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ABSTRACT

Machine learning has evolved significantly recently and has penetrated every as-

pect of science, technology, and daily life. As application prediction demands higher

accuracy and more complex tasks, larger models are proposed to meet these require-

ments. Deep learning applications like recommendation models and large language

models have evolved with trillions of parameters and consume up to terabytes of mem-

ory. These models have outpaced the growth of GPU memories: GPU clusters, which

aggregate GPU memory, have therefore grown exponentially to accommodate these

large models. The Memory wall refers to the point at which the demand for mem-

ory exceeds the available capacity, creating a bottleneck for training ever-larger deep

learning models. Heterogeneous deep learning training has become a key approach

to addressing the limitations of GPU clusters, especially as models grow in size and

complexity. By combining the strengths of CPUs, GPUs, and NVMe memory, het-

erogeneous systems aim to overcome the required scale of GPU clusters and mitigate

the memory wall limitation by offloading model states and parameters and making it
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possible to train ever-growing large-size models on limited resources. However, such

heterogeneous system performance is limited by the data exchange, computation, and

control efficiency.

Advanced network interface cards, known as SmartNICs, have emerged to miti-

gate network challenges in scale-out data centers. The placement of SmartNICs as

a network-facing computational component within a node allows them to efficiently

manage communication between different parts of the distributed system, offloading

tasks from the central processors and reducing network traffic bottlenecks. As Smart-

NICs continue to evolve, they are expected to play a crucial role in enabling more

scalable and efficient operations in large-scale data centers, addressing the growing

demands of modern applications like machine learning and big data analytics.

In this thesis, we propose heterogeneous smartNIC-based systems for coupling

software and hardware for machine learning applications. We explore the hetero-

geneous system design space in four steps: examining the practical capabilities of

emerging smartNIC, integrating host-detached smartNICs into CPU-centric systems,

facilitating SmartNICs in GPU-centric systems, and exploring SmartNICs beyond

computation offload with heterogeneous global control and disaggregated memory

systems. Our proposal involves software-hardware codesign of SmartNIC-based sys-

tems, enhancing system performance through dynamic scheduling and control, en-

abling both GPU and CPU to focus on computation with reduced interruptions. The

smartNIC serve as an intermediary layer, breaking barriers between heterogeneous

system components and facilitating seamless connectivity between GPUs and CPU

offload engines. Additionally, the introduction of a caching system reduces commu-

nication workload and memory bandwidth pressure. Furthermore, SmartNICs are

attached to the switch level with disaggregated memory, forming a heterogeneous

global control system. This system aims to minimize system barrier and synchro-
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nization overhead while maximizing communication-computation overlap and model

FLOPs utilization for higher system performance.
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Chapter 1

Introduction

1.1 Characteristics of Deep Learning Computations

In the past few years, the field of large-scale deep learning (DL) has undergone a

dramatic transformation, emerging as a dominant force in the contemporary AI land-

scape. These large models offer remarkable improvements in sample efficiency, en-

abling them to achieve superior performance with less training data (Kaplan et al.,

2020). A key driver of this transformation has been the exponential growth in the

size of attention-based deep learning models. As a result, state-of-the-art AI models

like Meta’s LlaMA (Touvron et al., 2023a; Touvron et al., 2023b), OpenAI’s Chat-

GPT (OpenAI, 2024), and Google’s LaMDA (Thoppilan et al., 2022) have delivered

astonishing capabilities that are reshaping our daily experiences.

The remarkable performance of these models is in large part due to their sheer size.

For example, LlaMA 2, with its 70 billion parameters, and GPT-3, with 175 billion

parameters, exemplify the scale at which modern deep learning operates. Google’s

PaLM, with 540 billion parameters, and OpenAI’s latest offering, GPT-4, with a

staggering 1.8 trillion parameters, are pushing the boundaries even further. These

models represent a trend toward ever-larger AI architectures. But with them comes

not only advanced functionality, but also significant challenges in terms of computa-

tional resources and scalability.

As AI continues to permeate diverse aspects of our lives—from language pro-

cessing and recommendation systems to healthcare and robotics—–the demand for
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increasingly large models shows no signs of abating. This upward trajectory in model

size reflects both the technological advancements in hardware and software, as well

as the growing appetite for more complex and capable AI systems. The next gener-

ation of AI applications is expected to continue driving this trend, with researchers

and engineers striving to optimize both performance and efficiency at unprecedented

scales.

1.2 Challenges of Deep Learning Computations

Machine learning applications create significant obstacles for large-scale distributed

systems in three areas: communication, memory bandwidth, and computation effi-

ciency, which we now introduce.

• Communication: Communication-intensive operations on such huge data sets

— operations such as All-to-All, Broadcast, and All-Gather — require massive

data exchanges, leading to communication bottlenecks.

• Memory: Some models contain a trillion parameters, consuming terabytes

of memory, which puts considerable pressure on memory bandwidth due to

frequent memory accesses and buffer usage.

• Computation Efficiency: These models involve various computational tasks

—ranging from regular parallel computations, like dense matrix multiplication,

to more irregular, low-arithmetic-intensity tasks like sparse matrix multiplica-

tion, data reshaping, flattening, and transposing. All of these pose distinct

efficiency challenges.

While communication, memory systems, and computational efficiency all pose

significant challenges when creating efficient and performant systems for large-scale

machine learning applications, limitations of current memory systems, in particular,
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the memory wall, are exacerbating the already critical problems in the other two areas.

Historically, the memory wall referred to as the so-called von Neumann bottleneck is a

metaphor for the limited bandwidth between compute units and the data upon which

they operated (Mudigere et al., 2022). Lately, however, the term memory wall also

refers to the point at which the demand for memory exceeds the available capacity,

creating a bottleneck for training ever-larger deep learning models.

While advanced parallel strategies like 3D-parallel training (Song et al., 2023;

Narayanan et al., 2021; Smith et al., 2022) and the Zero Redundancy Optimizer

(ZeRO) (Rajbhandari et al., 2020) have facilitated the training of large-scale mod-

els, the problem of the memory wall remains a significant obstacle. Despite progress

in parallelization techniques, current hardware limitations are not evolving quickly

enough to meet the burgeoning demands of cutting-edge models. Modern deep learn-

ing models require immense memory resources. To give a sense of the scale needed,

fitting a single model can require hundreds of gigabytes to tens of terabytes of GPU

memory, depending on the model’s size and complexity. GPU memory capacity, how-

ever, is not expanding as fast as these models. As a result, maintaining pace with

this model growth would require an exponential increase in the size of GPU clus-

ters. Consider a one trillion parameter model: to accommodate a computation with

this storage requirement, more than 300 high-end GPUs with 80GB of memory each

would be needed. For emerging models of even larger scale, e.g., a model with a

hundred trillion parameters, thousands of such GPUs would be required. Note that

the problem we describe here is that the requirement for thousands of GPUs is to

handle storage alone; for computational purposes, many fewer might be satisfactory.

Beyond this problem of memory/compute resource imbalance, however, this ex-

ponentially increasing demand for compute nodes leads to a multitude of issues for

the entire system design.
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• First, adding more GPUs does not necessarily result in linear performance gains

due to the overhead of coordinating between them. Synchronization and com-

munication across a larger cluster of GPUs can slow down overall performance.

• Second, system overhead and communication bottlenecks emerge as critical is-

sues. In large GPU clusters, data must be transferred and synchronized among

different processes, resulting in significant communication that can slow down

computation.

• Third, larger-scale systems require substantial power, raising concerns about

energy efficiency and sustainability. The power consumption of these clusters

can become prohibitively high, contributing to higher operational costs and

environmental impact. Moreover, scaling up indefinitely means that cooling

and infrastructure requirements also increase, presenting additional technical

and logistical challenges.

• Finally, the memory wall creates barriers for researchers and companies looking

to build and access large models. This is especially true for smaller institu-

tions or startups with limited resources. The high cost of hardware, combined

with the increasing complexity of system design and management, can hinder

innovation and restrict access to advanced AI technologies.

1.3 Heterogeneous Architectures for Deep Learning

Heterogeneous deep learning training has become a key approach to addressing the

limitations of GPU clusters, especially as models grow in size and complexity. By

combining the strengths of CPUs, GPUs, and NVMe memory, heterogeneous systems

(an example shown in Figure 1·1) aim to overcome the various problems just described

that restrict the amount of data that can be processed within a single training step,



5

CPU

Accel 0

RDMA
NIC

Secondary Intra Node High Speed Network

Accel 1

PCIe
SwitchRDMA

NIC

NVMe

NVMe

NVMe

CPU

Accel 0

RDMA
NIC

Accel 1

PCIe
SwitchRDMA

NIC

NVMe

NVMe

NVMe

CPU

Accel 0

RDMA
NIC

Accel 1

PCIe
SwitchRDMA

NIC

NVMe

NVMe

NVMe

…

Figure 1·1: An example of heterogeneous systems.

most notably as exacerbated by the memory wall. ZeRO (Rajbhandari et al., 2020)

is one such approach. In ZeRO large models are segmented across different GPUs

to minimize memory redundancy. Subsequent enhancements like ZeRO-Offload (Ren

et al., 2021b) and ZeRO-Infinity (Rajbhandari et al., 2021) have refined this approach

by allowing offloading of model states and parameters to CPUs and NVMe storage.

This heterogeneous approach, however, brings its own set of challenges, leading to

bottlenecks affecting efficiency and performance. Two of these are now described.

One major limitation is the system’s data exchange efficiency. Since the GPU

is primarily responsible for computations, it also has the task of coordinating data

transfers among different components. In ZeRO-Offload, for example, while CPUs

store the model parameters, gradients, and optimizer states, it is still the GPU’s

responsibility to initiate, fetch, and communicate data to and from these CPUs. This

creates a bottleneck, as all data must go through the GPU in order to facilitate

the high-speed network like NvLink, resulting in delays and inefficiencies in the data

exchange process. This bottleneck becomes more pronounced when model training

is partitioned, necessitating frequent exchanges of data between CPUs and GPUs.

Because the GPU acts as the communication hub, it must manage all data movement,

leading to a slowdown of the data transfer operations. The process of sending and
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receiving data via the GPU can consume significant resources, further straining the

system’s communication efficiency.

Another major limitation involves the system’s computation and control effi-

ciency. While offloading techniques, like ZeRO-Offload, employ delayed parameter

updates to decouple CPU parameter updates from GPU computation, the GPUs still

play a central role in controlling and scheduling CPU tasks. This creates an im-

balance where the CPUs and GPUs might have varying workloads, resulting in idle

times. Additionally, the GPUs’ communication operations require substantial mem-

ory and computational resources, adding overhead to the system’s operation. The

varying computational power and complexity between the CPU and GPU paths can

lead to different execution latencies, disrupting the training workflow’s synchroniza-

tion. This can cause one part of the system to wait for the other, diminishing the

overall efficiency. The complex communication and control structure in heterogeneous

systems, along with the significant overhead required by GPU-based communication

operators, collectively reduce the efficiency and performance of these advanced deep

learning training systems.

1.4 Addressing Computational Challenges in Deep Learning

We now summarize our discussion so far. For efficient processing of large-scale ma-

chine learning applications, GPU-based heterogeneous systems are being used. But

while in production use, they still have a number of limitations. A central tenet of

this dissertation is that the limitations can be addressed, in part, by augmenting these

heterogeneous systems with Smart Network Interface Cards (SmartNICs).

SmartNICs represent a significant advance in data center networking. Smart-

NICs are designed to address the growing challenges of communication in large-scale,

distributed environments. Unlike traditional NICs, which primarily handle basic net-
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work data transfers, SmartNICs offer additional computational capabilities and can

offload certain tasks from the CPU, thereby reducing network congestion and im-

proving overall system efficiency (Broadcom, 2019; NVIDIA, 2020; Marvell, 2020;

Mellanox, 2020; Netronome, 2020). Advanced SmartNICs are particularly valuable

for computationally intensive applications like machine learning and streaming data

analytics. By allowing the programmer to incorporate domain-specific computing

capabilities, SmartNICs can handle a range of tasks that traditionally would have

required additional processing power from the CPUs or other system components.

These include, e.g., operations related to data preprocessing, encryption, compres-

sion, and other support for communication protocols such as the Message Passing

Interface (MPI) (Caulfield et al., 2016; Jaganathan et al., 2003; Xiong et al., 2019;

Xiong et al., 2018b; Xiong et al., 2018a; Schonbein et al., 2019; Wei et al., 2023).

Much of the utility of SmartNICs is due to their most obvious characteristic:

their position and role within the node. The placement of SmartNICs as a network-

facing computational component node allows them to bypass innumerable hard-

ware and software layers with the potential of drastically reducing the latency of

communication-oriented operations. This enables SmartNICs, e.g., to efficiently man-

age communication between different parts of a distributed system, offloading tasks

from the central processors and reducing network traffic bottlenecks. (Nvidia, 2021;

Intel, 2022; Xilinx, 2022b) As SmartNICs continue to evolve, they are expected to

play a crucial role in enabling more scalable and efficient operations in large-scale

data centers, addressing the growing demands of modern applications like machine

learning and big data analytics. (Caulfield et al., 2016; Krishnan et al., 2020; Wei

et al., 2023)

Specifically as related to the applications addressed in this dissertation: as ma-

chine learning models and data analysis tasks grow in complexity and scale, Smart-
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NICs could serve as an efficient solution to manage the increasing demands on network

and system resources. Furthermore, SmartNICs are well-positioned to address scala-

bility challenges in training and inference like deep learning recommendation models

(DLRMs). These models often require high-speed data transfers and low-latency

communication across distributed systems, which can stress traditional network in-

frastructures. With their enhanced communication support and built-in compute

capabilities, SmartNICs can help optimize data flows, reduce latency, and improve

the overall scalability of ML workloads.

1.5 Problems of Using SmartNICs in Large-Scale Systems

In the last section, we stated that the function of NICs in distributed systems is to

address point-to-point communication latency and to offload network functions from

the CPU. In this they are successful. SmartNICs are currently being used to add to

this capability the offload of certain application-level network functions, e.g., collec-

tives such as scatter, gather, broadcast, and reduce (Nvidia, 2024a). However, these

functions alone do not solve the most critical challenges in large-scale heterogeneous

systems: communication bottlenecks, memory bandwidth pressure, and improving

compute efficiency. In fact, the use of SmartNICs is so much in its infancy that there

remain a number of basic questions that need to be answered.

• What are the capabilities of the components within current production Smart-

NICs?

• Can SmartNICs be decoupled from the rest of the node to reduce the overhead

caused by intranode and internode communication?

• Given SmartNICs’ unique position within the node, can this be exploited to

make the entire node within GPU-CPU-Memory-SmartNIC systems more effi-
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cient?

• Similarly, given SmartNICs’ unique position with the system (network-facing),

can this be exploited to make the entire GPU-centric heterogeneous system

more efficient?

• Using SmartNICs to address the aforementioned problems is likely to require

complex designs. What should the design process be? Is it possible to create a

unified framework for creating such designs?

1.6 Thesis

So far we have determined that processing large-scale machine-learning applications

has particular challenges that appear to be best addressed through the use of GPU-

centric heterogeneous systems. These heterogeneous systems, however, have numer-

ous inefficiencies that are being exacerbated by the current memory wall. We propose

to address these inefficiencies, in part, by using SmartNICs. The use of SmartNICs

for application processing, however, is in its infancy with comparatively little under-

standing of even their basic capabilities.

In this dissertation, we propose to address the challenges and begin to answer

these questions through software-hardware codesign of various SmartNIC-based het-

erogeneous high-performance computing (HPC) systems with machine learning ap-

plications as case studies.

Our hypothesis is that software-hardware codesign enhances system efficiency, re-

sulting in improved performance. Given that applications exhibit diverse workflows,

computational characteristics, communication patterns, and performance bottlenecks,

a generalized approach alone may not fully exploit the system’s capabilities or max-

imize performance efficiency. Therefore, our approach begins by diving into the ap-

plication, and conducting performance profiling to identify performance bottlenecks
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and algorithm characteristics. On the software side, we focus on optimizing algo-

rithms for improved computational efficiency, adopting hardware-friendly strategies

where applicable. Simultaneously, from a hardware and system perspective, we de-

sign hardware and system configurations that align with software optimizations. By

integrating these two aspects, we propose a software-hardware codesign methodology

aimed at fully optimizing system efficiency and achieving higher performance. This

approach proposes an integral optimization process that addresses both software and

hardware aspects, leading to enhanced system performance and efficiency.

The heterogeneous systems that are the target of this dissertation have component

switches, disaggregated memories, and heterogeneous nodes. The latter consists of

GPUs, CPUs, and SmartNICs. These systems are built with the goal of improving

performance and efficiency, lowering power consumption, mitigating data exchange

overheads, and overlapping computation and communication. We explore the system

design space in four steps with each step advancing the performance and capabilities

of the system and each showcasing broadly a hardware-software codesign approach.

The case studies chosen to demonstrate this codesign approach encompass a range of

advanced machine learning applications: graph neural networks (GNN), deep learning

recommendation models, large language models (LLM), and further generalized large

machine learning models.

Our thesis is that high-performance and high-efficiency inference and

training of large machine learning models can be achieved by software-

hardware codesign of SmartNIC-based heterogeneous high-performance

computing systems.

We now introduce four aspects of applying SmartNIC-based heterogeneous high-

performance computing systems to improve their performance and efficiency in pro-
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cessing large-scale machine learning applications.

Exploration 1: What are the practical capabilities of emerging Smart-

NICs? SmartNICs have evolved into components that are powerful, but also complex

and heterogeneous. SmartNICs are designed to process a wide range of applications.

They thus incorporate networking support to address basic NIC functionality, but

also CPUs, programmable logic, vector processing, HBM, and DDR memory. More-

over, the components themselves are heterogeneous. For example, the Xilinx Versal

ACAP platform has three processors: a traditional FPGA, a cluster of CPUs, and a

Coarse Grained Reconfigurable Array (CGRA) of hardware blocks useful in Machine

Learning Computations. The problem addressed in this thrust is these SmartNIC

architectures are still rarely used to their fullest capability, i.e., with applications

that exercise all of these diverse components, even within the devices. Specifically,

we study the mapping of graph neural networks to the Xilinx Versal ACAP platform.

Exploration 2: How can SmartNICs be integrated efficiently into the CPU-

centric nodes? Just as SmartNICs and their components have become ever more

powerful and complex, the same is true of the nodes themselves (Park et al., 2023).

This means that there is potentially much overhead in the interaction among these

components. Of special interest to our study of SmartNICs is the interaction between

the SmartNIC and the host CPU whose workload is being offloaded to the SmartNIC.

The second thrust is thus the investigation into the use of distributed SmartNICs as a

system detached from the host, demonstrating the capabilities of offloading application

control and coupling computation and computation. Graph neural networks and deep

neural networks (DNNs) are used as applications.

The proposed system is a user-friendly framework for neural network inference on

FPGA-Centric SmartNIC (FCsN) that can perform computation, communication,

and control altogether at the same time, allowing flexible and fine-grained task cre-
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ation, distribution, and execution across multiple SmartNIC devices. By avoiding

CPU intervention, the result is maximally hiding the computation latency with net-

work communication for streaming applications at line-rate and achieving high FPGA

utilization and high performance at the system level. On the software side, FCsN uses

a data-centric programming model and is equipped with Python-based programming

APIs. On the hardware side, FCsN is equipped with a hardware-based SmartNIC

runtime to achieve CPU-detached scheduling and supports high-performance execu-

tion of NN kernels at line-rate. The current FCsN framework focuses on Neural

Network applications but has the potential of extending to a general framework as

many scientific applications share similar basic kernel functions as NN applications.

Exploration 3: Can SmartNICs facilitate connectivity in GPU-centric

nodes? The use of SmartNICs to offload computations is well-established. In this

exploration we investigate a potentially higher value role: facilitating cooperation

among CPUs and GPUs within a node. In this node design, a software/hardware

co-design system leverages SmartNIC capabilities for coupling computation and com-

munication, GPUs accelerators, and CPUs and NVMe as the offload engines. Deep

learning based recommendation models and large language models are used as appli-

cations.

We introduce a software-hardware co-design of a heterogeneous SmartNIC system

for scalable machine learning inference and training that improves the system perfor-

mance and efficiency, lowers the power consumption and budget, and mitigates the

data exchange overhead. The SmartNIC acts as an intermediate layer that breaks the

boundary between distributed heterogeneous components in the system and facilitates

seamless connectivity between GPUs and CPU offload engines. A set of SmartNIC

optimization techniques of prefetching, caching, and SmartNIC computation kernels

exploits locality to reduce data movement, enhance computation and communication
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overlap, relieve memory access intensity, and improve GPUs’ computation efficiency.

Exploration 4: SmartNICs beyond computation offload – What are the

potential benefits of global control and disaggregated memory? A problem

in large systems is that as long as overall control remains within the nodes it is

doomed to have substantial overhead in making decisions. This is the result of the

many layers of hardware and software that must be traversed in order to, first, collect

information needed to make decisions, and, second, to transmit those decisions to the

rest of the nodes. Moving control into the SmartNICs cuts through many of those

overhead layers.

The fourth exploration again involves heterogeneous SmartNIC-based systems but

with global control and disaggregated memory. This setup utilizes a headless Smart-

NIC attached directly to a network switch, which allows for centralized system and

application control: an improvement over previous designs that lacked such central-

ized global coordination.

This exploration includes a second aspect. By incorporating disaggregated mem-

ory that is also linked to this global control, the system gains several advantages. It

facilitates efficient application management and data distribution, reducing the need

for extensive synchronization and lowering barrier-related overhead. This design also

decreases communication workload, promoting greater overlap between computation

and communication tasks.

In summary, we explore how to leverage SmartNICs in large-scale ML systems,

demonstrating their critical role in enhancing system performance and efficiency. Our

four-step exploration not only augments existing systems but also addresses their lim-

itations. Rather than simply adding SmartNICs without fully utilizing their capabili-

ties, we employ a software-hardware codesign approach. This methodology begins by

analyzing applications to identify bottlenecks and inefficiencies. By integrating soft-
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ware and hardware, we propose SmartNIC designs that optimize system efficiency

and improve performance through greater computation and communication overlap,

reduced communication workload, and enhanced application control efficiency.

1.7 Contributions and Outline

The overall contributions of this dissertation are as follows:

• We characterize and employ heterogeneous configurable devices to explore the

practical capabilities of emerging SmartNICs.

• We explore and design distributed SmartNICs as a system detached from their

hosts, demonstrating the capabilities of offloading application control and cou-

pling computation and computation.

• We propose the software-hardware codesign heterogeneous system with GPU

and CPU offload engine that leverages SmartNICs as an intermediate layer that

breaks the boundary between distributed heterogeneous components and facili-

tates seamless connectivity between GPUs and CPU. We introduce optimization

techniques facilitated by SmartNICs, including caching systems, prefetching,

and computation kernels.

• We propose a heterogeneous SmartNIC-based system with system-level control

and disaggregated memory. By attaching a headless SmartNIC to the switch,

we establish a centralized system for application management with efficient

application handling and data distribution.

• Despite the challenges associated with utilizing SmartNICs in various capabil-

ities, our common methodology enables SmartNIC-based systems to achieve

high system efficiency through software-hardware codesign. We demonstrate
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the critical role of SmartNICs in large-scale ML systems through higher model

training performance and scalability.

The rest of the dissertation is organized as follows. We start with background

and related work in Chapter 2. The next 5 chapters follow the four system design

space exploration steps. Chapter 3 introduces the exploration SmartNIC capabilities

as a device and using the Xilinx Versal ACAP platform showcases the heterogeneous

component with the ability to handle various applications. Chapter 4 explores the

distributed host-detached SmartNIC systems that the SmartNIC detached from the

host, demonstrating the capabilities of offloading control and computation on Smart-

NICs. The next two chapters explore heterogeneous SmartNIC systems cooperating

with GPU with software-hardware codesign, first for DLRMs (Chapter 5) and then

for large machine learning applications (Chapter 6). Chapter 7 explores heteroge-

neous SmartNIC-based systems with global control and disaggregated memory. With

the headless SmartNIC attached to the switch, the system is augmented with sys-

tem global control and centralized disaggregated memory that the previous system

was not able to achieve. Finally, Chapter 8 summarizes the entire dissertation and

discusses future work.
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Chapter 2

Background and Related Work

In this chapter, we provide the background of common components of this disser-

tation. These include SmartNICs, FPGAs and their use in HPC and SmartNICs,

machine learning applications, machine learning parallelization strategies, and ma-

chine learning training systems. Background and previous work are described further

in each of the next chapters.

We first introduce the different categories of SmartNICs. And then parallel train-

ing strategies including data parallel, model parallel (tensor parallel), pipeline paral-

lel, and 3D parallel with their communication patterns. We also introduce the ML

applications that we targeted as software-hardware codesign and lastly, we discuss

the machine learning training systems that are used.

2.1 Smart Network Interface Cards (SmartNICs)

NICs are fundamental hardware components that enable computers and other de-

vices to connect to the network. NICs serve as the bridge between a device and the

network, translating data from the devices’ internal architecture into a format suit-

able for transmission over the network and vice versa. They play a crucial role in

facilitating communication and data exchange. Traditionally, NICs have been simple

devices focused on basic network communication tasks such as sending and receiving

data packets and handling basic network protocols like Ethernet and Wi-Fi. These

cards are typically installed in a computer’s expansion slot for integration into the
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motherboard.

With the increasing demands of modern computing, including high-speed data

transfers, virtualization, cloud computing, high performance computing, and dis-

tributed applications, NICs have evolved to support more complex tasks. Advanced

NICs, known as SmartNICs, offer additional computation capabilities, allowing them

to offload specific tasks from the main CPU. This advancement has enabled NICs to

play a critical role in improving system efficiency and performance, particularly in

HPC, data centers, and cloud environments.

SmartNICs are capable of performing functions such as encryption, compression,

network traffic analysis, and even machine learning, reducing the load on the sys-

tem’s primary processors. This evolution reflects the changing landscape of networks,

where NICs are no longer just simple network interfaces but are becoming integrated

components in system architecture, designed to optimize both communication and

computation.

There are dozens of commercial FPGA-based SmartNICs: Xilinx has introduced

the Alveo U25 (Xilinx, 2020) and SN1000(Xilinx, 2022b) SmartNICs with FPGA pro-

grammable logic and ARM core. Intel released the FPGA-based Intel Infrastructure

Processing Units (Intel IPUs) (Intel, 2021) and Intel FPGA SmartNIC (Intel, 2022).

Broadcom provides the Stingray SmartNIC (Broadcom, 2019) with an 8-core ARM

CPU and P4 packet processing engine. Other commercial SmartNICs have also been

developed with the aim of near-network processing (NVIDIA, 2020; Marvell, 2020;

Mellanox, 2020; Netronome, 2020).

Researchers have also proposed using SmartNICs as computation resources to of-

fload networking functions and applications. Catapult (Caulfield et al., 2016) uses

FPGA-based network solution to offload network applications. Work by (Jaganathan

et al., 2003) proposed a configurable network protocol on intelligent NICs. COPA
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(Krishnan et al., 2020) provides a software/hardware framework that makes the un-

derlying FPGA hardware (SmartNIC device) agnostic to middleware. FCsN (Guo

et al., 2022b; Guo et al., 2022a) proposed a high-performance FPGA centric Smart-

NIC framework, which supports domain-specific computation, low-latency communi-

cation, and host-detached scheduling. INCA (Schonbein et al., 2019) provides general-

purpose compute capabilities for SmartNICs that can be utilized when the network

is inactive. sPIN (Hoefler et al., 2017) provides a portable programming model to

offload simple packet processing. Work in (Wei et al., 2023) presents the first holis-

tic study of a representative off-path SmartNIC, specifically the Bluefield-2, from a

communication-path perspective.

SmartNICs have been built with various hardware architectures including Smart-

NICs with application-specific integrated circuits (ASICs), FPGAs, Graphics Pro-

cessing Units (GPUs), and Systems-on-Chip (SoC) that combine one or more CPUs

with the standard NIC functions. These are now briefly described.

2.1.1 ASIC-based SmartNICs

ASICs are known for delivering high efficiency and performance, primarily due to

their specialized nature, which comes at the cost of flexibility. In contrast to FP-

GAs, ASICs are custom-designed for specific tasks with fixed logic, meaning they are

optimized for particular functions but lack the adaptability of an FPGA. Tradition-

ally, developing ASICs involves a lengthy and rigid process, where the entire design,

including specifications, test methodologies, and operational scope, is determined at

the outset. This contrasts with the agile development approach possible with FP-

GAs. The ASIC-based SmartNICs are tailored to meet specific networking functions,

making them ideal for specific mature applications in HPC, cloud data centers, and

advanced networking environments.

ASIC-based SmartNICs operate by handling a range of networking tasks, includ-
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ing packet processing, encryption, compression, and load balancing, with specialized

hardware logic. This specificity allows for lower latency and faster data transfer rates,

as the ASIC is designed to execute these tasks with minimal overhead. Consequently,

ASIC-based SmartNICs are a popular choice for applications requiring high through-

put and low-latency communication. However, ASICs also face certain limitations

due to their specialized design as they lack the flexibility to adapt to new protocols

or changing network requirements without redesigning the chip. In summary, while

ASIC-based NICs offer high performance and cost efficiency, their development cycles

can be inflexible and they are generally limited to data plane operations.

2.1.2 FPGA-based SmartNICs

FPGA-based SmartNICs offer a unique blend of flexibility and programmability. Un-

like traditional NICs and ASIC-based SmartNICs, FPGA-based SmartNICs provide

the ability to reconfigure their hardware logic, allowing them to adapt to changing

network requirements and evolving workloads.

FPGA-based SmartNICs are designed to meet the needs of modern data cen-

ters and HPC by enabling customized network functions and offloading various tasks

including network protocols, security requirements, and data processing tasks that

are continually evolving. By leveraging the programmable nature of FPGAs, these

SmartNICs can be updated and reconfigured with new functionalities without hard-

ware changes. A key advantage of FPGA SmartNICs is their ability to perform

complex network processing tasks at high speed because of the inherent parallelism

and customizable logic of FPGAs. This makes them suitable for packet processing,

encryption/decryption, compression network monitoring, and so on. Additionally,

they can be programmed to support emerging network technologies and custom pro-

tocols, offering a level of flexibility not achievable with traditional ASIC-based NICs.

The reconfigurable nature of FPGA-based SmartNIC also provides a future-proofing
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advantage, allowing them to keep pace with new developments in network technology.

As data centers and cloud platforms become more complex, FGPA-based SmartNICs

can adapt to changing demands, providing a scalable and flexible solution for net-

working challenges.

2.1.3 SoC-based SmartNICs (DPU)

SoC-based SmartNICs, sometimes also known as Data Processing Units (DPUs)

(Nvidia, 2021), represent a significant evolution in network technology, integrating

advanced processing capabilities directly onto network hardware. Unlike traditional

network interface cards which primarily focus on network connectivity, SoC-based

SmartNIC combines networking with additional resources, providing a versatile and

powerful solution for modern data centers, high-performance computing, and cloud

environments. Bluefield SmartNICs leverage ARM cores and NVIDIA’s DPU offers

enhanced performance and security (Forbes, 2020).

