to

help achieve faster model convergence.
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3.3 Hyperparameter Tuning and Performance Evaluation Metrics

3.3.1 Model Selection and Hyperparameter Tuning

Although OOD generalization problems are very important for the real world applicability

of many ML techniques, and many promising algorithms have recently been proposed (Shen

et al., 2021), one major issue is that there does not exist a standardized approach to select

models for such problems (Gulrajani and Lopez-Paz, 2020). In ML frameworks, it is

imperative that performance is ultimately evaluated on unseen test data (Gulrajani and Lopez-

Paz, 2020). For OOD approaches, the delineation between test and training datasets remains

essential, yet the violation of the i.i.d. assumption between the test and training datasets

adds another layer of complication. Because each test environment can be qualitatively

and quantitatively different, it is likely that performance will vary widely across different

test environments for an identical set of model hyperparameters. Although existing OOD

algorithms have shown robustness on shifted test datasets in comparison to the ERM

method, these performance enhancements are obtained by tuning the hyperparameters

of the OOD algorithm (i.e., tuning the penalty weight term in the risk function) on test

environments (Krueger et al., 2021). In this work, special care is taken to define test

environments that are truly “unseen” i.e., are not used in any way to select or tune model

hyperparameters. To accomplish this, the training datasets are split into training (80%) and

validation datasets (20%) while the hyperparameters are tuned on the validation datasets

alone. For the OOD algorithms introduced in Section 3.1, the similar implementation process

in (Arjovsky et al., 2019) is used. Specifically, there are two main hyperparameters to tune:

the penalty weight λ, and the anneal step t, after which we add the penalty (invariant term)

to the loss function. The anneal step is determined by the step after which the validation

error stops decreasing for ERM. During the training process, the penalty weight is set to

10−4λ before the anneal step and set to be λ afterwards. The final optimal penalty weight is

then selected as the weight that reaches the lowest mean validation error for three models
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trained with different random initializations. Note that if the penalty weight is too small,

the penalty term has little influence on the training process such that the training history of

the OOD algorithms will be similar to ERM, and so we neglect such small penalty weights

during the hyperparameter tuning process. One example of this is shown in Fig. 3·3, which

compares the training history of the modified LeNet using ERM and IRM algorithm on

the covariate shift dataset defined in Section 2.2. In Fig. 3·3(a), the penalty weight of IRM

before the anneal step (15000) is 10−10, which is small enough such that the training history

is almost the same as ERM. The penalty weight changes to λ = 10−6 from the anneal step

where the training error suddenly increases at step t = 15000. However, in Fig. 3·3, the

penalty weight λ = 10−7 is too small, as the training error after the anneal step still follows

the track of ERM, which means that the penalty term does not work. Thus, we will ignore

the value λ = 10−7 regardless of the magnitude of the validation error for the model trained

with this penalty weight.

The final selection of hyperparameters for all approaches is given in Appendix A.1.

(a)

anneal 
step

(b)

anneal 
step

Figure 3·3: Example of how penalty weight influences the training error
history of a modified LeNet. The penalty weight is formally introduced after
the anneal step (15000). (a) training error history of ERM and IRM with
penalty weight is equal to 10−6 (b) training error history of ERM and IRM
with penalty weight is equal to 10−7.
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3.3.2 Evaluation Metrics

Two models described in Section 3.2 were trained 15 times each for each of the four

algorithms with initializations defined by seeds from k = [1,2,3 . . .15]. The results are

reported based on many initializations to ensure that the conclusions are not based on

outlier results obtained due to the randomness of the training process. Note that for each

approach, if the lowest training error obtained from an initialization is too large, where large

is defined as three times higher than the lowest training error obtained from at least ten other

initializations, the model will be re-trained with a different initialization not used in the

initial group of 15. After that, the performance of each model on all test environments is

evaluated by calculating the root mean squared error (RMSE) between the predicted change

in strain energy ŷ and the ground truth y. The effectiveness of each algorithm in every test

environment is evaluated by two metrics. The first is the root mean squared error of the

aggregate mean prediction across all 15 models with different initialization, which is defined

as:

RMSE =

√√√√(
y− 1

15

15

∑
k=1

ŷk
)2
. (3.10)

The second is the average of the root mean squared error of all 15 models, which is defined

as:

RMSE ′ =
1

15

15

∑
k=1

√(
y− ŷk

)2
. (3.11)

The RMSE of aggregated mean prediction defined in eqn. 3.10 is used to evaluate the

four methods in Section 3.1 and the results are discussed in the following Section 3.4. The

average of RMSE defined in eqn. 3.11 is represented in Appendix A.2.

3.4 Results and Discussion

This section examines the performance of all four algorithms introduced in Section 3.1 on the

OOD datasets defined in Chapter 2. Section 3.4.1 presents the results for the OOD problem
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caused by covariate shift. Section 3.4.2 presents the results for the OOD problem caused

by mechanism shift. Section 3.4.3 presents the results for the OOD problem caused by

sampling bias. Finally, Section 3.4.4 concludes common findings across all investigations.

3.4.1 ML Model Performance on the Covariate Shift Dataset

This Section evaluates the four different ML methods introduced in Section 3.1 on the two

covariate shift datasets from Mechanical MNIST and Mechanical MNIST-EMNIST Letters.

The problem definition and details of creating the covariate shift datasets were introduced

in Section 2.2. For all four algorithms (ERM, IRM, REx, and IGA), the MLP model and

the modified LeNet model are trained separately (see model architectures in Section 3.2).

The performance of the MLP and LeNet model on the training, validation, and testing

environments of each covariate dataset are shown in Fig. 3·4 for each algorithm. Specifically,

Fig. 3·4a shows the performance results for the covariate shift dataset from Mechanical

MNIST and Fig. 3·4b shows the performance results for the covariate shift dataset from

Mechanical MNIST-EMNIST Letters. In each Figure, the root mean square error (RMSE)

of the aggregate mean prediction described in eqn. 3.10 is shown. The performance of the

baseline ERM method is illustrated with black markers, and the performance of the other

three OOD algorithms is represented in red hues. For all algorithms, the RMSE of aggregate

mean prediction is plotted for the training environment, the validation environment, and

both test environments.

Fig. 3·4a-i shows the results of training the MLP model with all four algorithms on the

covariate shift dataset from Mechanical MNIST. Here, the ERM approach achieves a very

low error on the training data (RMSE 2.01) with a slightly higher error on the validation data

(RMSE 20.85). For context, in Fig. 3·4a, the training dataset has mean 559.12, and standard

deviation 45.99, and the validation dataset has mean 559.35, and standard deviation 45.74.

For a typical ML modeling approach driven by ERM (i.e., traditional ML method), the

model performance on the validation dataset is assumed to be very close to the performance
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TestTrain

Covariate Shift - EMNIST Letters (MLP)

Figure 3·4: The performance of four algorithms (ERM, IRM, REx, IGA) on
the covariate shift datasets defined in Section 2.2. The RMSE is calculated
using eqn. 3.10. (a) The performance of a MLP model(a-i) and a modified
LeNet model(a-ii) trained by four algorithms on training, validation, and
testing data from Mechanical MNIST Collection. (b) The performance of a
MLP model(b-i) and a modified LeNet model(b-ii) trained by four algorithms
on training, validation, and testing data from Mechanical MNIST - EMNIST
Letters Collection. Additional visualization of these results can be found in
Appendix A.2, which shows a comparison of prediction vs. ground truth, and
Appendix A.2 which shows representative samples of different error levels.

of the model on unseen test datasets. However, it is worth noting that compared to the

validation data, the performance of ERM on both test environments with covariate shift

is substantially worse. Specifically, the test error of test environment 1 is RMSE 55.53,

and the test error of test environment 2 is RMSE 92.52. For the MLP trained by the three
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OOD algorithms, the test error on both test environments 1 and 2 is lower than ERM. In

addition to plotting these values in Fig. 3·4, they are listed in Table A.3 in Appendix A.2.

Overall, the lowest test error is obtained by IRM with a validation error of RMSE 16.48,

and test error of RMSE 39.85 on test environment 1 and RMSE 44.23 on test environment

2. Through the same evaluation process as the MLP model, the results on the covariate

shift dataset from Mechanical MNIST obtained by a modified LeNet model are shown in

Fig. 3·4a-ii. Overall, the performance of all methods improves because of the deeper and

more powerful Convolutional Neural Network model architecture. However, consistent

with the MLP results, the methods designed for the OOD problems outperform the ERM

algorithm. In this case, the best performance is obtained by REx with the training and test

error consistently below RMSE 10, with the error on test environment 1 (RMSE 8.77) being

almost a third of ERM (RMSE 22.46), while the error on test environment 2 (RMSE 7.94)

is more than four times smaller than ERM (RMSE 35.75).

The results of repeating this process on the covariate shift dataset from Mechanical

MNIST - EMNIST Letters are shown in Fig. 3·4b. For context, in Fig. 3·4b, the training

dataset has mean 703.01, and standard deviation 86.26, and the validation dataset has mean

706.98, and standard deviation 88.45. For the evaluation results on MLP in Fig. 3·4b-i, the

ERM method obtained a low error on the validation dataset (RMSE 36.21) but behaved

poorly on test error with RMSE 87.24 on test environment 1 and RMSE 167.57 on test

environment 2. For the evaluation results on modified LeNet in Fig. 3·4b-ii, the ERM method

again obtained a low error on validation dataset (RMSE 28.47) but a high test error with

RMSE 80.77 on test environment 1 and RMSE 162.48 on test environment 2. Note that for

ERM, although the validation error decreased by 21.38% by using a deeper convolutional

neural network (LeNet) compared to the simple MLP model, the decrease of test error by

using LeNet is very small, as the error drops by only 7.42% for test environment 1 and

3.04% for test environment 2. In contrast to ERM, the OOD algorithms still performed
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better on test environments for both the MLP model as shown in Fig. 3·4b-i and the LeNet

model as shown in Fig. 3·4b-ii. The best performance is obtained by IGA with RMSE

52.24 on test environment 1 and RMSE 95.04 on test environment 2 for the MLP model,

while its RMSE was 30.27 on test environment 1 and 54.33 on test environment 2 for the

modified LeNet model. And compared to ERM, the performance of all OOD algorithms was

improved by using a deeper Neural Network. For example, compared to the MLP model,

by implementing IGA on the modified LeNet model, the test error decreased by 42.06% on

test environment 1 and 42.83% on test environment 2. More statistics about the data and

the evaluation results are given in Table A.4 in Appendix A.2. Further discussion of these

results is also given in Section 3.4.4.

3.4.2 ML Model Performance on the Mechanism Shift Dataset

The performance of two ML models is evaluated on the two mechanism shift datasets from

both Mechanical MNIST and Mechanical MNIST-EMNIST Letters using the same method

described in Section 3.4.1. The problem definition and processing details of the mechanism

shift datasets were introduced in Section 2.3. Since the training environments in this Section

are the same as in Section 3.4.1, the two ML models (MLP and modified LeNet) already

trained in Section 3.4.1 are used to test the two new test environments with mechanism

shift. For all algorithms introduced in Section 3.1, the aggregate mean prediction RMSE

for the training environment, the validation environment, and both test environments are

plotted in Fig. 3·5. Specifically, Fig. 3·5a shows the performance results for the mechanism

shift dataset from Mechanical MNIST and Fig. 3·5b shows the performance results for the

mechanism shift dataset from Mechanical MNIST - EMNIST Letters. Similar to the results

for the covariate shift datasets in Section 3.4.1, for both Mechanical MNIST and Mechanical

MNIST - EMNIST Letters, the three OOD algorithms perform better than the baseline ERM

method on both test environments for both the MLP and LeNet models.

For the mechanism shift data from Mechanical MNIST, Fig. 3·5a-i shows the perfor-
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Figure 3·5: The performance of four algorithms (ERM, IRM,REx, IGA) on
mechanism shift data defined in Section 2.3. The RMSE is calculated using
eqn. 3.10. (a) The performance of a MLP model(a-i) and a modified LeNet
model(a-ii) trained by four algorithms on training, validation, and testing
data from Mechanical MNIST Collection. (b) The performance of a MLP
model(b-i) and a modified LeNet model(b-ii) trained by four algorithms on
training, validation, and testing data from Mechanical MNIST - EMNIST
Letters Collection. Additional visualization of these results can be found in
Appendix A.2, which shows a comparison of prediction vs. ground truth,
and representative samples of different error levels.

mance of the four algorithms using the MLP model. The performance of the three OOD

algorithms for a MLP model is similar with the IRM method achieving the lowest test

error for both environments 1 (RMSE 56.31) and 2 (RMSE 35.43). In contrast, the test

error achieved by ERM is RMSE 110.19 for test environment 1 and RMSE 71.55 for test
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environment 2. In Fig. 3·5a-ii, which shows the performance of the four algorithms on the

modified LeNet model, the test error of ERM drops significantly to RMSE 42.88 for test

environment 1 and RMSE 31.15 for test environment 2. However, these numbers are still

much larger than the test error obtained through the OOD algorithms. Specifically, REx

achieves the lowest test error for both environments 1 (RMSE 7.70) and 2 (RMSE 10.59).

Since the mechanism shift is a more challenging phenomenon to capture than the covariate

shift due to a shift in both the input and output data, it is worth noting that for the ERM, the

test error of test environment 1 in this Section is larger than the test error of the two test

environments shown in Section 3.4.1, while the RMSE of REx is similar to that seen in the

covariate shift example.

For mechanism shift data from the Mechanical MNIST - EMNIST Letters Collection,

Fig. 3·5b-i shows the performance of the four algorithms using the MLP model. Compared

to ERM which gets RMSE 206.02 on test environment 1 and 163.66 on test environment

2, the decrease in test error obtained by the OOD algorithms is still lower where IGA

obtained the lowest error (RMSE 133.05) on test environment 1 while REx obtained the

lowest error (RMSE 131.10) on test environment 2. Fig. 3·5b-ii shows the performance of

the four algorithms on LeNet model. The performance of all OOD algorithms improved

significantly with IGA obtaining the lowest error on both environments (RMSE 57.96 for

test environment 1, and RMSE 31.49 for test environment 2) while ERM still obtained very

high test error (RMSE 215.98 on test environment 1 and RMSE 222.95 on test environment

2). Further discussion of these results is given in Section 3.4.4.