At the cores of SoC-based SmartNICs is the concept of a System-on-Chip, where

multiple components — such as CPUs, memory, network interfaces, and other spe-

cialized accelerators — are integrated into a single chip. This design allows SoC-based

SmartNICs to offload a wide range of tasks from the main server CPU, significantly

improving overall system performance and efficiency. The key advantage of SoC-based

SmartNIC is its flexibility and versatility. They can handle various network-related

tasks, such as packet processing, encryption, load balancing, and virtualized network

functions, with the added benefit of programmability and scalability. This flexibility is

crucial in modern data centers, where network workloads are becoming increasingly

complex and dynamic, requiring adaptable hardware solutions. SoC-based Smart-

NICs or DPUs are often equipped with dedicated CPUs and memory, allowing them

to run software and execute complex tasks without replying to the host server’s re-

sources. This capability enables offloading of resource-intensive processes like virtual
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machine management, storage processing, and security functions, reducing the burden

on the main CPU and freeing up resources for other applications. The result is a more

efficient system with reduced latency and increased throughput. Additionally, SoC-

based SmartNICs are designed to support modern data center architectures, such as

software-defined networking (SDN) and network function virtualization. By enabling

programmability and customization, there SmartNIC allows data center operators

to adapt to evolving network requirements without requiring significant hardware

changes. This adaptability is crucial in environments where scalability and rapid

response to new workloads are essential.

2.2 FPGAs and their Utility in Communication

FPGAs for several decades have been critical components in computer and networked

communication. This is due to the fact that their key attributes are also crucial in

communication. Configurable hardware enables rapid update, e.g., to support new

protocols and applications. The massive off-chip communication capability enables

high-bandwidth and low-latency data transfers. And the tight coupling of compu-

tation and communication delivers unmatched application-application performance.

Only a few cycles are needed to get from application logic to the network interface.

2.2.1 Xilinx Versal ACAP Platform

As the SmartNICs are evolving with more powerful and heterogeneous devices in-

cluding ARM cores, programmable logic, and vector processing, we use Xilinx Ver-

sal ACAP heterogeneous SoC platform to explore the potential of SmartNIC as a

device. The Versal ACAP (Gaide et al., 2019; Xilinx, 2024b) is a fully software-

programmable, heterogeneous compute platform that combines (1) the processor

system (PS) - scalar engines that include the ARM processor for general-purpose

processing, (2) programmable logic (PL) - adaptable engines that include the pro-
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grammable logic blocks providing bit-level flexibility and memory, and (3) Artifi-

cial Intelligence Engines (AIEs) optimized for computation-intensive processing with

leading-edge memory and interfacing technologies and GTY transceivers for commu-

nication.

The PL kernels can be C/C++ kernels or RTL kernels. Its programming model

is the same as traditional FPGA. Xilinx AiEs are an array of VLIW professors with

SIMD vector units., which are highly optimized for compute-intensive applications.

The AIE array provides three levels of parallelism: (1) SIMD - vector registers that

allow multiple elements to be computed in parallel, (2) instruction level - VLIW

architecture that allows multiple instructions to be executed in a single clock cycle,

and (3) multi-core - AIE array where up to 400 AIEs can execute in parallel. The

AIE kernels are C/C++ programs written using specialized intrinsic calls (Xilinx,

2024c) or AIE APIs (Xilinx, 2024a) for the VLIW processor. So the PS plays the role

of CPU, the PL implements all the FPGA functions, and the AIEs are responsible

for the computational acceleration like a GPU.

2.2.2 FPGAs in HPC and Communication

Field-Programmable Gate Arrays (FPGAs) have long been studied for HPC acceler-

ation due to their many advantages (VanCourt et al., 2004; VanCourt and Herbordt,

2004; VanCourt et al., 2005). Although GPUs currently dominate the HPC land-

scape, FPGAs have shown significant potential to become key components of next-

generation HPC systems, especially with advances in programmability (Yang et al.,

2017; Sanaullah and Herbordt, 2018b; Sanaullah and Herbordt, 2018c; Sanaullah

and Herbordt, 2018a; Sanaullah et al., 2018a; Herbordt, 2019), improved design tools

(VanCourt and Herbordt, 2005; VanCourt and Herbordt, 2006), middleware solu-

tions (Haghi et al., 2020b; Haghi et al., 2020a), more general optimization methods

(Shahzad et al., 2022; Munafo et al., 2023; Shahzad et al., 2024), and use in the data
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center (Shahzad et al., 2021).

Researchers have demonstrated the efficiency and benefits of FPGAs in various

scientific computing applications, such as Adaptive Mesh Refinement (Wang et al.,

2019b; Wang et al., 2019c), Algebraic Multigrid (Haghi et al., 2020a), Bioinformat-

ics (Herbordt et al., 2006; Mahram and Herbordt, 2012), and security-related tasks

(Wolfe et al., 2020; Patel et al., 2022b; Patel et al., 2022a).

Of special note are applications that both require high performance and are com-

munication constrained, i.e., applications for which strong scaling is a particular chal-

lenge. The FPGA capabilities of combining accelerator-level compute capability —

with low-latency communication between application and physical layers — are a flex-

ible and powerful way to support strong scaling. Deployments include large FPGA-

augmented clouds and clusters with either direct FPGA-FPGA interconnects (George

et al., 2016; Sheng et al., 2017b; Sheng et al., 2017a; Sheng et al., 2018; Meyer et al.,

2023; Kikuchi et al., 2023) or network-facing FPGAs (e.g. on SmartNICs) (Putnam,

2014; Caulfield et al., 2016).

Modeling molecules over long timescales is a widely studied application of this

kind, having been addressed specifically with dedicated ASIC-based solutions for clas-

sical Molecular Dynamics (MD) (Dror et al., 2010; Shaw et al., 2014; Ohmura et al.,

2014; Shaw et al., 2021). Much work has also been done in demonstrating FPGAs

as a cost-effective alternative in Molecular Docking (VanCourt and Herbordt, 2006b;

Sukhwani and Herbordt, 2008; Sukhwani and Herbordt, 2010), long-range force cal-

culations (VanCourt and Herbordt, 2006a; Gu and Herbordt, 2007; Humphries et al.,

2014; Sheng et al., 2014; Sanaullah et al., 2016), range-limited force calculations (Chiu

and Herbordt, 2009; Chiu and Herbordt, 2010; Wu et al., 2021b; Wu et al., 2022; Wu

et al., 2024b), and integrated MD systems (Yang et al., 2019; Pascoe et al., 2020; Wu

et al., 2020; Wu et al., 2021a; Wu et al., 2023).
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2.2.3 SmartSwitches: A Smart Communication Alternative

A growing trend in HPC is the importance of the network at the switch level in appli-

cation support. There has been work that offloads collective processing into switches

(Graham et al., 2016; De Sensi et al., 2021). Current in-switch processing, however,

is limited in a number of ways. There have been commercial implementations that

support collectives, and this support covers a set of scalar and fixed function opera-

tions (Faraj et al., 2009; Graham et al., 2016). Academic work (Stern et al., 2017;

Haghi et al., 2022) demonstrates support for user-defined extensions, but the resulting

switches are confined to inline (aka streaming (Krishnan et al., 2020)) processing.

The IBM BlueGene systems (Almási et al., 2005) offload collectives into the fixed

function network router. Recent work by Mellanox (Graham et al., 2016) offloads

MPI collectives to fixed logic switches using reduction trees for short message sizes.

Increasing switch flexibility has long been a goal of the networking community, cul-

minating, in part, in programmability using P4 (Bosshart et al., 2014).

In-switch computing is becoming an active area of research. The work in (Li

et al., 2019) provides an in-switch computing paradigm, implemented on NetFPGA,

to accelerate the aggregation of gradients used in the training phase of reinforcement

learning. The work in (De Sensi et al., 2021) designs a flexible programmable switch

on top of PsPIN (Di Girolamo et al., 2021) building blocks to accelerate Allreduce

with custom operators and data types. The work (Liu et al., 2020) presents a Re-

mote Direct Memory Access (RDMA) compatible in-network reduction architecture

to accelerate distributed DNN training, in which the FPGAs are connected to the

switch and the switch is configured to route the packets that need to be aggregated

to the FPGA.

FPGAs have also emerged as promising substrates for coordinating communica-

tion and processing offloaded data in Smart Switches (Haghi et al., 2020b; Haghi
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et al., 2020a; Haghi et al., 2021; Haghi et al., 2022; Haghi et al., 2023; Haghi et al.,

2024; Guo et al., 2022a; Guo et al., 2022b; Guo et al., 2023).

2.3 Machine Learning Parallel Strategies

Machine learning training involves processing large volumes of data to train complex

models that require significant computational resources. To scale these computations

and reduce training time, parallel strategies are employed. These strategies leverage

multiple processing units to perform training tasks concurrently, leading to more

efficient use of resources and faster results. Various parallel strategies have emerged

including data parallel, model parallel (tensor parallel), and pipeline parallel, and so

on. This section introduces the machine learning training parallel strategies and the

communication patterns.

2.3.1 Data Parallelism

Data parallelism (Valiant, 1990) is a popular technique used to speed up training on

large mini-batches when each mini-batch is too large to fit on a GPU. Under data

parallelism, a mini-batch is split up into smaller-sized batches that are small enough

to fit on the memory available on different GPUs on the network. Each GPu holds

an identical copy of the network parameters and runs the forward and backward

pass. At the end of the backward pass, each GPU sends the computed gradients to

the main node or a parameter server. The parameter server aggregates the gradients

and computes the updates to the network parameters using some variant of stochastic

gradient descent. The updated parameters are then sent to each GPU and the process

is repeated for a fresh mini-batch.

Increasing the mini-batch size in proportion to the number of available workers

often results in a nearly linear increase in training data throughput. But training with

larger batches introduces challenges to the optimization process that lead to decreased
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accuracy or longer convergence times which downgrade the benefit of higher through-

put (Keskar et al., 2017). To address this, various techniques aimed at maintaining

model accuracy with the efficiency of large-batch training are introduced (Goyal et al.,

2018; You et al., 2017; You et al., 2020). For large scalability, data parallelism with

activation checkpointing, where activations are recomputed during the backward pass

instead of being stored during the forward pass to rescue memory consumption (Chen

et al., 2016).

2.3.2 Tensor Parallelism

Model parallelism is a technique used to distribute neural network computations

across multiple devices to handle large-scale models that can’t fit entirely on a single

GPU. There are two primary categories within model parallelism: layer-wise pipeline

parallelism and distributed tensor computation, also known as tensor parallelism.

In tensor parallelism, specific parts of a neural network, like model weights, gradi-

ents, and optimizer states, are divided among multiple devices. This approach is

particularly useful when a single parameter, such as a large embedding table or a

dense softmax layer with a high number of classes, consumes a significant portion of

GPU memory. Tensor parallelism mitigates these bottlenecks by distributing these

memory-heavy components across different GPUs, thus balancing the memory load

and improving efficiency.

This strategy is also critical for extremely large models, where pipeline parallelism

alone is insufficient. In such cases, splitting the model into smaller layers with pipeline

parallelism might not effectively distribute the workload, leading to deep pipelines

with high overhead and reduced throughput. For instance, with models like GPT-3

that require partitioning across dozens of instances, relying solely on pipeline par-

allelism and micro-batching can become impractical, as the resulting pipeline depth

and associated overhead make the training process cumbersome and inefficient.
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Tensor parallelism provides a more effective solution in these scenarios by dis-

tributing large tensors or operations across multiple devices, allowing for scalable

model training without overloading any single GPU’s memory capacity. This ap-

proach enables the efficient training of complex models, achieving a better balance in

memory usage and reducing the overhead associated with deep pipeline parallelism.

As neural networks continue to grow in size and complexity, tensor parallelism plays

an increasingly important role in managing the demands of modern large-scale ma-

chine learning training. Mesh-TensorFlow (Shazeer et al., 2018) introduces a language

for specifying a general class of distributed tensor computation in TensorFlow (Abadi

et al., 2016). FlexFlow (Jia et al., 2019) is a deep learning framework using tensor par-

allelism that provides a method to pick the best between tensor parallel and pipeline

parallel. Megatron-LM (Shoeybi et al., 2020) uses tensor model parallelism that is

orthogonal and complimentary to pipeline model parallelism for language models.

2.3.3 Pipeline Parallelism

In contrast to tensor parallelism which splits individual weights, pipeline parallelism

keeps individual weights intact but partitions the set of weights. In pipeline model

parallelism, groups of operations are performed on one device before the outputs are

passed to the next device in the pipeline where a different group of operations are

performed. Each batch of training data is divided into micro-batches that can be

processed in parallel by the pipeline stages. Once a stage completes the forward pass

for a micro-batch, the activation memory is communicated to the next stage in the

pipeline. Similarly, as the next stage completes its backward pass on a micro-batch,

the gradient with respect to the activation is communicated backward through the

pipeline. Each backward pass accumulates gradients locally. Next, all data parallel

groups perform reductions of the gradients in parallel. Lastly, the optimizer updates

the model weights.



28

Several methods (Harlap et al., 2018; Chen et al., 2019) incorporate a parameter

server (Li et al., 2014) to support pipeline parallelism in distributed machine learning.

For instance, the GPipe framework (Huang et al., 2019) for TensorFlow addresses

inconsistencies by using synchronous gradient descent. This synchronization ensures

that gradients are updated uniformly across all pipeline stages. However, adopting

this approach necessitates extra logic to manage the complex interactions between

communication and computation within the pipeline. It involves careful coordination

to ensure that data is transmitted and processed in the correct order, optimizing the

pipeline’s efficiency and maintaining consistent model training.

2.3.4 3D Parallelism

3D parallelism training integrates three distinct types of parallelism—data paral-

lelism, model parallelism (also known as tensor parallelism), and pipeline paral-

lelism—to expedite and enhance the efficiency of training large deep learning models.

By capitalizing on multiple devices, this technique enables simultaneous processing

of different facets of the model, leading to significantly reduced training times and

the ability to tackle large-scale models that would be impractical or infeasible with

single-device training. Moreover, 3D parallelism optimizes hardware utilization by

distributing the workload across available GPUs.

However, implementing 3D parallelism presents challenges due to its complexity,

necessitating meticulous planning and optimization efforts. Communication overhead

is a particular concern, as coordinating and transmitting data between devices can

introduce additional latency, potentially offsetting some of the performance gains.

Notable works employing 3D parallelism include training large language models

such as Megatron-Turing NLG (Smith et al., 2022) and GPT-3 (Brown et al., 2020),

which demand extensive computational resources. Similarly, in image recognition and

computer vision tasks, the speedup provided by 3D parallelism significantly benefits



29

the training of complex convolutional neural networks (CNNs) (Oyama et al., 2020).

In natural language processing (NLP), tasks like machine translation and text sum-

marization, characterized by large datasets and intricate models, also stand to gain

from the advantages offered by 3D parallelism (Song et al., 2023; Narayanan et al.,

2021).

In conclusion, 3D parallelism represents a potent technique for accelerating deep

learning training, empowering researchers and practitioners to train increasingly so-

phisticated and robust models.

2.3.5 Zero Redundancy Optimizer (ZeRO)

Zero Redundancy Optimizer (Rajbhandari et al., 2020) is a memory optimization

parallel strategy that eliminates memory redundancies across data-parallel processes

by partitioning model states. By introducing reasonable additional communications,

these strategies can efficiently scale the model size proportionately to the number of

devices. ZeRO distributes the training batch across multiple GPUs, similar to data

parallel training. However, instead of duplicating models, the ZeRO partitions model

states across all GPUs and utilizes communication collectives to gather parameters

when needed during various phases of the training process. It offers a more generic so-

lution that does not require users to modify the model extensively for implementation,

providing improved compute efficiency and scalability.

With data parallel, each process possesses duplicated models. After backward

propagation, an All-Reduce operation is employed to calculate gradients used in the

optimizer, updating parameters in each process. ZeRO operates in three stages cor-

responding to three model states, where the model is partitioned into three parts and

distributed among three data parallel processes.

In ZeRO-1, the optimizer states are partitioned on top of data parallelism, with

each process owning a partition of the entire optimizer. Consequently, each optimizer
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partition updates only the corresponding parameter partition, following an All-Gather

operation to update all processes’ parameters.

ZeRO-2, the second stage, partitions both optimizer states and gradients. Each

process owns a partition of the gradients, requiring a Gradients Gather operation to

collect all computed gradients across processes. After gathering, the corresponding

optimizer works on the parameter update for its partition.

In the final stage, ZeRO-3, layer parameters are partitioned and owned by data

parallel processes. Broadcast communication collectives are initiated by the parame-

ter partition owner before each forward and backward pass to share parameters with

other data-parallel processes. This process repeats until the completion of all for-

ward pass operations. After each process completes loss computation, a parameter

Broadcast is issued before each backward pass partition.

Work has been done to propose a heterogeneous system leveraging CPU or NVMe

memory has been explored to augment the system’s memory capacity. Such a system

enables the training of significantly large models on a limited number of GPUs.

ZeRO-Offload (Ren et al., 2021b) presents a heterogeneous training approach with

the CPU as an offload engine, based on the ZeRO-2 foundation to offload optimizer

states, gradients, and the computation of parameter updates on the CPU. Figure

6·5 illustrates the ZeRO-Offload workflow. This method addresses the constraints of

limited GPU memory, alleviating the challenge of requiring a large number of GPUs

to store optimizer states and gradients.

2.3.6 Communication Patterns in Machine Learning Applications

Parallel machine learning training relies heavily on efficient communication between

devices to synchronize computation or distribute data across distributed computing

nodes. Among the key communication patterns used in parallel training are All-

Reduce, Reduce Scatter, All-Gather, and Broadcast. These communication patterns
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play a vital role in coordinating data exchange and synchronization among distributed

nodes, enabling efficient parallelization of machine learning algorithms.

All-Reduce is a fundamental communication pattern frequently employed in dis-

tributed optimization algorithms like stochastic gradient descent (SGD). It involves

aggregating data from multiple nodes through a reduction operation, such as sum-

mation or averaging, performed across all nodes. The aggregated result is then dis-

tributed back to each node, ensuring synchronization of gradients and facilitating

collaborative model updates. All-Reduce plays a crucial role in achieving conver-

gence and improving the efficiency of distributed training.

Broadcast is used where data is transmitted from a single source node to all other

nodes in the network. This pattern is often employed for distributing global model

updates or initializations to all nodes before training begins. By broadcasting data

to all nodes, Broadcast ensures consistent starting conditions across the distributed

environment, facilitating synchronized training across multiple computing nodes.

All-Gather is a communication pattern that involves collecting data from all nodes

and combining it into a single global dataset. This pattern is commonly used for aggre-

gating local computations or gathering statistics from distributed nodes. By collecting

data from all nodes, All-Gather enables collective decision-making or parameter up-

dates, contributing to the overall convergence and performance of distributed training

algorithms.

Reduce-Scatter is another important communication pattern used for distributing

global data, such as gradients gathering and redistribution. Reduce Scatter operates

by dividing the data into smaller subsets and distributing these subsets to different

nodes in the network. Each destination node receives a portion of the original data,

often corresponding to a subset of the overall dataset or a specific segment of the

model parameters. Reduce-Scatter is particularly useful in scenarios where global
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data needs to be distributed across multiple nodes for parallel processing.

2.4 Machine Learning Applications

2.4.1 Graph Convolutional Networks (GCNs)

Graph Convolution Networks have emerged as a powerful tool in the realm of deep

learning, particularly for tasks involving graph-structured data. With the rise of

complex data structures such as social networks, biological networks, and citation

networks, traditional deep learning architectures faced challenges in effectively captur-

ing the inherent relationships and dependencies within these graphs. GCNs address

this issue by introducing graph convolutional operations, enabling the integration of

graph structure into the learning process. At its core, a GCN operates on a graph,

which consists of nodes representing entities and edges representing connections or

relationships between these entities. The key idea behind GCNs is to learn node

representations by aggregating information from neighboring nodes, leveraging the

graph’s topology. This aggregation process is achieved through graph convolutional

layers, which adapt the convolution operation from regular grids (as in image data)

to irregular graph structures.

GCNs are composed of stacked graph convolutional layers. Each GCN layer follows

the Aggregation and Combination paradigm. Particularly, the widely used 2-layer

GCN model is

X(2) = σ(Ã · σ(Ã ·X(0) ·W (1)) ·W (2)),

where W (l) ∈ Rhl−1×hl is the weight matrix of the l-th layer and X(l) is the feature

vector of the l-th layer. Ã = D− 1
2 ·A ·D− 1

2 . Here A = A+ I is the self-loop adjacency

matrix; D is the Laplacian matrix with Dii =
∑

j Aij; and σ denotes non-linear

activation functions.

Multiplying (A × X)W first results in a sparse-sparse matrix multiplication that
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produces a large dense matrix. Previous work (Geng et al., 2020a; Geng et al.,

2021b) found that the order of computation, A × (X × W ), greatly reduces the

scale of computation since both are sparse-dense matrix multiplications (SpMM).

We therefore first compute the product of feature and weight matrices, which is the

called combination phase. Subsequently, matrix A is multiplied with the result of the

combination phase (updated feature matrix); this is called aggregation. Similar to

the prior art, we follow a 2-layer vanilla GCN model (Geng et al., 2020a). From now

on, for a SpMM computation, we refer to the first (sparse) matrix as LHM (left-hand

matrix) with the size m × k and the second (dense) matrix as RHM (right-hand

matrix) with size k × n.

GCNs typically operate on large, irregular input graphs with relatively small mod-

els, i.e., few layers. This contrasts with DNNs, where both the model and the collec-

tion of input samples are large, but each sample (e.g., an image) is small. Sometimes,

these graphs are so large they cannot be stored in the memory of a single node (Jia

et al., 2020). Consequently, training often involves sampling techniques to fit data

into a single device’s memory, though this reduces accuracy (Jia et al., 2020). Con-

versely, inference generally processes the entire graph in one batch. More than 90%

of infrastructure costs on AWS are attributed to inference, with less than 10% due to

training (AWS, 2019; Gasteiger et al., 2022). Moreover, inference is necessary dur-

ing training. Other approaches are proposed for graph based application (Wu et al.,

2024a; Song et al., 2024)

2.4.2 Deep Learning Recommendation Models

Recommendation systems have become an essential component of many online plat-

forms, from e-commerce websites to streaming services and social media networks.

The primary goal of these systems is to predict user preferences and provide person-

alized recommendations, thereby enhancing user experience and engagement. Tra-



34

ditional recommendation methods, such as collaborative filtering and content-based

filtering, have laid the groundwork for this field. However, these approaches often

struggle with the challenges posed by large-scale and sparse data, as well as the need

to capture complex, non-linear user-item interactions.

The advent of deep learning has revolutionized many areas of artificial intelligence,

and recommendation systems are no exception. Deep learning-based recommendation

models (Naumov et al., 2019) use the power of deep neural networks to address the

limitations of traditional methods and offer significant improvements in recommenda-

tion accuracy and scalability. By leveraging vast amounts of data and sophisticated

neural network architecture, DLRMs can learn intricate patterns and relationships

within the data, enabling them to make more accurate and relevant recommendations.

DLRMs utilize a variety of components to achieve their performance. Embedding

layers transform high-dimensional sparse categorical features (such as user IDs and

item IDs) into dense, low-dimensional vectors. These embeddings capture semantic

similarities and relationships between features, facilitating more effective interaction

modeling. Interaction layers, often involving deep neural networks, process these em-

beddings to capture higher-order feature interactions that are critical for accurate

recommendations. The architecture of DLRMs typically includes multiple hidden

layers that learn representations at different levels of abstraction. These layers can

incorporate various neural network types, including fully connected layers, convo-

lutional layers, and recurrent layers, depending on the specific requirements of the

recommendation task.

DLRMs require large memory bandwidth and capacity (Yang et al., 2020a; Zhao

et al., 2020; Yin et al., 2021; Lan et al., 2020; Weinberger et al., 2009). Hashing

functions are optimized by work like (Weinberger et al., 2009) Works like (Sethi

et al., 2022) optimize embedding partitioning and placement techniques. Works like
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(Lim et al., 2019; Lin et al., 2020) using various quantization schemes to reduce

communication volume. These works address embedding operators using software

and algorithm solutions that do not fundamentally solve the DLRM bottleneck in a

hardware aspect. Much attention is given to using GPUs as computation accelerators.

Work of (Mudigere et al., 2022) introduced a software-hardware co-design system

using GPU for distributed training. Work (Kwon and Rhu, 2022) proposed a software

runtime system that manages GPU DRM as a fast scratchpad. There are works that

explore using storage technology to enhance the performance embedding operator

of DLRM. Work (Eisenman et al., 2019) presents a storage system that reduces the

DRAM footprint using Non-volatile Memory. Work (Wilkening et al., 2021) proposed

a near-data processing solution that improves the performance of underlying SSD

storage for embedding table operators. However, these works are not focused on

the communication bottleneck as the DLRM scales up. Work (Zhu et al., 2021)

presents an FPGA cluster for recommendation inference for embedding lookups and

computation. Work (Jiang et al., 2021) proposed a recommendation inference engine

using FPGA’s high bandwidth memory and pipelined dataflow. These works are not

targeting scalability as the recommendation model grows even more significant.

2.4.3 Large Language Models (LLMs)

Large language models have emerged as powerful tools in natural language processing,

revolutionizing various tasks such as text generation, translation, summarization, and

question-answering. These models, typically based on deep learning architectures, ex-

hibit remarkable capabilities in understanding and generating human-like text. The

development of LLMs has been primarily driven by advancements in deep learning al-

gorithms, the availability of massive datasets, and increased computational resources.

The foundation of modern LLMs can be traced back to the advent of recurrent

neural networks (RNNs) and their ability to effectively model sequential data. How-
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ever, it was the introduction of transformer architectures that marked a significant

breakthrough in the field of NLP. The transformer model, proposed by Vaswani et al.

(Vaswani et al., 2017), relies on self-attention mechanisms to capture long-range de-

pendencies within input sequences, enabling parallelization and more efficient training

on large-scale datasets.

One of the key features of LLMs is their ability to learn complex patterns and

relationships from vast amounts of text data through unsupervised pretraining fol-

lowed by fine-tuning task-specific data. Pretraining involves training the model on a

diverse corpus of text, such as books, articles, and websites, to learn general language

representations. This pre-trained model is then fine-tuned on downstream tasks by

providing task-specific supervision, allowing it to adapt its learned representations to

the specific task requirements (Devlin et al., 2019).

During inference, LLMs utilize learned representations to generate coherent and

contextually relevant text. This process involves feeding input tokens into the model,

which then employs its learned parameters to predict the most likely continuation of

the sequence based on the provided context. Beam search and sampling techniques

are commonly used to generate diverse and fluent outputs, with techniques such as

temperature scaling used to control the level of randomness in the generated text

(Holtzman et al., 2020).

2.4.4 Machine Learning Acceleration

FPGAs find extensive use in neural network acceleration, e.g., with optimized per-

ceptrons (Sanaullah et al., 2018c), for medical diagnosis (Sanaullah et al., 2018b), for

in-brain neural spike sorting (Liu et al., 2016), for training (Geng et al., 2018a; Geng

et al., 2018b; Wang et al., 2020b), using CGRAs for QNNs (Geng et al., 2020b),

GNNs (Geng et al., 2020a; Geng et al., 2021b), and binarized NNs (Geng et al.,

2019b; Geng et al., 2019a; Geng et al., 2021b). Researchers have proposed various
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model regularization approaches for CNNs and RNNs, achieving efficient acceleration

of regularized models with FPGAs (Shi et al., 2020b). See also (Geng et al., 2021a)

for a survey.

2.5 Machine Learning Training Systems

Large-scale machine learning training systems have emerged as essential infrastructure

for tackling the challenges posed by massive datasets and complex models in various

domains. These systems are instrumental in training models with vast amounts of

data, enabling advancements in fields such as image recognition, natural language pro-

cessing, recommendation systems, and autonomous vehicles. Central to the efficiency

and scalability of large-scale ML training systems is the utilization of advanced hard-

ware and communication protocols. In recent years, technologies such as remote direct

memory access have gained prominence for their ability to facilitate high-throughput,

low-latency communication between computing nodes in distributed systems. RDMA

enables direct memory access between nodes without involving the CPU, reducing

communication overhead and enhancing overall system performance. Furthermore,

the advent of graphics processing units and their associated programming framework,

CUDA (Compute Unified Device Architecture), has revolutionized the landscape of

ML training. GPUs offer massively parallel processing capabilities, allowing for ac-

celerated computations of complex neural network architectures. CUDA provides

a platform for developers to harness the computational power of GPUs, enabling

efficient implementation of parallel algorithms for training deep learning models.

In distributed GPU environments, efficient communication among devices is im-

portant for achieving optimal performance. The NVIDIA Collective Communication

Library (NCCL) is a communication library designed for multi-GPU systems, offering

optimized algorithms for collective operations such as all-reduce, broadcast, reduce-



38

Figure 2·1: The system architecture of Zion which is a high-
performance hardware platform for DLRM training. (Mudigere and
Zhao, 2019)

scatter, and all-gather. NCCL facilitates efficient data exchange and synchroniza-

tion among GPUs, with low communication overhead and high distributed training

throughput. Large-scale ML training systems leverage these hardware advancements

and communication protocols to train complex models, such as large language mod-

els on massive datasets. Distributed training frameworks, such as TensorFLow and

PyTorch, provide the infrastructure for distributed training of large machine learning

models. These frameworks implement parallelization strategies such as data paral-

lelism and model parallelism, distributing computation and memory across multi-

ple GPUs and nodes. RDMA-enabled networking solutions, coupled with efficient

communication libraries like NCCL, facilitate high-bandwidth, low-latency commu-

nication among devices, enabling seamless coordination and synchronization during

training.

Zion, introduced as a high-performance hardware platform for Deep Learning

Recommendation Models (Mudigere and Zhao, 2019), offers a robust architecture

designed to meet the demands of training complex models. Illustrated in Figure 2·1,
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Figure 2·2: The system architecture of ZionEX with improved net-
work capabilities. (Mudigere and Zhao, 2019; Mudigere et al., 2022)

a Zion node boasts 8 CPU sockets accompanied by 1.5 TB of memory, 8 GPUs, and

8 network interface cards (NICs). This design facilitates efficient training of DLRMs

by strategically offloading compute-heavy layers onto GPUs while leveraging CPUs

for handling large embedding operators in DRAM. This approach enables Zion to

accommodate TB-scale DLRMs on a single node. However, while formidable at the

individual node level, Zion faces limitations when it comes to distributed training,

hindering its scalability to meet the escalating demands of ML training.

To address the scalability challenges, ZionEX (Mudigere et al., 2022) emerges

as an evolutionary step forward, as depicted in Figure 2·2. Unlike its predecessor,

ZionEX is engineered with scalability in mind, offering both scale-up and scale-out

network capabilities. Notably, ZionEX employs dedicated Remote Direct Memory

Access over Converged Ethernet (RDMA over Converged Ethernet, or RoCE) NICs

for each GPU, connected via PCIe switches. This configuration enables isolated

inter-node connectivity, separate from the common data-center network, and sup-

ports more efficient RDMA/GPUDirect communication protocols (Naumov et al.,

2020). Furthermore, ZionEX nodes can be interconnected through a dedicated back-
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end network, forming a cluster tailored for distributed and scalable training scenarios.

This architectural enhancement not only streamlines inter-node communication but

also mitigates the bottlenecks associated with networking constraints and data-center

infrastructure limitations, paving the way for more seamless and efficient distributed

ML training.

ZeRO-Infinity (Rajbhandari et al., 2021) introduces a parallel deep learning train-

ing system designed to overcome the GPU memory limitation by leveraging heteroge-

neous memory systems, including GPU memory, CPU memory, and extensive NVMe

storage within model GPU clusters. With ZeRO-Infinity, each NVIDIA V100 DGX-2

node can accommodate up to one trillion parameters, representing a staggering 50-

fold increase over 3D parallelism. A key feature of ZeRO-Infinity is its utilization

of the powerful offload mechanism known as the infinity offload engine. This engine

intelligently partitions model states, enabling them to be offloaded to CPU or NVMe

memory as needed, or retained within GPU memory based on memory requirements.

MegaScale (Jiang et al., 2024) presents the design, implementation, and oper-

ational insights garnered from the development and deployment of MegaScale, a

production-grade system tailored for training large language models at an unprece-

dented scale exceeding 10,000 GPUs. Adopting a comprehensive full-stack approach,

the paper co-designs algorithmic and system components spanning model blocks, op-

timizer design, computation and communication overlap, operator optimization, data

pipelines, and network performance tuning. Notably, MegaScale addresses numerous

stability challenges that manifest uniquely at a large scale, emphasizing the criti-

cal role of in-depth observability in resolving such issues. Demonstrating its prowess,

MegaScale is capable of training a massive 175 billion parameter LLM model utilizing

12,288 GPUs.
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Chapter 3

SmartNIC Capabilities as Devices

SmartNICs are becoming increasingly powerful and diverse in architecture. In addi-

tion to traditional networking functions, SmartNICs are designed to offload various

network and compute tasks from the main CPU, enhancing overall system perfor-

mance and efficiency. Key components include ARM cores, which run various network

functions, control plane tasks, and user-defined applications; Network Processing

Units (NPUs), specialized processors designed to handle network-related tasks such

as packet processing, traffic management, and security functions; and programmable

logic, such as FPGAs or other programmable hardware components, which can be

customized to implement specific network functions, data processing tasks, and ac-

celerate specific workloads.

Applications like Graph Convolution Neural Networks have different phases and

parts, each with its own optimal hardware. In this exploration, we investigate the

practical capabilities of emerging SmartNICs and focus on mapping applications to

their architecture. We utilize Xilinx Versal Adaptive Compute Acceleration Platforms

(ACAPs) to explore SmartNIC capabilities as devices.

3.1 Motivation

In the past few years, GNNs have achieved great success in many applications such

as node classification, link prediction, graph classification, and clustering. Among

various kinds of GNNs, graph convolutional network, is one category of models that



42

re-define the notion of convolution for graph data and has attracted substantial efforts

from both the industrial and academic communities due to their unique ability to ex-

tract latent information from graph data. GCNs have various applications, including

citation networks, social network analysis, chemistry, computer vision, and natural

language processing.

Despite the popularity of GCNs, accelerating GCN inference is still challenging:

GCNs inherit the irregular computational pattern and processing dataflow of graph

analytics, resulting in inefficiency on CPUs and GPUs. This is due especially to three

factors: (1) irregular data access patterns due to executing on non-Euclidean data,

(2) workload imbalance due to skewed distribution of graph degrees, and (3) hybrid

computation patterns due to diverse features of different GCN phases. In particular,

the Aggregation (or message passing) phase performs vector additions where vectors

are fetched with irregular strides, while the Combination (or node embedding) phase

can be either dense or sparse-dense matrix multiplication.

Figure 3·1: Overview of three types of subgraph.

There have been many efforts on GCN acceleration using both GPUs and FPGAs.

Researchers have pointed out that the irregularity from graph topology, the resulting
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poor data locality, and the serious workload imbalance are the problems. By lever-

aging FPGA hardware flexibility, existing work has well addressed these problems.

However, we observe that besides the irregularity, the heterogeneity of graph structure

is also a significant performance limiter. As shown in Figure 3·1, a graph can have

tightly clustered components, loosely clustered components, and scattered nodes: it

is therefore challenging to use a unified hardware architecture/device to accelerate all

parts of the graph computation.

A few works have implemented GCN accelerator on FPGAs (Zhang et al., 2021;

Zeng and Prasanna, 2020). However, the overall performance is significantly bounded

due to the low frequency of FPGAs compared to CPUs and GPUs. Also, single-

instruction multiple-data (SIMD) processing in CPUs can provide high frequency and

computation power. Its utility, however, is reduced as the target computation strays

from dense, regular operations. This is also the case to some extent in the analogous

modes in GPUs and FPGAs. Overall, the heterogeneity of GCN implies that emerging

heterogeneous hardware such as Xilinx ACAP may provide an opportunity for further

acceleration.

To this end, we propose H-GCN, an accelerator designed to mirror the hetero-

geneous computing paradigm of GCNs. In particular, H-GCN leverages the hetero-

geneity of the Versal ACAP to efficiently process different types of subgraphs. The

computation of tightly clustered components is mapped onto dense AIEs to fully uti-

lize their high frequency and parallelism from SIMD and very-long instruction word

(VLIW) processors. The computation of loosely clustered components is executed on

sparse AIEs to reduce computation latency. The computation of scattered nodes is

finished on programmable logic (PL) to utilize its programming flexibility. Its per-

formance is not be bounded by the low frequency since the proportion of scattered

nodes is relatively small.
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H-GCN is an ultra-efficient, systolic tensor-based hardware accelerator that incor-

porates the features of the PL and AIE for fully utilizing the ACAP’s heterogeneous

compute capability in GCN computation.

• We study the heterogeneity of graphs and heterogeneity-aware GNN accelera-

tion.

• We are the first to study the use of the AIE compiler in graph processing and

sparse matrix processing.

• We design a lightweight grouping strategy to enable sparse tensor computation

on the Versal AIEs.

• We develop an efficient method to process tiles of a sparse matrix to enable an

automatic mapping of SpMM onto the systolic tensor array.

• Experimental results show that compared with CPU and GPU solutions (i.e.,

PyG-CPU, PyG-GPU, DGL-CPU, and DGL-GPU), H-GCN achieves up to

3376.3× and 128.7× speedups, respectively. Compared with a state-of-the-

art FPGA accelerator, H-GCN achieves 1.4-12.7× speedup on the tested graph

datasets.

3.2 Background and Related Work

3.2.1 Xilinx Versal ACAP

Figure 3·2 shows the Xilinx Versal ACAP architecture. ACAP (Gaide et al., 2019;

Xilinx, 2024b) is a fully software-programmable, heterogeneous compute platform

that combines three components: (1) the Processor System (PS)—Scalar Engines

that include the ARM processors, (2) Programmable Logic (PL)—Adaptable Engines

that include the programmable logic blocks and memory, and (3) Artificial Intelligence

Engines (AIEs) with leading-edge memory and interfacing technologies.
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Figure 3·2: Xilinx Versal Adaptive Compute Acceleration Platforms
(ACAPs).

The PL kernels can be C/C++ kernels or RTL kernels. Its programming model

is the same as traditional FPGA. Xilinx AIEs are an array of VLIW processors with

SIMD vector units, which are highly optimized for compute-intensive applications.

The AIE array provides three levels of parallelism: (1) SIMD - vector registers that

allow multiple elements to be computed in parallel, (2) instruction level - VLIW

architecture that allows multiple instructions to be executed in a single clock cycle,

and (3) multi-core - AIE array where up to 400 AIEs can execute in parallel. The AIE

kernels are C/C++ programs written using specialized intrinsic calls (Xilinx, 2024c)

or AIE APIs (Xilinx, 2024a) for the VLIW processor. In this chapter, we mainly use

intrinsic calls to implement our AIE kernels and use the Vitis AI compiler “AIE” to

compile these codes.

In general, if we compare ACAP to a conventional computing system, the PS

plays the role of CPU, the PL implements all the FPGA functions, and the AIEs are

responsible for the computational acceleration like GPU. Thus, ACAP illustrates a

strong heterogeneity. However, there is no work that takes advantage of such strong

heterogeneity in GCN acceleration. In addition, intrinsic calls or APIs are designed
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and optimized for dense computation, so there is no prior work that optimizes sparse

computation on the AIEs.

3.2.2 Related Work

There has been ongoing research on designing dedicated hardware architecture to

accelerate GCNs. For example, HyGCN (Yan et al., 2020) designs hybrid archi-

tecture with individual modules for Aggregation and Combination, respectively, to

tackle the hybrid computing pattern of Graph Neural Networks. AWB-GCN (Geng

et al., 2020a) proposes an autotuning strategy to solve the workload imbalance in

GCN acceleration. BoostGCN (Zhang et al., 2021) uses hardware-aware partition

centric feature aggregation scheme to increase on-chip data reuse. I-GCN (Geng

et al., 2021b) reorders graphs using islandization to improve the data locality so as to

achieve better on-chip data reuse and less off-chip memory access. Islandization tar-

gets low-frequency, fine-grained, highly flexible PL devices and requires fine-grained

hardware architecture, which is not suitable for 2D-mesh AIEs. In the evaluation, we

will compare our work with HyGCN, AWB-GCN, BoostGCN, and I-GCN.

Different from all prior work, the proposed H-GCN can fully enable the com-

putational power of the emerging heterogeneous compute platform—Xilinx Versal

ACAP—for GCN acceleration by leveraging its strong heterogeneity (e.g., ARM pro-

cessor, FPGA, and SIMD vector units). To fully explore the capability of ACAP, we

propose to mix sparse/dense systolic tensor arrays to accelerate the hybrid computing

pattern of GCNs.

In addition, there are a few applications that already leveraged Versal ACAPs. For

example, Corradi and Jensen (Corradi and Jensen, 2020) implemented real-time syn-

thetic aperture and plane wave ultrasound imaging on the AIEs. However, there has

been no work that explores the way to implement and optimize sparse computation

on AIEs.
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3.3 System Architecture

3.3.1 Overview of Our Proposed Architecture

Figure 3·3: Overview of the hardware system design

Figure 3·3 shows the overview architecture of our proposed H- GCN. It consists

of a platform controller in the processing system, a sparse-dense matrix-matrix mul-

tiplications unit and a PL controller in programmable logic, a sparse/dense systolic

tensor array and activation/exponential unit implemented in the AIEs, a network on

chip (NoC), four DDR4 SDRAM. The platform controller is used to control the whole

system and send instructions to the SpMM unit, PL controller, and sparse/dense sys-

tolic tensor array to control their executions and collect their statuses. Specifically,

the PL controller controls SpMM unit to cooperate with the sparse/dense systolic

tensor arrays to perform all GCN computations. It starts the SpMM unit when it

detects that the sparse or dense systolic tensor array has generated enough data. We

were inspired by MatRaptor to design our SpMM unit, which adopts row-wise prod-

uct approach. The PL controller also includes a DDR controller to work with the
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NoC to perform data reading and writing. Moreover, the sparse/dense systolic tensor

array, which is interconnected side-by-side in a chain/ring fashion, targets the accel-

eration of both dense and sparse matrix addition and multiplication. It includes both

sparse systolic tensor array and dense systolic tensor array; the sparse systolic tensor

array is designed for sparse-dense matrix-matrix multiplications in GCNs, while the

dense systolic tensor array is mainly for dense-dense matrix-matrix multiplications in

GCNs. In addition, our system first performs graph reordering to improve the data

locality/reuse and then maps different computations, i.e., dense matrix-matrix mul-

tiplication and our optimized SpMM onto different computation engines, i.e., AIEs

and PL, based on the matrix density.

3.3.2 Input Graph Reordering

Graph reordering is to optimize both the computation order and the data layouts

(e.g., graph-level data locality (Arai et al., 2016)) by modifying the order of vertices.

Our goal of reordering is to group the vertices with more shared neighbors together

to improve the data reuse when conducting aggregation reductions. The intrinsic

reason that the reordering method can provide better temporal reuse is based on the

fact that real-world graphs exhibit a “community” structure (Girvan and Newman,

2002), which means some vertices may share neighbors or have a closer relationship

to each other; thus, by grouping them together, the data locality during execution

will be significantly improved. Note that graph reordering does not change the graph

structure but only affects the execution order in the graph.

We perform the graph reordering and sort vertices into a community based on

their degrees (Chiang et al., 2019) at the training stage only once using mt-metis

(Lasalle and Karypis, 2013). mt-metis is the latest release of an OpenMP version of

Metis partitioning and ordering routines.

Figure 3·4 shows the effect of reordering on the Cora and Pubmed dataset (Bo-
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Figure 3·4: The effect of reordering on Cora (left) and Pubmed (right)

jchevski and Günnemann, 2018). It illustrates that most of the vertices are concen-

trated in the diagonal area forming relatively dense rectangular areas (each dense area

is marked with an auxiliary line in the figure). The effect of concentrating vertices in

rectangular areas has three advantages: (1) The potential of data reuse is increased.

(2) The denser the data distribution, the higher the computational efficiency of the

AIEs. (3) The numbers of vertices in different rectangular areas are relatively simi-

lar, which can effectively avoid the workload-imbalance issue. After the reordering,

to fully utilize the resources of PL and AIEs, we will map the feature aggregation of

the vertices in the dense rectangular areas and in the remaining areas onto the AIEs

and the PL, respectively. Note that both computations can be performed completely

in parallel.

3.3.3 AIE-based Sparse Tensor Engine

The computation mode of GCNs is two-phase matrix multiplication. The essence

of matrix multiplication is multiply-accumulate (MAC) operations. Matrix multi-

plication can be further decomposed into vector operations. An AIE provides a
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floating-point 512-bit SIMD vector unit, particularly two intrinsic calls, FPMAC and

FPMUL, for vector multiplication and accumulation operations on the vector unit.

FPMAC performs multiplication and accumulation for single-precision real number

real-time floating-point vectors. FPMUL does multiplication for single precision real

times real floating-point vectors. Those intrinsic calls are designed and optimized for

dense matrix multiplication.

After the graph reordering, the density of rectangular areas is still lower than

10% based on our extensive profiling results. Thus, we propose a lightweight strategy

that enables efficient SpMM on AIEs, which improves the computation efficiency by

avoiding zeros be involved in the computation and fully utilizes the high-frequency,

single-instruction-multiple-data AIEs. It is worth noting that, without our work,

SpMM on AIEs is much slower than running the corresponding dense GEMM directly.

Besides, we also use the row-wise SpMM and the traditional sparse storage format

CSR to increase the generality of our sparse tensor engine.

Figure 3·5: Row-wise sparse-dense matrix multiplication

In the Sparse row-wise product approach, all the non-zero elements from a single

row of matrix A are multiplied with corresponding rows of matrix B, where the row

index of matrix B is determined by the column index of the non-zero value from

matrix A. The results are accumulated in the corresponding row of the output matrix
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(i.e., C[i;:] = PNk=0 A[i;k]·B[k;:]). Note that multiple rows can be computed in

parallel. Figure 3·5 illustrates an example of row-wise SpMM. The challenges of

implementing row-wise SpMM include: (1) The number of the innermost loops is not

fixed because the number of non-zeros in each row of matrix A is not fixed. The

compiler cannot use pipeline or loop flattening to optimize such loops with a variable

number of loops, resulting in the final performance being worse than the dense matrix

multiplication with the same size, even though we have theoretically reduced the

number of calculations. (2) CSR format leads to random row data accesses, which

causes low memory bandwidth utilization.

Figure 3·6: Grouped sparse-dense matrix and corresponding program

We note that although directly flattening the outermost loop (each row of A

corresponding to a loop) can make the innermost loop fixed, each AIE has limited

programming space, and direct expansion will cause compilation failures due to in-

sufficient programming space. To solve this issue, we design a lightweight strategy

(shown in Figure 3·6) that divides the outermost loop into multiple loops with fixed

number of innermost loops. This allows the compiler to fully optimize both loops.
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We propose to use “moving average” to divide the rows of matrix A into multiple

groups. Our goals include (1) each group contains as many rows as possible to save

programming space, and (2) each group has as little padding as possible to reduce

unnecessary calculations on zeros.

Figure 3·7: Algorithm 1: Proposed grouping algorithm.

We describe the proposed grouping algorithm in Algorithm 3·7 in detail. We do

not need to calculate the non-zeros of each line if nnzs rows already exist (lines 3-7).
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We use pre ave to record the previous moving average, and cur ave saves the current

moving average (lines 8-9). Moreover, we also need to prevent dividing by zero since

RESET() function will set cur ave to zero (line 15).

If the change of the moving average exceeds threshold T , we put the data from

row j to row i-1 into a group, and we will pad each row in this group to ensure the

same number of non-zero elements in each row, where j is the first row of this group

(lines 13-18).

3.3.4 Sparse Systolic Tensor Array on AIEs

Two-dimensional (2D) systolic array is a pipelined 2D array of processing elements

(PEs). The classical systolic array is generalized into a family of systolic tensor

arrays by replacing the traditional scalar PEs with tensor PEs (TPEs). Each TPE is

responsible for processing one tile of tensor or matrix. When using the systolic tensor

array to perform matrix operations, TPEs in the same row are required to perform

exactly the same calculation mode (e.g. MAC) because one tile of data will flow to

each TPE in the same row in turn. It is very easy to satisfy such requirements when

performing dense matrix multiplication because each TPE only needs to perform

vector-based MAC operations. However, it is difficult to meet such requirements

when performing SpMM using systolic tensor array, since each tile has a completely

different number of non-zero elements and computational models.

To solve this issue, we propose an efficient method to process tiles of a sparse

matrix to enable mapping SpMM onto the systolic tensor array automatically. Our

idea is to pad the tiles in the same row as little as possible to make them have the same

calculation pattern. Algorithm 3·8 describes the simplified workflow of automatic pre-

processing of tiles and corresponding tensor PEs generation. We generate different

sparse or dense codes for the systolic tensor PEs in the same row as the distributions

of non-zeros in different tiles are different. Specifically, (1) we count the non-zeros of
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Figure 3·8: Algorithm 2: Proposed automatic tensor PEs generation
algorithm

tiles in the same row (lines 6-8). (2) We calculate the average non-zeros (ave nnz )

and maximum non-zeros (max nnz ) of all tiles in the same row (lines 9-10). (3) We

attempt to find a suitable number of non-zeros (line 12) for all tiles in the same row

if the difference between ave nnz and max nnz is larger than the pre-defined ratio δ;

if we cannot find a suitable number, we will select max nnz as ideal non-zeros for all



55

tiles in the same row (line 14). The purpose of this step is to reduce padding as much

as possible. The function FIND NNZ is to find the number of non-zeros which covers

p percentage of all tiles in the same row. The remaining non-zeros are calculated by

SpMM in PL. (4) We use the grouping algorithm described in Algorithm 1 to group

the rows (enable efficient SpMM on each AIE) after generating the number of non-

zeros in each row (line 17), and obtain the final density after padding. (5) We directly

use dense tensor PE for those tiles if their final density is larger than d ; otherwise,

we use sparse tensor PE to process those tiles (lines 18-22). Based on our profiling

experiments, there is no speedup of using spare tensor PE when density higher than

50% (shown in Figure 3·10).

3.3.5 Pipelining SpMM Chains

As described in the previous section and Equation 1, SpMM chains A · (X · W) are

executed on three different hardware, i.e., dense systolic tensor array, sparse systolic

tensor array, and PL for SpMM. Figure 3·9 illustrates how to map such computation

pattern onto the AISEs. Note that that “:” means all indices along this axis. For

instance, B[:, 0:32] means a slice from B containing 32 columns across all the rows.

Note that there are 400 AIEs distributed in 8 rows and 50 columns. The upper 4

lines of the AIEs are used to implement the mixed sparse or dense systolic tensor

PEs (STPEs/TPEs) to perform the computation of A · B. We use Algorithm 3·8 to

automatically generate corresponding STPEs/TPEs based on the sparsity. According

to our experiment, over 90% of the generated systolic tensor PEs are sparse. The

remaining 4 lines of the AIEs are used to implement the dense systolic tensor PEs to

perform the computation of X · W, where B is the intermediate variable generated

by X · W.

The tile size (i.e., the size of a tile in the blocked matrix-matrix multiplication) of

A·B (SpMM) is 64×64. The reasons for choosing this tile size are: (1) A is represented
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Figure 3·9: Proposed computation mapping strategy and pipelining

in a CSR format, so such a tile of A can be completely stored in the on-chip memory

of an AIE. (2) Feeding a large amount of data can ensure the computation efficiency

of the AIE. The tile size of X · W (dense matrix-matrix multiplication) is 32×32,

which is the maximum size that an AIE can hold after forming systolic tensor array.

The remaining 4 lines of the AIEs will be reconfigured to STPEs/TPEs after finishing

the entire X · W, maximizing the use of all AIE resources. Note the matrix size equals

the tile size multiplied by the number of tensor PEs.

Note that A is constant during the inference of a certain graph, once a par-

tial result pB of B is calculated, we can start the multiplication of pB with A on

STPEs/TPEs and PL for SpMM immediately without waiting for the entire X · W

to finish. Therefore, we can exploit the parallelism between consecutive SpMMs–X
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Table 3.1: Test Graph Datasets

·W and A·(X ·W)—in a layer through fine-grained pipelining, as shown in Figure 7.

When generating a tile (i.e., 32×32) of intermediate data B, we perform A · B imme-

diately. This pipelining design has two major benefits: (1) It gains extra parallelism

and reduces the overall latency. (2) It avoids a part of hardware stalls.

3.4 Experimental Evaluation

In this section, we first introduce the experimental setup and analyze the perfor-

mance impact of graph reordering and mapping methodologies. Then, we compare

the performance of H-GCN with the state-of-the-art GCN accelerators.

3.4.1 Experimental Setup

The Graph accelerator evaluation covers a widely used spectrum of mainstream graph

datasets (Geng et al., 2021b; Zhang et al., 2020) including Cora, Citeseer, Pubmed

(Yang et al., 2016), Flickr, Reddit, Yelp, and AmazonProducts (Amazon) (Zeng et al.,

2020). Details of these datasets are listed in Table 3.1.

Similar to the previous works (Geng et al., 2020a; Yan et al., 2020), the solution is

evaluated solution on a two-layer Vanilla-GCN model (Kipf and Welling, 2017) with

the hidden dimension of 128.

We use the Xilinx Versal VCK5000 (data center development card) (AMD, 2022)
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and its development kit for implementation. VCK5000 features the Xilinx Versal

ACAP XCVC1902 device. XCVC1902 device contains 400 AIEs distributed in 8 rows

and 50 columns. For PL resources, XCVC1902 device includes 1,968 DSP engines,

1,799,680 CLB Flip-Flops (FFs), 899,840 LUTs, and 34 MB Block RAM. VCK5000

board is equipped with four discrete DDR4 with 72-bit memory interface. The ex-

ternal memory has 100 GB/s peak memory bandwidth with four memory channels.

Each channel can provide 25 GB/s peak memory bandwidth. We compile our design

using Vitis unified software platform 2020.2.

We compare our H-GCN with two advanced, well-optimized geometric deep learn-

ing frameworks, i.e., PyG (Fey and Lenssen, 2019) and DGL (Wang et al., 2020a),

on general-purpose processors (i.e., CPU and GPU) and the state-of-the-art GCN

accelerators, i.e., HyGCN (Yan et al., 2020), AWB-GCN (Geng et al., 2020a), I-GCN

(Geng et al., 2021b), and BoostGCN (Zhang et al., 2021). The CPU platform is

equipped with two 28-core Intel Xeon Gold 6238R @2.2GHz processors with 384 GB

DRAM. The GPU platform is equipped with an NVIDIA RTX 2060 SUPER with

8 GB memory. We denote PyG and DGL running on CPU and GPU platforms as

PyG-CPU, DGL-CPU, PyG-GPU, and DGL-GPU, respectively. PyTorch version

and CUDA version are 1.11.0 and 11.3, respectively.

3.4.2 Implementation Details

First, we map different partitioned computations to different engines as follows: (1)

when the density is higher than 50%, we map the computation of tightly clustered

subgraphs onto dense AIEs; when the density is lower than 50% but higher than 1.0%,

we map the computation of loosely clustered subgraphs onto sparse AIEs; and when

the density is lower than 1.0%, we map the computation of scattered nodes onto PL.

Second, we follow three steps to conduct this allocation: (1) we compile the code of

AIEs for the computation of clustered or loosely clustered nodes (after reordering)
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using the Vitis AI compiler; (2) we compile the HLS kernels of PL for the computation

of scattered nodes using the v++ command; and (3) we use the v++ command to link

the compiled objects with the target platform (i.e., VCK5000). Third, the frequency

of NoC, PL, and AIEs is 800 MHz, 273 MHz, and 1GHz, respectively. The hardware

resource utilization and frequency are obtained from the generated report by place

and route. Note that the frequencies of PL and NoC are defined by our design choice,

while AIEs - an array of VLIW processors with SIMD vector units - have a fixed

frequency of 1 GHz. Fourth, the SpMM module only accounts for 15.3%, 84.6%,

14.7%, and 26.6% of BRAM, DSP, FFs, and LUTs, respectively. Last, the evaluation

results shown in the following discussion are based on simulations. Xilinx provides

a profiling tool called “Vitis Analyzer” (Xilinx, 2022d), which can accurately model

the execution time of AIEs.

3.4.3 Speedup of Sparse Tensor Engine

Figure 3·10: Speedups of sparse tensor engine with different grouping
strategies under different matrix sizes

First, we evaluate the impact of the grouping algorithm on the overall speedup.

We perform the experiments on different matrix sizes and densities as illustrated in

Figure 3·10. Since an AIE can only hold up to 64 × 64 + 64 × 8 floating-point

numbers, we test matrix sizes up to 64. Compared to the original dense algorithm,

our grouping algorithm (i.e., CSR-fixed-nnz) provides 2.9×, 2.1×, and 2.5× speedup
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Table 3.2: Comparison of inference times and energy efficiency

over the original dense method on matrices of size 64, 32, and 16, respectively, when

density is 0.1.

The row-wise SpMM with variable loops (i.e., CSR-variable-nnz), however, is much

slower than the dense method even though we theoretically avoid computation on

zeros. This is because the Vitis AIE compiler cannot use pipelining or loop flattening

to optimize those variable loops.

The speedup gradually decreases to 1 as the density increases, and the speedup

disappears when the density is higher than 50%. The reasons are the increase in non-

zero elements leads to increases in both the overhead of random access data and the

computational delay. Thus, we switch to dense matrix-matrix multiplication when

the density is higher than 50%.

We also evaluate the impact of sparsity on the effective FLOPS of an AIE. The

effective FLOPS is 7.1 GFLOPS per AIE for dense matrix multiplication. We cal-

culate the effective FLOPS based on nonzeros. FLOPS will increase as the density

increases. This is because SpMM needs to convert to dense vector operations for ex-

ecuting on AIEs. For example, the effective FLOPS per AIE for SpMM of 32×32 by

32×32 is 1.6 GFLOPS, 2.5 GFLOPS, 3.1 GFLOPS, 3.4 GFLOPS, 3.5 GFLOPS, and

3.7 GFLOPS, when the density is 10%, 20%, 30%, 40%, 50%, and 60%, respectively.

3.4.4 Comparison with State of The Art

We evaluate the inference latency, and energy efficiency of H-GCN and compare it

with other approaches (including software and accelerator solutions).
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Table 3.3: Comparison of inference times and energy efficiency

First, the “T” columns in Table 3.2 show that H-GCN outperforms the best

accelerator I-GCN by 1.1× in terms of inference latency. Moreover, compared with

other prior accelerators, H-GCN provides speedups of 1.5× - 2.3× (1.9× on average)

over BoostGCN, 1.2× over AWB-GCN, and 6.9× over HyGCN. In addition, H-GCN

significantly outperforms PyG and DGL on both CPU and GPU: it achieves average

speedups of 79.5× over PyG-CPU, 12.2× over DGL-CPU, 1.59× over PyG-GPU, and

1.58× over DGL-GPU.

The performance improvement is because of (1) the better data locality and hence

higher data reuse after the graph reordering, (2) the full use of AIEs via efficient sparse

systolic tensor computation, and (3) our proposed scheduling approach for reducing

the number of stalls in the overall pipeline.

The “E” columns in Table 3.2 show that H-GCN is 1.12× and 1.64× more energy-

efficient than I-GCN and AWB-GCN, respectively, which were previously the most

energy-efficient solutions. This is due to the ACAP’s more efficient dynamic power

management (Xilinx, 2022c). Note that we measure the energy efficiency of H-GCN

by using Xilinx Power Estimator (Xilinx, 2022c).

For relatively small graphs, dataflow accelerators such as I-GCN normally preload

the graph data into their on-chip buffer and thereby avoid off-chip data access achiev-

ing lower inference latency. Therefore, we compare H-GCN with CPU and GPU
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platforms for Cora, Citeseer, and Pubmed. Table 3.3 compares inference latency and

energy efficiency of relatively small graphs in CPU and GPU platforms. It achieves

average speedups of 71.1× over PyG-CPU, 59.8× over DGL-CPU, 10.9× over PyG-

GPU, and 19.2× over DGL-GPU.

3.4.5 Performance Breakdown

To demonstrate that the performance improvement is due to the proposed method

rather than the graph reordering, we map the computation of dense rectangular areas

into AIEs without the approach (using dense systolic tensor array). The inference

time of Cora, Citeseer, Pubmed, Flickr, Reddit, Yelp, and Amazon increases by 2.0×,

2.9×, 4.3×, 5.9×, 1.9×, 4.3×, and 3.9×, respectively.

We compare the performance of SpMM (i.e., 64×64 by 64×32) on PL and AIEs

with different sparsities. Specifically, when the densities are 0.1%, 0.5%, 1.0%, 5.0%,

and 10.0%, the run times of PL are 0.18µs, 0.88µs, 1.75µs, 8.41µs, and 16.82µs,

respectively. The run times of AIE are 1.1µs, 2.07µs, 3.84µs, 7.97µs, and 10.44µs,

respectively. This illustrates that SpMM on PL is faster than on AIE when the density

is less than 1.0%. Thus, we propose to use “density” as our criterion to determine

whether to map SpMM onto PL or AIE.

In addition, we propose to prefetch and cache data through the PL controller

because the theoretical PL-AIE bandwidth can reach 1.3 TB/s, whereas AIE-NoC

bandwidth is only around 12 GB/s. Our evaluation shows that PL-DDR bandwidths

of Cora, Citeseer, Pubmed, Flickr, Reddit, Yelp, and Amazon are 72.6 GB/s, 71.9

GB/s, 69.3 GB/s, 81.7 GB/s, 79.0 GB/s, 74.5 GB/s, and 75.7 GB/s, respectively.

Note that since Xilinx provides DDR controller IP, we implement our own DDR

controller on PL. To calculate the throughput we use RTL simulations to measure

the total clock cycles for transferring the graph data.
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Table 3.4: Graph reordering time

3.4.6 Overhead of Graph Reordering

Finally, we evaluate the time overhead of the graph re-ordering, as shown in Table

3.4. Note that as aforementioned, the graph reordering can be integrated into the

training process (Chiang et al., 2019), so we take this overhead as the offline overhead.