Furthermore, the test error of test environment 2 in this Section drops slightly compared

to the test environment 1 error for both mechanism shift datasets. Note that for mechanism

shift datasets from both Mechanical MNIST and Mechanical MNIST - EMNIST Letters, the

output standard deviation of test environment 2 is slightly smaller than the output standard

deviation of the test environment 1 (see Table A.5 and Table A.6), which can cause test
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environment 2 to get a smaller RMSE. Taking the mechanism shift dataset from Mechanical

MNIST Collection as an example, the output standard deviation of test environment 2 is

31.37 while the output standard deviation of the test environment 1 is 37.94, as given in

Table A.5.

3.4.3 ML Model Performance on the Sampling Bias Dataset

In this Section, the performance of four algorithms described in Section 3.1 is evaluated on

OOD problems caused by sampling bias as described in Section 2.4. Similar to Section 3.4.1

and Section 3.4.2, the RMSE of aggregate mean prediction for the training environment, the

validation environment, and all test environments are plotted on Fig. 3·6. The performance of

the four algorithms on the sampling bias data from Mechanical MNIST is shown in Fig. 3·6a.

The performance of ERM and IRM on all environments is very close for both the MLP and

LeNet models. The REx method obtained lower test error than ERM for the MLP model,

but unlike the covariate shift and mechanism shift examples, achieves no improvement for a

LeNet model. The IGA method is the only algorithm that consistently performs better than

ERM on test environments, though the improvements are relatively small. Specifically, for

the MLP model, ERM achieved a RMSE of 29.54 on test environment 1, a RMSE of 26.63

on test environment 2, and a RMSE of 29.21 on test environment 3, while IGA achieved a

RMSE of 16.25 on test environment 1, a RMSE of 15.91 on test environment 2 and a RMSE

of 18.24 on test environment 3. For the LeNet model, ERM achieved a RMSE of 10.97 on

test environment 1, a RMSE of 10.89 on test environment 2, and a RMSE of 13.22 on test

environment 3. In contrast, IGA achieved a RMSE of 10.28 on test environment 1, a RMSE

of 10.08 on test environment 2, and a RMSE of 11.74 on test environment 3. Although IGA

performs better than ERM on test environments for a LeNet model, it is worth noting that

the training and validation error (RMSE 6.21) of IGA was slightly larger than the validation

error (RMSE 5.41) for ERM. Critically, this demonstrates that a lower training or validation

error does not necessarily mean a lower test error if there is a strong spurious correlation
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present in the training environments.

TestTrainTestTrain

(a-i) (a-ii)

(b-i)

Train

(b-ii)

Test Train Test

Sampling Bias - MNIST (MLP) Sampling Bias - MNIST (LeNet) 

Sampling Bias - EMNIST Letters (MLP) Sampling Bias - EMNIST Letters (LeNet)

Figure 3·6: The performance of four algorithms (ERM, IRM,REx, IGA) on
the sampling bias data defined in Section 2.4. The RMSE is calculated using
eqn. 3.10. (a) The performance of a MLP model(a-i) and a modified LeNet
model(a-ii) trained by four algorithms on training, validation, and testing
data from Mechanical MNIST Collection. (b) The performance of a MLP
model(b-i) and a modified LeNet model(b-ii) trained by four algorithms on
training, validation, and testing data from Mechanical MNIST - EMNIST
Letters Collection. Additional visualization of these results can be found in
Appendix A.2, which shows a comparison of prediction vs. ground truth,
and representative samples of different error levels.

The performance of the four algorithms on the sampling bias data from Mechanical

MNIST - EMNIST Letters is shown in Fig. 3·6b. For the performance on the MLP model

in Fig. 3·6b-i, all three OOD algorithms obtained lower test error than the ERM, with IGA
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obtaining the lowest test error where the RMSE is 26.91 for test environment 1, 27.08 for

test environment 2, and 33.28 for test environment 3. In contrast, ERM obtained a RMSE

36.48 for test environment 1, 36.69 for test environment 2, and 42.42 for test environment 3.

However for the performance on the LeNet model, as shown in Fig. 3·6b-i, the performance

of the three OOD algorithms is similar to ERM, with no improvement observed for the three

test environments. Further discussion of these results is in the next Section.

3.4.4 Common Findings Across All Datasets

Sections 3.4.1-3.4.3 show the results of all the OOD experiments that have been conducted.

Across all experiments, the error on OOD test data using the traditional ERM method (not

designed with OOD problems in mind) is much higher than the error that would be predicted

based on the validation data. This indicates that models trained by ERM are vulnerable to

suffering poor performance when exposed to OOD test data. Thus, even if a ML model

obtains a low error for validation data that is i.i.d. with respect to the training data, the

test error can be very high when it is applied to practical test situations when the test data

distribution may be shifted. In contrast, it is found that the OOD generalization methods

were effective in reducing the test error on OOD test data, in particular for the covariate

shift and mechanism shift challenge problems. However, the effectiveness of the OOD

algorithms in decreasing the test error on sampling bias data was small, in particular when

using a deeper ML (LeNet) model. This makes the sampling bias problem that introduces

spurious correlations the most challenging out of the three OOD problems in mechanics.

Secondly, although the OOD generalization methods try to find an invariant predictor

enabling consistent performance across all environments, the test error is still much larger in

comparison to the training and validation errors for all of the OOD experiments conducted

in this work. One potential reason is that the hyperparameters are tuned on the validation

dataset, which is still collected from the training environments. Thus there is bias in the

model selection in terms of hyperparameter tuning. This means that while the model
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selection method of tuning the network hyperparameters on the validation dataset can

guarantee that the penalty weight selected is within a reasonable regime (i.e., sufficiently

large such that it does impact the training process, but not too large such that it jeopardizes

convergence), the selected penalty weight is not guaranteed to be the optimal penalty weight

for each OOD dataset or for each algorithm. As a result of this, there is variability in

performance for each OOD algorithm on the different OOD problems. Specifically, it is not

found that one OOD algorithm can consistently outperform others.

Another possible reason why these OOD algorithms cannot obtain a test error as low as

the training error is that the “invariance” term introduced by these algorithms is not sufficient

for a ML model to learn all factors contributing to the invariance across environments.

Thus, while some biased solutions can be avoided during the training process, the penalty

introduced by these algorithms is not formulated such that a ML model will find the causal

solution exclusively. This implies that there may need to be a re-evaluation of how invariance

is defined in this context in order to make the OOD methods more generalizable for problems

in mechanics. Specifically, assumptions on the “ invariance” of each OOD generalization

method should be more clear on how they are related to each type of OOD problem. This

development would be critical to confidently solving OOD problems in mechanics, like

predicting the mechanical behavior of materials.

Third, it is found that the test error for the covariate shift and mechanism shift datasets

from the Mechanical MNIST - EMNIST Letters dataset is much larger than from the

standard Mechanical MNIST examples. This can be attributed to the larger mean and the

standard deviation of the covariate dataset from Mechanical MNIST - EMNIST Letters than

the covariate shift dataset from Mechanical MNIST. For example, for the covariate shift data

from the Mechanical MNIST Collection, the standard deviation of the target property, i.e.,

the change in strain energy, is 48.17 in test environment 1 and 44.90 in test environment 2,

while for the covariate shift data from Mechanical EMNIST - Letters, the standard deviation
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of the same target property is 86.30 in test environment 1 and 79.58 in test environment

2, both of which are about twice the standard deviation value in covariate shift data from

Mechanical MNIST Collection. As a result, the RMSE of results on Mechanical MNIST -

EMNIST Letters is also about twice larger than the RMSE of results on Mechanical MNIST

Collection. More statistics of each dataset and the details of evaluation results can be found

in Appendix A.2, Table A.3, and Table A.4. In addition, the data distribution the original

MNIST and EMNIST Letters are not the same, which does not assure that the model trained

on these two datasets can get the same performance.

Fourth, one objective of this work is to assess these OOD algorithms not only by their

performance on different types of OOD problems, but also by their demand for computational

resources and feasibility of implementation. To this end, it is worth noting that the penalty

term of REx is the only one that does not require the computation of the gradient of risks

during the training process. Thus its applicability is not restricted by computational capacity

and can be broadly applied to deeper and more complex ML models. Since the performance

of REx on OOD test data was consistently better using the deeper LeNet model, this may

imply that REx is a better choice than the other two OOD algorithms for large and complex

datasets that require deeper ML architectures for good performance. In contrast, the IGA

method is more computationally intensive because it requires computing the risk towards

all the weights of a Neural Network. However, the performance of IGA on the three OOD

mechanics problems is overall the best as it outperforms the other two OOD algorithms

in most scenarios. Thus, IGA may be the most appropriate choice when the problem of

interest involves a small dataset without requiring a complex ML model. In contrast to

IGA, the IRM method needs to compute the gradient of risk for only the weight of the last

layer of a Neural Network, which means it requires less computational capacity than IGA.

However, because its performance was generally worse than REx and IGA for the three

OOD mechanics problems, IGA and REx appear to be better choices for the OOD problems
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studied here.

Finally, in contrast to the performance of these OOD algorithms on classification prob-

lems in which they were shown to have similar accuracy on test data and training data (Ar-

jovsky et al., 2019; Krueger et al., 2021; Koyama and Yamaguchi, 2020), the test error

obtained by these OOD algorithms for the regression problems in mechanics is still sig-

nificantly higher than their validation error. This is reasonable, because as compared to a

classification problem with binary outputs of either 1 (belong to this class) or 0 (does not

belong to this class) in both training and test datasets, the output of regression problems

is usually continuous and can shift to very different value ranges than the values in the

training dataset. This characteristic of regression problems makes capturing shifts in the data

more challenging than in classification. Therefore, as mechanics problems typically require

regression, and because of the many different types of OOD problems that are possible, this

may require further development of OOD methods that can robustly handle multiple types

of OOD shifts in order to solve OOD regression problems in mechanics.

3.5 Conclusion

In Chapter 2 and Chapter 3, a systematic investigation of OOD generalization problems

in mechanics was conducted by identifying three new challenge problems with test data

distribution shifts: covariate shift, mechanism shift, and sampling bias. To study these prob-

lems, two OOD benchmark datasets for each of the three challenge problems based on the

Mechanical MNIST and Mechanical MNIST – EMNIST datasets were created. Following

that, two types of ML models, a multilayer perceptron (MLP) and a convolutional neural

network (modified LeNet), were independently trained on these datasets with four different

risk minimization algorithms. One algorithm, the classical Empirical Risk Minimization

(ERM) served as a baseline algorithm for comparison with three other popular methods

specially designed for solving OOD generalization problems, Invariant Risk Minimization
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(IRM), Risk Extrapolation (REx) and Inter Gradient Alignment (IGA). Through evaluating

the performance of these algorithms, it is found that OOD generalization methods typi-

cally outperform ERM by achieving a lower predicting error on OOD test data while still

maintaining good performance on training data. And, all algorithms tended to work better

when paired with the more complex LeNet model than when paired with the simpler MLP.

However, no algorithm had consistent top performance across all six OOD generalization

problem datasets. And, while these OOD generalization algorithms have been reported

in the literature to achieve near consistent performance on training and test environments

for OOD classification problems (Arjovsky et al., 2019; Krueger et al., 2021; Koyama and

Yamaguchi, 2020), for the OOD regression problems in mechanics covered in this study,

there are only a few cases where these OOD generalization algorithms achieved comparable

performance on both training and testing environments. In most cases, the error in the test

environments was much higher than the training and validation errors. These results suggest

that there is a need for methods to make these ML models more robust so that they can

generalize invariance to multiple OOD scenarios.

It is worth noting that beyond the three kinds of OOD problems considered in this study

(i.e., covariate shift, mechanism shift, and sampling bias), there are additional factors that

can cause poor generalization of ML models for problems in mechanics. For example, OOD

problems also exist if the scope of the training data does not cover the whole landscape of

the data distribution, i.e. the scenario where new physics emerges due to the shifts of the

landscape in the testing environments. Examples of this include different flow behavior for

low and high Reynolds numbers (Smits et al., 2011), or linear vs. nonlinear mechanical

response of soft tissues in the small and large strain regimes (Fung, 2013). In these situations,

it is difficult for traditional ML methods to predict the new physics and handle the OOD

problem simply by learning from the training data. Because the OOD methods explored

in this study have only been tested on covariate shift, mechanism shift, and sampling bias,
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OOD problems driven by the emergence of fundamentally different physical regimes are

beyond the scope of this study, and represent a promising avenue for future work.

Overall, this study provides a critical first evaluation of OOD ML methods in mechanics.

Based on this work, it can be anticipated that the benchmark regression datasets created

for OOD problems in mechanics can accelerate the study of OOD generalization problems

in the context of regression. And, this work of examining OOD generalization problems

in mechanics is a critical step towards applying ML methods to practical problems in real

world mechanics. Looking forward, defining OOD generalization methods that are specific

to problems in mechanics will be an important direction for future research. Furthermore, it

is very important to establish a standard way of selecting hyperparameters when developing

new OOD generalization methods. Finally, note that in this study the environment label of

each dataset is assumed known. Future investigation should consider alternative methods that

have been proposed to divide the training data into different environments as a preprocess

step (Creager et al., 2021; Liu et al., 2021b). Broadly speaking, the methods and results

presented in this study are a starting point for future work in OOD generalization tasks in

mechanics.
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Chapter 4

Chiral Metamaterials

Shaat and Park (2023) introduced a chiral metamaterial that exhibits nonreciprocal and

asymmetric elasticity due to changes in the internal contact mechanism when forces are

applied from different directions. The fundamental unit of this chiral metamaterial consists

of two rigid circles connected by an elastic ligament. The surface of the rigid circle is

frictionless. In Shaat and Park (2023), this building block is characterized by a straight

ligament that has a fixed contact angle with the rigid circles, as shown in Fig. 4·1. Note that

the initial contact is stress-free so there is no contact pressure between the ligament and

the circle. In this work, an analysis will be conducted to show that the response to force

from different directions is significantly influenced by the contact between the ligament

and the rigid circles. To harness the potential of the ligament-circle contact mechanism

and facilitate programmability in the material’s reciprocity and stiffness asymmetry, the

chiral metamaterial design space is expanded by introducing additional design variations in

ligament shape, contact angle, and circle radius. This Chapter lays out the details of this

mechanical system.

4.1 Stiffness Definition

Fig. 4·2 illustrates a representative structure undergoing four different types of deformation:

extension, compression, anti-clockwise rotation, and clockwise rotation. Finite Element

Analysis (FEA) (Liu et al., 2021c; Szabó and Babuška, 2021; Yang et al., 2022; Yuan

et al., 2020, 2019) using the commercial software ABAQUS (Smith, 2009) was conducted
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Figure 4·1: Illustration of the chiral metamaterial in Shaat and Park (2023).
The ligament was tied to two rigid circles at the ends. The ligament shape
was fixed and the contact angle was 600 on both sides.

to obtain the force-displacement response for each deformation (see Appendix A.3 for

more details). For extension, a displacement u+x to the positive x direction was applied to

the right rigid circle. From reaction forces computed via FEA, we can get two stiffness

values k+xx = Fx/u+x , where Fx is the reaction force in the x direction when the displacement

is in the x direction, and k+yx = Fy/u+x , where Fy is the reaction force in the y direction

when the displacement is in the x direction. For compression, a displacement u−x in the

negative x direction was applied. Similarly, we can get the stiffness values k−xx = Fx/u−x and

k−yx = Fy/u−x . To distinguish the stiffness values obtained from the deformation of different

directions, the symbol “+” is used when the displacement is in the positive direction, and

the symbol “−” is used when the displacement is in the negative direction. For the anti-

clockwise rotation, the displacement u+y was applied and two stiffness values k+xy = Fx/u+y

and k+yy = Fy/u+y are calculated. For the clockwise rotation, the displacement u−y was applied

and the two stiffness values k−xy = Fx/u−y and k−yy = Fy/u−y are calculated. Considering all of

these displacement directions, the eight stiffness values of the chiral unit are summarized

using an array K = [k−xx,k
−
xy,k

−
yx,k

−
yy,k

+
xx,k

+
xy,k

+
yx,k

+
yy]. The material is described using the

stiffness matrix:

K =

[
kxx kxy
kyx kyy

]
(4.1)
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where the values of each element ki j can be either k−i j or k+i j . For typical materials, the

relationship k−i j = k+i j and ki j = k ji holds due to the Maxwell–Betti theorem (Viesca and

Rice, 2011; Coulais et al., 2017). When the stiffness values are different in opposite

directions of the same axis, i.e. k−i j ̸= k+i j , the reciprocity of linearity breaks, and the

material behaves like a bilinear spring (Lu and Norris, 2022). When the stiffness matrix is

asymmetric, i.e. ki j ̸= k ji, the reciprocity of the stiffness matrix is broken, similar to the odd

elasticity described recently (Scheibner et al., 2020). Both scenarios lead to nonreciprocal

effects in wave propagation. To distinguish between these cases, we refer to k−i j ̸= k+i j as

“non-reciprocity” and ki j ̸= k ji as “asymmetry”. In this work, the goal is to design a chiral

metamaterial to break symmetry and reciprocity to the largest extent, e.g., k−i j >> k+i j or

ki j >> k ji.

4.2 Contact Mechanism

This Section investigates how loads applied from various directions can induce distinct

contact modes between the rigid circle and the elastic ligament. An analogy can be drawn

between these diverse contact modes and varying the boundary conditions of an elastic beam

where adding and removing support conditions can dramatically change the mechanical

state of the structure, resulting in asymmetrical properties under different loading modes.

To further elucidate this concept, Fig. 4·3 presents an example of an identical structure

subjected to forces from two opposing directions – compressive and extensional loading. In

Fig. 4·3, ligament deformation was obtained through finite element simulation and magnified

by a factor of 10 to aid in visualization.

Fig. 4·3(a-i) shows the deformed structure under compressive load. The left circle

remains fixed while the right circle is subject to a displacement load u−x towards the left.

Following the deformation, the left circle and the ligament are detached while the right circle

and the ligament have a small area of contact. As the circle is frictionless, the ligament in the
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Figure 4·2: Illustration of the chiral metamaterial undergoing displacement
from four directions. The reaction force of the right rigid circles in the x
and y directions are denoted as Fx and Fy. The stiffness values are calculated
using the formula ki j = Fi/u j when u j is nonzero. A superscript “+” is added
to the displacement and stiffness symbol when the displacement is positive,
and “−” when the displacement is negative.

contact area only experiences pressure from the perpendicular direction. Consequently, the

mechanics of the structure can be equivalent to a beam fixed at both ends with a frictionless

roller in the middle, as illustrated in Fig. 4·3(b-i). In this context, the bending moment

around the roller support does not change since roller supports do not contribute to bending

moments. Specifically, if a roller support is positioned at the midpoint of a beam, the

bending moment will attain its maximum value and undergo an abrupt transition. To validate

this, Fig. 4·3(c-i) shows the evolution of the bending moment and axial force along the beam

from the left end to the right end. Notably, the bending moment around the roller support

(point A) reaches a maximum, aligning well with the proposed model in Fig. 4·3(b-i) that
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Figure 4·3: Mechanical model of the chiral structure under compression and
extension. (a) Chiral structure under (i) compression load and (ii) extension
load. The contact area of the deformed structure is highlighted with red color.
(b) Equivalent mechanical model illustrating the contact mechanism with
roller supporters substituting the contact area. (c) Distribution of Bending
Moment and Axial Force along the beam.

describes the mechanism of the chiral structure.

Fig. 4·3(a-ii) shows the deformed structure under an extension load. The left circle is

fixed and the right circle is subject to a displacement load u+x towards the right. Following

the deformation, the right circle and the ligament are detached while the left circle and the

ligament establish two contact areas. Similarly, the Fig. 4·3(b-ii) presents an equivalent

model of Fig. 4·3(a-ii). The two contact areas, one from point A to point B, and another

around point C, are also equivalent to roller supports. Fig. 4·3(c-ii) shows the evolution of

the bending moment and axial force along the beam for the extension load. The bending

moment remains constant in the area of rollers.
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While the ligament is linearly elastic, variations in boundary conditions occur under

loads from different directions, leading to varying stiffnesses in different directions. The goal

of this work is to maximize these discrepancies to achieve extreme mechanical behaviors.

The details of these objectives are elaborated in the following sections.

4.3 Strain Energy Components

The previous Section 4.2 provides a qualitative analysis of the contact modes of the chiral

structures. Specifically, the non-reciprocity and asymmetry of chiral metamaterials are

produced by the variation in contact modes leading to different boundary conditions of

the equivalent beam models. In this Section, a quantitative examination of the stiffness

disparities will be conducted. Specifically, the mechanics of the deformation under differ-

ent loading directions will be analyzed to understand how stiffness is either enhanced or

weakened depending on the direction of applied loads.

Fig. 4·4(a) shows a representative design where the values of k−xx and k+xx are different.

Regardless of the directions, when the only nonzero displacement is ux, the stiffness kxx of

the structure is determined by evaluating the total change in strain energy by the equation

below

Estrain =
1
2

kxxu2
x (4.2)

Following the finite element analysis of this structure, the strain energy is 0.007764 after

compression and 0.1064 after extension, with the ux set constant as −0.08 for compression

and +0.08 for extension. Through eqn. 4.2, the stiffnesses k−xx = 2.42 for compression and

k+xx = 33.25 for extension can be derived. It is evident that the strain energy during extension

significantly surpasses that of compression, resulting in markedly higher stiffness during

extension. Considering that bending and stretching energies are the primary components

of strain energy for a linear elastic beam, the stiffness disparities can be investigated by
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analyzing the stretching and bending energy distribution along the elastic ligament in

Fig. 4·4(b)(c). During compression, the stretching energy is negligible compared to the

bending energy, whereas during extension, the stretching energy dominates over the bending

energy. This disparity indicates that ligament deformation is predominantly bending during

compression, whereas stretching dominates during extension. Given the inherent difficulty

in stretching a beam compared to bending it, the stretching energy is generally much larger

than the bending energy, leading to substantially greater resistance to external forces during

extension. As a result, the stiffness value in extension is much larger than that of compression

for this structure. By manipulating the geometry of the chiral structures, the stretching and

bending behavior under different loads can be controlled, allowing the discovery of optimal

chiral structure designs capable of exhibiting extreme non-reciprocity and asymmetry.

4.4 Optimization Objectives

As briefly introduced in Section 4.1, this work aims to enhance the nonreciprocity and

asymmetry of the chiral metamaterial. This section provides additional details on the

formalization of these objectives. Furthermore, the scope of the investigation will be

extended to multi-objective optimization, allowing for the identification of optimal designs

that simultaneously exhibit both nonreciprocity and elastic asymmetry.

4.4.1 Non-Reciprocity

Following the definition in Section 4.1, enhancing the non-reciprocity of metamaterials

equals maximizing the variance of stiffness values along opposite directions, i.e. k−i j ̸= k+i j .

To achieve this, this study aims to maximize the ratio between the absolute values of the

stiffness. The optimization task includes eight objectives to be maximized, outlined below:

① f1 = |k
−
xx

k+xx
|, ② f2 = |k

+
xx

k−xx
|, ③ f3 = |

k−xy

k+xy
|, ④ f4 = |

k+xy

k−xy
|,

⑤ f5 = |
k−yx

k+yx
|, ⑥ f6 = |

k+yx

k−yx
|, ⑦ f7 = |

k−yy

k+yy
|, ⑧ f8 = |

k+yy

k−yy
|.
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Figure 4·4: Bending and Stretching Energy distribution along the elastic
ligament. (a) The schematic of the chiral structure. The design has a smaller
stiffness k−xx under compression loads, and a larger stiffness k+xx under exten-
sion loads. (b) The bending and stretching distribution along the ligament
under compression load. (c) The bending and stretching distribution along
the ligament under extension load. The three figures (a)(b)(c) share the same
x coordinates.

Note that when the value of these objectives is equal to 1, i.e. the stiffness in opposite

directions is the same, the corresponding structure exhibits reciprocity. Additionally, to

maximize the difference between each pair of stiffness k−i j and k+i j , we can either design a

structure that k−i j is larger k+i j , or k+i j is larger k−i j . For instance, to maximize the disparity

between k−xx and k+xx, objective f1 aims to identify an optimal design where k−xx significantly

exceeds k+xx, whereas objective f2 seeks an optimal design where k+xx significantly exceeds k−xx.
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Consequently, when searching for optimal designs that maximize non-reciprocity objective

f1 to f8, only designs with objective values greater than 1 are considered. In summary, this

goal can be formalized as below:

max fi, where fi > 1 and i ∈ {1,2, . . . ,8} (4.3)

4.4.2 Elastic Asymmetry

Following the definition in Section 4.1, the asymmetry of chiral metamaterial is characterized

by an asymmetric stiffness matrix, i.e. ki j ̸= k ji. Similarly to the approach outlined in

Section 4.4.1, the goal is to maximize the ratio between the stiffness values. The eight

objectives for asymmetry optimization are summarized below:

① g1 = |
k−xy

k−yx
|, ② g2 = |

k−xy

k+yx
|, ③ g3 = |

k+xy

k−yx
|, ④ g4 = |

k+xy

k+yx
|,

⑤ g5 = |
k−yx

k−xy
|, ⑦ g6 = |

k+yx

k−xy
|, ⑥ g7 = |

k−yx

k+xy
|, ⑧ g8 = |

k+yx

k+xy
|.

Similar to eqn. 4.3, a more general form of these objectives is as below:

maxgi, where gi > 1 and i ∈ {1,2, . . . ,8} (4.4)

4.4.3 Multi-Objective

In Sections 4.4.1 and 4.4.2, a single objective was employed to assess the performance of

the chiral structures. However, optimizing a single objective guarantees design optimality in

only one dimension. For multiple competing objectives, maximizing a single dimension

may compromise the performance concerning another objective. Thus, discovering a chiral

metamaterial that exhibits multiple novel functionalities involves striving to optimize the

material to display both non-reciprocity and elastic asymmetry.