The OpenMP version of Metis takes advantage of multiple cores/threads in the CPU

to reorder large graphs in parallel. For the Amazon dataset with 1,569,960 vertices,

the graph reordering on 56 CPU cores only takes 7.31 seconds.

Since graphs can evolve dynamically, especially for inductive GNNs, we will sup-

port this online graph reordering in our future work. Specifically, we plan to use the

host’s CPU to reorder the initial graph offline (only once) and the ACAP’s ARM

CPU to fine-tune the order online (multiple times) as the graph evolves. This will

help eliminate the communication cost of transferring node indices between the host

and ACAP.

3.5 Summary with Discussion of HW/SW Codesign

The diverse structure of graphs significantly limits the performance of GCN inference.

Typical graphs contain tightly clustered subgraphs, loosely clustered subgraphs, and

scattered nodes, making it impractical to use a single hardware architecture or device

to accelerate all parts of GCN computation. To address these challenges, we introduce

H-GCN, an ultra-efficient, systolic tensor-based hardware accelerator with a hetero-

geneous computation paradigm tailored to GCNs. By leveraging the heterogeneity of
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the Xilinx Versal ACAP, we can efficiently process these three types of subgraphs.

Software: On the software side, we identify the bottlenecks in GCN inference

and analyze data density through graph reordering preprocessing.

Hardware: On the hardware side, we provide tailored hardware designs to meet

different requirements and run matrix multiplication kernels with varying data den-

sities.

Codesign: This software-hardware co-design approach achieves high performance

and efficiency for executing heterogeneous applications. Our broad experiments have

demonstrated that, compared with a state-of-the-art FPGA accelerator, H-GCN

achieves speedups of 1.1-2.3×.
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Chapter 4

Distributed Host-Detached SmartNIC

Systems

Many distributed system applications suffer from communication bottlenecks. While

some simple compute kernels have been successfully offloaded, these approaches of-

ten leave the majority of control, scheduling, and management tasks to the host

CPUs. This not only places an additional burden on the host CPUs but also results

in suboptimal utilization of the SmartNICs. In our second exploration step, we are

investigating the efficient integration of SmartNICs into CPU-centric systems. We

explore using distributed SmartNICs as independent systems, demonstrating their

capabilities in offloading application control and integrating computation with com-

munication.

Previous works have utilized SmartNICs but often faced issues with decoupling

from the host. For instance, Intel’s COPA (Krishnan et al., 2020) provides a frame-

work for kernel acceleration offloading on SmartNICs, and Portals (Barrett et al.,

2012) is a low-level network API for high-performance networking that offloads fun-

damental operations to support MPI, focusing solely on communication operations.

However, these solutions are not capable of handling application control.

In this exploration, we introduce a framework for neural network inference on

FPGA-centric SmartNICs. Our framework, FCsN, is a high-performance system that

supports application computation, low-latency communication, and host-detached

scheduling.
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4.1 Motivation

Network communication is increasingly becoming the performance bottleneck for scal-

ing out HPC and warehouse applications, as enormous amounts of CPU cycles are

devoted to processing network packets and contributing to long per-packet latency

(Figure 4·1(a)). To reduce such latency, advanced network interface cards known

as SmartNICs have been introduced for handling networking functions such as TCP

Segmentation Offload (Sidler et al., 2015) and Generic Receive Offload (Haghi et al.,

2020b). In particular, in cloud computing, SmartNICs can support SR-IOV that for-

wards packets directly to Virtual-Machines bypassing the hypervisors (Figure 4·1(b)).

Lately, it has been found that if an FPGA can be integrated into the NIC, not only

more complex network protocols but also some data-intensive computation, such as

reduction and scaling, can be efficiently realized when processing the network pack-

ets, often at line-rate and without introducing significant overhead (Figure 4·1(c)).

With high-bandwidth and low-latency access to network data through Multi-Gigabit

Transceivers (MGTs), and programming logic with embedded hard cores, FPGA-

based SmartNICs can be viewed as network-focused streaming-processing accelera-

tors, in addition to network support devices. This is particularly useful for domain-

specific computations, such as in machine learning and streaming data analytics, as

the FPGAs can be reconfigured as customized accelerators.

Nevertheless, existing FPGA-based SmartNICs are constrained by three limita-

tions. (i) Host-control : Although the offloading of some simple compute kernels has

been demonstrated, this work generally assumes a host-device programming model,

leaving the majority of control, scheduling, and management tasks to the host CPUs.

This not only incurs an extra burden on the host CPUs but also leads to poor utiliza-

tion of the SmartNICs for handling the control dependencies with the host through

PCIe and software stacks. (ii) Limited scalability. Existing SmartNIC applications
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rarely involve the offload of non-local tasks, missing opportunities for system-level

designs that can span a distributed cluster, eliminate unnecessary data movement,

and support more efficient scheduling and workload balance. (iii) Programmability.

As the control is performed by the host, most existing SmartNICs only handle rela-

tively simple kernels. Little support is offered to the system and software users for

designing flexible domain-specific acceleration solutions.

Figure 4·1: (a) CPU handles computation and network functions;
the NIC is under-utilized and the network traffic is heavy resulting in
communication bottlenecks. (b) SmartNIC handles network functions
and performs simple in-network computing. The CPU is in charge
of kernel execution. (c) FPGA-based SmartNIC acts as a SmartNIC
and accelerator with partially offloaded CPU computations. However,
extra overheads between the CPU and FPGA-NIC are introduced by
the CPU’s intervention of application control logic and scheduling. (d)
FCsN SmartNIC not only handles network functions, but also offloads
application computations, application control, kernel scheduling, and
task initiation. CPU cycles are saved, the overhead between the NIC
and the CPU is diminished, and FPGA-NIC resources are fully utilized.

In this chapter, we address these problems by presenting a user-friendly FPGA-

Centric smartNIC framework (FCsN) that can perform computation, communica-

tion, and control altogether at the same time, allowing flexible and fine-grained task
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Figure 4·2: Overview of FPGA-Centric SmartNIC Design

creation, distribution, execution, and finalization across multiple SmartNIC devices.

This results in maximally hiding the computation latency with network communica-

tion for streaming applications at line-rate, and achieving high FPGA utilization and

high performance at the system level by avoiding CPU intervention (Figure 4·1(d)).

Figure 4·2 illustrates the design stack of FCsN. On the software side, FCsN uses a

data-centric programming model (Section 3 A) and is equipped with Python-based

programming APIs (Section 3 B); on the hardware side, FCsN is equipped with a

hardware-based SmartNIC runtime (Section 4 C) to achieve CPU-detached schedul-

ing and support high-performance execution of NN kernels at line-rate (Section 4 D).

The current FCsN framework focuses on Neural Network applications, but it has the

potential of extending to a general framework as most scientific applications share

similar basic kernel functions as NN applications. Contributions to this work are as

follows:
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• We propose, FCsN, a user-friendly and high-performance FPGA-centric Smart-

NIC framework that supports domain-specific computation, low-latency com-

munication, and host-detached scheduling;

• We propose a hardware-based FPGA-centric SmartNIC runtime that enables

asynchronous and fine-grained task scheduling and so avoids the control depen-

dency with CPUs;

• We propose a series of streaming NN kernels that provide acceleration at line

rate and maximally overlap computation latency with network communication

for NN applications;

• Evaluations using neural network applications including general DNNs and

GNNs with commonly-used models and datasets on systems with FCsN support

and realized on Alveo U280 FPGAs. These show that FCsN can achieve 10×

speedups over the standard MPI-based system baseline.

4.2 Background and Related Work

Besides the compute-centric approach, another type of work targets a data-centric

approach allowing different tasks to work on the same set of data. The authors in

(Tan et al., 2021) propose an asynchronous reconfigurable accelerator based on a ring

topology for data-driven high-performance computing. However, this work does not

provide network functions and it is basically a method of bringing computation to

data. Our work here advances upon (Tan et al., 2021) by providing network functions,

keeping up with line rate, and providing a full example of GNN implementation on

an FPGA-based SmartNIC system.
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4.3 Programming Model & Software Support

In this section, we discuss possible programming models and introduce FCsN’s Python-

based programming interface.

4.3.1 Programming Models

We investigate two programming models: compute-centric and data-centric. In the

compute-centric programming model, a process is assigned to a processor or an entire

node and communication happens through message passing. Computations follow a

series of steps: parallel computation (each node participates in a portion of assigned

tasks) and barrier synchronization to align the execution of nodes. This model works

well for BSP applications with easily partitionable data and regular computation.

However, many workloads have irregular behavior with skewed data distribution, high

synchronization intensity, and irregular communication patterns (Haghi et al., 2021).

The data-centric model (Tan et al., 2021) is an alternative. It brings computation to

the data rather than the reverse and so minimizes data movement and eliminates un-

necessary communication. The application is partitioned into tasks circulating among

the system and finishes when all tasks have been executed. The data-centric model

suits applications with less structured data and irregular behaviors (e.g., sparse matri-

ces) that introduce unpredictable data access. For example, modern NN applications,

which are ever more optimized to reduce computation, are becoming correspondingly

more irregular and communication-bound, especially in large-scale processing (Geng

et al., 2021a). In these are our initial application targets for FCsN, we consider using

the data-centric model.

With the data-centric programming model, applications can be split into two

parts, tasks and data, and partitioned into fine-grained tasks executing in a lightweight

kernel; these can easily be optimized to achieve network line rate. With the fusion of
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compute-kernel execution and communication, the distributed application executes

in a streaming manner. During initialization, the tasks can be configured, as needed,

into several micro-services, e.g., convolution and aggregation engines. The informa-

tion for the task is initiated on each node’s NIC and the runtime is dynamically

generated.

Data is distributed on each node in the application and system initialization phase.

When the task demands remote data, the RDMA handler initiates a data request to

the remote node. The corresponding task will be temporarily held waiting until the

demanded data is fully gathered from the system. The task packets contain the task

execution parameters and demanded data information. When the task packet arrives

with its target data, the node consumes the packet and injects the task into the

compute pipeline. In this way, the data-centric approach brings the compute tasks to

each node asynchronously instead of sending large chunks of data into the network.

4.3.2 FPGA programming interface

To support a user-friendly interface, a middle layer API coordinates activity between

the host CPU and underlying hardware, including system and kernel initialization,

hardware status checking, data syncing, and hardware control. A list of API functions

is shown in Table 4.1.

FCsN supports most of the major kernels used in Neural Network processing,

including 2D convolution, dense and sparse matrix multiplication, graph aggregation,

norm, and non-linear element-wise activation functions. The APIs can be easily

and seamlessly integrated into PyTorch-based NN applications. Based on the NN

application’s need, corresponding kernel function tasks can be configured. Before

a kernel’s execution, data that needs to be carried by tasks are synced to on-chip

‘Spawn MEM’. ‘Kernel start’ starts the task spawner module based on task data from

‘Spawn MEM’ and dynamically generates kernel task runtimes based on ‘Task id’.



72

Table 4.1: Software API and neural network kernels

‘argv’ indicates the task spawner control arguments such as destination or data range.

To associate middle layer API with hardware, we use Xilinx Pynq (Xilinx, 2022a)
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as API to program and interact with Xilinx XRT (Xilinx, 2024d) and Vitis platform

FPGA. Pynq is an open-source Python-based library for programming both the em-

bedded processors and the overlays. We use Vitis HLS to implement basic hardware

NN kernel functions. The Vitis compiler compiles the HLS kernel into an xo file, cre-

ating an overlay by linking with other kernels, e.g. network function, DMA engine,

and so on.

4.4 FPGA-based SmartNIC Architecture

In this section, we describe the hardware architecture and supported basic NN kernel

functions with streaming execution capability.

4.4.1 Architecture Overview

The FCsN architecture consists of a static shell that provides the basic infrastructure

and dynamic user logic (PR-Region) and is shown in Figure 4·3. Within the dynamic

user logic, the overlay is split into network function, hardware runtime, and NN

kernel compute engines. Neural network kernel functions are configured according to

the application’s requirement during the initialization phase.

4.4.2 Network Functions

Also implemented and tested is light-weight, low-latency transceiver support using

Xilinx Aurora IP (Xilinx, 2024e). The network module uses UDP as the layer 4

transport protocol.

4.4.3 Hardware Runtime Support

The hardware runtime is split into two stages, runtime initialization and runtime

execution. Runtime initialization enables the host to program the dynamic applica-

tion chip area with the user’s application binary and sync data from host memory
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Figure 4·3: FPGA-based SmartNIC Overlay

to FPGA’s memory through DMA support with the static shell. Runtime execution

handles application task spawning, scheduling, and application control logic, and

manages RDMA data.

Runtime initialization loads the binary, allocates resources, and prepares for run-

time execution. After the user provides the on-chip design (and compiles the kernel

into a binary), the kernel is inserted into the dynamic user logic region and connected

with network functions through an AXI stream. Distributed application kernel tasks

are assigned to each node and partitioned data in each node is preloaded onto the

chip. Runtime execution invokes the corresponding task spawner and dynamically

generates tasks with preloaded information (Figure 4·4).

As described in the previous section, the kernel should be able to keep up with the

network line rate. To achieve this, data is preloaded into the BRAMs and partitioned

in order to be able to fetch the demanded data in one cycle. BRAM optimization

avoids data conflict within each packet’s tasks.

After the runtime initialization, task-specific information is distributed among

each node based on the user’s specification. The runtime task spawner dynamically
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Figure 4·5: Hardware Runtime Architecture

generates tasks based on the on-chip memory’s task info. In our design, we wrap each

task as a 512-bit packet with a 32-bit application header and 480-bit payload. The

header contains information on task type, task ID, task destination, and needed data

range. The payload is formatted by different kernels and the corresponding kernel will
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parse the payload. The packets are classified into three types (Task packet, RDMA

packet, and Data packet). Task packets execute the application kernel task when they

arrive at the destination node or find the corresponding data range. RDMA packets

perform the RDMA data fetching request from other nodes. Data packets send the

requested data back to the requesting source. The application data is stored in FPGA

on-chip memory, so requesting data does not need to interrupt the host. The packets

describe the destination node either with the destination node id or with a data range

that the task is working with. A remote data header field is also preserved if the task

needs to request remote data from other nodes. When there are multiple kernels

supported or needed by the application, the task ID identifies which operation needs

to be executed. The hardware runtime monitors the network and retrieves packets

when there is a valid task packet. After the hardware runtime has parsed the packet,

the task handler consumes the task if the current node contains the demanding data

(Figure 4·4).

As we have three types of task packets (task packet, RDMA packet, and data

packet), each packet has its corresponding runtime handler. Figure 4·5 shows the

architecture of the hardware runtime.

Task Handler: When there is a new valid packet received from the network, it

is first appended to the receive queue. The Task Classifier pops the first packet and

appends it to the corresponding handler. Within each handler, the Task Responder

checks the integrity of the packet and whether the packet can be fully or partially

executed in the current node (Figure 4·4). (1) Partially executed means the current

node does not have all the data it needs. In this case, the Task Splitter splits the

packet, consumes the local task, and generates a new packet with the rest of the

unavailable data on the current node. The Task Packager wraps the task with the

requested information, pushes it into the send queue, and sends it into the network.
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(2) The consuming task is sent to an RDMA Detector to check if the task needs a

remote node’s data. (i) If the task does not need remote data, it is appended to

the pending task queue and waits to be assigned to the desired compute unit. (ii) If

the task requests remote data, the task is temporarily pushed to a freeze queue and

waits for the requested data to be available on the current node. The RDMA Handler

generates a corresponding RDMA task.

RDMA Handler: An RDMA task requests remote data. It is analyzed in the

RDMA Task Responder to determine whether the requesting data is available on the

local node. After consuming the RDMA task, the task is pushed into a data read

queue and waits for the memory controller to issue its requested data. When the data

has been retrieved, it is wrapped by the Data Packager and sent to the requesting

source node.

Data Handler: Data Handler handles data packets when the requesting data

from the current node’s RDMA task has been successfully retrieved. Meanwhile, the

RDMA Detector is informed that new data has arrived and checks whether there are

tasks ready to be computed.

4.4.4 Neural Network Kernel Support

In FCsN, streaming kernel execution at the network line rate leverages the Smart-

NIC capabilities. We provide optimized kernel functions for Neural Network applica-

tions including 2D Convolution, Matrix Multiplication, Function Norms, Non-linear

element-wise Activation, and Aggregation functions.

With the aim of achieving stream execution at line rate, the compute pipeline is

required to have the capability of consuming one task packet each cycle. Within the

pipeline, sub-tasks in each packet should not have memory conflicts or other hazards

that stall the pipeline and cause packets to drop. Also, the latency of each task needs

to be fixed with predetermined pipeline stages. Details of supported NN function
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kernels are as follows:

2D Convolution: In 2D convolution, a small matrix of kernel weights “slides”

over the 2D input data, performing an element-wise multiplication with the part of

the input it is currently over, and then summing up the results into a single output

pixel. The weight kernel and 2D input data are preloaded into BRAM. 2D input data

is fed into the kernel pipeline in a streaming manner. In FCsN with its distributed

approach, halo exchange happens between the edges of partitioned 2D input data.

2D convolution halo tasks are generated to carry halo exchange data to the neighbor

nodes.

Dense and Normal Sparse Matrix Multiplication: With the distributed

matrix multiplied between matrix A and B in FCsN data-centric programming model,

matrix B can be treated as ’data’ distributed in the system, and matrix A can be

broken down into tasks. The task contains matrix A’s value and the corresponding

demand portion of matrix B. In a Neural Network, two types of matrices are involved,

dense and sparse. We recommend generating tasks with the sparse matrix if there is

one that introduces fewer tasks and higher efficiency. Task tokens carries the non-zero

element in the sparse matrix or a slot of dense matrix data. When the current node

contains the task demanding data range, it enters the matrix multiply pipeline and

finishes the operation.

Function Norms: Norms, such as layernorm and batchnorm, provide the neu-

ral networks with the capability of adjusting the statistical distribution of the in-

put/output data for better performance (Rannen-Triki et al., 2019). They are real-

ized through vector dot product (to calculate statistics such as sum and mean) and

element-wise multiplication and addition (to scale and add biases). Their implemen-

tation can be modified from 2D Convolution and Matrix Multiplication kernels to

realize the line rate.
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Figure 4·6: Aggregation Function Overview

Non-linear element-wise activation functions: Activation functions are math-

ematical equations that add non-linearity to the neural network models for improved

prediction accuracy (Nwankpa et al., 2018). In the case of ReLU (Agarap, 2019), the

activation function determines whether the output neurons should be activated or

not, based on their signs. The activation function can be inserted in the computation

pipeline acting on the output of the neuron.

Some operations combine the function of nonlinear element-wise activation and

function norms, such as softmax (Liu et al., 2017). It can reuse and combine the

previously implemented kernel with line rate capability.

4.4.5 Aggregation Functions

Within GNN workloads, aggregation is an extreme case of Sparse Matrix Multiply

with irregular data access which is hard to achieve streaming execution (Geng et al.,

2020a; Geng et al., 2021b). Details of achieving streaming kernel execution at line

rate with aggregation function are described in this section.

Aggregation Function Operation: Aggregation is a matrix multiplication be-

tween an extremely sparse adjacency matrix (>= 99%) and dense weight matrix
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Figure 4·7: Aggregation Task Packet Format

Figure 4·8: Aggregation Function Operation

(shown in Figure 4·6). In FCsN we distribute the aggregation operations by parti-

tioning the sparse matrix with each node containing a portion of it. The size of the

weight matrix is reasonable to be duplicated and stored with on-chip memory.

To facilitate streaming compute kernels with the data-centric model, the sparse

adjacency matrix is decomposed into tasks traversing in the network acting on dis-

tributed weight matrix in the system. Task packet headers include the aggregation

operations’ task id and the data range that the task works with. The payload of

the task packet consists of non-zero elements of the adjacency matrix. As Boolean

sparse matrix (values are 0 or 1), the payload contains the row id and the column
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id of the non-zero element (As Figure 4·7(a)). For a non-Boolean sparse matrix, the

payload consists of the coordinates of the non-zero elements and their values (As

Figure 4·7(b)).

Figure 4·8 illustrates the operation of aggregation tasks working with a local

distributed weight matrix. Within each non-zero element in the task packet, one

row of dense matrix B and one row of the output matrix is fetched. The column

id of the non-zero element indicates which row of matrix B is fetched. The Boolean

SPGEMM does a vector add on these two vectors and writes to the output matrix

updating the value of the same fetched row. The non-Boolean SPGEMM does a

scalar vector multiply and a vector add with output matrix row. The result will be

written back to the output matrix based on the row id.

Non-conflict Streaming Execution: Our aim of achieving streaming execution

of kernel function at line rate requires parallel execution of non-zero elements in

each task with non-conflict, non-stall pipeline. However, several issues need to be

solved in the aggregation function to achieve streaming pipeline. (1) Reading matrix

B or output matrix may conflict between non-zero elements in each packet task.

Streaming pipeline at line rate requires non-zero elements of task packets fetching

their demanding data in one cycle to avoid pipeline stall. However, there is no latency

guarantee of memory access for multiple elements. (2) Writing back to the output

matrix may conflict between non-zero elements if more than one element in the task

is updating the same row. There is no guarantee of the latency of updating the same

row multiple times. A reduction can be inserted before updating the output matrix,

but we still can’t determine how many levels of reduction is needed. (3) Read after

write (RAW) hazard may happen between reading and writing operations on the

output matrix among different task packets in the pipeline.

To overcome these issues, task spawner in hardware runtime and BRAM optimiza-
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Figure 4·9: Block tensor format

tion in computing units cooperate with each other to achieve non-conflict streaming

execution of aggregation function. On-chip DDR access is slow and unpredictable, so

we load the dense matrix data to Block RAM to achieve fetching data in one cycle.

However, each packet contains several non-zero elements, simply loading B and the

output matrix to BRAM can still not fetch several rows of data in one cycle. So we

partition BRAM into blocks in an interleave manner and the task spawner selects

interleave non-zero elements to avoid memory conflict.

Before generating tasks, the adjacency matrix is tiled into blocks as the storage

format for sparse tensors. As Figure 4·9, within each block of tensors, the data locality

is improved, and the performance of compute units is enhanced as well. We are tiling

the sparse matrix column-wise and with a block size of 20. Tiling the matrix column-

wise and with a block size of 20 helps the task spawner generate tasks with simple

logic and BRAM access with non-conflict. (Figure 4·10)

Accessing B Matrix: The block size of each tile adjacency matrix is 20 column-

wise. With a block size of 20x20 (Red block in Figure 4·10), the non-zero element in
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Figure 4·10: Runtime Task Spawner

each column block will only access the first 20 rows of the matrix B. In Vitis HLS, we

optimize the BRAM with pragma to partition the BRAM cyclic so that every 20 rows

of matrix B can be fetched in parallel. The task spawner will generate tasks with

non-zero elements within each block tile column-wise as the orange arrow in Figure

4·10.

Accessing and Updating Output Matrix: After we define the column-wise Block

tiling, the non-zero selection needs to ensure non-conflicting output matrix access in

each block. The row id of the non-zero element determines which row of the output

matrix will be read out and written to. Each packet is confined with a maximum of

4 non-zero elements. (Use 4 elements as an example) So we also partition the output

matrix cyclic factor as 4 and within every cyclic four rows of the output matrix can

be independently read and written. Task spawner selects non-zero elements based on

the remainder of element row id divided by cyclic factor 4 to confirm interleave data

access on the output matrix BRAM. (Same color of circle in Figure 4·10 indicates
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non-zero elements in the same packet) In this way, the task spawner makes sure each

element in the same task does not access the same partitioned region of the output

matrix BRAM.

4.4.6 Aggregation Kernel Architecture

When there are valid tasks in the wait queue, the compute unit fetches the task

packets from the wait queue, parses the task, and consumes it. Reasoning that the

task spawner issues non-zero elements with different partitioned BRAM regions, the

compute unit is able to fetch data from BRAM and write back in one cycle with

no conflict between 4 non-zero elements in each task. Four independent data paths

compute each element of task packets in parallel. To avoid RAW hazards, a RAW

detector temporarily holds the last cycle’s row id and vector value. If the non-zero

element demands the row that is written back, it uses the stored vector in the RAW

detector instead of fetching it from the output matrix BRAM.

4.5 Evaluation

4.5.1 Experiment setup

We evaluated the FCsN framework with NN kernel functions and NN applications

using an Alveo U280 cluster with 2-4 nodes; systems with 8 and 16 nodes are evaluated

with our cycle-accurate simulator with verified results collected in real systems. The

FCsN hardware runtime and NN kernels are implemented in Vitis HLS. The baseline

CPU results are evaluated with a 16-core 32-thread Intel® Xeon® Gold 6226R CPU.

Current state-of-the-art distributed Pytorch-based NN applications use MPI as the

backend. To eliminate the communication overhead and variance of different NIC or

SmartNIC configurations, we implemented hand-tuned MPI code mapped to the cores

of the same CPU. We also added a multi-node GPU with MPI using Nvidia Tesla
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Table 4.2: Resource Utilization, Frequency: 294MHz

BRAM 18K DSP FF LUT

NN Function Kernels 2,754 2,724 1,182,054 834,876
(66%) (30%) (42%) (60%)

Hardware Runtime 717 0 87,813 64,089
(15%) (0%) (3%) (3%)

V100s. The evaluations are with respect to four models: compute-centric (C-C) with

MPI on CPU, GPU with MPI, computer-centric (C-C) with FCsN, and data-centric

(D-C) with FCsN.

4.5.2 Performance and Resource Utilization

The baseline CPU MPI results evaluate the distributed Pytroch-based NN approach

with the compute-centric model. We simplified and optimized the MPI code with the

same computation and communication pattern as Pytorch. The multi-GPU result

is achieved by using MPI as the message-passing interface. Compute-centric FCsN

model follows the same computation and communication methods as the CPU base-

line. However, the computation, control logic, and communication are offloaded onto

the SmartNIC, with no CPU control involved. This result shows the improvement

of the FCsN framework with detached host control. Lastly, FCsN with data-centric

model indicates the performance of the data-centric model of streaming kernel execu-

tion with tightly fused computation and network pipeline detached from host control.

Figure 4·11 shows the normalized speedups for these evaluation models with NN

kernels and NN applications. CPU with MPI and GPU with MPI have lower per-

formance and scalability because of the communication and software overhead. The

data-centric model gains more speedup than the compute-centric model as the sys-

tem size scales up since data movement and communication overhead increase. The

FCsN data-centric model shows better speedups and scalability due to the streaming

execution of task tokens that minimize data movement, and the avoidance of PCIe,

software stack, host control, and synchronization.
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Figure 4·11: NN Kernel and Application Model Evaluation Speedup

Kernel Performance: Figure 4·11(a) shows the speedups of NN kernel functions

with matrix size of 2048x2048. Since 2D convolution has less communication in 2D

convolution and GEMM has regular data access and computation, FCsN with the

data-centric model has limited speedup. However, in irregular kernels like SPMV,

SPGEMM, and aggregation, FCsN gains more speedup due to the offloaded control,

asynchronous tasks, and streaming computation. In the 2D convolution function

kernel, the speedup with FCsN in data-centric model is 2.3× compared with the

CPU version, 1.27× compared with GPU and 1.1× compared with FCsN in compute-

centric mode.

The distributed GEMM kernel requires data movement between nodes. FCsN

has less overhead handling communication than the CPU and GPU approaches.

Compute-centric FCsN has a speedup of 2× compared to the CPU baseline. Data-
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centric FCsN provides higher performance than CPU, GPU, and FCsN in compute-

centric with streaming computation with a speedup of 2.3× over the CPU baseline

and 1.7× over the GPU. Sparse matrix-vector multiplication (SPMV), sparse ma-

trix multiplication (SPGEMM) and aggregation have similar data distribution and

execution. Computations are decomposed into tasks and vectors or dense matrices

are distributed as data in data-centric model. These kernels follow similar speedup

trends over the baseline. The average speedup over CPU is 3.8× for compute-centric

FCsN and 6.7× for data-centric FCsN.

Application Performance: Figure 4·11(b) shows the performance of neural net-

work applications (VGG, RestNet, Mobilenet, MLP (Simonyan and Zisserman, 2015;

He et al., 2016; Howard et al., 2017; Popescu et al., 2009)) using FCsN provided

function kernels. The speedups of VGG (2D-convolution), RestNet (2D-convolution),

MobileNet (GEMM) and MLP (GEMM) are 3.36×, 3.55×, 4.3×, and 2.9×, respec-

tively, for FCsN compute-centric over the CPU baseline. The speedup of FCsN data-

centric over CPU baseline is 4×, 3.6×, 4.6× and 3.3×. We evaluated GNN models

using the aggregation kernels with five datasets in Figure 4·11(c), Cora, CoraFull,

Pubmed, CoautherPhysics, and Reddit (Sen et al., 2008; Dwivedi et al., 2020). The

size of datasets increases in order. The speedups of FCsN compute-centric over CPU

are 1.52×, 1.86×, 4.82×, 5.08× and 8.5×. The speedup of FCsN data-centric over

baseline are 5.38×, 5.08×, 6.04×, 6.64× and 10.13×.

Resource Utilization: Table 4.2 shows resource utilization of NN function ker-

nels and the FCsN hardware runtime. The BRAMs and LUT resources are used

largely to avoid memory access conflicts.
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4.6 Summary with Discussion of HW/SW Codesign

In this chapter, we introduce a user-friendly FPGA-Centric SmartNIC framework

(FCsN) for Neural Networks, featuring a lightweight distributed hardware runtime

and a data-centric programming model that operates independently of CPUs. Uti-

lizing a task circulation execution model, this framework tightly integrates commu-

nication and computation, distributing kernel execution in a streaming manner at

network line rate. The hardware-based FPGA-centric SmartNIC runtime enables

asynchronous and fine-grained task scheduling which allows FCsN to be detached

from the host.

Software: On the software side, we identify bottlenecks in GCN inference and

generate execution task tokens based on the hardware configuration.

Hardware: On the hardware side, we design the architecture with interleaved

memory data storage and non-conflicting streaming kernels.

Codesign: This software-hardware co-design approach ensures conflict-free kernel

execution, seamlessly integrated with the network pipeline. FCsN leverages these

characteristics to achieve high performance and efficiency for irregular and data-

intensive neural network applications.
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Chapter 5

Heterogeneous GPU-SmartNIC System:

DLRMs

As previously mentioned, large-scale machine learning systems suffer from commu-

nication bottlenecks. In the second step of our exploration, we found that while

SmartNICs are capable of handling application control and communication, they

have limited computational power. FPGA-based SmartNICs alone do not provide

sufficient processing power, and GPUs are not well-suited for control tasks, includ-

ing general communication. In the third exploration step, we explore SmartNICs

facilitating connectivity in GPU-centric systems.