The problem of searching for optimal designs that excel in multi-objectives is broadly

known as determining the Pareto front (Schulz et al., 2018a; Riquelme et al., 2015; Li

et al., 2024). The design solutions to the multi-objective optimization are referred to as
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Pareto optimal. Specifically, a Pareto optimal design is one for which any adjustment

cannot improve all the objectives simultaneously. In other words, for any Pareto optimal

design, there is no alternative design that surpasses it in all performance functions. The set

containing all the Pareto optimal designs is the Pareto set. The corresponding performance

of the Pareto set in a performance space is the Pareto front. To facilitate understanding these

concepts in the context of chiral metamaterials optimization, Fig. 4·5 illustrates a schematic

performance map of design solutions. Each data point on the map is randomly generated and

depicts performances fi and gi of a design solution, where fi, representing an objective of

non-reciprocity in Section 4.4.1, and asymmetry gi, representing an objective of asymmetry

in Section 4.4.2. In the problem setting of this study, the objective values of the optimal

designs must be larger than 1. Consequently, the designs not satisfying this constraint will

not be considered and are denoted as ‘Archive’. The design solutions colored red are the

Pareto optimal, as no other feasible solutions can achieve larger values for both fi and gi. All

other feasible solutions are colored grey. The goal is to identify the Pareto optimal designs

and the corresponding Pareto front to enhance both non-reciprocity and asymmetry. This

goal is expressed mathematically as below:

max{ fi,g j}, where fi,g j > 1, i, j ∈ {1,2, . . . ,8} (4.5)

4.5 Design Spaces

As illustrated in Fig. 4·6(a), the programmable chiral structure consists of two rigid circles

with the same radius R. The distance between the two circles is L, which has a constant

value 20. An elastic ligament initiates its connection with the left circle at an angle θ0 and

forms a contact angle θ1. Similarly, the ligament establishes a connection with the right

circle from an angle θ00 and forms a contact angle θ11. Positive values for the contact angle

indicate an anti-clockwise orientation from the connecting point and vice versa for negative
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Figure 4·5: Illustration of Pareto front for the multi-objective optimization
of chiral metamaterial.
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Figure 4·6: Illustration of (a) the design parameters and (b) the design spaces
of the chiral metamaterial.

values. For the part of the ligament that is not in contact with the circle, there is a half circle

with radius Rs at the transition point for both sides. The ending point for the small half circle
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on the ligament is denoted as points M and N. The middle part from M to N is continuous

and each point is sampled from the following function:

h(x) =
n−1

∑
i=0

aihi(x) = a0h0(x)+a1h1(x)+ · · ·+an−1hn−1(x) (4.6)

where x is the Cartesian coordinates with the midpoint of the two circles as the origin of

the coordinates, and h0(x),h1(x), . . . ,hn−1(x) are continuous and pre-selected functions. To

ensure the smoothness of the ligament, we require the the zeroth, first, and second derivatives

of the h(x) to be continuous at the two ends M and N. The coordinates of M are represented

as (xM,yM) and N as (xN ,yN). Consequently, there are six known constraints on h(x):



h(xM) = yM

h
′
(xM) = y

′
M

h
′′
(xM) = y

′′
M

h(xN) = yN

h
′
(xN) = y

′
N

h
′′
(xN) = y

′′
N

(4.7)

where yM,y
′
M, and y

′′
M denote the zeroth, first, and second derivatives at point M, and yN ,y

′
N ,

and y
′′
N denote the zeroth, first, and second derivatives at point N. Given that the midpoint of

the two circles is the origin, the center of the left circle is at (−L/2,0), and the center of the

right circle is at (L/2,0). Thus, we have:
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xM =−L/2+(R+2Rs) · cos(θ0)

yM = (R+2Rs) · sin(θ0)

y
′
M =−1/ tan(θ0)

y
′′
M =−R2/y3

M

xN = L/2+(R+2Rs) · cos(θ00)

yN = (R+2Rs) · sin(θ00)

y
′
N =−1/ tan(θ00)

y
′′
N =−R2/y3

N

(4.8)

Consider that the number of coefficients to be determined for h(x) is n and there are

only 6 boundary conditions in eqn. 4.7. By solving eqn. 4.6 with eqn. 4.7, h(x) has a unique

solution when n is equal to 6 and multiple solutions when n exceeds 6. In this work, the

parameter n is set to 7 to add one more degree of freedom to the shape of the ligament

by fixing a randomly selected point (x∗,y∗) on the ligament, denoted as a red star point in

Fig. 4·6(a). Then one more constraint is introduced:

h(x∗) = y∗ (4.9)

The coefficients a0,a1, . . . ,a6 of h(x) can be identified by eqn. 4.7 and eqn. 4.9.

In summary, there are 8 design parameters X = [R,θ0,θ1,θ00,θ11,Rs,x∗,y∗]. Notably,

Rs can take the value of zero, and the subfunction components h0(x),h1(x), . . . ,h6(x) of

the ligament can be either polynomial or trigonometric. To search for optimal designs for

the objectives defined in Section 4.4, exploration is conducted across four different design

spaces, as illustrated in Fig. 4·6(b). The range of the design parameters [R,θ0,θ1,θ00,θ11

] of each design spaces are presented in Table 4.1. The details of the value of Rs and the

sampling function h(x) for the ligament in each design space are summarized below:
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1. Design Space 1

• Rs = 0 for both left and right side

• h(x) = ∑
n−1
i=0 aixi

2. Design Space 2

• 0.1≤ Rs ≤ R/10 for both left and right side

• h(x) = ∑
n−1
i=0 aixi

3. Design Space 3

• Rs = 0 for both left and right side

• h(x) = a0 +a1x+a2sin(x)+a3sin(x)+a4x4 +a5x5 +a6x6.

4. Design Space 4

• Rs = 0 for right side and 0.1≤ Rs ≤ R/10 for left side

• h(x) = ∑
n−1
i=0 aixi

As discussed in Section 4.2, diverse contact mechanisms can induce varying non-

reciprocity and asymmetry properties. The choice of the four design spaces shown in

Fig. 4·6(b) aims to encompass a broad range of contact mechanisms. In design space 1, the

ligament and the right circle are prone to establish contact when it is subjected to extension.

In design space 2, the ligament and the right circle tend to make contact under compression.

Design space 3 introduces alterations to the subfunctions of the ligament shape compared

to design space 1, allowing the investigation of the impact of the ligament shape on the

properties of the chiral metamaterial. In design space 4, the left circle and the ligament tend

to contact under compression, while the right circle and the ligament tend to contact under

extension loads.
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Table 4.1: Design parameter ranges within each design space.

R θ0 θ1 θ00 θ11

Design Space 1 [3,7] [-90, -20] [-90, -20] [90, 160] [-90, -20]
Design Space 2 [3,7] [-90, 0] [20, 90] [90,180] [20,90]
Design Space 3 [3,7] [-90, -20] [-90, -20] [90, 160] [-90, -20]
Design Space 4 [3,7] [-90, 0] [20, 90] [90,180] [-90,-20]
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Chapter 5

Non-Reciprocal and Asymmetric Elastic Chiral
Metamaterials Optimization

Machine learning (ML) methods have been extensively applied to complex engineering

challenges, demonstrating their efficiency in uncovering intricate relationships within data

(Lee et al., 2023; Ha et al., 2023; Buehler, 2023b; Yuan et al., 2022; Arzani et al., 2023;

Nguyen and Lejeune, 2024). Through sufficient training on diverse datasets, an effectively

trained ML model exhibits rapid and accurate predictions on unseen data, drastically reduc-

ing the time required to characterize material properties by orders of magnitude compared

to conventional experimental or simulation methods. This capacity enables it to efficiently

explore a large pool of candidates in the search for optimal designs. In the context of chiral

metamaterial design, the design space is practically infinite because the design parameters

governing the initial contact angle and the shape of the ligament shape are continuous.

Consequently, ML methods are employed to guide the exploration of nonreciprocal and

asymmetric stiffness chiral metamaterials. The following parts of this section elaborate on

the approach to data collection, the details of the ML model, and the data-driven optimization

methods utilized to discover optimal designs.
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Figure 5·1: Illustration of the feature representation of a chiral metamaterial

5.1 Data Collection

5.1.1 Data Representation

In Section 4.5, each design space was outlined using eight design parameters, denoted as

X = [R,θ0,θ1,θ00,θ11,Rs,x∗,y∗]. However, due to the diversity in the subfunctions of h(x)

that define the ligament shape, these parameters cannot fully characterize the geometry of the

chiral structure across all design spaces. Additionally, given the efficacy of machine learning

methods in pattern recognition (Bishop, 2006), an alternative way to better represent the

chiral structure is by its shape and geometric features. As Fig. 5·1 shows, the points where

the ligament and the rigid circles initiate connection are noted as (x0,y0) and (x00,y00), and

coordinates of the two ends of the ligament as (x1,y1) and (x11,y11). Furthermore, 100

points along the x direction are uniformly sampled from the elastic ligament. Therefore, the

coordinates of 104 points are employed to uniquely describe the geometry of each chiral

structure. The 208 features of a single chiral structure are summarized as feature vector X

as follows:

X = [x0, x1, . . . , x99, y0, y1, . . . , x99, x1, y1, x0, y0, x00, y00, x11, y11] (5.1)

The second step is to label each chiral structure with its mechanical properties by running

a finite element simulation. As the goal of this study is to maximize the nonreciprocity and
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asymmetry defined in Section 4.4, the label of each material will be the objectives f1:8 and

g1:8 defined in Section 4.4.1 and Section 4.4.2. To get this, it is necessary to first calculate the

stiffness values for each chiral structure. Fig. 5·2 provides an example of how the stiffness

values of each structure are obtained. Each row shows the contact region of the structure

under the loads from four different directions and the corresponding force-displacement

response. The stiffness, i.e. the slope of the response curve, is obtained by fitting the finite

element simulation results using least squares.

(a)

(b)

(c)

(d)

Compression

Extension

Anti-clockwise 

Rotation

Clockwise 

Rotation

Figure 5·2: Illustration of a representative chiral structure subjected to loads
from four different directions and the corresponding force-displacement
response obtained from finite element (FEM) simulation. The contact area is
highlighted in pink. Stiffness is determined as the coefficient of linear fitting
applied to the FEM data using the least squares method.

In Fig. 5·2(a)(b), due to the different contact regimes in compression and extension, the

stiffness values k+xx = 14.95 and k+yx = 12.53 are obtained for extension, and k−xx = 10.15 and

k−yx = 4.36 are obtained for compression. In Fig. 5·2(c) where the structure is subject to an
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anti-clockwise rotation load, the stiffness values k+yy = 13.03 and k+xy = 12.59 are obtained.

Notably, the contact regime under the anti-clockwise rotation load in Fig. 5·2(c) closely

resembles that of extension in Fig. 5·2(a), which results in the values of k+xy = 12.59 and

k+yx = 12.53 being nearly equal. In Fig. 5·2(d) where the structure is subject to a clockwise

rotation load, the stiffness values k−yy = 2.53 and k−xy = 4.34 are obtained. Similarly, the

contact mode of clockwise rotation in Fig. 5·2(d) closely resembles the compression mode

in Fig. 5·2(b), and k−xy = 4.34 is nearly equal to k−yx = 4.36. These observations align with

the discussion of the contact mechanism in Section 4.2, indicating that the contact modes

play a pivotal role in governing the non-reciprocity and asymmetry properties of the chiral

structures. Subsequently, we can identify the non-reciprocity and asymmetry objectives f1:8

and g1:8 defined in Section 4.4.1 and Section 4.4.2 for this design in Fig. 5·2. The values are

listed below:

f1 = |k
−
xx

k+xx
|= |10.15/14.95|= 0.67, f2 = |k

+
xx

k−xx
|= |14.95/10.15|= 1.47,

f3 = |
k−xy

k+xy
|= |4.34/12.59|= 0.34, f4 = |

k+xy

k−xy
|= |12.59/4.34|= 2.90,

f5 = |
k−yx

k+yx
|= |4.36/12.53|= 0.34, f6 = |

k+yx

k−yx
|= |12.53/4.36|= 2.87,

f7 = |
k−yy

k+yy
|= |2.53/13.03|= 0.19, f8 = |

k+yy

k−yy
|= |13.03/2.53|= 5.15,

g1 = |
k−xy

k−yx
|= |4.34/4.36|= 0.99, g2 = |

k−xy

k+yx
|= |4.34/12.53|= 0.34,

g3 = |
k+xy

k−yx
|= |12.59/4.36|= 2.88, g4 = |

k+xy

k+yx
|= |12.59/12.53|= 1.00,

g5 = |
k−yx

k−xy
|= |4.36/4.34|= 1.00, g6 = |

k+yx

k−xy
|= |12.53/4.34|= 2.88,

g7 = |
k−yx

k+xy
|= |4.36/12.59|= 0.34, g8 = |

k+yx

k+xy
|= |12.53/12.59|= 0.99.

5.1.2 Data Augmentation

Data augmentation is a technique used to increase the diversity and the size of the training

dataset. New training samples are generated by applying transformations or modifications

to existing data, such as flipping, rotating, and scaling (Shorten and Khoshgoftaar, 2019;

Rebuffi et al., 2021). Given the computational expense of acquiring mechanical properties

via finite element simulation, data augmentation becomes essential for chiral metamaterial
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design. Across all design spaces, the stiffness properties of a chiral material remain invariant

under a 180-degree rotation, as Fig. 5·3 shows. Leveraging this property, the rotation

transformation is applied to each of the chiral metamaterial data points and thus the size of

the dataset is doubled.

Original Geometry Augmented Geometry

1800 Rotation

Figure 5·3: Illustration of the rotation transformation for data augmentation.
The augmented geometry is obtained by rotating the original geometry by 180
degrees. The original and the augmented structure have the same properties
in terms of their stiffness values in all directions.

5.2 Bayesian Optimization

During the search for optimal chiral structures, obtaining properties such as non-reciprocity

and asymmetry by FEM is a challenging and computationally expensive task. Moreover,

the physics of the relationship between the design and the properties of the chiral structure

is nonlinear, which makes it challenging to obtain analytic solutions for the optimization

objective. To address these challenges, we can leverage a data-driven approach - Bayesian

Optimization (Polyzos et al., 2023). This method is a model-based optimization technique

that excels in efficiently determining optimal designs for objective functions that are black-

box and costly to evaluate. In the framework of material design, the goal of Bayesian

Optimization is to address the optimization problem presented below:

x∗ = argmax
x∈X

f (x) (5.2)

where X compromise all feasible designs, and f (x) represents the objective function to be

maximized. For each design point x that belongs to X , the goal is to identify the optimal
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point x∗ at which the objective f (x) attains its maximum value. To achieve this, we must

select a probabilistic surrogate model f (x) and an acquisition function α(x). The surrogate

model f (x) evaluates the objective value of each design point, and the acquisition function

α(x) determines which point to query next. The query process involves obtaining the ground

truth property for the selected point through experiments or simulation tools.