Previous work, such as the Zion GPU Cluster by Meta (Mudigere et al., 2022),

provides a high-performance hardware platform for training deep learning recom-

mendation models. Zion supports RDMA SmartNICs that improve communication

latency, but the system does not fully utilize the capabilities of SmartNICs. Simi-

larly, Microsoft’s ZeRO-Offload (Ren et al., 2021b) and ZeRO-Infinity (Rajbhandari

et al., 2021) are heterogeneous GPU systems that leverage CPUs and NVMe memory

to scale large models on limited resources, but they suffer from low efficiency and

performance.

In this chapter, we address these challenges by proposing a software and hardware

co-design system that fully leverages SmartNIC capabilities. This system integrates

computation and communication, using GPUs as accelerators to maximize efficiency

and performance. In this exploration, we are targeting to overcome the three critical
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challenges of GPU-based clusters with deep learning recommendation model as an

application.

5.1 Motivation

Personalized Recommendation systems (Resys) are one of the critical applications

deployed for vital services in technology platforms. Applications and online ser-

vices like product recommendations, video and music recommendations, news feeds,

and search services are supported by recommendation systems. (Gupta et al., 2020;

Hazelwood et al., 2018; Naumov et al., 2020; Park et al., 2018; Covington et al.,

2016; Gomez-Uribe and Hunt, 2016; Smith and Linden, 2017) As recommendation

prediction requirements and datasets grow, deep learning recommendation models

(Naumov et al., 2019) have shown substantial advantages and provide ranking and

click-through rate (CTR) prediction used by major companies that provide online

services.

DLRM’s model size is significantly larger than traditional deep neural networks

due to its data-intensive embedding operators that take hundreds of Gigabytes or even

Terabytes of capacity. The model size surpasses the on-chip memory of accelerators

and the growth of the accelerator’s HBM cannot keep up with the ever-growing DLRM

size, shown in Figure 5·4 (Sethi et al., 2022; Mudigere et al., 2022). Therefore,

distributed DLRM inference and training require large-scale multi-node systems. As

a result, the scalability issue caused by the communication bottleneck mainly hinders

the development of DLRM.

DLRMs bring three challenges to large-scale distributed systems: (1) Communica-

tion bottleneck. Parallel strategy like data parallelism is unfeasible for DLRM because

the replications of the model are too large to fit into the accelerator’s on-chip memory.

The combination of model and pipeline parallel is used to satisfy the data-dependent
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behavior of the embedding operator (Figure 5·1). The embedding operators are par-

titioned and distributed to each node and use all-to-all communication exchanging

each share of embedding tables (EMT). The all-to-all communication incurs a massive

amount of data exchange resulting in communication as the bottleneck of the entire

application. With the development of the DLRM model, the model size is growing

even larger to improve the prediction quality with the system adding more nodes.

The exponential growth of communication volume by all-to-all communication makes

this critical path become even worse. (2) Memory bandwidth challenge. DLRMs

contain up to trillions of parameters and consume up to terabytes of memory capac-

ities. The embedding operators require high memory bandwidth and frequent access

to embedding tables. Meanwhile, the embedding operators also lead to significant

runtime overhead from launching thousands of CUDA kernels. (3) Computation ef-

ficiency challenge. Compared with other machine learning models, DLRM exhibits

lower arithmetic intensity with irregular computations like data reshaping, flattening,

and transposing. These irregular operations are primarily memory copies and make

GPU’s computation less efficient with large hardware resource consumption.

Advanced network interface cards known as SmartNICs have emerged to miti-

gate network communication in scaled-out data centers. Moreover, SmartNIC with

computation capabilities is particularly useful for domain-specific computation such

as machine learning and streaming data analytics (Xilinx, 2020; Xilinx, 2022b; In-

tel, 2021; Intel, 2022; Broadcom, 2019; Nvidia, 2021). As SmartNICs continue to

advance in power, they offer a significant opportunity to act as heterogeneous com-

munication and computation coupled devices in distributed systems that overcome

the communication bottleneck of DLRM’s scalability.

Even though SmartNICs present significant potential for improving DLRM’s com-

munication performance, simply adding SmartNIC to the distributed system only mit-
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Figure 5·1: Deep Learning Recommendation Model Workflow
Overview (EMT: Embedding Table, MLP: Multilayer Perceptron,
CTR: Click Through Rate(Prediction), N1T1 Gradients: Computed
loss gradients of Embedding Table 1 from Node 1) The heterogeneous
SmartNIC system targets the memory bottleneck, communication bot-
tleneck, computation bottleneck of forward propagation and backward
propagation (Section 4). A graph algorithm improves the data locality
of batches (Section 3).

igates the point-to-point communication latency. Currently, there isn’t a distributed

system design that fully leverages the abundant SmartNIC resources to overcome

DLRM’s communication bottleneck, mitigating memory bandwidth pressure and im-

proving computation efficiency.

Other existing work (Yang et al., 2020b; Shi et al., 2020a; Sethi et al., 2022) uses

software solutions targeting the communication bottleneck by reducing the embed-

ding table size or the communication volume of all-to-all and all-reduce collection.

However, these approaches have limited performance improvement, and the software

solution can not fundamentally resolve the performance bottleneck. There are also

works (Eisenman et al., 2019; Wilkening et al., 2021) that introduce storage tech-

nologies to optimize the embedding operator’s performance. However the memory
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Figure 5·2: SmartNIC Design and DLRM Challenges

Figure 5·3: Heterogeneous SmartNIC System Overview

bandwidth and latency can’t catch up with GPU’s HBM, and as the model size

grows, memory bandwidth could become another critical bottleneck. Besides, the

current GPU cluster (Sergeev and Balso, 2018; Abadi et al., 2016; Mudigere et al.,

2022) for DLRM suffers from large volumes and frequent communication bottlenecks.

In this chapter, we introduce a software-hardware co-design of heterogeneous

SmartNIC system for scalable DLRM inference and training that overcomes com-

munication bottlenecks, mitigates memory bandwidth pressure, and improves com-

putation efficiency. A set of SmartNIC designs of cache systems (including local
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Figure 5·4: DLRM memory capacity requirements and GPU HBM
growth

cache and remote cache) and SmartNIC computation kernels exploits the locality

of DLRM to reduce data movement, relieve memory access intensity, and improve

GPU’s computation efficiency. Figure 5·2 indicates the techniques used.

(1) Remote Cache. The large volume and intense all-to-all communication

primarily contribute to the communication bottleneck of distributed DLRM systems.

The remote cache on SmartNIC buffers frequently used remote embedding lookup re-

sults, reducing communication workloads and alleviating both networking and mem-

ory bandwidth pressure.

(2) Local Cache. The local cache on SmartNIC caches the popular local embed-

ding tables allowing direct retrieval of embedding lookup results from the SmartNIC,

instead of interrupting the GPU. This vastly reduces the memory bandwidth burden

on the GPU’s HBM, improving overall node memory bandwidth.

(3) SmartNIC computation. The SmartNIC’s irregular computation kernels

complement the system node’s computation resources, improving GPU efficiency by

offloading irregular computations and minimizing GPU’s kernel calling overhead and

hardware usage. Additionally, the computation kernels reduce gradient loss updates
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in backward propagation and decrease the workload of backward all-to-all commu-

nication. On top, we also introduce a graph algorithm that enhances the data

locality of DLRM batches by clustering similar samples. More data reuse reduces

embedding lookup requests and communication volume, increases cache hit rate, and

eases system memory bandwidth pressure. High data locality batches also benefit

GPU computation efficiency.

This set of techniques can work together to produce a synergistic effect, resulting

in an outcome greater than the sum of their individual contributions.

To summarize, our contributions to this exploration are as follows:

• We propose a scalable software-hardware co-design heterogeneous SmartNIC

system for both forward propagation and backward propagation of DLRMs.

• Our system introduces a set of techniques for SmartNIC design that overcomes

the communication bottleneck of distributed DLRMs mitigates the memory

bandwidth pressure and improves computation efficiency. A graph algorithm

improves the data locality of batches and optimizes the overall system perfor-

mance with high data reuse.

• The evaluation results show that our heterogeneous SmartNIC system can

achieve 2.1 × latency speedup for inference and 1.6 × throughput speedup

for training.

5.2 Background

5.2.1 Deep Learning Recommendation Model

Figure 5·5 shows the overview of the deep learning recommendation system (DLRM).

DLRM consists of two types of inputs, dense feature, and sparse feature, and predicts

the probability that a user would interact with an item which is referred to as the
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Figure 5·5: Deep learning recommendation models overview

Click Through Rate (CTR). The dense feature contains continuous data like the user’s

age or the current time. Sparse features are categorical features such as posts, pages,

or an item. The categorical features contain up to thousands of categorical features

that contribute to an embedding operator (or an embedding table). The categorical

features are mapped to an embedding vector from its corresponding embedding table

(EMT). Sparse features use a group of embedding table indexes to fetch the sparse

embedding vectors. Afterward, feature interaction combines the output of the bottom

MLP and feeds it into the top MLP for CTR prediction.
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5.2.2 Distributed DLRM System Challenges

The embedding operators are partitioned and distributed to the system for its large

size. Samples as a batch unit are required to access each part of different embed-

ding parameters causing data-dependent behavior of the embedding operators. This

results in a combination of model and pipeline parallelism for the distributed DL-

RMs shown in Figure 5·1. In forward propagation, input all-to-all, and embedding

all-to-all exchanges each portion of embedding parameters with samples within each

node. Click-through rate computation waits until all embedding operators are gath-

ered for each sample. These all-to-alls contribute to the major bottleneck of DLRM’s

inference. In backward propagation, trained embeddings are required to synchronize

before the next batch iteration starts. Another backward all-to-all is used to update

the trained embeddings for each embedding table. These total three all-to-alls are

the throughput performance killer of DLRM’s training. As the prediction demand

rises, embedding operators, grow even bigger, and more nodes are added to meet the

increasing query requests. Scalability is an urgent issue that hinders the development

of DLRMs.

SmartNICs have emerged in distributed data centers recently with abundant com-

munication and computation capability. The SmartNICs have developed with ARM

core, FPGA, domain-specific accelerators, and on-chip memories (Xilinx, 2020; Xil-

inx, 2022b; Intel, 2021; Intel, 2022; Broadcom, 2019; Nvidia, 2021). Besides acceler-

ating packet processing, SmartNIC creates an opportunity of offloading application

workloads. However, adding SmartNICs to the system only improves limited point-

to-point communication performance. It is challenging to fully leverage the SmartNIC

communication and computation coupled capability for applications in the system.

The left side of Figure 5·1 shows the workflow of forward propagation. The em-

bedding operator of DLRM is too large to fit into the accelerator’s memory. It is
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Figure 5·6: Power Law Distribution of Datasets.

unrealistic to duplicate the entire model on each node. The embedding layer is parti-

tioned and distributed to each node to exploit model parallelism. The MLP layer is

duplicated in each node for data parallelism. All-to-all communication is required to

connect the output of the embedding layer and the input of the MLP layer. The right

side of Figure 5·1 shows the workflow of backward propagation. After forward prop-

agation, losses of the embedding vector from each sample are sent to the embedding

table destination through backward all-to-all communication. Each embedding table

gathers updated embedding gradients from the system for the final embedding layer

output of the current training batch. DLRM training is throughput-limited, and the

goal is to train as many samples as possible.

5.3 Characteristics of DLRM Data Power Law Distribution

The frequency distribution of a categorical feature’s categorical embedding follows a

power law distribution shown in Figure 5·6. A small fraction of embeddings takes

over most of the embedding access. It is typically the case that a large portion of the

users are interested in a small portion of popular items. (Pages, Movies, and best-sell

products) This characteristic leads to data reuse opportunities for popular embedding

vectors and architecture to exploit the locality to overcome DLRM’s communication
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bottleneck.

5.4 Graph Algorithm

This section discusses our graph algorithm that enhances the data locality within

batches of queries.

5.4.1 Graph Mini Batch

DLRM uses batch as a processing unit to use the parallelism of hardware resources

and enable high throughput. Although the sample’s sparse features follow power law

distribution, batches of forward and backward propagation are formed by fetching

samples in a sequential manner with no relations between each other. Space for im-

provement of enhancing the data locality within the batch to improve the overall

system performance further. Batches with better data locality can enhance every

phase of DLRM with less embedding lookup, memory bandwidth pressure, commu-

nication workloads, and higher computation efficiency.

Instead of fetching samples sequentially from the dataset, we inserted the graph

algorithm to generate a mini-batch of samples with high data locality. A reasonably

larger size of samples is pre-loaded for the graph batch to select a group of closely

related samples for mini-batch. As Figure 5·7, the blue table indicates a batch of

samples that the graph algorithm applies to. The table can be viewed as a lookup

incidence matrix with rows of samples and columns of the lookup index.

Based on the lookup incidence matrix, a hypergraph is formed where samples are

nodes, and embedding table lookup indexes are edges shown as the middle graph in

Figure 5·7. Sample nodes are connected to index edges corresponding to the lookup

table. The hyperedges with higher degrees are formed because DLRM sparse features

follow power law distribution with a higher chance of multiple samples lookup the

same popular indexes. As the lookup table indicates, embedding table 0 with index
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Figure 5·7: Graph Algorithm (T0i0: Embedding Table (EMT) 0,
index 0) Left blue table indicates a sample batch that can be viewed as
an incidence matrix. The orange table indicates the scoreboard ranking
popularity of edges in the hypergraph. A mini-batch of samples with
high similarity is generated as input of forward propagation.

0 (edge T0i0) is requested by sample nodes 0, 1, 4, 5, 7, and table 1 index 0 (edge

T1i0) is requested by sample nodes 0, 1, 3, 4. The hypergraph is generated as each

of the embedding tables’ indexes are iterated. Within the graph, the edge with high

degrees means more data reuse as a single embedding lookup can serve more sample

nodes. Sample nodes that share more overlapped edges have more similarities with

better data locality. Based on these two characteristics, the graph algorithm filters

samples with similarity and more overlapped popular embedding lookup index. Graph

algorithm saves lookup requests, and mitigates all-to-all communication workloads

and memory bandwidth pressure.

Algorithm 1 indicates the simplified graph algorithm workflow. The embedding

lookup incidence matrix is generated along with pre-loading the batch of samples from

the dataset with a counter attached to each embedding index to register the degree of

index edges. After loading the batch samples, we do hyperedge degree sorting using

the edge degree counter. The table on the right indicates the popularity of the EMT
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Algorithm 1 Graph algorithm

1: Mini Batch[mini batch size]
2: Incidence Matrix[batch size][EMT idx]
3: Hyperedge Cntr[batch size]
4: Hyperedge Threshold = n
5:

6: # Feed samples from the dataset to the incidence matrix
7: while len(Incidence Matrix)<batch size do
8: Incidence Matrix ← sample
9: Update Hyperedge Cntr[EMT idx]
10: end while
11:

12: # Get similar samples
13: Sample List[batch size] # Initiated as a priority queue
14: for hyper edge in
15: sorted(Hyperedge Cntr[0:Hyperedge Threshold]) do
16: for sample id in Hyperedge Sample[hyper edge] do
17: Sample List ← sample id
18: end for
19: end for
20: Mini Batch ← Sample List[0:mini batch size]
21:

22: # Delete mini batch samples
23: for Sample id in Mini Batch do
24: Update Hyperedge Cntr, Incidence Matrix
25: end for
26:

27: return Mini Batch



102

index from top to bottom. Embedding table 0 index 0 (T0i0) is the most popular

index with sample nodes 0, 1, 4, 5, and 7 connected with high similarity between each

other. However, in the real-world case, if the mini-batch only picks samples based on

the top edges’ degrees, samples in the mini-batch could not be closely related as each

sample has more sparse features. So we introduce the hyperedge threshold that picks

the top n popular embedding table index and do a node sorting that picks sample

nodes that appear most often in these indexes. Sample list a priority queue to keep

updated as the number of appeared samples in descending order. As traversing the

edges, the priority queue stores sample nodes from the most similar to the least. Mini

batch fetches the first mini-batch size of samples to feed into the forward propagation

pipeline. As Figure 5·7 indicates, edge T0i0 and edge T1i0 are selected as popular

indexes. Within these two indexes, sample nodes 0, 1, and 4 appeared most with a

high similarity between each other. The mini-batch fetches these three nodes with a

mini-batch size of 3. The mini-batch samples will be deleted from the lookup incidence

matrix, hyperedge counter will be updated for the next batch. New samples will be

fetched from the dataset and forwarded to the next iteration.

5.4.2 Refresh Batch

Figure 5·8: Similarity of Samples within Mini Batches. The red circle
indicates a refreshing batch with new samples.
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As in the previous section, the graph algorithm will always find the most similar

samples within batches. So as iterations of the graph algorithm go, samples that have

less common sparse features will be always left in the batch. These samples will not

be picked by the graph algorithm with fewer data reuse chances. Besides these, the

inference of DLRM also has latency requirements. Samples that are left too long in

the batch will not be served causing users to never hear back from requests.

To address these issues, we introduce the batch refreshing mechanism. The graph

algorithm will select samples within the batch one by one until it is empty and refile

the batch from the dataset when one of the two criteria has been reached. Firstly,

we use a downgrading factor to trace the similarity of the mini-batch selected by

the graph algorithm. As the downgrade factor reaches a threshold that means the

similarity of the mini-batch is too low to form a high data reuse opportunity. The

refresh batch will be triggered to avoid the continuation of worse data reuse within

the mini-batch. Secondly, a timing counter is attached to each sample. When any of

the samples has waited too long to serve, refresh batch will be triggered to consume

the batch and refill new samples. As Figure 5·8, batch similarities are dropping as

the timeline goes. The red circle means the refresh batch mechanism is triggered to

fresh the samples within the batch and lift the performance of the graph algorithm

by finding similar mini-batches.

5.5 System Hardware Architecture

The scalability of DLRM is the central issue that hinders the recommendation sys-

tem’s development as the model size grows even more significant to provide more

accurate predictions. The main bottlenecks that impact the scalability of DLRM

are memory, communication, and computation. In this section, we introduce three

aspects of design on SmartNIC for both forward and backward propagation: local
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cache, remote cache, and SmartNIC computation kernel, which address those three

bottlenecks.

5.5.1 Forward Propagation

Local Cache: DLRM has a high demand on memory bandwidth because the em-

bedding operators request frequent and high-volume embedding table lookups. The

embedding tables can also consume up to terabytes of memory. If the system uses

the GPU as an accelerator, the memory bandwidth and capacity requirement exceed

GPU’s on-chip memory capability. In order to handle the embedding layer, multiple

GPUs are aggregated to meet the memory requirement introduced by the large-size

embedding tables. Embedding tables are distributed to each GPU’s HBM memory.

As in the previous section, each node receives embedding lookup from every other

node. As the scale of the system grows, and the size of the DLRM embedding layer

grows, embedding lookup requests increase which lays more burden on the memory.

The memory could be the bottleneck of the system’s scalability. Large amounts of

embedding lookup can also introduce significant memory access overheads. For large-

scale GPU-based clusters, nodes are connected through network interface cards. Em-

bedding lookup requests are sent through the network, received by NICs, and sent

to GPU through PCIe. As more frequent requests, the overhead of PCIe and GPU

memory access could also aggravate the embedding operator’s performance.

We introduce local cache on SmartNICs to address the memory bottleneck of

DLRM. The local cache can relieve the memory pressure of the GPU, and reduce the

frequent lookup overhead of PCIe and GPU memory access. Embedding operator

requests are first received by the SmartNIC and sent to GPU for lookup. Local cache

on SmartNIC buffers the lookup result from GPU. So before generating the lookup

index list, the lookup index checks if it is hit on the local cache on SmartNIC. If yes,

there is no need to send it to GPU, embedding vectors are ready on SmartNIC. After
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Figure 5·9: Local cache on SmartNIC buffers popular embeddings.
Hitting on local cache saved lookup requests to GPU’s HBM. Dedupe
kernel eliminates redundant duplicated index lookup.

the GPU’s memory lookup, the local cache updates its buffer result using the least

recently used (LRU) policy. It is very likely that lookup indexes are hit on the local

cache because it buffers the most popular index of the embedding table. With the

introduction of local cache, less GPU interruption and less GPU memory pressure

mitigate the memory bottleneck of the embedding operator.

Before the input all-to-all phase, each node in the system sends the corresponding

embedding lookup based on the distribution of the embedding table. After all-to-all,

each node receives the lookup requests from other nodes with batches of lookup in-

dexes. As the power law distribution nature, a large amount of duplicated lookups

between nodes and samples take up memory bandwidth. Dedupe kernel on SmartNIC

uses a deduplication table to keep the record of the lookup index with its correspond-

ing source node and sample ids. The list of lookup indexes is checked if it is hit on

the local cache.

Afterward, a list of lookup indexes is summarized from the table and will be used
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to issue a lookup request to the GPU’s memory. If hit, the lookup result will be sent

to the packet packager for preparing the lookup result packets and updating the local

cache based on LRU. If missed, indexes are temporarily saved to the GPU lookup

request table. As deduplication finishes, lists of lookups will be sent to GPU. When

GPU sends the lookup result back to SmartNIC, the lookup vector will be inserted

into the local cache on SmartNIC updating cache, and the result will be formatted

by SmartNIC using the deduplication table to check the belonging source node and

sample index. As every lookup index from the dedupe table finishes, the embedding

all-to-all phase exchanges the lookup result between each node.

Remote Cache: The size of DLRM is significantly large because of the embed-

ding operator which can take up to terabytes of memory capacity. The size is growing

even more significantly with more embeddings providing more accurate predictions.

It is impossible to do data parallelism that replicates the entire model on a single

device’s memory. Model and pipeline parallel are introduced using large-scale system

and distributing the embedding tables to every node’s memory. This large system

forms a large pool of memory capacity and shares the memory capacity and lookup

bandwidth. As Figure 5·1, all-to-all communication is needed for each node’s queries

gathering all distributed embedding tables’ lookup results. All-to-all communication

pattern introduces enormous workload pressure on the system’s network and will

grow exponentially as each node’s batch grows. With the development of the DLRM

model growing even more extensive, data exchange communication would become the

performance killer of the overall system.

In forward propagation, there are two all-to-all communications. The input all-

to-all requests the embedding table lookup for each node’s sample queries’ sparse

features. The embedding all-to-all returns embedding lookup results to each of the

sample’s original source nodes. The computation kernels wait until the all-to-all phase
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is finished to move forward and compute the prediction results.

Figure 5·10: Remote cache on SmartNIC buffers remote embedding
tables. Queries check if remote embedding is hit on the remote cache
before issuing the remote lookup request.

We introduce the remote cache on SmartNIC to address the communication bottle-

neck by reducing the all-to-all communication workloads. After embedding all-to-all,

remote embedding table lookup results are sent back to the original source node. The

results are buffered by the remote cache on SmartNIC. The remote cache uses the

least recently used (LRU) policy to update the storing vectors as iteration goes on. As

the system warms up, the remote cache on SmartNIC stores the most popular remote

embedding table’s vectors. Figure 5·10 indicates the workflow of how sample queries

make use of the remote cache. After the graph algorithm generates a mini-batch of

query samples, samples first check if the lookup is hit on the remote cache. If it hits,

this lookup request is not needed and can directly get the remote embedding results

from the remote cache. The result will be held until embedding all-to-all finishes.

Since DLRM samples follow power law distribution, popular remote lookup has a
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higher chance will be requested in the future. The remote cache that buffers the

popular embeddings reduces the unnecessary duplicated remote embedding lookup

request. If the lookup is missed on the remote cache, it will be forwarded to the

packet packager for remote lookup.

SmartNIC Computation: DLRM generally exhibits lower arithmetic intensity

compared to the traditional DNN model. DLRM consists of various computations

including matrix multiplication, no-linear activation, and irregular computation like

data reshape matrix flattening, and matrix transposing. These irregular computations

can not use GPU’s hardware resources efficiently as GPUs are good at massive parallel

scalar computations. The irregular compute introduces frequent memory copy that

takes enormous amounts of hardware resources and on-chip memory and can not use

the GEMM operator on the GPU. Kernel calling overheads are another factor that

largely hinders the computation efficiency of accelerators.

We introduce computation kernel and data management kernel (shown in Fig-

ure 5·11) on SmartNIC to minimize the overhead of GPU and improve the GPU’s

computation efficiency. After phase embedding all-to-all, each node receives the em-

bedding lookup result from the remote node and is ready to send the result to GPU

for prediction calculation. Instead of dumping the unmanaged raw data to GPU,

feature interaction which includes irregular computation operations are offloaded to

SmartNIC with dedicated hardware for higher computation efficiency. The raw data

are reorganized by the kernel on SmartNIC before forwarding to GPU. The compu-

tation kernel combines the dense feature and sparse features as a matrix. The matrix

is transposed as the input to feature interaction using matrix multiplication kernel.

After feature interaction, the result is flattened to convert the 2D matrix into a 1D

vector which is the input to the top MLP. These dedicated irregular kernels improve

the computation efficiency and save hardware resources for GPU.
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Figure 5·11: SmartNIC computation with irregular computation Ker-
nels including data layout transform, matrix transposing, matrix flat-
tening, element-wise pooling. Remote Cache is updated with received
remote embeddings after embedding all-to-all.

5.5.2 Backward Propagation

DLRM training workflow differs from the inference that synchronization is needed

between batches of training samples. In the backward propagation, kernels for train-

ing are supported in the training core of SmartNIC. Embedding losses are calculated

after forward propagation and used to update the embedding table’s value. Backward

all-to-all gathers every node’s partial embedding losses and collectively updates the

distributed embedding value. The next batch of training samples will be issued when

all embedding tables have been updated. The remote cache would not be effective

in training because every node’s value is partially updated embedding value. The

updated embeddings are located in the embedding table’s original node.

In the forward propagation of the training process, the local cache on SmartNIC

reduces the system memory pressure. In backward propagation, the SmartNIC com-

putation kernel improves throughput with two levels of reduction which are local
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loss reduction and global loss reduction using the reduction computation kernel on

SmartNIC.

Figure 5·12: Backward propagation local gradient loss reduction using
SmartNIC computation

Local Loss Reduction: The embedding losses are generated after forward prop-

agation. After the GPU’s loss calculation, losses are sent to SmartNIC for backward

all-to-all communication updating the corresponding embedding table. DLRM sam-

ple follows power law distribution, it is highly possible that samples within batches

on each node update the embedding value. Local loss reduction kernel combines the

losses of the same embedding vector and calculates the gradient losses of locally global

losses. The packet generator packs updating losses for each embedding table after all

samples have been handled and sent to the destination. Local loss reduction kernel

reduces the workload of backward all-to-all and saves GPU overhead and resources.

Global Loss Reduction: Each node in the system receives embedding losses
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Figure 5·13: Backward propagation global gradient loss reduction
using SmartNIC computation. The gradient loss is updated both in
the local cache on SmartNIC and GPU’s HBM.

from every other node after backward all-to-all. A table keeps updating each embed-

ding vector’s losses as losses are received from the network. As every loss has been

received, the final loss gradients update the embedding table’s value. The local cache

is used in the forward propagation process and stores the embedding vector value

from the GPU’s HBM using the LRU policy. So the local cache guaranteed stores

the embedding vector that needs to be updated by the loss gradients. The final loss

will be updated on both the local cache on SmartNIC and GPU’s HBM. The updated

local cache buffers the updated embedding for future batches. With the local cache

and reduction kernel on SmartNIC, memory bandwidth pressure is largely saved, and

minimize the overhead of PCIe and GPU’s kernel interruption.
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5.5.3 Design Space Exploration: SmartNIC-Centric Framework

We also did a design space exploration by offloading the whole application onto the

SmartNIC. Even though large amounts of PCIe, kernel calls, and software stack over-

heads are saved, the performance can not catch up with heterogeneous architecture

with GPU because of the limitation of hardware resources and computation latency

of SmartNICs compared to GPU as an accelerator.

5.6 Evaluation

5.6.1 Experimental Setup

The DLRM model evaluation is based on Meta Research open source code (Naumov

et al., 2019). The CPU baseline uses 16-core 32-thread Intel® Xeon® Gold 6226R,

and the GPU baseline uses Nvidia RTX8000. To evaluate SmartNIC hardware, we use

Xilinx Alveo U280 FPGA with hardware implementation of runtime, cache system,

and computation kernels using High Level Synthesis (HLS). For scalability, we used

MPI as the backend for CPU and GPU evaluation. Multiple Alveo U280 FPGAs are

connected through transceivers as a cluster to evaluate the multi-SmartNIC system.

Since there is no exact heterogeneous SmartNIC-GPU system, we evaluated the

real SmartNIC parameters on the muti-node Alveo U280 cluster and plugged it into

a simulator based on DLRM open-source code (Naumov et al., 2019) with GPU as

an accelerator.

We evaluated our system with three well-established recommendation model

datasets: Criteo Kaggle, Criteo Terabyte and Avazu with both inference and training.

Table 5.1 shows the parameters of these datasets.

The evaluation figures use the following abbreviations: BL=baseline, GA=graph

algorithm, LC=local cache on SmartNIC, RC=remote cache on SmartNIC,

SC=SmartNIC computation, FS=fully SmartNIC system.
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Table 5.1: DLRM Datasets Parameters

Dataset Kaggle Terabyte Avazu
Dense Feature 13 13 1
Sparse Feature 26 26 21

EMT Rows 33.8M 226M 9.3M
Row Dim 16 64 16

5.6.2 Performance Evaluation
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Figure 5·14: Inference Scalability.
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Figure 5·15: Training Scalability.

Graph Algorithm: The graph algorithm improves system performance in in-

ference by 1.2 × on average, with less impact in training. It’s more practical and

effective in inference due to high and random query requests in real-time, as the al-

gorithm rearranges batch clusters of similar queries, reducing system communication

and memory pressure. In training, the dataset samples are given with more straight-

forward data pre-processing schemes achieving comparable data locality. The graph

algorithm demonstrates better performance in inference in our system, making it a

practical way to boost inference performance.

Forward Propagation: This section evaluates the system performance with

forward propagation using graph algorithm, local cache, remote cache, SmartNIC

computation, and fully SmartNIC centric design.
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(1) Local Cache: Figure 5·16 illustrates the latency speedup of using local cache

on SmartNIC and graph algorithm with respect to three datasets. The forward propa-

gation latency performance is significantly impacted by the local cache on SmartNIC.

The speedup remains steady as the size increases. This is mainly because batches of

the forward propagation are pipelined. The latency of batches is hidden if the lookup

request misses the local cache on SmartNIC and fetches the lookup result from GPU.

Using graph algorithm improves the latency by speedup of average 1.2 × of three

datasets as it enhances the data locality within batches, reducing remote communi-

cation and memory access, thus improving overall latency. Figure 5·18 indicates the

Hit/Miss rate of local cache on SmartNIC and GPU’s memory. As the size of the

local cache increases, fewer memory accesses are needed from the GPU’s memory.

The local cache relieves the memory bandwidth pressure of the GPU.
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Figure 5·16: Latency Speedup of Forward Propagation Using Local
Cache on SmartNIC

(2) Remote Cache: Figure 5·19 shows the latency speedup of forward propagation

with Remote Cache on SmartNIC and graph algorithm. Remote cache largely caches

the remote embedding lookup because of the power law distribution characteristic.

When the query sample hits the remote cache, the remote cache lookup communica-

tion request is saved, reducing both queries’ latency and the system’s communication

workload, and improving communication efficiency with less communication conges-
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Figure 5·17: Latency Speedup of Forward Propagation using Smart-
NIC Computation
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Figure 5·18: Forward Propagation Hit Rate of Local Cache on Smart-
NIC. Missing on local cache indicates issuing embedding lookup on
GPU’s HBM.

tion. Figure 5·20 shows saved remote lookup requests using remote cache and graph

algorithm. As the remote cache size increases, more lookups are saved. Graph algo-

rithm clusters similar samples to reuse lookups more effectively. Figure 5·21 shows

the decline of the local cache hit rate as remote cache size increases. This is be-

cause embedding table accesses follow power law distribution. A larger remote cache

caches more popular embedding indices, causing less popular embeddings to remain

in GPU’s HBM. Queries for remote embeddings are more likely to request these un-

popular embeddings.
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Figure 5·19: Latency Speedup of Forward Propagation Using Remote
Cache on SmartNIC
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Requests) of Forward Propagation Using Remote Cache
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Figure 5·21: Hit Rate of Local Cache After Using Remote Cache of
Forward Propagation

(3) SmartNIC Computation: Figure 5·17 shows the speedup of using SmartNIC

computation in forward propagation. The figure indicates that there is not a notice-

able effect on latency performance compared to training. This is because inference
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batches are processed in a pipeline, and the main bottlenecks are embedding lookup

and communication. The latency reduction from the SmartNIC irregular computation

kernel only accounts for a small portion of the entire process. However, during train-

ing, SmartNIC computation is crucial for reducing gradients, which will be covered

later.

(4) Forward Propagation Overall Speedup: Figure 5·22 indicates the overall la-

tency speedup of the techniques across three datasets. The speedup is higher for

Kaggle and Terabyte compared to Avazu. Graph algorithm improves the data local-

ity of samples within batches and enhances the overall system latency speedup. The

figure highlights that remote cache and graph algorithm significantly enhance forward

propagation by reducing communication workloads and increasing data reuse. Fewer

communication requests significantly reduce the all-to-all bottleneck. Meanwhile, lo-

cal cache and SmartNIC computation show limited impact on forward propagation

as inference batches are processed in a pipeline, obscuring the latency between them.

These two techniques mainly alleviate GPU memory bandwidth pressure, kernel over-

head, and hardware resource utilization.
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NIC Computation and Fully SmartNIC System

Backward Propagation: In backward propagation, samples are trained in se-

quential batches, with each batch starting only after the previous one is completed.
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During this process, the embedding table’s gradient losses are updated. The remote

cache is not beneficial in this stage as the cached embedding vectors become outdated

after backward propagation.
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Figure 5·23: Throughput Speedup of Backward Propagation Using
Local Cache on SmartNIC

Figure 5·23 shows the training throughput speedup of graph algorithm, local cache,

and using SmartNIC compute with three datasets. As the figure indicates, local cache

size increases, the throughput speedup increases accordingly. This results from more

embedding table requests being serviced by the local cache of the SmartNIC, reducing

the pressure on GPU memory bandwidth and embedding lookup overhead. Figure

5·24 indicates the hit/miss rate of local cache on SmartNIC.

SmartNIC computation is crucial in improving training throughput by handling

irregular computation and reducing gradient loss updates. Two levels of reduction,

including gradient reduction on the local node and global gradient reduction of all

other nodes, are performed on the SmartNIC.

Figure 5·25 indicates an overall throughput speedup. Graph algorithm improves

the overall throughput speedup by an average of 1.1 ×. Local cache improves the

throughput speedup by 1.3 ×. SmartNIC computation improves the throughput by

1.4 ×. Overall the throughput speedup can reach 1.5 ×.

We also evaluated the effect of batch size on the throughput speedup with Smart-
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NIC computation. The results show that as batch size increases, the speedup becomes

bounded by the computation bottleneck.
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5.6.3 System Scalability

We evaluated the system’s scalability of inference and training using 2, 4, 8, and 16

nodes. The embedding tables are evenly distributed among each node. As a reference,

we use 2-node CPU MPI as an overall baseline.

Figure 5·14 shows the inference scalability. We tested the same workloads with

the number of nodes increasing in the system. As the number of nodes increases,

the per-node embedding table size decreases with less memory bandwidth pressure.

However, communication workloads increase as the node number scales up. The

inference latency speedup shows better scalability using techniques on SmartNICs.

Figure 5·15 shows the scalability of training throughput speedup. As the system

scales out, all-to-all communication and backward propagation are mainly the bottle-

neck that limits the scalability of training throughput. SmartNIC computation plays

an important role in keeping the scalability of the system’s throughput speedup. The

system demonstrates better scalability with the use of SmartNIC techniques.
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Figure 5·27: Time breakdown of DLRM inference and training. Over-
head includes NIC to GPU PCIe latency, kernel calling overheads, host
to device, etc. Backward all-to-all refers to gradient loss updating in
backward propagation.

Figure 5·27 shows a time breakdown analysis for these techniques for inference and
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training. In inference, all-to-all communication takes nearly 40 % of the total time.

The local cache on SmartNIC reduces the embedding lookup time. The remote cache

saves a significant amount of all-to-all communication time, as popular embeddings

are stored locally on SmartNIC and do not require communication requests. Both

the local cache and remote cache also eliminate overhead latency, such as the host-

to-NIC latency via the PCIe bus. As training, SmartNIC computation reduces both

backward all-to-all for gradients update and irregular computation latency.

5.7 Related Work

Much attention is given to using GPUs as computation accelerators. Work of (Mudi-

gere et al., 2022) introduced a software-hardware co-design system using GPU for

distributed training. Work (Kwon and Rhu, 2022) proposed a software runtime sys-

tem that manages GPU DRM as a fast scratchpad. There are works that explore

using storage technology to enhance the performance embedding operator of DLRM.

Work (Eisenman et al., 2019) presents a storage system that reduces the DRAM

footprint using Non-volatile Memory. Work (Wilkening et al., 2021) proposed a near-

data processing solution that improves the performance of underlying SSD storage for

embedding table operators. However, these works are not focused on the communica-

tion bottleneck as the DLRM scales up. Work (Zhu et al., 2021) presents an FPGA

cluster for recommendation inference for embedding lookups and computation. Work

(Jiang et al., 2021) proposed a recommendation inference engine using FPGA’s high

bandwidth memory and pipelined dataflow. These works are not targeting scalability

as the recommendation model grows even more significant.
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5.8 Summary with Discussion of HW/SW Codesign

DLRMs are one of the critical applications in large-scale online services and have

evolved as the single largest machine learning application. In this chapter, we pro-

posed software-hardware co-design heterogeneous SmartNIC system that targets the

scalability challenges of DLRM, including communication, memory, and computation.

The graph algorithm clusters similar queries in batches with higher system efficiency

and performance.

Software: On the software side, we identify bottlenecks in DLRM and recognize

that data follows a power-law distribution. The graph algorithm is utilized to improve

data locality.

Hardware: On the hardware side, we provide a SmartNIC cache system including

local cache and remote cache for embedding buffering. The computation kernels

execute irregular computation and data reformatting for GPU’s computation.

Codesign: By combining these, we design the SmartNIC cache system based

on the nature of data distribution and further enhance efficiency using the graph

algorithm. Our system extends the performance boundaries of current software and

hardware platforms with less communication workload and memory bandwidth pres-

sure.
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Chapter 6

Heterogeneous GPU-CPU-SmartNIC

Systems: LLMs

In the third exploration step, which we began discussing in the previous chapter, we

aim to address the two key limitations of heterogeneous GPU systems extended with

offload engines for large memory capacity, using large machine learning models like

language models as applications. Language models have significantly larger model

sizes compared to deep learning recommendation models. We explored a heteroge-

neous SmartNIC system integrating GPU and CPU cooperation. The two limita-

tions we seek to overcome in these systems are limited data exchange efficiency and

limited computation and control efficiency. We propose a software and hardware co-

design system that leverages SmartNIC capabilities, utilizing GPUs as accelerators

and CPUs as offload engines.

6.1 Motivation

In recent years, large-scale deep learning has advanced rapidly and come to domi-

nate the current AI application landscape. Large models provide significantly better

sample efficiency and better performance (Kaplan et al., 2020). With the rise of

attention-based deep learning models, model size has grown exponentially. For in-

stance, large language models like Meta’s LlaMA (Touvron et al., 2023a; Touvron

et al., 2023b), OpenAI’s ChatGPT (OpenAI, 2024), and Google’s LaMDA (Thoppi-

lan et al., 2022) have enabled impressive AI capabilities that are transforming daily
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Figure 6·1: GPU memory wall

life. The functionality of these powerful models is largely attributable to their im-

mense size - 70 billion parameters for LlaMA 2, 175 billion parameters for GPT-3,

540 billion parameters PaLM, and 1.8 trillion parameters for GPT-4. This trend of

ever-increasing model size is expected to continue extensively in (at least) the near

future.

These large deep learning models far exceed the memory capacity of a single GPU.

Although training parallelism strategies are used, the system still faces fundamental

limitations in fitting models with billions to trillions of parameters into the confined

cluster of aggregated GPUs’ memory. To address this, memory-efficient optimizations

such as the Zero Redundancy Optimizer (Rajbhandari et al., 2020) and Pytorch Fully

Sharded Data Parallel (FSDP) (Zhao et al., 2023) have been introduced, trading extra

communication for efficient memory utilization. These approaches allow model size

to scale proportionally with the number of devices, making it feasible to train large

models on a cluster of GPUs.

Although ZeRO enables the training of large-scale models, we are hitting the
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(ii) Our System

(i) Baseline System
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memory wall. The current models require hundreds of GBs to tens of TBs of GPU

memory just to fit the parameters, but GPU memory capacity is not increasing nearly

fast enough to keep pace with the exponential growth in model size shown in Fig-

ure 6·1. To accommodate such massive models, the scale of GPU clusters increases

exponentially as well. However scaling up GPU clusters indefinitely is not feasible.

The performance of the GPU cluster does not increase proportionally with the num-

ber of GPUs in the system. System overhead and communication emerge as critical

bottlenecks affecting performance. Simultaneously, larger-scale systems introduce

substantial power consumption with limited power usage efficiency. The GPU mem-

ory wall further hinders researchers and most companies from building and accessing

large models.
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To reduce the required scale of GPU clusters and mitigate the GPU memory

wall limitation, heterogeneous deep learning training has emerged to leverage offload

engines like CPUs and NVMe memory by offloading model states and parameters.

Building on the foundation of Zero Redundancy Optimizer (Rajbhandari et al., 2020),

ZeRO-Offload (Ren et al., 2021b) and ZeRO-Infinity (Rajbhandari et al., 2021) facil-

itates large model training on small-scale GPUs by offloading data and computations

to the CPU with the memory optimization technique. These techniques make it pos-

sible to train ever-growing large-size models on limited resources. However, such a

heterogeneous system suffers from low efficiency and limited performance, which is

mainly due to two critical limitations:

(1) Limited System Data Exchange Efficiency (Figure 6·2) The architec-

ture of a heterogeneous GPU system, with the CPU serving as an offload engine, is

illustrated in Figure 6·2i. The CPU stores model parameters, gradients, and opti-

mizer states. The GPU serves as the primary computation device for forward and

backward propagation and acts as a communication device fetching offloaded data

from the CPU. When employing ZeRO as the model training strategy, the model is
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partitioned, requiring data exchanges between different heterogeneous system com-

ponents at each partition stage. These exchanges move data from the CPUs to other

GPUs and vice versa. However, even when not directly involved, the GPU must

initiate, fetch, and communicate all data transfers, creating a bottleneck where data

must pass through the GPU for both sending and receiving. This leads to inefficient

system data exchange.

(2) Limited System Device Computation and Control Efficiency (Fig-

ure 6·3) In heterogeneous GPU systems with offload engines, to maintain system

efficiency, the delayed parameter update (DPU) technique (Ren et al., 2021b) allows

the CPU’s data path for parameter updates to be detached from dependency and

parallelized from the GPU’s forward/backward propagation (Figure 6·6). However,

despite this separation, the GPU still controls and schedules the CPU’s computation,

leading to reduced efficiency in computation and control on both sides. Additionally,

the two data paths’ varying computational power and complexity result in differing

execution latencies, potentially causing idle periods for the GPU or CPU between

training steps. Furthermore, the GPU’s communication operator requires significant

memory, computation resources, and controlling overhead. Collectively, these fac-

tors contribute to an overall diminishing of system device computation and control

efficiency.

Advanced network interface cards known as SmartNIC have emerged to combine

communication, control, and computation, which is useful for domain-specific com-

putation. Such capabilities and placement in the node (network-facing) point to their

use in overcoming the system efficiency challenge in training and serving large-scale

heterogeneous GPU systems. However, adding SmartNICs to a distributed system

only addressed point-to-point communication latency. Currently, no distributed sys-

tem design leverages SmartNIC resources to overcome the heterogeneous GPU system
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with an offload engine.

In this chapter, we introduce a SmartNIC-GPU-CPU heterogeneous system (SGC

system) for large machine learning models with software-hardware co-design that

improves the system performance and efficiency, lowers the power consumption and

budget, and mitigates the data exchange overhead. Our system breaks the boundary

of heterogeneous devices in the system and aims to provide the following:

1. Higher system performance and efficiency with less budget and

power consumption. (Table 6.1i)

2. High performance with with less number of GPUs (Table 6.1ii)

3. Support larger models with good performance. (Table 6.1iii)

Several designs and optimization techniques are proposed to target the two per-

formance and efficiency limitations of existing GPU heterogeneous systems with of-

fload engines. To improve system data exchange efficiency (Figure 6·2ii):

(1) SmartNIC acts as an intermediate layer that breaks the boundary between dis-

tributed heterogeneous components in the system and facilitates seamless connectivity

between GPUs and CPU offload engines. (2) SmartNIC prefetch techniques initi-

ate communication proactively before parameters are needed by the GPU or CPU,

compacting the pipeline without data waiting and largely mitigating communication

bottlenecks via overlap of computation and communication. (3) SmartNIC buffering

technique that stores the duplicated communication data transfer, reducing overall

system communication workload. To improve system device computation and

control efficiency (Figure 6·3ii): (1) SmartNIC provides dynamic scheduling and

control, allowing both GPU and CPU to concentrate on computation with reduced

interruptions and overhead. (2) System configuration software optimizes system and

model settings for maximal efficiency given different system specifications, minimizing

device idle time.
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(i) Same GPU number, Same Model Size
→ Higher Performance and Efficiency

GPU GPU-CPUoffload SGC System (our)

Throughput High Low High

Latency Low High Low

Power 
Consumption

High Medium Low

(ii) Same Model Size
→ Less GPU needed, High Performance and Efficiency

GPU GPU-CPUoffload SGC System (our)

System Scale 
Required

Large Small Small

Performance High Low High

Power 
Consumption

High Medium Low

(iii) Same GPU Number
→ Larger Model Supported, With Comparable Performance

GPU GPU-CPUoffload SGC System (our)

Model Size Small Large Large

Performance High Low Comparable Good 

Table 6.1: Our System Goal

To summarize, the contributions of this Chapter include:

• A highly efficient and high-performance SmartNIC-GPU-CPU heterogeneous

system that trains large-scale machine learning models with a limited number

of GPUs, low power consumption, and cost-effective budget allocation.

• SmartNIC design incorporates advanced techniques such as dynamic scheduling

and control of heterogeneous system device components, a SmartNIC prefetch

system that optimizes the system pipeline by eliminating data waiting, and

SmartNIC buffering techniques that effectively alleviate communication bottle-
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necks.

• System configuration software that optimizes system and model setup based on

hardware specifications and resources to maximize efficiency.

6.2 Background

6.2.1 Parallelization Strategy

There are various approaches to parallel machine learning models to tackle the large-

size model and improve the training efficiency in the scale-out system. Data Par-

allelism works for a model that fits into the device memory for training. It shards

the data across all the processing nodes with the duplicated model. The process-

ing is done in parallel and all setups are synchronized at the end of each training

step. Model Parallelism is suitable when a model cannot fit into a single device’s

memory, involving the vertical splitting of the model among processes. Pipeline Par-

allelism divides training examples into small batches and pipelines the execution of

each set across multiple machines. Tensor Parallelism partitions tensors into chunks,

distributing them to system devices, where each shard resides on a designated GPU,

processed in parallel, and synced at the end of the step. 3D Parallelism combines

various parallelism strategies, allowing scalability to trillions of parameters with ef-

ficiency. However, it requires significant code modification and substantial effort to

balance pipeline stages.

Zero Redundancy Optimizer (ZeRO): Zero Redundancy Optimizer is a mem-

ory optimization parallel strategy that eliminates memory redundancies across data-

parallel processes by partitioning model states. By introducing reasonable additional

communications, these strategies can efficiently scale the model size proportionately

to the number of devices. ZeRO distributes the training batch across multiple GPUs,

similar to data parallel training. However, instead of duplicating models, ZeRO par-
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titions model states across all GPUs and utilizes communication collectives to gather

parameters when needed during various phases of the training process. It offers a

more generic solution that does not require users to modify the model extensively for

implementation, providing improved compute efficiency and scalability.

ZeRO operates in three stages corresponding to three model states and Figure 6·4

indicates an overview of the workflow, where the model is partitioned into three parts

and distributed among three data parallel processes.

In ZeRO-1, the optimizer states are partitioned on top of data parallelism, with

each process owning a partition of the entire optimizer. Consequently, each optimizer

partition updates only the corresponding parameter partition, following an All-Gather

operation to update all process parameters.

ZeRO-2, the second stage, partitions both optimizer states and gradients. Each

process owns a partition of the gradients, requiring a Gradients Gather operation to

collect all computed gradients across processes. After gathering, the corresponding

optimizer works on the parameter update for its partition.

In the final stage, ZeRO-3, layer parameters are partitioned and owned by data
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parallel processes. Broadcast communication collectives are initiated by the parame-

ter partition owner before each forward and backward pass to share parameters with

other data-parallel processes. This process repeats until the completion of all for-

ward pass operations. After each process completes loss computation, a parameter

Broadcast is issued before each backward pass partition.

Gradients are generated on each process after the backward pass, and a Gradients

Gather operation gathers them to the corresponding process. The partitioned opti-

mizer then works on the parameter updates allocated to its partition. The complete

ZeRO workflow is illustrated in Figure 6·4, where the model is partitioned into three

parts and distributed among three data parallel processes.

Heterogeneous System Training: Work has been done to propose a heteroge-

neous system leveraging CPU or NVMe memory has been explored to augment the

system’s memory capacity. Such a system enables the training of significantly large

models on a limited number of GPUs.

ZeRO-Offload (Ren et al., 2021b) presents a heterogeneous training approach with

the CPU as an offload engine, based on the ZeRO-2 foundation to offload optimizer

states, gradients, and the computation of parameter updates on the CPU.

Figure 6·5 illustrates the ZeRO-Offload workflow. This method addresses the

constraints of limited GPU memory, alleviating the challenge of requiring a large

number of GPUs to store optimizer states and gradients.

While the ZeRO parallel strategy allows for large model sizes proportional to

the number of devices, it necessitates aggregating GPU memory at a scale that can

accommodate both the model and residual states for training. However, while using

ZeRO as a parallel strategy, the expansion of model size surpasses the growth rate of

GPU High Bandwidth Memory (HBM) size, resulting in an exponentially increasing

size of the GPU system required to train ever-growing deep learning models. Efforts
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have been made to explore heterogeneous system training, leveraging CPU or NVMe

memory to extend the system’s capacity and enable the training of significantly larger

models on a limited number of GPUs.

Several crucial considerations must be considered during offloading: (1) The CPU

computation throughput is orders of magnitude slower than the GPU. (2) Minimizing

the communication volume between CPU and GPU memory is essential.

The computational complexity of deep learning training per iteration typically fol-

lows O(MB), where M represents the model size, and B is the batch size. In contrast,

the complexity for optimizer computation and parameter updates is O(M). Leverag-

ing mixed precision, the forward and backward passes use fp16 as the parameter type,

and the optimizer maintains a copy of fp32 as the parameter type for updating. This

configuration is optimized for offloading the optimizer state and parameter updates

onto the CPU, thereby minimizing CPU computation complexity and communication

volume between the CPU and GPU.

Bandwidth Aggregation: ZeRO-Infinity takes a step further in addressing sev-

eral limitations of ZeRO-Offload (Ren et al., 2021b). Firstly, ZeRO-Offload still ne-

cessitates GPU memory to store parameters, limiting the model size by the number of

parameters that GPU memory can accommodate. Secondly, ZeRO-Offload faces con-

straints introduced by PCIe bandwidth limitations. ZeRO-Infinity overcomes these
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limitations by introducing bandwidth aggregation. In ZeRO-Infinity (Rajbhandari

et al., 2021), parameters are partitioned across all data-parallel processes, utilizing

All-Gather instead of Broadcast to gather parameters for each process. The ag-

gregated PCIe bandwidth across all nodes in the system transfers its partition of

parameters from the CPU to the GPU in parallel for the All-Gather operation. This

aggregated bandwidth effectively mitigates the PCIe bottleneck, addressing the chal-

lenges associated with a single PCIe link.

6.2.2 Delayed Parameter Update

The computation on the offload engine for parameter updates follows the forward

and backward propagation on the GPU. However, this offload engine computation

can potentially become a bottleneck during training. To address this issue and hide

the offload engine computation, ZeRO-Offload employs a one-step delayed parameter

update, as depicted in Figure 6·6.

With no DPU, after the backward pass, gradients are generated, and the optimizer

updates the parameters for the next iteration. The optimizer states’ computation

depends on the output from the backward pass. With the introduction of a DPU,
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the pipeline is divided into two independent data paths, where the optimizer states

computation and parameter updates no longer depend on forward and backward

propagation. At step i+ 1, parameter updates utilize gradients from step i, while the

forward and backward pass uses parameters updated at step i − 1. From this step

afterward, the model at the (i + 1) th step is trained using parameters updated at

the (i− 1) th step, and the two data paths run in parallel with no dependency.

6.2.3 Limitations of Existing Systems

Heterogeneous systems with nodes comprising a GPU with an offload engine facili-

tate the training of large-scale machine learning models, but their performance and

efficiency are constrained.

Limited System Data Exchange Efficiency: During the forward and back-

ward pass computation, parameter data exchanges are required at each node to collect

partitioned parameters from all other CPUs. The parameter data exchange involves

the transfer from the CPU offload engine of each node to the GPU of every other

node, with the GPU managing the control of its CPU offload engine, data copy, and

initiation of communication.

After each partial backward propagation, gradients are produced in corresponding

partitions for each process. A Reduce-Scatter is required to distribute the gradients to

their destination data-parallel process from each GPU to every other node’s CPU of-

fload engine. The data movement occurs from each node’s GPU to every other node’s

CPU, with the GPU handling the Reduce-Scatter operator and data copy to the CPU

offload engine. Even though the GPU does not participate in the parameter update

computation using generated gradients, it still needs to initiate communication, and

data flows through the GPU, forwarding it to the offload engine.

As Figure 6·2i, such barriers between the system’s heterogeneous components limit

the system data exchange efficiency in two cases:
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(1) The data movement of parameter partitions from the offload engine to the

GPU for forward and backward propagation computation. The movement starts

from each node’s CPU offload engine, passes through each node’s GPU, and ends at

every other node’s GPU.

(2) The data movement of gradients generated from GPU to parameter updates

computation on the CPU offload engine. The movement starts from each node’s

GPU, passes through every other node’s GPU, and ends at every other node’s CPU.

Limited System Device Computation and Control Efficiency: The de-

layed parameter update is employed in a heterogeneous GPU system with an offload

engine to maintain computational efficiency. This approach allows the CPU offload

engine’s parameter update computation data path to be detached and parallelized

from the GPU’s data path, as illustrated in the upper Figure 6·7. Although these

two data paths are independent computation paths, the CPU data path is still un-

der GPU’s control and scheduling. This control dependency reduces computational

efficiency and increases overhead on both sides.

Furthermore, variations in computational power and complexity between the GPU

and CPU computation paths, along with different model configurations, batch sizes,

and hardware specifications, can result in diverse execution latencies and potential

idle device time for the GPU or CPU between each training step. In certain system

and model configurations, the GPU datapath may finish faster than the CPU, leading

to the training performance being consistently bottlenecked by the CPU, regardless

of the GPU’s power and the utilization of optimization techniques. This idle device

time becomes a bottleneck, limiting system performance.

Additionally, the GPU initiates communication operators for data exchange, ne-

cessitating memory allocation for exchanged data and computation resources for

data management. This utilization of GPU hardware resources introduces overhead,
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thereby constraining the GPU’s efficiency. Collectively, these factors contribute to

the diminished device computation and control efficiency of the system.

6.3 Memory Requirements Analysis

Current large-scale models encompass model sizes ranging from millions to trillions

of parameters. Training these extensive models necessitates a substantial number

of GPUs, and a GPU memory pool size from Gigabytes to Terabytes. This section

delves into understanding the significant memory consumption factors. The memory

consumption during training can be categorized as due to model states and residual

states. The analysis is based on the utilization of mixed precision and the Adam

Optimizer.
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6.3.1 Model States

The model states take most of the training model memory consumption and it is

consist of (1) Optimizer States, (2) Gradients and (3) Parameters. Assuming that we

have a model that contains ψ parameters.

When using mixed precision training, both parameters and gradients are repre-

sented in FP16. Following backward propagation, the optimizer states incorporate

the generated gradients to update the current iteration’s parameters. These opti-

mizer states store a copy of momentum, variance, parameters, and gradients with

FP32 precision. To accommodate the FP16 copies of parameters and gradients, a

memory space of 4ψ bytes is necessary. For the optimizer states, a total space of

16ψ bytes is required to store all relevant information. Consequently, the overall

model storage requirement amounts to 20ψ bytes. Fitting a 100 billion-parameter

transformer-based model necessitates 64 NVIDIA V100 GPUs, while storing a model

with 1 trillion parameters requires 512 GPUs.

6.3.2 Residual States

In order to make the training process run, extra residual memory is required. There

are mainly three categories, including (1) Activations, (2) Temporary Buffer, and (3)

Memroy Fragmentation. Activations are the primary source of memory consumption

during the training process, with memory requirements highly contingent on factors

such as model architecture, batch size, and sequence length (Rajbhandari et al.,

2021). While activation memory can be minimized using techniques like activation

checkpointing (Chen et al., 2016), a GPT-like model with 100 billion parameters

necessitates around 60GB of memory for a batch size of 32 (Rajbhandari et al.,

2020).

Temporary buffer space is essential for holding computation parameters before
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applying operators in the model. Adequate memory is needed for parameters and

gradients to conduct both forward and backward propagation. Furthermore, for

communication operators like gradients Redcue-Scatter and parameter All-Gather,

memory must be allocated for the execution of these operations. Memory fragmenta-

tion occurs when memory is divided into chunks, and there isn’t sufficient contiguous

memory to execute a given operator. This can lead to running out of memory, even

when memory is technically available.

6.4 SmartNIC-GPU-CPU Heterogeneous System

This Section gives an overview of the SmartNIC-GPU-CPU (SGC) heterogeneous

system.

6.4.1 Breaking the System Boundary

During the training of large machine learning models using the ZeRO strategy, there

is a substantial and frequent exchange of data among system components. In a GPU

system with no SmartNIC, all data exchanges must be initiated and facilitated by

GPUs. As illustrated in the upper Figure 6·7, when the current CPU sends offloaded

parameters to other remote GPUs for the next iteration’s forward and backward

propagation, the offloaded parameters need to be retrieved by the current GPU that

initiates the communication process to deliver the data to the other GPUs. A similar

scenario happens when gradients are generated by the current GPU and must be

transmitted to other CPUs for parameter updates. The gradients are sent by the

current GPU through the network, received by the destination GPU, and passed to

the CPU. The boundary of heterogeneous device components limits the data exchange

efficiency.

The SGC system, with SmartNICs, breaks such boundaries by acting as an inter-

mediate layer between GPUs and CPUs, seamlessly connecting system heterogeneous



140

components (Figure 6·2ii). The communication from the CPU is no longer depen-

dent on the GPU and can be efficiently handled by the SmartNIC. This decoupling

allows the communication sender and receiver to be different types of devices, with

the SmartNIC managing the communication process. Moreover, with the implemen-

tation of delayed parameter update (depicted in Figure 6·6), the GPU and CPU data

paths no longer depend on each other. Offloading the CPU control from GPU to

SmartNIC alleviates burdens on both GPU and CPU. Controlling applications on

the SmartNIC, not only does it enhance the computational efficiency of the system’s

GPU and CPU but also reduces hardware utilization and control overheads. As illus-

trated in the bottom of Figure 6·7, GPU and CPU can initiate data transfers through

the SmartNIC, compacting the overall system pipeline with fewer stages and reduced

overhead.

The SGC system design simplifies the datapath pipelines for both GPU and CPU,

allowing each to concentrate on computation rather than control and communication.

Integrating SmartNIC to coordinate heterogeneous components and handle control

unifies system and application control with communications, enhancing overall system

efficiency. Additionally, this approach optimizes GPU hardware utilization, enabling

more efficient handling of computation workloads.
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Data Exchange Between System Components: As illustrated in Figure 6·8,

parameter gathering communication is required before each partition of forward prop-

agation. The GPU fetches data from the CPU offload engine (FC) and initiates the
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communication operator. Once the communication is complete, the computation

stream is ready for the first partition’s forward propagation. In the SmartNIC-GPU-

CPU (SGC) system, the GPU retrieves data from the SmartNIC instead of fetching

from the CPU. Upon receiving the fetch signal from the GPU, the SmartNIC initiates

the corresponding communication operator, fetching data from the CPU and initi-

ating the parameter gather communication. Once the destination node’s SmartNIC

receives the parameters, the data is directly sent to the GPU. Once all parameters

are received, the Fetch SmartNIC stage on GPU is complete and ready for the first

partition’s forward propagation.

Another parameter gathering communication is required for each partition’s back-

ward propagation, following the same data exchange operations for backward propa-

gation. After the backward propagation generates the gradients, the GPU forwards

the gradients to the SmartNIC. After the Reduce-Scatter operator, the destination

node’s SmartNIC receives the results and sends them to the current CPU offload

engine for the next iteration’s parameter update.

Parameter Offload: In a GPU system with a CPU offload engine, parameter

offloading introduces overhead due to the additional PCIe data transactions. Dur-

ing the parameter gather communication operator, parameters are stored in CPU

memory, and the GPU fetches the data through PCIe. Another PCIe transaction is

then required to transfer the data from the GPU to the NIC, creating a dependency

between the two PCIe data transfers. However, with the introduction of a Smart-

NIC, these two PCIe data exchanges can overlap. The SmartNIC fetches parameters

from CPU memory simultaneously with the GPU fetching from the CPU. Even if

the offload engine is not used, the parameter gathering communication operator still

involves a PCIe data exchange between the GPU and the NIC. With the support

of a SmartNIC, the PCIe data exchange path becomes equivalent to a GPU system
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without an offload engine. This means that, with the assistance of a SmartNIC, we

can achieve efficient parameter offloading essentially for free.

6.4.2 Collective Communication Support

In the training process, several collective communication operations are involved,

including parameter Broadcast, parameter All-Gather, and gradient Reduce-Scatter.