To conduct Bayesian Optimization, we need to start with an observed data collection

Dt = {(xi,yi)}ti=1, where yi denotes the measured objective value corresponding to point

xi. The first step is to fit the surrogate model with the dataset Dt . The second step is

selecting the next point xt+1 that maximizes the acquisition function, querying the value of

the yt+1, and adding (xt+1,yt+1) to the observed dataset. The final solution to eqn. 5.2 is

obtained by repeating these two steps until reaching a maximum iteration limit N. Below is a

pseudo-code outlining the process of the Optimization Routine using Bayesian Optimization:

Algorithm 1 Optimization Routine

Require: initial observations D0, maximum iterations N, surrogate model f (x), acquisition
function α(x)

1: for t = 0,1,2, . . . ,N−1 do
2: fit the model f (x) with Dt
3: calculate the acquisition function α(x) with f (x)
4: select the next point xt+1← argmaxx α(x)
5: perform experiment or simulation to evaluate the objective values yt+1 at point xt+1
6: Dt+1←{Dt ,(xt+1,yt+1)}
7: end for
8: return best y and the corresponding x in DN

When employing Bayesian Optimization for chiral metamaterial design, the process

initiates with simulations for 5 randomly selected designs within each of the four design

spaces, establishing an initial dataset comprising a total of 20 points. Following this, a pool

of 400,000 design candidates is generated, with 100,000 in each design space, without

conducting FEM simulation. Subsequently, Bayesian Optimization is carried out for 10

iterations. In each iteration, the top 10 points in the design pool with the highest values
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determined by the acquisition function are selected for running FEM simulations using

Abaqus. This approach of acquiring ten points rather than one in each iteration is adopted

due to the simulation setup, where multiple simulation jobs are submitted as a batch in the

computing center. Therefore, querying 10 points per iteration takes the same amount of time

as querying a single point. Moreover, expanding the dataset faster enables us to get a more

accurate surrogate model, expediting the discovery of optimal designs.

5.2.1 Surrogate Model

The Gaussian Process (GP) model (Schulz et al., 2018b; Deringer et al., 2021; Wang, 2023)

is commonly favored as a surrogate model choice in Bayesian Optimization due to its

capability to estimate prediction uncertainty directly. However, its efficacy diminishes

notably in high-dimensional problems (Shahriari et al., 2015; Binois and Wycoff, 2022).

Additionally, the intuition behind GP begins with kernel-encoded prior assumptions about

the dataset distribution, then obtains a posterior distribution function given the observed

data (Marrel and Iooss, 2024; Schulz et al., 2018b). However, in the case of intricate chiral

material systems, where prior dataset knowledge is absent and the feature dimension is

high, extra challenges arise when selecting appropriate kernels for GP regression models. In

contrast, deep learning models like Multilayer Perceptron (MLP) are efficient at capturing

black-box, unknown nonlinear relationships within high-dimensional data. Nonetheless,

MLP models do not inherently provide uncertainty estimates for predictions. To address this,

ensemble learning methods (Ganaie et al., 2022; Mienye and Sun, 2022; Mohammadzadeh

et al., 2023) are employed to train a single MLP model multiple times with different seeds

on observed data and utilize the variance across model predictions as an indication of

uncertainty.

The MLP model is designed with four layers comprising 1024, 1024, 64, and 1 neurons,

respectively. Following each hidden layer, Rectified Linear Unit (ReLU) activation functions

were applied to introduce non-linearity into the model. The training was performed using a
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batch size of 16 over 250 epochs, with a learning rate set to 0.001. The MLP model is trained

for k = 15 times, each utilizing a different seed for training-validation dataset splitting and

weight initialization. The prediction of objective values and the uncertain estimation are

calculated below:


µ(x) = 1

k ∑
k
1 ŷi

σ(x) =
√

1
k ∑

k
1(ŷi−µ(x))2

(5.3)

where µ(x) is the averaged prediction across all MLP models, σ(ŷ) is the standard deviation

of the predictions, and ŷi is the predicted value from the ith model.

5.2.2 Acquisition Function

In the framework of Bayesian Optimization, various acquisition functions are available

for selection, such as the probability of improvement (PI) (Kushner, 1964; Ruan et al.,

2020), entropy search (ES) (Hennig and Schuler, 2012; Wang and Jegelka, 2017), expected

improvement (EI) (Zhan and Xing, 2020; Qin et al., 2017), and upper confidence bound

(UCB) (Carpentier et al., 2011; Simchi-Levi and Wang, 2023). This study focuses on

employing two specific methods: EI and UCB.

Expected Improvement

The Expected Improvement (EI) method is a versatile choice for many optimization

scenarios. It is efficiently designed to trade-off between the global search (exploration) and

local minimization (exploitation) (Brochu et al., 2010). The acquisition function of EI is:

α
EI(x) = E[max(0, f (x)− fmax)] (5.4)

where fmax is the best performance observed so far. The acquisition function αEI(x) calcu-

lates the expectation of the improvement for each unseen point. In essence, the equation

evaluates each point by how much performance it can enhance compared to the current best
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point. If the potential improvement surpasses the best point, the expected improvement is

the amount of improvement. If the potential improvement cannot surpass the best point,

the expected improvement is zero. Assuming the target y follows a Gaussian distribution

N (µ(x),σ(x)), the formulation of EI can be written explicitly as (Jones et al., 1998; Brochu

et al., 2010)

α
EI(x) = (µ(x)− fmax−ξ)Φ(λ)+σ(x)φ(λ) (5.5)

where λ = (µ(x)− fmax−ξ)/σ(x). Φ(λ) and φ(λ) are the cumulative distribution function

(CDF) and probability density function (PDF) of the standard normal distribution respec-

tively. The first term in eqn. 5.5 emphasizes exploitation by favoring points with higher

expected objective values, while the second term promotes exploration by favoring points

with greater uncertainty. Thus, eqn. 5.5 strikes a balance between exploitation and explo-

ration controlled by the hyperparameter ξ, with higher ξ leading to more exploration. In this

study, the value ξ is set to 0.002 to achieve a balanced exploration-exploitation strategy.

Upper Confidence Bound

The Upper Confidence Bound (UCB) calculated the upper bound for the prediction by

adding the uncertainty to the estimation, offering a straightforward approach to balancing

exploration and exploitation. The acquisition function for UCB is defined as (Shahriari

et al., 2015; Cox and John, 1992):

α
UCB(x) = µ(x)+βσ(x) (5.6)

Similar to EI, the first component of the equation favors exploitation, and the second

component for exploration. The hyperparameter β serves to balance the weights between

exploitation and exploration, with a higher value leading to more exploration.

In this study, the method EI is applied to single objective optimization considering that the

algorithm has already proven efficient in material discovery in many other studies (Gongora
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et al., 2020; Zhang et al., 2020b; Kotthoff et al., 2021). Although the EI acquisition function

form of eqn. 5.5 is typically associated with the Gaussian Process Model, the acquisition

function eqn. 5.5 is adopted in single objective optimization with the assumption that the

observed data are sampled from a Gaussian Distribution with mean and variance derived

from the predictions of ensembled MLPs, i.e. y∼N (µ,σ), as formalized in eqn. 5.3. This

assumption is grounded in the evidence that MLPs (or Neural Networks) are well-calibrated

models (Niculescu-Mizil and Caruana, 2005), thus allowing us to treat the mean and variance

of prediction as the posterior distribution of objectives. While the detailed exploration of

uncertainty estimation of deep ensembled regression models is not the primary emphasis of

this study, readers interested in a more comprehensive and rigorous discussion on this topic

can refer to the literature (Lakshminarayanan et al., 2017; Nix and Weigend, 1994; Abdar

et al., 2021).

However, in the scenario of multi-objective optimization, fewer valid candidates meet

the criterion due to the increased number of objectives to optimize and all objectives have to

be larger than 1 (refer to Section 4.4.3). The EI method is unable to filter out invalid designs

in this context. Hence, the Upper Confidence Bound (UCB) acquisition method is employed

to guide the multi-objective optimization. The acquisition value calculated by UCB acts as

an upper bound for the objective value, enabling us to disregard candidates whose objective

values fall below 1. The hyperparameter β is set to 3 to increase the upper confidence bound

for potential optimal designs, thereby allowing more valid candidates to be considered.

5.2.3 Pareto Front

Section 4.4.3 outlines the approach to addressing the multi-objective optimization chal-

lenge in chiral metamaterial design by searching for the Pareto front across all designs.

Here this section elaborates on the methodology of discovering the Pareto front and its

utilization within Bayesian Optimization. During each iteration of multi-objective Bayesian

optimization, the acquisition value of each unseen data point is determined using the Upper
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Confidence Bound (UCB) method. Provided that the goal is to optimize a total of m objec-

tives simultaneously, the acquisition value of points i, calculated by eqn. 5.6, is denoted as

αi = [αi
1,α

i
2, . . . ,α

i
m], where αi

j represents the acquisition value for the unseen data point i

in terms of maximizing objective j. Therefore, if there are n unseen points in the pool of

design candidates, a matrix An×m with row i representing αi, where i ∈ {1,2, · · · ,n} can

be obtained. The next points to be acquired will be the design points whose performances

form the Pareto front of An×m. The Pareto front is identified through an efficient algorithm

available in the Python package artemis-ml (QUVA-Lab, 2017). The algorithm iteratively

eliminates the points that are dominated by at least one other point until only non-dominated

points remain, thus yielding the set of Pareto front. The algorithm can be summarized as

follows:

Algorithm 2 Find Pareto Front
Require: Acquisition value An×m for m objectives of unseen points 1,2, · · · n

1: choose the first point i1 = 1
2: while i1 <= n do
3: for i2 = 1,2, . . . ,n do
4: remove point i2 if ci2

j < ci1
j for all j ∈ {1,2, · · · ,m} ▷ i2 is removed because it is

dominated by i1
5: end for
6: update n as the size of the rest points
7: re-index the rest points as 1,2, · · · ,n without changing the order
8: i1← the index of the next point on the order
9: end while

10: return the rest points (i.e. nondominated points)

5.3 Results and Discussion

This Section presents the optimal designs discovered using the Bayesian Optimization

detailed in Section 5.2. Specifically, Section 5.3.1 presents the results and analysis for the

optimal designs that exhibit extreme non-reciprocity. Section 5.3.2 presents the results and

analysis for the optimal designs that exhibit extreme elastic asymmetry. Finally, Section 5.3.3
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presents optimal designs that were discovered by maximizing both elastic asymmetry and

non-reciprocity.

5.3.1 Non-Reciprocity Optimization

For the eight non-reciprocity objectives defined in Section 4.4.1, the search for the optimal

design that maximizes each objective is conducted using the Bayesian Optimization methods

detailed in Section 5.2. Each objective is maximized individually through separate Bayesian

Optimization runs. The designs achieving the highest objective value after optimization are

shown in Fig. 5·4. Below is a summary of the optimal performance for each objective.

f1 = |k
−
xx

k+xx
|= |39.66/3.11|= 12.75, f2 = |k

+
xx

k−xx
|= |33.24/2.43|= 13.68,

f3 = |
k−xy

k+xy
|= |19.70/(−0.04)|= 492.50, f4 = |

k+xy

k−xy
|= |32.09/1.34|= 23.95,

f5 = |
k−yx

k+yx
|= |5.16/0.01|= 516.00, f6 = |

k+yx

k−yx
|= |26.00/0.97|= 26.80,

f7 = |
k−yy

k+yy
|= |22.22/1.19|= 18.67, f8 = |

k+yy

k−yy
|= |30.93/0.71|= 43.56,

It is clear that the optimal designs for objectives f1, f3, f5, f7 in Fig. 5·4(a)(c)(e)(g) share

some similarities, and are all discovered from design space 2. Referring to the stiffness

definition illustrated in Fig. 4·2, these objectives necessitate either that the stiffness values

for compression (−x) are greater than those for extension (+x), or the stiffness values

for clockwise rotation (−y) are greater than those for anti-clockwise rotation (+y). By

looking into the deformation process of these structures under various loads, it is found

that during compression (−x) and clockwise rotation (−y), contact is established between

the ligament and the rigid circle. Conversely, during extension and anti-clockwise rotation,

the ligament and the rigid circle detach, resulting in no contact forces during deformation.

This mechanism can be understood through intuitively imaging the deformation process

of these geometries. Here, the optimal structure for objective f1 = |k−xx/k+xx| is selected as

an example and its contact behavior during deformation is shown in Fig. 5·5(a). Notably,

there exists a substantial contact area when the structure is subject to compression load (see

Fig. 5·5(a-i)) and no contact area for the extension load (see Fig. 5·5(a-ii)). The optimal
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(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

(           )

Figure 5·4: Optimal designs for maximizing eight non-reciprocity objectives
after 10 iterations of Bayesian Optimization. Each figure shows the optimal
design for the (a) objective f1, (b) objective f2, (c) objective f3, (d) objective
f4, (e) objective f5, (f) objective f6, (g) objective f7 and (h) objective f8. The
title above each structure indicates the corresponding stiffness values.

designs for objectives f3, f5, and f7 exhibit similar contact modes, which are visualized in

Appendix A.4, Fig. A·10.

Essentially, higher stiffness values are typically observed during contact, as illustrated in

Fig. 5·5 and Fig. A·10, while lower stiffness values are observed when there is no contact.

Additionally, based on the design parameters outlined in Table 4.1, the initial contact angles

between the ligament and the circle, denoted as θ1 and θ11, range from 20 to 90 degrees.

Notably, the initial contact angles of the optimal designs depicted in Fig. 5·4 (a)(c)(e)(g) are
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all closer to the upper bound, i.e., 90 degrees, which enables the establishment of a larger

contact area under loads. Therefore, maximizing the difference between higher and lower

stiffness promotes a larger initial contact area between the ligament and the rigid circle.

Upon closer inspection of the optimal designs, it is evident that the area where the ligament

and the circle connect is large and towards the center of the structure provides stronger

resistance during compression loads. Thus, it can be found that the larger initial connecting

area between the ligament and the circle tends to enhance the stiffness, as it will increase

the contact area under loads from certain directions. Moreover, the shape of the ligament for

the designs depicted in Fig. 5·4(a)(c)(e)(g) tends to be curved in the middle, which provides

additional resistance against the compression load.