In the system without SmartNIC, these operations are handled by the GPU, with

data gathering and communication initiation. In the SmartNIC-GPU-CPU (SGC)

architecture, we empower the SmartNIC with support for collective communication

operators, offloading these operators onto the SmartNIC.

Parameter Broadcast and Parameter All-Gather: We introduce the Fetch

Parameter operator for GPU. When the GPU requires gathering parameters from

the system, the GPU sends a Fetch Parameter signal to SmartNIC with metadata

indicating the current GPU stage and requesting data information. The SmartNIC

fetches parameter data from the CPU offload engine and manages the parameter

gather communication operator, distributing partitioned parameters to other system

nodes. Once the SmartNIC receives all the gathered parameters, the result is for-

warded to the GPU.

Gradient Reduce-Scatter: After backward propagation, gradients are gener-

ated and require a Reduce-Scatter operator to collect the full gradients for each

partition. As the GPU generates gradients, they are sent to the SmartNIC to handle

the reduce-scatter operator. The SmartNICs send and receive gradients with gradi-

ents reduction computation. The gradient reduction computation kernel computes

the final gradients, forwarding them to the local CPU in the Write CPU (WC) stage.

Once the CPU receives all the gradients, it possesses all the necessary data for the

subsequent iteration’s parameter update.
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6.5 Efficiency Optimizations

In this section, we describe optimization techniques that increase SGC system effi-

ciency.
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6.5.1 SmartNIC Prefetch

In the previous Section, we discussed how the GPU fetches from the SmartNIC in-

stead of the CPU offload engine during parameter gathering. Each node’s SmartNIC

fetches partitioned parameters from the CPU and initiates the parameter gather com-

munication operator. Consequently, the SmartNIC possesses awareness of both the

application and system status. Operating as a network-facing device, the Smart-

NIC is knowledgeable about the completion status of the ongoing communication

operator. Therefore, we introduce SmartNIC prefetch, empowering the SmartNIC to

pre-initiate the parameter gather communication immediately after the completion

of the preceding communication.

We enabled a SmartNIC control pipeline that aligns with the GPU’s datapath,

improving communication and computation overlap. As depicted in Figure 6·9, the

GPU pipeline initiates during forward propagation with the Fetch SmartNIC (FS)
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signal, signifying the initiation of a new GPU stage. This triggers the SmartNIC to

execute the Fetch CPU (FC) operation, fetching the local CPU’s offloaded param-

eter partition. With the acquired data, the All-Gather communication operator is

activated to gather parameters across system nodes. (In this example, we employ

bandwidth aggregation, utilizing All-Gather instead of Broadcast to gather the pa-

rameters.) The SmartNIC pipeline keeps track of the current stage, ensuring seamless

progression. Upon the completion of the All-Gather operation, the SmartNIC pro-

ceeds to initiate the gathering operation for the second partition’s parameters. This

SmartNIC capability of parameter prefetching eliminates the need to wait for the

GPU to complete the forward propagation of the first partition before initiating the

all-gather for the second partition.

Once the prefetched parameters have been gathered, they are temporarily buffered

on the SmartNIC, awaiting the GPU to initiate the Fetch SmartNIC stage signal for

the second partition. Subsequently, the data is forwarded to the GPU for the next

stage of the forward pass. As the data is transmitted to the GPU, the SmartNIC

can execute the next pipeline stage, prefetching the parameters for the next parti-

tion. This scenario assumes that the forward propagation stage is longer than the

communication stage, allowing the SmartNIC to ensure that the GPU has initiated

the next stage and received all data before proceeding to the subsequent SmartNIC

pipeline stage. However, there may also be cases where the communication stage

takes longer than the GPU computation stage. In such instances, the GPU is ready

for the next partition’s forward propagation computation, but the gathered data is

not yet available. Consequently, the GPU will remain in the Fetch SmartNIC stage

until the SmartNIC has all the necessary data prepared for forwarding.

During backward propagation, a duplicated parameter gathering operation is nec-

essary before initiating the backward propagation (Figure 6·4). This is because, to
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conserve GPU memory, the gathered parameters are deleted after the completion

of forward propagation. Consequently, an additional duplicated parameter gather

operation is essential for each backward propagation step. Following the Smart-

NIC pipeline, the parameter gathering for backward propagation is started once the

SmartNIC concludes the parameter gathering communication for the last partition.

SmartNIC will remain waiting until the GPU fetches the parameters.

6.5.2 SmartNIC Buffering Technique

As depicted in Figure 6·4, forward and backward propagation involves two duplicate

parameter gathering processes. Due to GPU memory management considerations, the

gathered parameters are deleted after each partition’s forward propagation computa-

tion. Consequently, another duplicate parameter gathering is essential for conducting

backward propagation. With increased model size and system scale, communication

constitutes a significant portion of the latency. This duplication in communication

may impede the system’s FLOPs throughput, with GPUs waiting for data to arrive.

Even when using our SmartNIC design, where parameter All-Gather and gradients

Reduce-Scatter overlap, the parameter gathering still consumes a substantial share

of the network bandwidth, potentially compromising the performance of both com-

munication operators. To address this redundancy and enhance system performance,

we introduce the SmartNIC buffering technique.

As illustrated in Figure 6·9, in the forward propagation phase, the All-Gather

parameter operator is completed by the SmartNIC, which retains the first partition

of the gathered parameters. The SmartNIC then concurrently forwards these pa-

rameters to the GPU for the first partition’s forward propagation and to the CPU’s

allocated memory to temporarily store the first partition parameters. This process

is repeated until all partition forward propagations are completed. When the GPU

starts backward propagation, the Fetch SmartNIC stage signals the SmartNIC to
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request the required data for backward pass computation. As the parameters are

already buffered locally on the CPU, the SmartNIC signals the CPU to transfer the

third partition’s parameter data from CPU memory to the corresponding GPU mem-

ory. This process continues until all backward propagations are complete. Upon the

CPU sending the parameters to the GPU, the parameter copy is deleted for reuse in

the next iteration. This approach avoids initiating a new round of communication

during backward propagation, allowing the GPU to fetch parameter data from the

local CPU directly.

6.6 System Configuration Software

6.6.1 System Metrics

The large-scale heterogeneous system consists of hardware components with varying

capabilities and power; the connecting technologies between these components also

differ. Numerous system configurations may present diverse bottlenecks that restrict

overall performance based on different machine learning model setups.

To address this, we propose a system configuration software. This software, tai-

lored to different system configurations, identifies potential bottlenecks in system

components or connections. It then suggests system and model configuration adjust-

ments to minimize bottlenecks and enhance overall system efficiency. The software

utilizes several metrics to evaluate system performance, including:

• Model Size

• Batch Size

• Data Parallel Process Number (Model Partition Number)

• GPU Computation Power
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• CPU Computation Power

• Network Configuration

• Heterogeneous Components Connection Configuration

6.6.2 Configuration Metrics Impact and Trade Off

Computation Datapath: There is a computational power and complexity disparity

between the GPU and CPU data paths in heterogeneous training systems. This

misaligned factor can lead to idle periods on the GPU or CPU, wasting computational

resources and reducing efficiency. The GPU computation complexity is O(BΨ), where

B is batch size and Ψ is model parameters. The CPU complexity is O(Ψ)/P, where

P is the number of model partitions. The GPU workload increases as the batch size

grows, but CPU computation decreases proportionally with more partitions. In a

configuration with a small batch size and few partitions, the CPU path can have much

higher latency, causing the GPU to idle as the next step cannot start until both paths

finish. This leads to a wastage of valuable GPU computational power. Configuration

software can identify such bottlenecks, offering recommended configuration thresholds

based on various metrics to eliminate GPU idle time.

Data Exchange Bandwidth Trade Off: Our current system configuration as-

sumes a PCIe bandwidth larger than the network bandwidth. However, design choices

and trade-offs arise when employing advanced network configurations or different sys-

tem device connections. In the previous section, we introduced the SmartNIC buffer

technique to buffer parameters that require duplicated parameter gather communica-

tion. These buffered parameters reside on the local CPU, and when the GPU requires

them, they are transferred via PCIe. This approach proves advantageous when PCIe

bandwidth surpasses the network bandwidth.

In scenarios where the system utilizes advanced network connections, such as
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NVLink, offering a greater bandwidth than the PCIe setup, the SmartNIC buffer

technique may impact system performance and become a bottleneck. Fetching the

same amount of data from the local CPU could incur higher latency than initiating the

network communication parameter All-Gather. Therefore, the configuration software

can adjust the pipeline to swap the SmartNIC buffer with the parameter gather

communication operation.

Advances in device connection technologies include high-bandwidth connections

like NVLink (NVIDIA, 2023) for data exchange between heterogeneous components

such as GPU and CPU. This benefits the SmartNIC buffering technique, ensuring

that data exchanged between GPU and CPU does not compromise overall system

performance. The SmartNIC buffer also saves network bandwidth during backward

propagation when parameter All-Gather and gradient Reduce-Scatter occur simul-

taneously. This technique removes parameter gathering communication by utilizing

local GPU-CPU data transactions, thereby preserving more network bandwidth for

gradients Reduce-Scatter.

System Scale and Offload Engine: The partition number could largely affect

the system performance, depending on the given training model size. With a small

data-parallel process number, the size of offloaded partitioned model states increases,

stored on the offload engine. This results in a larger volume of PCIe data exchange

between the offload engine and the communication device during the parameter gath-

ering phase, involving fetching partitioned parameters from the CPU. The potential

bottleneck in the communication phase arises from the latency in PCIe data exchange.

However, as mentioned earlier, advanced device connection techniques between the

GPU and CPU can enhance the data exchange efficiency between the GPU and of-

fload engine. Therefore, a small system scale with more parameters offloaded onto

the offload engine can still provide comparable performance.
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6.7 Evaluation
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Figure 6·10: 10B Model Throughput (PFLOPs)
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This Section evaluates the SGC system and demonstrates that it achieves training

efficiency and scalability for large scale machine learning model training.

6.7.1 Experimental Setup

The baseline for the GPU system is built on PyTorch FSDP with CPU as an offload

engine, employing ZeRO as the data-parallel strategy (Zhao et al., 2023). The large

transformer-based model is based on Meta LLaMA (Touvron et al., 2023a), and the

recommendation model is based on Deep Learning Based Recommendation Model

(DLRM) (Naumov et al., 2019). To evaluate the SmartNIC hardware, we utilized

the Xilinx Alveo U280 FPGA, incorporating a configured hardware implementation

of runtime, control logic, and collective communication kernel through High-Level

Synthesis (Vitis HLS). Since there is no exact heterogeneous SmartNIC-GPU-CPU

system, we conducted evaluations using real-world tested parameters on each com-

ponent device and integrated them into a cycle-accurate simulator aligned with the

baseline system. The system details are Intel(R) Xeon(R) Gold 6226R CPU, NVIDIA
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Figure 6·13: 10B Model Training Iteration Latency Speedup

Tesla V100 Tensor Core GPU, Bidirectional 32 GBps PCIe and 200GbE Network.

Hardware Specification
GPU NVIDIA Tesla V100 Tensor Core GPU
GPU Memory 32 GB 900 GB/sec HBM2
CPU Intel(R) Xeon(R) Gold 6226R CPU
CPU Memory 2933 MHz DDR4
PCIe Bidirectional 32 GBps PCIe
Network 200GbE

Table 6.2: System Hardware Details

The evaluation Figure uses the following abbreviations: GPU = GPU only system

with no offload engine, GPU pcie-agg = GPU only system with PCIe bandwidth

aggregation, GPU CO = GPU system with CPU offload (Baseline), GPU CO pcie-

agg = GPU system with CPU offload and PCIe bandwidth aggregation, GPU CO

SN pcie-agg = SmartNIC-GPU-CPU system, GPU CO SNopti pcie-agg = SmartNIC-

GPU-CPU system with optimization techniques.

6.7.2 Performance

The system performance evaluation is based on the three system goals as Table 6.1

and the system scalability.
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Higher Performance With Same Scale: Figure 6·13 illustrates the training

latency speedup for a 10-billion-parameter transformer-based model. When the sys-

tem scale is less than 16 nodes, the model is too large to fit into the GPU-only system,

as indicated by the OOM label in the Figure. At this point, the performance across

systems is nearly identical because the CPU computation data path becomes the bot-

tleneck. With a smaller system scale, each CPU data path handles a heavier workload.

As the system scales beyond 16 nodes, the GPU-only system shows improved training

latency compared to the GPU system with an offload engine. The latter experiences

overhead from PCIe data exchange and inefficiencies due to the boundary between

GPUs and offload engines. By leveraging PCIe bandwidth aggregation, the speedup

increases as the system utilizes every node’s PCIe bandwidth instead of just one. The

parameter All-Gather communication operator used by pcie-agg requires less network

bandwidth than the parameter Broadcast.

The SGC system, incorporating SmartNIC optimization techniques, outperforms

the baseline and the GPU-based system. This improvement becomes more pro-

nounced as the system scales up to 256 nodes, achieving a 1.4× speedup over the

baseline. This enhancement is primarily attributed to higher SGC system efficiency.

The SmartNIC prefetch optimizes system pipelines by enhancing computation and

communication overlap. Additionally, the SmartNIC buffer reduces duplicated com-

munication through local PCIe data exchange, thereby minimizing GPU data waiting

time.

Figure 6·14 presents the training latency speedup for a model with 100 billion

parameters. With a system scale of fewer than 16 nodes, the CPU computation data

path constrains the system performance. However, as the system scales from 16 to

256 nodes, the SGC system achieves a notable speedup over the baseline, reaching

up to 1.6 ×. With larger model sizes, the communication and PCIe latency becomes
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Figure 6·15: 16 Node System Training Throughput

a significant factor in the overall training latency. The SGC system improves the

overlapping of communication and computation stages, contributing to its enhanced

performance.

High Performance with Less Number of GPUs Required: Figure 6·15

illustrates the system’s support for various model sizes with 16 nodes. The GPU-based

system is constrained to fitting the model sizes of less than 10 billion parameters.

In contrast, the SGC system demonstrates the capability to train models with up

to 1 trillion parameters using the same 16-node system scale. Achieving the same
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capability with a GPU-only system would necessitate 320 GPUs just to fit the model

for training. With increasing model sizes, the SGC system achieves higher training

throughput over baseline, and the GPU-only system requires a large system scale

with more GPUs to fit the large models.

Support Larger Model Size and Achieving Comparable Performance:

Figure 6·15 indicates that SGC system with 16 nodes could support larger model

sizes up to trillions of parameters. As the model size increases, the SGC system

achieves higher training throughput over the baseline. Meanwhile, the SGC system

can train large models with almost comparable throughput to the GPU-only system.

The 16-node GPU-only system could train up to 10 billion size model, but the 16-

node SGC system achieves comparable throughput with a training model size of 100

billion. This improvement is largely due to the more efficient pipeline stage overlap

and reduced communication latency.

System Scalability: Figure 6·16 shows the training latency breakdown. The

PyTorch FSDP supports GPU data prefetching, indicated by comm-comp overlap.

For both 10 billion and 100 billion models, as the system scales from 4 nodes to

16 nodes, there is an increased latency portion in communication and PCIe data
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exchange. With larger model sizes, data exchange constitutes a larger portion of

the overall execution time, making it challenging to achieve efficient overlap between

computation and communication.

Figures 6·10, 6·11, and 6·12 present the evaluation of system scalability. The SGC

system exhibits better scalability for both 10-billion and 100-billion model sizes. As

the model size increases, SGC maintains nearly linear training throughput even as

the system scales up. Notably, for the 100 billion model, the speedup is even more

pronounced, given that communication latency constitutes a substantial portion of

the overall training latency. This aligns with the latency breakdown, highlighting that

SGC achieves better overlapping of communication with computation and minimizing

system overhead.

For DLRMs, the all-to-all communication is used by the embedding layer, which is

the system performance bottleneck. The SGC system keeps the training throughput

as the system scales up and displays a higher throughput than the baseline system.

6.7.3 System Software Configuration

As in the previous Section, there are differences between GPU and CPU computation

power and complexity. When the CPU computation path constrains the system’s

performance, the benefits of the SGC system with optimization techniques may be

limited, as the GPU data path can not start the next training iteration unless the

CPU is completed. The upper part of Figure 6·17 illustrates the normalized GPU

data path latency over CPU data path latency. A value less than 1 indicates that

CPU data path dominates the system latency. Both system scale and batch size

influence this ratio. As the system scales up, the CPU data path experiences reduced

workload. Increasing the batch size results in a higher computation workload for

the GPU data path. To avoid a CPU computation bottleneck, we select a system

computation configuration with a ratio greater than 1, allowing the SGC system to
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Figure 6·17: System Configuration Software with 10B Model

provide more benefits for training performance.

Despite the system’s performance being less constrained by the CPU data path

as we configure the system on a larger scale, communication latency increases as

additional nodes are incorporated into the system. The bottom part of Figure 6·17

illustrates the ratio of communication latency (including the overlapped communica-

tion latency) to overall latency. By combining these two Figures, the configuration

software can recommend configurations based on system and model metrics, aiming

to achieve higher efficiency and improved system performance.



157

0

100

200

300

400

500

0 50 100 150 200 250
Node Number

GPU GPU pcie-agg GPU CO

GPU CO pcie-agg GPU CO SN pcie-agg GPU CO SNopti pcie-agg

Figure 6·18: Normalized Power Consumption with 100B Model

6.7.4 Power Consumption

Figure 6·18 indicates the normalized power consumption comparison across various

systems. As the system scales, the SGC system exhibits lower power consumption

than others. The SmartNIC optimization in SGC contributes to power savings, partic-

ularly due to the SmartNIC buffer technique, which replaces network communication

with local PCIe data fetching, thereby reducing network communication workloads.

This advantage becomes more pronounced as the system scales up, as larger scales

introduce increased energy consumption for network data exchange. Additionally,

the SmartNIC prefetch helps compact the system pipeline by reducing device data

waiting time and system bubble, further contributing to power efficiency.

6.8 Related Work

Parallel strategies are used to train large models at scale (Shoeybi et al., 2020; Shazeer

et al., 2018; Wang et al., 2019a; Huang et al., 2019; Harlap et al., 2018; Lai et al.,

2023; Song et al., 2023). To scale up the model training, work (Chen et al., 2016) saves

memory form activation by recomputing from the saved checkpoints. Mixed precision
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(Micikevicius et al., 2018) is also proposed to compress the model for less memory

requirement. There have been works on CPU memory-based training approaches

(Hildebrand et al., 2020; Huang et al., 2020; Jin et al., 2018; Peng et al., 2020;

Ren et al., 2021a; Rhu et al., 2016; Wang et al., 2018; Fang et al., 2023), L2L

(Pudipeddi et al., 2020) enable multi-billion parameter training by managing memory

usage in GPU layer by layer. ZeRO-Offload (Ren et al., 2021b) and ZeRO-Infinity

(Rajbhandari et al., 2021) is the state-of-the-art for large model training based on

ZeRO (Rajbhandari et al., 2020) parallel training strategy. PyTorch FSDP (Zhao

et al., 2023) advanced the DDP (Li et al., 2020) model wrapper enables training of

large model side using PyTorch (Paszke et al., 2019)

6.9 Summary with Discussion of HW/SW Codesign

In this chapter, we propose a SmartNIC-GPU-CPU heterogeneous system for training

large machine learning models using a software-hardware co-design approach. The

SmartNIC serves as an intermediary layer, seamlessly connecting the GPU and CPU.

A set of optimization techniques streamlines the system pipeline, reducing data wait

times and maximizing the overlap between communication and computation. Addi-

tionally, system configuration software optimizes both system and model settings to

achieve maximal efficiency.

Software: On the software side, we identify bottlenecks in ZeRO parallel train-

ing and implement control flow mechanisms that break system boundaries between

heterogeneous components, minimizing device idle time.

Hardware: On the hardware side, we provide a SmartNIC dynamic application

control runtime with hardware design optimizations such as parameter prefetching,

buffering, and collective communication kernels.

Codesign: By integrating these elements, we implement system hardware based
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on ZeRO and optimize control flow, software, and model configurations to match the

system hardware. This combination pushes the boundaries of current software and

hardware platforms for efficient machine learning model training.
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Chapter 7

Heterogeneous Global Control and

Disaggregated Memory System

In the previous Chapters, we propose SmartNIC-GPU-CPU (SGC) systems to ad-

dress the limitations of heterogeneous GPU systems with CPU offload, such as with

data exchange and computation control. Recent systems have, in part, addressed

these issues. For example, PyTorch FSDP (Zhao et al., 2023), shown in Figure 7·1,

optimizes large model training with support for CPU offload by overlapping commu-

nication and computation. Despite these advances, however, existing systems still

face challenges in achieving high training efficiency. Among these challenges are the

following.

First, current systems operate on a both a large scale and with global synchro-

nization barriers and control. However, any particular compute unit only has access

to local information, necessitating extensive communication to perform global op-

erations. As systems scale significantly, they are limited by their Model FLOPs

Utilization (MFU) (Jiang et al., 2024). MFU is the ratio of the observed throughput

to the theoretical maximum throughput of 100% of peak FLOPs.

Second, All-gather and Reduce-Scatter are commonly used global communication

patterns for parameter gathering and gradient reduction. As the system scales up,

the communication workload increases significantly, consuming a large portion of

the execution latency even with prefetch enabled. This larger scale introduces more

collective workload among more processes, leading to longer communication time.
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Figure 7·1: PyTorch FSDP Communication and Computation Over-
lap Pipeline (Zhao et al., 2023)

Third, local control, scheduling, and communication operators consume consider-

able hardware resources and on-chip memory. The larger the system, the greater the

duplication.

Fourth, in-network computing opportunities are wasted as computing is relegated

to nodes that are necessarily at the edge of the cluster. Since these in-switch, in-

network opportunities are described elsewhere (Haghi et al., 2023; Haghi et al., 2024),

we concentrate here on the other three challenges.

We propose a heterogeneous global control and disaggregated memory system fea-

turing global control, scheduling, and parameter storage at the switch level. This sys-

tem offers fine-grained software-hardware co-design, providing the following benefits:

(1) centralized global application control, (2) centralized synchronization, including

barriers, and (3) improved communication-computation overlap. All this should re-

duce overhead, especially communication volume, and open up the possibilities for

better use of run-time performance measures, which, in turn, may lead to new load

balancing strategies.

7.1 Overview of design techniques and optimizations

Several system design techniques and optimization are proposed.
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1. Global control and memory system for parameter storage and update

Application control and scheduling are managed at the global level, with pa-

rameters stored in disaggregated memory at the switch level. Instead of collecting

parameters from scattered local nodes and redistributing data for each leaf node’s

computation, we use a global parameter storage system that distributes data directly

to the leaf nodes. Parameter All-Gather is thus replaced with Broadcast while gra-

dient Reduce-Scatter is replaced with Reduce. As described elsewhere (Haghi et al.,

2022) this significantly reduces the communication volume.

2. Global one-sided synchronization

(2a) Asynchronous global communication.

Unlike All-Gather and Reduce-Scatter, which require synchronization across all

processes, the proposed system operates asynchronously. GPUs request data directly

from, and send gradients to, disaggregated memory without the need for global syn-

chronization. A global control unit within the switch manages parameter requests and

gradient reduction asynchronously from the leaf nodes. When a leaf node requests

parameters, the disaggregated memory sends them, potentially using buffering in the

switch if multiple nodes request the same parameter. Similarly, when a leaf node

generates gradients, they are sent to the global control unit for reduction. The switch

asynchronously receives gradients from the leaf nodes and performs the reduction.

Once all gradients are received, they are sent to the optimizer for parameter updates.

The proposed system leverages already deployed parameter updates by using the

previous iteration’s parameters for the current update. Disaggregated memory stores

all parameters needed for the current iteration, making them readily accessible to leaf

nodes. The global control unit manages asynchronous data requests from each leaf

node, eliminating the need for synchronization during gradient reduction.

Here is an operation from a leaf node’s perspective. It first retrieves parameters
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from the global control (GCU) and disaggregated memory (DM) as needed. It then

sends generated gradients back to the GCU and DM for reduction and subsequent

parameter updates. This process is entirely asynchronous, so leaf nodes do not wait

for each other, significantly reducing training overhead. Once the request and send

operations are complete, the leaf node can proceed to the next phase of the applica-

tion.

(2b) Global barrier at the switch.

Traditional training methods often use synchronization points, or barriers, during

initialization and between iterations, setting up communication groups among leaf

nodes with a communication library. Our system, featuring global control attached

to the switch, eliminates the need for such global synchronization. Instead, a global

barrier table is maintained. When a leaf node sends a barrier signal, it can proceed to

the next application phase without waiting for other nodes. The global control unit

ensures that as long as the longest asynchronous phase of each leaf node falls within

a single iteration, the nodes can execute their application phases asynchronously.

3. Data prefetching and buffering

Expanding on our previous work with SmartNICs, the global control unit (GCU)

collaborates with leaf nodes’ SmartNICs through prefetching and buffering, effectively
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overlapping communication and computation to maximize model FLOPs utilization.

The GCU oversees parameter requests from each leaf node, promptly sending

the requested parameters. Simultaneously, it tracks the application phase of each

leaf node, enabling it to proactively initiate the transfer of parameters for the next

phase immediately after fulfilling a current request. These parameters are buffered in

the local node’s SmartNIC, readily accessible when needed by the leaf node. Subse-

quently, after fetching the buffered parameters, the SmartNIC can proactively request

prefetching of parameters for the subsequent phase from the GCU. This strategy sub-

stantially overlaps communication and computation, leading to enhanced operator

utilization on the leaf nodes.

In summary, the GCU with DM system aims to allow leaf nodes to focus on com-

putation, with parameter requests and gradient send-outs handled by the GCU. This

system’s global control and memory at the system level provide higher efficiency, lower

overhead (synchronization, barriers), and reduced communication workload. Addi-

tionally, it facilitates easier checkpointing and fault tolerance through the combined

information of global control and SmartNICs.

7.2 Background and Related Work

In general, disaggregated systems refer to any computer system where there is non-

uniformity in resource deployment. As such, disaggregated systems originated almost

simultaneously with the first clusters with self-contained nodes. In these early clus-

ters, rather than each node having identical resources, e.g., CPU, memory, and I/O,

some resources, e.g., the secondary storage, would be shared among all the nodes. In

other words, the secondary storage would be disaggregated.

Staying with our disaggregated storage example, let’s look at the advantages and

disadvantages. The first advantage is that we can optimize nodes for the common
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case. If nodes rarely need high-performance secondary storage, then it can be elim-

inated. The second advantage is that the disaggregated components themselves can

be optimized. Building on economies of scale, large secondary storage can be orga-

nized in various ways (e.g., RAID types). Products can be built around, say, Network

Attached Storage (NAS). A third advantage is that queueing delay is reduced, as is

true for any system with multiple servers. A disadvantage is that peak performance

decreases as there is added latency as accesses are through the network (remote versus

local).

A short step away from separation of components by type is having heterogeneous

servers. Let’s assume that a compute cluster needs to support various types of ap-

plication loads, each of which is optimally served by a different set of capabilities.

These capabilities might be having many GPUs per node, or having large memories

per node, or having a particular type of interconnect. One option is to have multiple

different servers each of which handles its particular workload type. Another option

is to be able to “mix-and-match” nodes of different types.
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Disaggregated systems are currently undergoing much study (Guo et al., 2022c;

Ke et al., 2022; Ewais and Chow, 2023; Shen et al., 2023; Gao et al., 2016). A survey

(Blagodurov et al., 2021) describes disaggregated memory in data centers: “Compute

units are decoupled from the memory hierarchy, with all components connected by

the datacenter fabric.” It gives examples especially of HPE’s “The Machine” and the

emerging CXL standard. A recent workshop had a number of overviews, concentrat-

ing on system-wide connectivity with embedded photonics (Bergman, 2023), compos-

able disaggregated infrastructure though the OpenFabrics Management Framework

(Aguilera et al., 2023), and commercial hardware switching support for CXL (Jiang,

2023).

7.2.1 Disaggregated Memory

Disaggregated memory architecture represents a new form of approach in computing,

with the aim of optimizing memory utilization and performance. Traditional memory

architectures often encounter challenges in scalability and efficiency, particularly as

the demand for larger memory capacities and higher performance increases. Disag-

gregated memory addresses these challenges by decoupling memory resources from

individual compute nodes, allowing for more flexible and efficient memory manage-

ment.

The system can be categorized into two components: compute nodes (CNs) and

memory nodes (MNs) (Kwon and Rhu, 2018; Kwon and Rhu, 2019). Compute nodes

provide high-performance processors but have limited memory capacity, while mem-

ory nodes supply numerous high-capacity DRAM devices. Compute nodes in the

distributed system access memory resources via a high-speed network, using proto-

cols such as RDMA (Remote Direct Memory Access) or specialized interconnects like

InfiniBand or Ethernet with RDMA support (RoCE).

The key components of disaggregated memory include the RDMA unit, memory
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controller, and multiple memory Dual Inline Memory Modules (DIMMs) for parallel

memory accesses. RDMA enables direct memory access, bypassing the CPU and

offloading data transfer tasks to the NIC, thereby significantly reducing overhead and

latency. The memory controller is responsible for coordinating and managing memory

resources, ensuring efficiency and parallel access to multiple memory DIMMs. This

parallelization capability is crucial for maximizing memory bandwidth and enhancing

overall system performance.

7.2.2 Ring-Based collective communication

The Nvidia Collective Communication Library (Nvidia, 2024b; Nvidia, 2024a) facil-

itates efficient collective communication among clusters of GPUs. One of its imple-

mentations utilizes a ring-based logical topology to execute collective communication

tasks such as Broadcast, All-Reduce, All-Gather, and Reduce-Scatter. In this setup,

each GPU is connected to its adjacent GPUs in a logical ring, forming a circular path-

way for data transfer. Within the ring, data flows sequentially from one GPU to the

next. This ring-based approach minimizes communication overhead by reducing the

number of direct connections required among GPUs. It ensures that each GPU com-

municates solely with its neighboring GPUs, streamlining data transfer complexity

and enabling scalable communications with an increasing number of GPUs.

Figure 7·4 demonstrates the workflow of Reduce-Scatter using a ring-based logical

topology with a cluster of four GPUs forming a circular communication pathway.

Initially, each GPU begins with its own data chunk, with the same buffer size allocated

for the Reduce-Scatter operator. The first step involves passing data around the ring,

with each GPU sending its data to the next GPU in the sequence. For example, GPU0

sends its data to GPU1, GPU1 to GPU2, and so forth. Upon receiving data, each

GPU applies reduction operations such as summation, maximum, or minimum, to

combine the incoming data with its current data. For instance, when GPU0 receives
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Figure 7·4: Ring-Based NCCL Reduce-Scatter Workflow.

data from GPU3, it performs the reduction operation on the received data along

with its own data, and then forwards the result to GPU1. This process is replicated

across all nodes in the system. Subsequent steps continue circulating data around

the ring, with each GPU applying the reduction operation upon receiving new data.

After completing a full loop around the ring, each GPU contains a portion of the

overall reduced data. This setup enables further parallel processing, as each GPU

independently operates on its designated portion.
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Figure 7·5: Ring-Based NCCL All-Gather Workflow.