The optimal designs for objectives f2, f4, f6, f8 in Fig. 5·4(b)(d)(f)(h) represent the

reversed versions of those in Fig. 5·4(a)(c)(e)(g). Specifically, for the four objectives

f2, f4, f6, and f8, the goal is to design material such that the stiffness values for extension

(+x) are greater than those for compression (−x), and the stiffness values for anti-clockwise

rotation (+y) are greater than those for clockwise rotation (−y). Accordingly, the optimal

geometries for these objectives in Fig. 5·4(b)(d)(f)(h) are also alike but in contrast with those

of the optimal designs in Fig. 5·4(a)(c)(e)(g). Concretely, in this set of optimal designs, the

contact areas are situated away from the central region, and the ligaments are straight rather

than curved. In addition, contact occurs during extension and anti-clockwise rotation, while

no contact is observed during compression and clockwise rotation, which contrasts with the

structures in Fig. 5·4(a)(c)(e)(g). The contact modes of the optimal structure for objective

f4 = |k−yy/k+yy| are shown in Fig. 5·5(b). Here, a substantial contact area is observed during

anti-clockwise rotation (see Fig. 5·5(b-i)), and no contact area is observed during clockwise

rotation (see Fig. 5·5(b-ii)). The high k−yy is attributed to the contact force being in the

opposite direction of the applied force, enhancing the structure’s resistance to external forces

and resulting in increased stiffness. Additionally, the straight ligament facilitates stretching
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strain energy when subjected to extension or anti-clockwise rotation. The contact modes of

optimal designs for objectives f2, f6 and f8 are visualized in Appendix A.4, Fig. A·10.

(b-i)

(b-ii)

(a-i)

(a-ii)

Compression

Extension Clockwise Rotation

Anti-Clockwise Rotation

Figure 5·5: Two examples of contact modes under loads from different
directions. The highlighted pink color indicates the contact areas after the
deformation. (a) The contact modes for the optimal design of objective
f1 = |k−xx/k+xx|. The stiffness value k−xx is obtained during the (a-i) compres-
sion, and k+xx is obtained during the (a-ii) extension. (b) The contact modes
optimal design of objective f4 = |k−yy/k+yy|. The stiffness value k+yy is obtained
during the (b-i) anti-clockwise rotation, and k−yy is obtained during the (b-ii)
clockwise rotation.

5.3.2 Elastic Asymmetry Optimization

The optimal designs discovered for the asymmetry objectives g1:8 defined in Section 4.4.2

are presented in Fig. 5·6. A summary of the optimal performance for each objective is below

g1 = |
k−xy

k−yx
|= |2.45/1.21|= 2.02, g2 = |

k−xy

k+yx
|= |19.70/(−0.04)|= 492.50,

g3 = |
k+xy

k−yx
|= |29.68/1.08|= 27.48, g4 = |

k+xy

k+yx
|= |2.39/2.36|= 1.01,

g5 = |
k−yx

k−xy
|= |0.71/0.59|= 1.20, g6 = |

k+yx

k−xy
|= |26.00/1.04|= 25.00,

g7 = |
k−yx

k+xy
|= |3.72/2.11−3|= 1763.03, g8 = |

k+yx

k+xy
|= |1.39/0.62|= 2.24.

In contrast to the optimal solutions for non-reciprocity, not all of the optimal designs for

asymmetry achieve notably high objective values, as defined by cases where the stiffness of

the numerator is larger than the denominator by at least one order of magnitude. Specifically,
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(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

(           )

Figure 5·6: Optimal designs for maximizing eight asymmetry objectives
after 10 iterations of Bayesian Optimization. Each figure shows the optimal
design for the (a) objective g1, (b) objective g2, (c) objective g3, (d) objective
g4, (e) objective g5, (f) objective g6, (g) objective g7 and (h) objective g8.
The title above each structure indicates the corresponding stiffness values.

the optimal designs for g2,g3,g6, and g7 achieve high objective values, where the stiffness

values in the numerator significantly surpass those in the denominator. These optimal designs

exhibit a substantial contact area for one direction but no contact for the other. As a result,

the stiffness value for the loading direction where contact is established tends to be much

higher, as the contact provides increased resistance to the loads. For a detailed visualization

of the contact modes under different load directions, please refer to Appendix A.4, Fig. A·11.

In contrast, the objective values for g1,g5, and g8 are relatively small. This is primarily
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attributed to the challenge of finding designs capable of exhibiting large contact areas in

the desired direction while maintaining no contact in the other. In design spaces 1 and 3,

contact is more likely to occur during the extension and anti-clockwise rotation loads, while

no contact is expected for loads from the other two directions. Conversely, in design space

2, contact is more probable during compression and clockwise rotation, with no contact

expected for loads from the other two directions. In design space 4, contact is likely to

occur for loads in all directions. Upon scrutinizing objectives g1,g5, and g8, it can be found

that the required contact modes are not commonly found within these design spaces. For

instance, achieving a high value of objective g1 = |k−xy/k−yx| necessitates a large contact

area for clockwise rotation loads and no contact for compression, which is not a common

scenario within the four design spaces. Nevertheless, the optimal design for objective g1

was found from design space 1. While contact still occurs during compression loading and

there is no contact during clockwise rotation, the contact area is very small, mitigating the

stiffness value k−yx during compression. As a result, the final asymmetry results in k−xy being

slightly larger than k−yx.

To facilitate the visualization of contact in these optimal structures, Fig. 5·7 presents

two examples: the optimal designs for objectives g1 = |k−xy/k−yx| and g8 = |k+yx/k+xy|. For both

structures, contact modes at the two load directions are different, leading to an asymmetry

in the stiffness values. However, the contact area is significantly smaller for the loading

direction for which the stiffness value is anticipated to be smaller.

Finally, the optimal design for g4 yields an objective value of nearly 1, indicating the

absence of designs meeting the criterion where the stiffness value k+xy exceeds k+yx. To

maximize objective g4 = |k+xy/k+yx|, an ideal design should feature a substantial contact area

under anti-clockwise rotation while exhibiting no contact under extension. As discussed

above, such a contact mode is not prevalent within the existing design spaces. The explo-

ration of alternative design spaces capable of accommodating optimal designs meeting the
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requirements of objective g4 remains a topic for future investigation.

(b-i)

(b-ii)

(a-i)

(a-ii)

Compression Extension

Clockwise Rotation Anti-Clockwise Rotation

Figure 5·7: Two examples of contact modes under loads from different
directions. The highlighted pink color indicates the contact areas. (a) The
contact modes for the optimal design of objective g1 = |k−xy/k−yx|. The stiffness
value k−yx is obtained during the (a-i) compression, and k−xy is obtained during
the (a-ii) clockwise rotation. (b) The contact modes for objective g8 =
|k+yx/k+xy|. The stiffness value k+yx is obtained during the (b-i) extension, and
k+xy is obtained during the (b-ii) anti-clockwise rotation.

5.3.3 Multi-Objective Optimization

In this Section, the goal is to identify optimal designs that exhibit both non-reciprocity and

asymmetry, as defined in Section 4.4.3. Therefore, there are two objectives to optimize,

selecting one from f1:8, and another from g1:8. Based on the results of single objective

optimization in Sections 5.3.1 and 5.3.2, it can be found that the optimal designs for

objectives f1, f3, f5, f7,g2, and g7 exhibit similarities. Thus these objectives are designated

as Group 1 since they are not contradictory. Similarly, the optimal designs for objectives

f2, f4, f6, f8,g3, and g6 share similarities and are classified as Group 2. It is important to

note that the objectives in Group 1 and Group 2 are contradictory because their optimal

designs for single objective optimization exhibit opposite characteristics. Additionally,

objectives g1,g5, and g8 are designated as Group 3 due to their relatively small optimal

values discovered in Section 5.3.2. Objective g4 does not have an optimal design in the
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single objective optimization, so it is not considered in the multi-objective optimization

scenario. The three groups of objectives are summarized below.

• Group 1 (non-contradictory): f1, f3, f5, f7, g2, g7

• Group 2 (non-contradictory): f2, f4, f6, f8, g3, g6

• Group 3 (challenging): g1, g5, g8

Based on the different groups established above for the objectives, three different cases

are explored for multi-objective optimization. In the first case, non-contradictory objectives

in the same group are considered, where both objectives are chosen from Group 1 or both

chosen from Group 2. As a representative case, the objectives f1 and g2 from Group 1 are

selected. In the second case, two contradictory objectives are chosen, one from Group 1 and

another from Group 2. The representative case adopted is f1 and g3. In the third case, one

challenging objective from Group 3 and one relatively feasible objective from Group 1 or

Group 2 are chosen. The selected representative case is f1 and g1. The distribution of the

objectives for the three cases can be found in Appendix A.5, Fig. A·12 - A·14. Below is a

summary of the three representative multi-objective optimization cases:

• Multi-Objective 1 (non-contradictory): f1 and g2

• Multi-Objective 2 (contradictory): f1 and g3

• Multi-Objective 3 (challenging): f1 and g1

After 10 iterations of Bayesion Optimization, three Pareto optima are identified for

Multi-Objective 1, one Pareto optimum for Multi-Objective 2 and four for Multi-Objective

3. The Pareto front of each multi-objective and its corresponding designs can be found in

Appendix A.6. For each Multi-Objective, the Pareto optima with the largest modulus (i.e.

square root of the sum of all the objective values) is selected and is presented in Fig. 5·8.
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In Multi-Objective 1, where the objectives f1 and g2 are not contradictory, both objectives

achieved relatively high values with magnitudes larger than ten, as depicted in Fig. 5·8(a).

However, Multi-Objective 2 presents a challenge as it involves two contradictory objectives,

f1 and g3, where increasing one objective results in a decrease in the other, as illustrated

in Fig. A·13. The optimal design discovered by ML methods shows a trade-off between

asymmetry and non-reciprocal properties, albeit with relatively smaller values for both

objectives, as shown in Fig. 5·8(b). Similarly, Multi-Objective 3 includes a challenging

objective, g1, and an easily attainable objective, f1. As shown in Fig. A·14, the high value of

g1 is observed only when f1 is small, indicating a contradiction between the two objectives.

The optimal design after balancing these conflicting objectives is presented in Fig. 5·8(c).

Notably, the optimal designs for the contradictory multi-objectives 2 and 3 are both found in

Design Space 4 (refer to Fig. 4·6), while all the optimal designs are obtained from Design

Space 1-3 during single objective optimization. This highlights that optimizing a single

objective does not necessarily ensure high performance across all dimensions. Leveraging

the Pareto Front and Bayesian Optimization facilitates the discovery of designs that exhibit

multiple desirable properties simultaneously.

Multi Objectives 1 Multi Objectives 2 Multi Objectives 3
(a) (b) (c)

Figure 5·8: The Pareto front and the corresponding designs for optimizing
(a) Multi-Objective 1: f1 and g1, (b) Multi-Objective 2: f1 and g3, (c)
Multi-Objective 3: f1 and g1. The title above each structure indicates the
corresponding objective values for the structure.

Upon scrutinizing the contact modes of these optimal designs, a notable distinction is

observed for the optimal design depicted in Fig. 5·8(c) for Multi-Objective 3 compared to
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the others. Specifically, while the majority of chiral structures typically exhibit only two

distinct contact states under loads from four different directions, as illustrated in the example

case in Fig. 5·2, the structure in Fig. 5·8(c) displays four different types of contact states

under loads from four different directions. The four distinct contact statuses are illustrated

in Fig. 5·9, where the highlighted pink areas denote the contact regions under each load.

Notably, the contact areas vary depending on the applied loads. Since each contact mode

corresponds to beam models with different boundary conditions, as discussed in Section 4.2,

the stiffness values vary in all directions, resulting in [k−xx, k−xy, k−yx, k−yy, k+xx, k+xy, k+yx, k+yy] =

[5.72, 3.05, 2.38, 3.51, 1.78, 0.42, 1.13, 2.11]. Consequently, this structure can satisfy the

most objectives in terms of achieving both non-reciprocity and asymmetry, summarized

below:

f1 = |k
−
xx

k+xx
|= 5.72/1.78 = 3.21, f3 = |

k−xy

k+xy
|= 3.05/0.42 = 7.26,

f5 = |
k−yx

k+yx
|= 2.38/1.13 = 2.10, f7 = |

k−yy

k+yy
|= 3.51/2.11 = 1.66,

g1 = |
k−xy

k−yx
|= 3.05/2.38 = 1.28, g2 = |

k−xy

k+yx
|= 3.05/1.13 = 2.69,

g7 = |
k−yx

k+xy
|= 2.38/0.42 = 5.66, g8 = |

k+yx

k+xy
|= 1.13/0.42 = 2.69.

5.4 Conclusion

In Chapter 4 and Chapter 5, machine learning (ML) techniques are utilized in conjunction

with Finite Element Simulation to engineer chiral metamaterials exhibiting significant

directional non-reciprocity and stiffness asymmetry. The mechanisms underlying non-

reciprocity and asymmetry are elucidated by qualitatively analyzing the contact behavior

under various loads through equivalent beam models. Additionally, through quantitative

analysis of strain energy changes during chiral metamaterial deformation, it was uncovered

that stretching deformation of the elastic ligament in the chiral structures leads to higher

stiffness, while the bending structures result in lower stiffness values. This insight explains

the heuristic behind programming the chiral metamaterial geometry to achieve desired
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(a) (b)

(c) (d)

Compression Extension

Clockwise Rotation Anti-Clockwise Rotation

Figure 5·9: The contact modes for the optimal design shown in Fig. 5·8(c).
The highlighted pink color indicates the different contact areas between the
rigid circle and the elastic ligament under (a) Compression, (b) Extension,
(c) Clockwise Rotation, and (d) Anti-Clockwise Rotation. The structure
satisfies the most objectives in terms of achieving both non-reciprocity and
asymmetry that are summarized in Section 5.3.3.

non-reciprocity and asymmetry properties.

This study encompassed the optimization of eight non-reciprocity objectives, eight

asymmetry objectives, and three multi-objectives incorporating both non-reciprocity and

asymmetry. To formalize the problem under the framework of ML, the design freedom

of chiral structures was defined and each structure was characterized by its geometric

features. Four different design spaces were proposed, with each being governed by a

different contact mechanism. To reduce the computational cost, the Bayesian Optimization

algorithm facilitated with ensemble learning was implemented to efficiently search the

optimal structures for each objective by balancing between the exploration and exploitation.

Particularly, multi-objective optimization was achieved by searching the Pareto Front of

the performance spaces, and the corresponding optimal structures were obtained to exhibit

both non-reciprocity and asymmetry. Following the completion of the optimization, the

discovered optimal designs were presented for each single objective and an analysis was
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performed on their similarities and disparities, highlighting the role of contact in enhancing

chiral structure stiffness. Leveraging insights from single-objective optimization, the focus

was placed on three distinct types of multi-objectives, including both contradictory and

non-contradictory combinations of multi-objectives. Among the discovered optimal designs

for multi-objectives, there is a structure that demonstrates the maximum diversity in non-

reciprocity and asymmetry, which is attributed to the various contact behaviors of the

structure under different loads.

In contrast to the majority of the current ML and mechanics literature focusing on testing

the applicability of machine learning (ML) methods in solving conventional mechanics

problems, where their effectiveness can be validated against known solutions (Brunton et al.,

2016; Chen and Gu, 2021; Jiao et al., 2024), this study employed ML to a novel domain with

limited prior information. With the aid of ML, this study uncovers a compelling relationship

between contact behaviors and the non-reciprocity and asymmetry of chiral metamaterials

through qualitative, quantitative, and case-based analyses. A noteworthy observation from

the results is the presence of extreme non-reciprocity and asymmetry in the discovered

optimal designs. For instance, as illustrated in Fig. 5·6(g), the optimal designs for the

objective g7 have a stiffness k−yx that is 1763 times larger than k+xy. The extreme and diverse

non-reciprocity and asymmetry observed in the optimized chiral structures pave the way for

metamaterials capable of novel wave propagation characteristics, including unidirectional

wave propagation and non-Hermitian wave phenonena (Wang et al., 2024), which offers

promising prospects for applications in non-reciprocal wave propagation.

While optimizing the chiral metamaterial to achieve various levels of non-reciprocity and

asymmetry, it was observed that some of the asymmetry objectives did not achieve notably

high objective values, and the objective g4 resulted in no qualified optimal design within

the current scope of design spaces. Additionally, although the optimal design for the multi-

objective optimization displayed diverse non-reciprocity and asymmetry characteristics, as
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depicted in Fig. 5·9, the absolute magnitudes of most objective values remained relatively

small. This is attributed to the current confined design spaces, i.e., the rigid body of the

structure can only be circles, and the shape of partially connected elastic ligaments is well-

defined by certain base functions, as detailed in Section 4.5. Looking ahead, the aim is to

broaden the design scope to explore a wider range of possibilities and search for designs

capable of exhibiting extreme multi-objective performance. Furthermore, by leveraging

deep generative models such as GANs (Generative Adversarial Networks) (Wang et al.,

2022; Kobeissi et al., 2022), Transformers (Buehler, 2024, 2023a), and Diffusion Models

(Ni et al., 2024; Luu et al., 2023), it is anticipated that advanced AI-designed structures

with non-conventional properties can provide insights not only into the field of odd elastic

materials but also into other emerging novel domains.
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Chapter 6

Summary

6.1 Summary

This thesis focused on exploring the limitations and potential of machine learning techniques

on rarely examined challenges in metamaterial prediction and design. Firstly, this thesis

investigated the robustness of machine learning methods in addressing real-world mechanics

problems characterized by data distribution shifts. Chapter 2 examined the prediction of

heterogeneous metamaterials under three distinct data distribution shift scenarios: covariate

shift, mechanism shift, and sampling bias. For each data distribution shift scenario, two

benchmark datasets were created, one sourced from Mechanical MNIST and another from

Mechanical EMNIST-Letters. Subsequently, in Chapter 3, three OOD algorithms (IRM,

REx, IGA) alongside the traditional ML method (ERM) were implemented on two ML

models (MLE and modified LeNet) to conduct a comparative analysis of the performance of

these methods on the benchmark datasets created in Chapter 2. Meanwhile, the discussion

regarding their limitations, and the insights into improving these OOD algorithms’ efficacy

in metamaterial prediction, are also provided.

The second challenge lies in applying ML methods to the intricate design and opti-

mization of chiral metamaterials where the prior knowledge about the material is unknown.

Chapter 4 investigated the underlying heuristics behind chiral metamaterials’ non-reciprocity

and asymmetry properties from the perspective of contact behaviors and energy components

under the deformation. After defining the optimization objectives, the design space was

broadened compared to the originally-used chiral metamaterials to facilitate the search for
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chiral metamaterials that can exhibit extreme non-reciprocity and asymmetry properties.

In Chapter 5, the Bayesian Optimization method was utilized to search for optimal chiral

metamaterial designs and identify the Pareto front of the chiral metamaterial design space,

obtaining chiral structures that exhibit both extreme non-reciprocity and asymmetry.

The main contributions of this thesis are: 1) The benchmark dataset collection comprising

three different types of OOD generalization problems specifically tailored for mechanics

problems in metamaterials is created and made publicly accessible, serving as a valuable and

foundational resource for future research endeavors focused on OOD regression problems

within this domain. 2) The OOD algorithms improve the OOD generalization in most data

distribution shift scenarios for metamaterial prediction. This evaluation is essential for

providing insights to metamaterial design, which often involves exploring design spaces

with unknown data distributions. 3) The heuristics behind contact behaviors governing the

non-reciprocity property of chiral metamaterials was elucidated. 4) Machine learning-guided

optimization techniques were leveraged to identify chiral metamaterials that exhibit both non-

reciprocity and asymmetry, offering promising prospects for applications in non-reciprocal

wave propagation.

6.2 Future Work

6.2.1 Challenges of OOD Generalization on Shuffled Data

In Chapter 3, three popular OOD algorithms have been introduced. These methods aim to

address OOD generalization problems in mechanics by encouraging ML models to learn

causal relationships within the data. The causal relationship is assumed to be invariant

across different environments where the data are collected. In this study, the data are created

in a way that they are divided into different environments, and there are at least two different

training environments for ML models to learn from. However, the information about data

collecting sources may not always be readily accessible for all mechanics problems. For
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example, in the third data distribution shift setting, i.e., sampling bias, the hidden sampling

probability of data may not known for most problems. When we get a mixed and shuffled

dataset, how can we learn the causal relationship within it? There are two solutions towards

addressing this potential challenge.

The first solution still involves utilizing the OOD generalization algorithms introduced

in this thesis. However, one extra step needs to be taken to divide the dataset into different

environments such that the data from the same environment exhibit similar distributions

while the data from different environments are in different distributions. This step can be

achieved through leveraging unsupervised learning techniques - data clustering (Oyewole

and Thopil, 2023; Sinaga and Yang, 2020; Ren et al., 2022). After using the clustering

method to divide data into different groups, the OOD algorithms can then be used to learn

invariant relationships across different groups, i.e., training environments, and thus improve

the OOD generalization performance of ML models.

The second solution aims to learn the causal relationship by integrating physics infor-

mation into machine learning models. This solution is more suitable for domain-specific

OOD generalization problems where expert knowledge about the domain is available. The

heuristic behind this solution is that physics laws are usually invariant across different envi-

ronments. Thus it is expected that the OOD generalization can be improved by embedding

the physics information into neural networks and encouraging ML models to learn the

invariant physics within the data. For example, in Cranmer et al. (2020) and Greydanus et al.

(2019), integrating Lagrangian and Hamiltonian mechanics into baseline neural networks

improves the performance of ML models on testing datasets dramatically compared to

baseline models. Considering that most work about physics-informed ML models primarily

concentrates on in-distribution generalization (Willard et al., 2020; Karpatne et al., 2017;

Cranmer et al., 2020; Greydanus et al., 2019), exploring how physics-informed ML can

aid out-of-distribution (OOD) generalization has significant potential for expediting the
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application of ML in metamaterials design and other fields in mechanics.

6.2.2 Deep Learning for Metamaterials Design

In Chapter 5, Bayesian optimization methods were utilized to identify optimal chiral meta-

materials with desired properties. This was achieved by searching from a large design pool

and the best candidates were selected based on the predicted property given by surrogate

ML models. There are two main advantages of this approach. Firstly, the method is effective

because it is not data hungry, i.e., the demand for large observed data. Secondly, training

surrogate ML models do not require huge computational resources. However, the constraint

is that the optimal designs will only be found within the pre-defined design pools, such

that the exploring of other potential novel designs is not enabled. To discover designs that

exhibit novel functionality beyond the training data, employing deep generative models such

as GANs (Generative Adversarial Networks) (Wang et al., 2022; Kobeissi et al., 2022),

Transformers (Buehler, 2024, 2023a), and Diffusion Models (Ni et al., 2024; Luu et al.,

2023) for metamaterial generation is promising for future research. The challenge for this

future direction is that deep generative models usually require large computational resources

and the quality of the generated designs is not guaranteed. While there is a plethora of

research focusing on generating metamaterials using supervised deep generative models

(Chen and Gu, 2020; Zheng et al., 2023; Liu et al., 2024), the validation for the generalized

materials is not a big challenge for these design problems. However, this may not apply

to chiral metamaterial design because there are several constraints that must be satisfied

for a generalized chiral structure to be physically valid. For example, the ligament shape

cannot be arbitrary and should be smooth, while the shape of the elastic ligament and the

rigid circle at the connecting area must be aligned. Despite the challenges to overcome, it is

anticipated that advanced AI-designed metamaterials with non-conventional properties can

provide insights not only into the field of odd elastic materials but also into other emerging

novel domains.
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6.3 Data and Code Availability

The extensions of Mechanical MNIST data are available through the OpenBU Institutional

Repository at https://open.bu.edu/handle/2144/39371. The access to all the OOD

datasets is at https://open.bu.edu/handle/2144/44485. The code to reproduce equibi-

axial simulation on FEniCS is at https://github.com/elejeune11/Mechanical-MNIST/

blob/master/generate_dataset/Equibiaxial_Extension_FEA_test_FEniCS.py The

code for implementing the four algorithms introduced in Section 3.1 and for creating the

datasets is available at https://github.com/lingxiaoyuan/ood_mechanics

The data and the code to optimize chiral metamaterial designs and reproduce simulation

on ABAQUS are openly available from https://github.com/lingxiaoyuan/chiral.

https://open.bu.edu/handle/2144/39371
https://open.bu.edu/handle/2144/44485
https://github.com/elejeune11/Mechanical-MNIST/blob/master/generate_dataset/Equibiaxial_Extension_FEA_test_FEniCS.py
https://github.com/elejeune11/Mechanical-MNIST/blob/master/generate_dataset/Equibiaxial_Extension_FEA_test_FEniCS.py
https://github.com/lingxiaoyuan/ood_mechanics
https://github.com/lingxiaoyuan/chiral
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Appendix A

Appendix

A.1 Details of Hyperparameters

For all ML model training in Chaper 3, the learning rate is fixed at 0.001, the total number

of training epochs is fixed at 50001, and for each epoch, each model was trained with

one single batch with all training data, this information is listed in Table A.1. The final

selection of penalty weight λ and anneal step t (count from zero) for the two ML models

using the three OOD generalization algorithms(see Section 3.1) is based on the approach for

hyperparameters tuning introduced in Section 3.3.1. These values are listed in Table A.2.

A.2 Additional Metrics and Visualization for OOD Evaluation

Violin Plots

Here, supporting information for the evaluation results shown in Section 3.4 is provided. In

Section 3.4, only the aggregated mean prediction defined by eqn. 3.10 is shown in Figure 3·4

- 3·6 to ensure a clear comparison between the different environments and approaches.

Here, the results are presented in a more detailed form using violin plots. In each violin

Table A.1: Training hyperparameters

Learning Rate Epochs Batch Size
MLP 0.001 50001 training data size
LeNet 0.001 50001 training data size
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plot, there are 15 white points which represent the RMSE performance of the MLP model

(or the modified LeNet model) with 15 different initialization, and one color-filled point

which represents the aggregated mean prediction calculated through eqn. 3.10 based on

the predicting quantity of interest (i.e., the change in strain energy after an equibiaxial

extension) value given by these 15 models. Specifically, Fig. A·1 shows the performance of

all algorithms (ERM, IRM, REx and IGA) on the training, validation, and test environments

from the covariate shift dataset created with the methods described in Section 2.2 on

both Mechanical MNIST (Fig. A·1a) and Mechanical EMNIST-Letters (Fig. A·1b). In

Fig. A·1a shows a violin plot for each of the four algorithms implemented on the MLP model

(Fig. A·1a-i), and the modified LeNet model (Fig. A·1a-ii). Similarly, in Fig. A·1b shows

the evaluation results of all the algorithms on the covariate shift dataset from Mechanical

EMNIST-Letters through violin plots. Following the same format, Fig. A·2 shows the

performance of all algorithms on the mechanism shift dataset described in Section 2.3 for

both Mechanical MNIST (Fig. A·2a) and Mechanical EMNIST-Letters (Fig. A·2b). And,

Fig. A·3 shows the performance of all algorithms on the sampling bias dataset described

in Section 2.4 for both Mechanical MNIST (Fig. A·2a) and Mechanical EMNIST-Letters

(Fig. A·2b).
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(a-i)

(a-ii)

(b-i)

(b-ii)

Covariate Shift - MNIST (MLP)

Covariate Shift - MNIST (LeNet)

Covariate Shift - EMNIST Letters (MLP)

Covariate Shift - EMNIST Letters (LeNet)

Figure A·1: The performance of the four algorithms (ERM, IRM, REx,
IGA) on the covariate shift data defined in Section 2.2. Every white point
represents the RMSE given by a single model initialized with different seeds.
The color-filled points show the RMSE of the aggregated mean prediction
calculated by eqn. 3.10. (a) The performance of a MLP model (a-i) and
the modified LeNet model (a-ii) trained by the four algorithms on training,
validation, and testing data from the Mechanical MNIST Collection. (b)
The performance of a MLP model (b-i) and a modified LeNet model (b-ii)
trained by the four algorithms on training, validation, and testing data from
the Mechanical MNIST - EMNIST Letters Collection.
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(a-i)

(a-ii)

(b-i)

(b-ii)

Mechanism Shift - MNIST (MLP)

Mechanism Shift - MNIST (LeNet)

Mechanism Shift - EMNIST Letters (MLP)

Mechanism Shift - EMNIST Letters (LeNet)

Figure A·2: The performance of the four algorithms (ERM, IRM, REx,
IGA) on the mechanism shift data defined in Section 2.3. Every white point
represents the RMSE given by a single model initialized with different seeds.
The color-filled points show the RMSE of the aggregated mean prediction
calculated by eqn. 3.10. (a) The performance of a MLP model (a-i) and
the modified LeNet model (a-ii) trained by the four algorithms on training,
validation, and testing data from the Mechanical MNIST Collection. (b)
The performance of a MLP model (b-i) and a modified LeNet model (b-ii)
trained by the four algorithms on training, validation, and testing data from
the Mechanical MNIST - EMNIST Letters Collection.
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(a-i)

(a-ii)

(b-i)

(b-ii)

Sampling Bias - MNIST (MLP)

Sampling Bias - MNIST (LeNet)

Sampling Bias - EMNIST Letters (MLP)

Sampling Bias - EMNIST Letters (LeNet)

Figure A·3: The performance of the four algorithms (ERM, IRM, REx,
IGA) on the sampling bias data defined in Section 2.4. Every white point
represents the RMSE given by a single model initialized with different seeds.
The color-filled points show the RMSE of the aggregated mean prediction
calculated by eqn. 3.10. (a) The performance of a MLP model (a-i) and
the modified LeNet model (a-ii) trained by the four algorithms on training,
validation, and testing data from the Mechanical MNIST Collection. (b)
The performance of a MLP model (b-i) and a modified LeNet model (b-ii)
trained by the four algorithms on training, validation, and testing data from
the Mechanical MNIST - EMNIST Letters Collection.
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Tables

Table A.3-A.8 present the RMSE performance calculated by both eqn. 3.10 and eqn. 3.11

for all methods introduced in Section 3.1 on all OOD datasets introduced in Chapter 2.

Note that in these tables, the RMSE is calculated by eqn. 3.10 corresponds to the RMSE

performance presented and discussed in Section 3.4. In addition, for each table, the mean

and the standard deviation of the change in strain energy are shown for each group of

data: training, validation, and testing datasets. Note that typically datasets with larger

standard deviation of strain energy tend to correspond to a larger RMSE which makes the

RMSE from Mechanical MNIST-EMNIST Letters generally larger than the RMSE from

Mechanical MNIST. Table A.3 and Table A.4 show the RMSE performance for covariate

shift datasets based on Mechanical MNIST and Mechanical MNIST-EMNIST Letters

respectively. Table A.5 and Table A.6 show the RMSE performance for mechanism shift

datasets based on Mechanical MNIST and Mechanical MNIST-EMNIST Letters respectively.

Table A.7 and Table A.8 show the RMSE performance for sampling bias datasets based on

Mechanical MNIST and Mechanical MNIST-EMNIST Letters respectively.
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ML Model Prediction vs. Ground Truth Visualization

Here an additional supplement is provided for Fig. 3·4-3·6 from Section 3.4. Fig. A·4-A·5

visualize example comparisons between the ground truth and the aggregated mean prediction

of the change in strain energy through implementing OOD generalization algorithms (IRM,

REx, IGA) and ERM on LeNet model and predicting on test environment 1 from each OOD

dataset drawn from Mechanical MNIST and Mechanical MNIST - EMNIST Letters. In

addition, the RMSE between the aggregated mean prediction and the ground truth for each

method is shown in the legend of each plot. These values of RMSE can also be found

in Table A.3-A.8. As shown in Fig. A·4ab and Fig. A·5ab, the prediction given by ERM

underestimates the ground truth for the test data from the covariate and mechanism shift

datasets. While the prediction given by OOD generalization methods (IRM, REx and IGA)

sometimes also underestimates the ground truth, it is closer to the ground truth (i.e., the

change in strain energy calculated by FEM) and sometimes has no underestimation (e.g.,

prediction given by REx for covariate shift dataset from Mechanical MNIST dataset). For

the results from the sampling bias datasets shown in Fig. A·4c and Fig. A·5c, the prediction

accuracy on the test environment is similar for ERM and OOD generalization methods,

which is consistent with the discussion in Section 3.4.3.

Best and Worst Cases Pattern Visualization

To further support the results shown in Fig. 3·4-3·6 from Section 3.4 and the prediction

vs. ground truth results shown in Fig. A·4-A·5. Here the visualizations of representative

samples from the Mechanical MNIST dataset that lead to different error levels are presented.

Fig. A·6, which contains visualizations of the data shown in Fig. A·4, presents randomly

selected samples from test environment 1 for each OOD dataset from Mechanical MNIST.

Specifically, for each algorithm (ERM, IRM, REx and IGA) on each test environment 1 from

covariate shift (Fig. A·6a), mechanism shift (Fig. A·6b) and sampling bias dataset (Fig. A·6c),
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(a) 

(b) 

(c) 

Figure A·4: The aggregated mean prediction versus the ground truth of the
change in strain energy for OOD generalization algorithms (IRM, REx, IGA)
and ERM on the test environment 1 of each OOD dataset on Mechanical
MNIST.

examples at different levels of RMSE are shown. To achieve this, sorted the data based

on RMSE and sampled three cases from three groups: lowest error (bottom 10%), median

error (45%−55%), and highest error (top 10%). For each example, the figure reports the
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(a) 

(b) 

(c) 

Figure A·5: The aggregated mean prediction versus the ground truth of the
change in strain energy for OOD generalization algorithms (IRM, REx, IGA)
and ERM on the test environment 1 of each OOD dataset on Mechanical
MNIST - EMNIST Letters.

ground truth of the change in strain energy, the predicted change in strain energy, and the

corresponding RMSE calculated through eqn. 3.10. Note that for the covariate shift and

mechanism shift dataset, both the best (lowest error) and worst (highest error) cases of ERM
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lead to higher RMSE than other three OOD algorithms. The sample cases for Mechanical

MNIST - EMNIST Letters are presented on Fig. A·7 with an identical format.

A.3 Sensitivity Analysis for Finite Element Simulation

The properties of the chiral metamaterial were acquired through the Finite Element Method

(FEM). This section provides detailed information on the FEM settings. The two rigid

circles are set as discrete rigid surfaces, while the elastic ligament of each chiral structure

is modeled as linear elastic Bernoulli–Euler beam. The cross section of the ligament is

rectangular with a fixed width of 30 and a fixed thickness 1.5. The ligament material is

linear elastic with a fixed Elastic modulus E = 70 and Poisson ratio ν = 0.3. The left circle

is fixed, while the right rigid circle is only allowed to move under the applied displacement

load with the same magnitude 0.08. Both the circle and the ligament are meshed in a

graded fashion, where the area closer to the connecting region has a finer mesh compared

to areas farther away. The finest mesh size is set as 0.02 and the coarsest mesh size is 20

times the finest mesh size. On average, there are approximately 270 mesh elements on

each of the rigid circles and approximately 714 mesh elements on the elastic ligament, as

calculated from 12 randomly generated chiral structure finite element models. Fig. A·8,

exported from the software ABAQUS, illustrates the distribution of mesh size on the rigid

circles and the elastic ligament for a representative example. Each circle has 254 R2D2

(two node 2D linear discrete rigid element) elements and the ligament has 920 B23 (two

node cubic Euler-Bernoulli beam element) elements (AbaqusAnalysis, 2016). The mesh

size at the ligament-circle contact regions is smaller than other regions. The finest mesh size

0.02 was determined by conducting mesh sensitivity analysis. Fig. A·9 demonstrates how

stiffness values change depending on the mesh size. Choosing an appropriate mesh size

involves balancing computational cost and FEM accuracy. It is worth noting that excessively

fine mesh sizes, such as 0.01, can lead to more simulation failures due to convergence
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Figure A·6: The sampled cases of three groups: lowest error (bottom
10% RMSE), median error (45%−55% RMSE) and highest error (top 10%
RMSE) from the Mechanical MNIST, and the corresponding ground truth
and predicted change in strain energy given by LeNet.
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Figure A·7: The sampled cases of three groups: lowest error (bottom 10%
RMSE), median error (45%− 55% RMSE) and highest error (top 10%
RMSE) from the Mechanical MNIST - EMNIST Letters, and the corre-
sponding ground truth and predicted change in strain energy given by LeNet.
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difficulties. Therefore, a mesh size of 0.02, where simulation results become converged

and nearly independent of mesh size, was adopted for all chiral metamaterial simulations

in this work. Nonetheless, note that a few simulation cases still fail to converge for certain

chiral structures with a mesh size of 0.02. These failed examples were disregarded during

the Bayesian Optimization data acquisition process. For more details on the finite element

modeling, readers can refer to the open-source code for this work, as detailed in Section 6.3.

Figure A·8: Visualization of the mesh on a representative chiral structure.
The finest mesh size is 0.02 and the coarsest mesh size is 0.4. Graded
meshing was performed using the commercial software ABAQUS.

Mesh Size Mesh Size Mesh Size Mesh Size

Mesh Size Mesh Size Mesh Size Mesh Size

Figure A·9: The relationship between calculated stiffness values and the
selected finest mesh size for the chiral structure depicted in Fig. A·8. The
final adopted finest mesh size is 0.02, highlighted in red.
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A.4 Contact Modes for Optimal Designs

In Section 5.3.1 and Section 5.3.2, the optimal designs for the eight objectives of non-

reciprocity and eight objectives of asymmetry are presented. Here, this section presents

the contact status for each design under different loads. Specifically, Fig. A·10 shows the

optimal chiral structures and the corresponding contact status for objectives f1 to f8, Fig.

A·11 shows the optimal chiral structures and the corresponding contact status for objectives

g1 to g8.

A.5 Data Distribution for Multi-objectives

In Section 4.4.3, Fig. 4·5 illustrated the trade-off between asymmetry and non-reciprocity

in multi-objective optimization, where the aim is to optimize two objectives with values

exceeding 1 while maintaining good performance for both. With eight non-reciprocity

and eight asymmetry objectives defined in Sections 4.4.1 and Section 4.4.2 respectively,

there are 64 comprehensive combinations of non-reciprocity and asymmetry multi-objective

optimization. In Section 5.3.3, the multi-objective optimization was categorized into three

cases: non-contradictory, contradictory, and challenging. To provide insight into this

categorization, 500 chiral structures obtained in the single-objective optimization process

were randomly sampled, and their distribution of non-reciprocity and asymmetry properties

is plotted in Fig. A·12-A·14, where the red dashed lines represent thresholds of x = 1

and y = 1 for valid designs. Any design having a non-reciprocity or asymmetry property

below 1 was not considered further. Fig. A·12 demonstrates 16 pairs of non-reciprocity

and asymmetry where the properties are not contradictory, allowing for simultaneous

improvement of both. Conversely, Fig. A·13 exhibits 16 contradictory pairs, where high

performance in one property corresponds to low performance in the other. Fig. A·14

illustrates the data distribution of 24 pairs of multi-objectives, introducing a challenging

asymmetry property that makes it difficult to achieve good performance in non-reciprocity
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(a-i)

(           )
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(a-ii)

Figure A·10: The contact modes for the optimal designs of the eight non-
reciprocity objectives (a-i) f1, f2, f3, f4 and (a-ii) f5, f6, f7, f8. For each
objective, the optimal design and the contact modes during the loading in
which the stiffness values are obtained are depicted.

.
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(a-i)

(           )
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(a-ii)

Figure A·11: The contact modes for the optimal designs of the eight asym-
metry objectives (a-i) g1,g2,g3,g4 and (a-ii) g5,g6,g7,g8. For each objective,
the optimal design and the contact modes during the loading in which the
stiffness values are obtained are depicted.

.
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simultaneously. Notably, the non-reciprocity of all materials generally falls below 3. Note

that the the total number of pairs displayed in Fig. A·12-A·14 is less than 64 due to the

exclusion of objective g4 = k+xy/k+yx, for which no optimal design was found during the

single-objective optimization process, as discussed in Section 5.3.2 and Section 5.3.3.

Figure A·12: The data distribution of 16 pairs of non-contradictory multi-
objectives for non-reciprocity and asymmetry multi-objectives. The red
dashed lines indicate thresholds of x = 1 and y = 1 for valid designs. The
x-axis denotes one non-reciprocity objective and the y-axis denotes one asym-
metry objective, as defined in Sections 4.4.1 and Section 4.4.2 respectively.

A.6 Pareto Front for Multi-objective Optimization

Section 5.3.3 investigated three Multi-Objectives and discussed about the Pareto front for

each. Although there can be more than one Pareto Optimum for each multi-objective, only
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Figure A·13: The data distribution of 16 pairs of contradictory multi-
objectives for non-reciprocity and asymmetry multi-objectives. The red
dashed lines indicate thresholds of x = 1 and y = 1 for valid designs. The
x-axis denotes one non-reciprocity objective and the y-axis denotes one asym-
metry objective, as defined in Sections 4.4.1 and Section 4.4.2 respectively.

the optimal design with the largest modulus was analyzed specifically. Here Fig. A·15

presents all the Pareto optima for multi-objectives optimization. From the figure it is evident

that the optimal designs for the same multi-objectives share common features, i.e., the shape

of the ligament and the connecting area of the circles and ligament appear similar.
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Figure A·14: The data distribution of 24 pairs of challenging multi-
objectives for non-reciprocity and asymmetry multi-objectives. The red
dashed lines indicate thresholds of x = 1 and y = 1 for valid designs. The
x-axis denotes one non-reciprocity objective and the y-axis denotes one asym-
metry objective, which is the objective that is challenging to optimize. The
definition of non-reciprocity and asymmetry can be found in Sections 4.4.1
and Section 4.4.2.
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Figure A·15: Optimal designs for the three multi-objectives outlined In
Section 5.3.3. (a) Three Pareto optimal designs for Multi-Objective 1, discov-
ered from design space 2. (b) One Pareto optimal design for Multi-Objective
2, discovered from design space 1. (c) Four Pareto optimal designs for Multi-
Objective 3, discovered from design space 4.
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