Figure 7·5 illustrates the workflow of All-Gather using a ring-based logical topol-

ogy. Initially, each GPU begins with its own data segment. In the first step, each

GPU sends its data segment to the next GPU in the ring while simultaneously re-

ceiving data from its preceding neighbor in the ring. For example, GPU0 sends its

segment to GPU1, GPU1 sends its data to GPU2, and so forth. This process is

replicated across all nodes in the system. As data segments are received, each GPU

accumulates them in a buffer, eventually containing the complete collection of data

from all GPUs. Subsequent steps involve transferring data around the ring, with each
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GPU passing the previously received data to the next node. This circulation continues

until completing a full loop, ensuring that every GPU has received all data segments

from all other GPUs. As a result, each GPU possesses a concatenated collection of

data segments from every GPU in the ring.

All-Reduce achieves the desired outcome where each node ends up with the same

complete dataset derived from the combination and reduction of all nodes’ contri-

butions. All-Reduce collective communication involves combining Reduce-Scatter

followed by All-Gather. Combining Figure 7·4 and Figure 7·5 illustrates the full steps

of performing All-Reduce, with each node’s assigned data chunk circling around the

system nodes twice.

7.3 Heterogeneous Global Control and Disaggregated Mem-

ory System

7.3.1 Disaggregated Memory with Switch

In the baseline system, such as a GPU cluster or when utilizing a CPU as an of-

fload engine, parameters are divided and distributed among the leaf nodes within

the system. To perform each step of forward and backward propagation, global

communication methods like All-Gather and Reduce-Scatter are employed to collect

parameters in each leaf node or gather corresponding partition gradients. With our

proposal of global control, we bring data closer to the control unit, enhancing system

and application scheduling efficiency through data dispatch.

As depicted in Figure 7·2, a centralized disaggregated memory is connected to

the headless NIC (HNIC) within the switch. The controlling kernel in the HNIC

retrieves the corresponding parameters from the disaggregated memory using the

memory controller on the HNIC. Instead of each leaf node issuing an All-Gather

communication operator to gather data, a parameter request signal from the leaf node
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GPU is sent to the global control HNIC for data retrieval. As the HNIC handles the

data request, parameters fetched from the disaggregated memory are broadcast to

each node with reduced communication workload compared to All-Gather. The same

approach is applied to gradients with a Reduce-Scatter. As each leaf node generates

its corresponding portion of the gradients, these gradients are sent to the HNIC

for reduction. Subsequently, the compute unit on the HNIC computes the optimizer,

calculating the updated parameters for the next iteration. These updated parameters

are written to the disaggregated memory using the HNIC’s memory controller for the

next iteration’s data request.

Figure 7·3 depicts the architecture of the HNIC connected to the switch and the

disaggregated memory unit linked to the HNIC. The RDMA unit manages the RDMA

data fetch requests from the leaf nodes. With the memory controller attached to the

RDMA unit, multiple banks of memory DIMMs are organized to facilitate parallel

data fetching with high bandwidth. By attaching multiple disaggregated memory

units to the HNIC, the system can scale its parameter storage size according to

the system scale and model requirements. We provide an example of a potential

disaggregated memory configuration. The Intel Server Board S2600WF supports

up to 24 DDR DIMM slots, with DDR5 DIMMs capable of reaching 64 GB/s and

capacities ranging from 64 GBs to 512 GBs per DDRM memory. The total memory

capacity can thus reach up to 12 TBs per node.

To evaluate the performance of the disaggregated memory, we can attach multiple

instances of a DM to the HNIC. Combined with ZeRO, the number of data parallel

processes equals the number of instances, with each instance storing a partition of

the overall parameters. This aligns with GPU-based ZeRO, where each GPU stores

a portion of the overall parameters. The RDMA engine and memory controller fetch

each partition in parallel from each instance of a DM.



172

7.3.2 Global Control with Switch

With global control at the switch level, system control and application scheduling can

be managed by the centralized switch. However, currently, there isn’t a programmable

switch that can provide such capabilities. We therefore propose attaching an HNIC

to a dedicated port of the switch. As packets flow through the switch, the leaf node’s

request signals or data will be routed to the HNIC for processing and scheduling.

The control kernel on the HNIC keeps track of the data and signals flowing through

the entire network from each leaf node. Utilizing this information, the global control

on the HNIC understands the status of each node and its corresponding application

phase.

With this global control, the system no longer requires global synchronized com-

munication patterns like all-gather and reduce-scatter, which necessitate all leaf nodes

waiting for each other to start and end at a global barrier. As the attached disaggre-

gated memory stores model parameters, the global synchronized communication can

be swapped to asynchronous broadcast and reduce. Previously, all-gather gathered

the distributed partitioned parameters from each leaf node and synchronized between

each other before forwarding them to the next propagation computation. With GCU

and DM, this is swapped for synchronized broadcast. The parameters are stored in

disaggregated memory attached to global control. When a GPU is ready for the

next propagation computation, it sends a signal to the global control requesting the

corresponding data partition. The HNIC fetches the data partition and forwards it

to the leaf node. With the GCU keeping track of each node’s status and application

phase, this data forwarding is asynchronous, with each GPU potentially fetching data

at different times. This avoids leaf nodes waiting for each other with a global barrier.

To achieve this, a global barrier table is maintained in the HNIC to ensure that the

asynchronous data fetching from leaf nodes occurs within the same iteration.
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As each leaf node generates gradients after backward propagation, reduce-scatter

is required to reduce each partition’s gradients. With GCU and DM, reduce-scatter

is replaced with reduction. As mentioned earlier, leaf nodes execute the application

pipeline asynchronously with different timestamps. Correspondingly, the gradients

are generated asynchronously as well. The generated gradients are sent to the global

HNIC right after each backward propagation stage. The reduction in the HNIC is

executed as each leaf node’s gradients arrive at the HNIC. To achieve this, a vector

of partition gradients is maintained in the HNIC, with each element representing a

partition of the parameter’s gradients. Since leaf nodes might be in different execu-

tion pipeline stages with different parameter partition gradients, the corresponding

partition will update the corresponding index of the vector of partition gradients.

Once all partition gradients are received from each leaf node and reduced, the final

gradients are forwarded to the parameter update computation kernel for parameter

update computation. After the parameter update, the updated partition parameter

is forwarded to the disaggregated memory by the memory controller in HNIC for the

next iteration.

The HNIC GCU keeps track of each leaf node’s status, including its parameter data

request and gradient generation. It maintains a global barrier table and global gra-

dient vector, ensuring that the maximum timestamp difference between leaf nodes is

less than one iteration, thereby ensuring error-free execution of the application. This

approach allows leaf nodes to proceed without waiting for each other for synchronized

global communication or global barrier, thereby minimizing both computation and

communication overlap to maximize efficiency.

Figure 7·3 depicts the architecture of the HNIC attached to the switch. The

HNIC includes a network layer responsible for handling the transport layer protocols

between switches. The global control and scheduling unit on the HNIC track requests
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signals from leaf nodes, RDMA data fetching from leaf nodes, and the ongoing packet

flow through the switch. As this information is collected at runtime, the global

control at the switch level captures the current phase of the application and the

status of each leaf node. The runtime manages asynchronous timestamp requests

from every node and monitors the global status of each leaf node, ensuring that the

asynchronous difference between each node is less than one iteration. Through delayed

parameter updates, the updated parameter is only available for one iteration ahead.

If the difference exceeds one iteration, the optimizer’s updated parameter will not be

able to provide parameters beyond one iteration. Additionally, in systems utilizing

multi-level switch configurations, there may be sub-switches responsible for handling

sub-global regions of the system, as shown in Figure 7·9. The global control kernel

can be reconfigured for such sub-region switches. For example, by combining Data

Parallel, Model (Tensor) Parallel, and Pipeline Parallel, model (tensor) parallel and

pipeline parallel processes can be mapped to the sub-region, while the global switch

connects different data parallel processes. The sub-region switch manages control and

scheduling for processes in the model parallel, along with data exchange between MP.

In addition to the runtime, the selective communication kernel manages gradi-

ent reduction (Gradient Reduce-Scatter in the baseline). A global reduction table

is maintained in the kernel to track the reduction of different partition gradients.

The gradients are received asynchronously by the HNIC with different timestamps.

Once all gradients for the corresponding partition are received, the reduced gradients

are sent to the computation kernel for optimization with parameter updates. This

computation kernel can also be relocated to an attached GPU or CPU to leverage

computation resources. After parameter update, the parameters for the next itera-

tion are ready to be used and forwarded to the disaggregated memory for RDMA

data fetch. The RDMA and DM control handle the leaf node’s RDMA data fetching
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request and coordinate with the RDMA unit in the disaggregated memory.

7.3.3 Global Control and Disaggregated Memory Collective Communi-

cation

Using ZeRO as the model training parallel strategy involves partitioning and dis-

tributing parameters across the system, with each leaf node containing a partition of

the parameters. Consequently, an All-Gather operation is necessary to gather the cor-

responding partition’s parameters for both forward and backward propagation. After

each portion of the backward propagation, the partition’s gradients are generated by

each leaf node through its data parallel process. Reduce-Scatter is then employed to

gather the corresponding portion of gradients, which are used to update the matching

parameter portion. These global collective communications necessitate global com-

munication patterns. Ring-based or tree-based collective patterns are commonly used

to gather or reduce the data distributed among the leaf nodes in the system.

Figure 7·6 illustrates an example of the Nvidia Collective Communication Library

(NCCL) ring-based collective with a two-level switch GPU cluster. In this example,

the distributed GPUs are interconnected through switches in a ring fashion. For

All-Gather operations, each data chunk unit traverses every node once in the ring,

ensuring that all data chunks are gathered to each node once the process is complete.
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Reduce-Scatter follows a similar pattern, where each data partition traverses each

node, reducing the data until it reaches the destination node.

The heterogeneous GCU with DM system enhances the switch with headless func-

tionality and migrates the leaf node’s local control to the global switch. The DM

serves as model parameter storage near the GCU, leading to higher system con-

trol efficiency and simplified data dispatch to the leaf nodes for computation. To

distribute parameters to each leaf node for forward and backward propagation, a

parameter broadcast is employed to dispatch parameters to the system. Compared

to the baseline system using a ring topology with the All-Gather communication

pattern, parameter broadcast not only reduces communication volume but also mini-

mizes the number of hops data traverses to reach every system node in a ring topology.

Similarly, after backward propagation, the baseline system uses the Reduce-Scatter

communication pattern to reduce the corresponding partition of gradients for each

leaf node. In the GCU-DM system, a global gradient reduction is conducted to re-

duce the scattered gradients in the system, as shown in Figure 7·7. Following global

reduction, the HNIC’s computation kernel (or computation device attached to the

HNIC) computes the updated parameter for the next iteration using an optimizer.

The updated parameter is then stored in the disaggregated memory. The global
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gradient reduction results in less communication workload and fewer communication

hops compared to Reduce-Scatter in a ring topology.

7.3.4 System Control, Scheduling and Optimization Techniques

The previous section provided an overview of the heterogeneous global control and

disaggregated memory system. This section will delve into the detailed workflow and

pipeline stages of the system components, including GPU, CPU, SmartNIC, HNIC

GCU, and DM. It is important to note that the goal of the system is not to propose

an entirely new system to replace GPU-based clusters. Instead, we are enhancing the

existing system by introducing new application-level pipeline stages in GPU, CPU,

and NICs to support heterogeneous device cooperation with global control and dis-

aggregated memory support. Therefore, there will not be significant modifications

to the existing system. We will add new pipeline stages at the software level and

implement corresponding hardware logic in SmartNICs and HNICs to support global

offload and data fetching from global disaggregated memory. For GPU, the computa-

tion stages will remain the same, but the communication operators will be swapped

with new stages that issue data requesting signals to the global control and disag-

gregated memory. The SmartNICs and HNICs attached to the switch will handle

communication and data fetching. As data arrives at the GPU, it will be ready

to proceed with computation. The local SmartNIC collaborates with the HNIC to

enable data prefetching and buffering, facilitating higher computation and commu-

nication overlap and reducing pipeline bubbles. In the following subsections, we will

divide the application into phases and explain the workflow and pipeline stages of the

heterogeneous devices.

1. Forward propagation and backward propagation

As in the previous section, ZeRO partitions the model parameters into N parti-

tions, where N represents the number of data-parallel processes. Similarly, the dis-
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Figure 7·8: Heterogeneous Global Control and Disaggregated Memory
System Pipeline. (GCU: global control; DM: disaggregated memory
attached to global control)

aggregated memory attached to the HNIC is instantiated into N instances, aligned

with the number of data parallel processes. Due to constraints on the GPU HBM

memory, both the forward and backward propagation processes are partitioned into

N parts, with the corresponding portion of parameter data fetching required before

forward and backward propagation computation begins. This partitioning ensures

efficient utilization of resources and enables parallel processing across the system.

Figure 7·8 illustrates the GPU compute stream, outlining the GPU pipeline. In

this figure, three data parallel processes are used as an example, so the forward prop-

agation and backward propagation are divided into three parts accordingly. In the

baseline GPU system, the All-Gather communication operator is used to gather pa-

rameters from every other GPU to assemble the parameters required for the first

forward propagation. In the GCU-DM system, we introduce the GPU Fetch Disag-

gregated Memory (FDM) pipeline stage. Here, the GPU emits a data fetch signal

to the system to request data. This signal can be considered as an RDMA read

operation from the global DM. The signal is initially received by the local Smart-
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NIC, which handles the parameter fetching from the system’s DM. Communication

is managed by the local SmartNIC instead of the GPU. Once the data arrives, the

parameter is written directly to the GPU by the SmartNIC along with a notification.

This approach allows the GPU to conserve resources that would otherwise be used

to handle the communication operator. The GPU initiates the data requesting signal

and allocates sufficient buffer size to receive parameters written by the SmartNIC.

This setup optimizes the data fetching process and enhances overall system efficiency.

When the local SmartNIC receives the RDMA read request signal from the lo-

cal GPU, it collaborates with the global control and the disaggregated memory to

complete the data fetching process. The communication operator is initiated on the

SmartNIC, triggering the RDMA read request (FDM stage) to the GCU. Upon re-

ceiving the signal, the FDM stage is activated, initiating the RDMA kernel with a

read request to the DM. The memory controller processes the data fetching from the

memory DIMM and returns it to the RDMA unit. Since each GPU is requesting the

same chunk of parameters for the first portion of the forward propagation, the pa-

rameter broadcast communication from the GCU distributes the parameter portion

to each local SmartNIC. Subsequently, the local SmartNIC manages the data writing

to the corresponding allocated buffer of the local GPU.

It is important to note that in the baseline system, the parameter All-Gather is

replaced by parameter broadcast, resulting in reduced communication volume in the

network and fewer data hops. Additionally, the GCU may receive RDMA read re-

quests asynchronously, as there is no requirement for global barrier synchronization

among leaf nodes with different timestamps. The GCU handles such asynchronous re-

quests. Furthermore, the HNIC buffers the requested data to prevent multiple RDMA

data fetches from the disaggregated memory, thus avoiding performance degradation.

This optimized process ensures efficient data fetching and enhances system perfor-
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mance.

After the SmartNIC receives the requested parameters from the GCU, the data

are written directly to the GPU’s buffer, accompanied by a notification to proceed

with the forward propagation computation. This streamlined process ensures that

the GPU can seamlessly access the required parameters without additional latency or

overhead. A similar workflow is repeated for the backward propagation stage, where

the relevant parameter portions are gathered to facilitate the backward computation.

This ensures that the necessary parameter data is available to the GPU for the com-

pletion of the backward propagation process. Overall, this approach enhances the

efficiency and effectiveness of both forward and backward propagation stages in the

system.

2. Parameter Prefetch

After each forward and backward propagation, the GPU initiates the next por-

tion of parameter fetching request. However, during the computation phases, the

network remains idle, presenting an opportunity for optimization. To address this,

we introduce parameter prefetching techniques. In this approach, the local SmartNIC

and global control collaborate to prefetch data ahead of the GPU’s request. After

the SmartNIC completes writing the requested parameters to the GPU’s buffer, it

initiates the prefetching process for the next portion of parameters. This prefetching

is triggered autonomously by the SmartNIC itself once the current data fetching is

completed. Upon receiving the parameter prefetching request from the local Smart-

NIC, the global control ensures that the data is buffered on the SmartNIC, awaiting

the GPU’s request. When the GPU finishes its propagation computation, it sends

the next portion of the FDM signal to the local SmartNIC. Since the data is already

available on the local SmartNIC due to prefetching, it can be immediately written

to the GPU’s buffer without delay. This prefetching technique effectively overlaps
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computation and communication, minimizing the number of pipeline bubbles and

reducing the GPU’s data waiting time.

3. Parameter Buffering

Before each partition of the forward propagation, communication is necessary to

gather the corresponding parameters required for that specific portion of the propaga-

tion. Similarly, for backward propagation, another round of communication is needed

to gather the partition parameters, causing a duplication of communication efforts

that can stall the backward propagation pipeline. To address this issue, we propose

parameter buffering on the CPU as an offload engine during forward propagation,

with the aim of reusing the buffered parameters for the backward pass.

As shown in Figure 7·8, after the SmartNIC completes the first FDM stage, it

forwards the parameters for the first partition to the GPU for the initial forward pass.

Simultaneously, the SmartNIC also forwards the same data to the CPU for buffering.

The decision to use the CPU as an offload engine is due to its capability of handling

larger memory capacities, ensuring that all portions of the parameters can be buffered

efficiently. After all forward propagation steps are completed, just before initiating

the backward pass, the GPU sends the FDM signal to the SmartNIC. Since the

SmartNIC has knowledge of the buffered parameters on the CPU, it instructs the CPU

to migrate the corresponding portion of the parameters to the GPU’s allocated buffer.

This buffering technique effectively eliminates duplicated communication volume and

reduces data transfer energy consumption.

4. Gradient Reduction

In ZeRO, gradients are generated by each data-parallel process, with each process

owning a different partition of the parameters. Consequently, the gradients corre-

sponding to these parameters need to be gathered using a Reduce-Scatter. However,

in the proposed system, the parameters are stored in a DM attached to the top-level
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switch, rather than being distributed among each leaf node. As a result, a Global Re-

duction operation is required to gather the gradients generated across the distributed

nodes and reduce them for updating the parameters in the next iteration.

In the pipeline illustrated in Figure 7·8, once the GPU completes backward prop-

agation, the gradients are generated and then sent to the local SmartNIC through a

Send to Global Control (SGC) stage. The GPU writes this data to the allocated buffer

on the SmartNIC. Once the data transfer is completed, the gradients are forwarded

to the GCU for global reduction. Within the global control, a table is maintained

to record the received gradients from the leaf nodes. Since each node might send

its gradients asynchronously, the global control ensures that gradients belonging to

the same portion of the parameter are reduced to the same buffer. Given that leaf

nodes operate asynchronously and are not in the same phase, gradients belonging to

different portions of the parameter are managed using multiple buffers, updated by

leaf nodes at different pipeline stages. When the buffer table indicates that gradients

from all leaf nodes have been received and reduced, the resulting gradient is written to

the disaggregated memory for further parameter update computation, and the buffer

is released.

5. Parameter Update

In ZeRO, delayed parameter updates are implemented to allow parallelization of

forward and backward passes with parameter updates. This approach eliminates de-

pendencies between these processes, resulting in higher efficiency. We enable global

control with a computation option, which is focused on parameter update computa-

tion. This can be achieved by attaching another computation device, such as a GPU,

to the HNIC, or by enabling a computation kernel directly on the HNIC. Attaching a

GPU to the HNIC provides higher computational power, thus preventing parameter

updates from becoming a bottleneck to the entire system. The computation device
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fetches the gradients generated from the last iteration from the disaggregated mem-

ory. After computing the updated parameter using an optimizer, the parameters are

written back to the disaggregated memory for the next iteration.

7.4 Heterogeneous GCU and DM System

In today’s dynamic landscape of machine learning, tackling the challenges of faster

training times and handling larger datasets has become increasingly crucial. Tradi-

tional single-threaded or single-machine training methods often struggle to keep up

with the scale and complexity of modern machine learning tasks. To overcome these

hurdles, researchers and engineers are turning towards parallelization techniques, with

3D parallel training emerging as a particularly promising approach for maximizing

efficiency and scalability. 3D parallel training integrates data parallelism, model

parallelism (tensor parallelism), and pipeline parallelism. By leveraging these three

parallelization techniques, systems can effectively train large machine learning models

with enhanced efficiency.

Data parallelism involves splitting datasets into smaller chunks and distributing

them among data parallel processes. Each process possesses a full copy of the model

and executes identical operations on its assigned data portion. Subsequently, the

gradients generated by each process are aggregated and utilized to update the model

parameters. These updated parameters are then redistributed to the processes for

the subsequent iteration.

Model parallelism, or tensor parallelism, comes into play when the model size

surpasses the memory capacity of individual devices. In such cases, the model is

partitioned across multiple devices, enabling the training of larger models.

Pipeline parallelism divides the training process into stages or partitions the model

into layers, assigning each segment to a distinct device or processor. Data batches
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are subdivided into micro-batches and fed through the pipeline in a sequential man-

ner. This setup creates a pipeline where different stages are processed concurrently,

minimizing idle periods and increasing overall throughput.

As depicted in Figures 7·9 and 7·10, our system architecture divides the system

switches into two main components: the global switch and the sub-region switches.

The global switch assumes control over the entire system and application, while the
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sub-region switches manage specific sub-regions of the local nodes. In the context

of 3D parallel training, the global switch oversees the data parallel processes, treat-

ing each sub-region as a distinct data parallel process. Meanwhile, the sub-region

switches are responsible for managing the pipeline parallel processes within their re-

spective regions. The tensor or model parallel process is situated within each leaf

node. This arrangement is preferred for tensor parallelism due to its requirement for

more frequent communication, which is efficiently managed at the local node level.

The global switch assumes responsibility for application control and parameter

fetching from the attached disaggregated memory. As data are fetched, the sub-

switch dispatches the parameters to the leaf nodes based on their pipeline stage.

By delegating communication tasks between pipeline stages to the sub-switches, the

system optimizes communication flow. Data movement is confined to within specific

regions, minimizing unnecessary hops and enhancing efficiency. This topology-aware

approach ensures that communication within the system is streamlined and optimized.

7.5 Evaluation

In this section, we provide an analysis comparing NCCL ring-based collectives with

our heterogeneous global control and disaggregated memory system. We examine

three collective operations: All-Reduce, parameter gathering collectives, and gradi-

ent reduction collectives. Our system demonstrates a significant reduction in com-

munication workload, i.e., approximately an order of magnitude less than that of a

ring-based cluster.

7.5.1 All-Reduce

In the ring-based collective communication model, each node operates under the

assumption of a direct connection within a ring topology. Instead of employing All-

Reduce operations, our system uses a global Reduce with Broadcast approach to
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achieve comparable results. This section provides a comparison between the ring-

based collective communication and our system.

In ring-based All-Reduce, N hosts are arranged into a logical ring, and each host

sends to its neighbor (N − 1) messages, each of size Z/P where Z is the number of

elements to be reduced and P is the data chunk size that each packet carries. As the

message traverses the whole system twice, so the total amount of data sent by each

host is Z/P ∗ 2 ∗ (N − 1). The total amount of the packet volume in the system is

Z/P ∗ 2 ∗N(N − 1) which is approximately Z/P ∗ 2 ∗N2.

Using the system shown in Figure 7·6 as an example two level of switches are

used to connect a cluster of devices. The total number of the hops that packets need

to traverse is 2 ∗H between nodes with extra 2 ∗ S ∗H between switches where H

represents the unit of each hop and S represents the number of the second level switch

connecting to the first level switch. So the total number of the communication volume

with hops is Z/P ∗ 2 ∗ (N2 ∗ 2 ∗H + 2 ∗ S ∗H) which is Z/P ∗ 4(N2H + SH).

In our system, the collective communication is switch-centric as seen in Figure 7·7.

The sub-region switch collects data from leaf nodes and the global switch reduces data

from sub-region switches. The All-Reduce consists of Reduction with a Broadcast to

leaf nodes. N hosts send the Z/P messages to the sub-region switch where the sub-

region switch’s HNIC handles data reduction. The sub-reduced data are forwarded

from sub-regions to the global region switch for final data reduction. In total, there

are Z/P ∗ (N + S) messages for reduce. As the global switch reduces data, Broadcast

communication is used to distribute the final results back to the leaf node with the

same amount of as Reduce. The total number of messages is Z/P ∗ 2 ∗ (N + S). The

total communication volume is Z/P ∗ 2(N + S) ∗H where H represents the hop that

connects each device or switch.
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7.5.2 Parameter gathering and gradients reduction collectives

The ring-based All-Reduce consists of a Reduce-Scatter followed by an All-Gather. So

each of the two collective communications can be viewed as half of the communication

volume of the All-Reduce which is Z/P ∗ 2(N2H + SH). In our system, the All-

Gather is replaced with a Broadcast, and Reduce-Scatter is swapped by a global

Reduce with each taking Z/P ∗ (N + S) ∗H of the total communication volume.

7.6 Summary with Discussion of HW/SW Codesign

In this chapter, we introduce a global control system with disaggregated memory,

integrating a SmartNIC with the switch to empower it with global control and com-

putation capabilities. This system supports fine-grained software-hardware co-design

at the system level, enhancing global application control. It reduces system barriers

and synchronization overhead while increasing the overlap between communication

and computation, leading to higher model FLOPs utilization and reduced communi-

cation workload.

Software: On the software side, we implement an efficient global control ML

training workflow based on the ZeRO parallel strategy, featuring centralized data

dispatch.

Hardware: On the hardware side, we present an HNIC design with disaggregated

memory and SmartNIC optimization techniques.

Codesign: By combining these elements, we implement hardware based on ZeRO

and global control flow, optimizing software and model mapping according to the

system hardware. This integrated approach maximizes efficiency and performance in

machine learning model training.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The rapid expansion of AI applications, particularly in the realm of large-scale deep

learning, has become a dominant force in contemporary AI. The emergence of large

models is highlighted for their remarkable improvement in performance through giant

model sizes. However, with the increasing size of these models, there arise significant

challenges in terms of computational resources and scalability. The communication,

memory bandwidth, and computation efficiency are challenging the computation clus-

ter’s performance. The memory wall has made this ever-growing computation cluster

scaling issue even worse where current hardware limitations are struggling to keep

pace with the exponential growth in model size.

In this dissertation, we proposed software-hardware codesign of SmartNIC-based

heterogeneous high performance computing systems with machine learning applica-

tions as case studies. The system aims to improve performance and efficiency, lower

power consumption and budget, and mitigate data exchange overheads and overlap-

ping computation and communication. We explore the system design space in four

steps with each step advancing the performance and the capabilities of the system.

The case studies chosen to demonstrate the codesign approach encompass a range of

advanced machine learning applications including graph neural networks, deep learn-

ing recommendation models, large language models and further generalized large ma-

chine learning models. Our thesis is that high-performance and high-efficiency
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inference and training of large machine learning models can be achieved

by software-hardware codesign of SmartNIC-based heterogeneous high-

performance computing system.

The first exploration step explores the practical functionalities of emerging Smart-

NICs, which have evolved into powerful yet intricate and diverse components. These

SmartNICs are engineered to handle a broad spectrum of applications, integrating

networking support for fundamental NIC tasks alongside GPUs, programmable logic,

vector processing, HBM, and DDR memory. Furthermore, the components them-

selves exhibit heterogeneity. To demonstrate the utility of these varied components

within SmartNICs, we utilize the Xilinx Versal ACAP platform. This platform amal-

gamates a traditional FPGA with a cluster of CPUs and a Coarse Grained Reconfig-

urable Array of hardware blocks. We showcase the versatility of these heterogeneous

components through the application of a Graph Convolution Neural Network. GCN

combines both regular and irregular computation, encompassing tasks such as ir-

regular data access patterns, workload balancing, and hybrid computation patterns.

This makes GCN an ideal application for illustrating the utilization of heterogeneous

hardware components. Through the mapping of subgraphs based on their density

onto corresponding hardware elements of the Versal ACAP, we exemplify the efficient

utilization of the diverse hardware components within heterogeneous devices.

The second exploration step explores how the SmartNICs integrated efficiently into

the CPU-centric nodes. This involves examining the use of distributed SmartNICs

as an independent system, showcasing their ability to offload application control and

integrate computation and communication. We utilize graph neural networks and

deep neural networks as our applications. Our proposed system is a user-friendly

framework for neural network inference on FPGA-centric SmartNICs (FCsN) capa-

ble of performing computation, communication, and control simultaneously. This
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approach allows for flexible and fine-grained task creation, distribution, and exe-

cution across multiple SmartNIC devices, bypassing CPU intervention. As a result,

computation latency is minimized by overlapping it with network communication, en-

abling streaming applications to run at line-rate and achieving high FPGA utilization

and system-level performance. On the software side, FCsN employs a data-centric

programming model with Python-based programming APIs. On the hardware side,

it features a hardware-based SmartNIC runtime for CPU-detached scheduling, sup-

porting high-performance execution of neural network kernels at line-rate. While the

current FCsN framework focuses on neural network applications, it has the potential

to evolve into a general framework applicable to many scientific applications that

share similar basic kernel functions with neural networks.

In the third phase of our exploration, we focus on the integration of SmartNICs

into GPU-centric nodes to enhance connectivity and performance. Our node design

employs a software/hardware co-design strategy, utilizing SmartNIC capabilities to

synchronize computation and communication. This design integrates GPUs as accel-

erators, with CPUs and NVMe as offload engines, and applies deep learning-based

recommendation models and large language models as primary examples.

We present a software-hardware co-design paradigm tailored for a heterogeneous

SmartNIC system, specifically crafted for scalable machine learning inference and

training. This paradigm aims to improve system performance and efficiency while

reducing power consumption, costs, and data exchange overhead. Acting as a vital

intermediary layer, the SmartNIC facilitates seamless connectivity between GPUs and

CPU offload engines, bridging the gap between distributed heterogeneous components

within the system.

To optimize performance, we implement a suite of SmartNIC optimization tech-

niques, including prefetching, caching, and SmartNIC computation kernels. These
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techniques capitalize on data locality, reducing data movement, enhancing the over-

lap of computation and communication, decreasing memory access intensity, and

ultimately maximizing GPU computation efficiency.

In the fourth exploration, we investigated the previous system with SmartNICs be-

yond computation offload with heterogeneous global control and disaggregated mem-

ory system. This setup employs a headless SmartNIC attached directly to a network

switch, enabling a centralized system and application control. This represents an

improvement over previous designs that lacked centralized global coordination.

This exploration also incorporates disaggregated memory linked to global con-

trol, providing several benefits. It enhances efficient application management and

data distribution, reducing the need for extensive synchronization and minimizing

barrier-related overhead. Additionally, this design lowers the communication work-

load, promoting better overlap between computation and communication tasks.

8.2 Future Work

In this section, we briefly discuss future directions. In this dissertation, we explore the

design space of software-hardware SmartNIC-based heterogeneous high-performance

systems in four steps, each pushing the exploration boundary further. Our current

work involves enabling switches with global control by attaching a SmartNIC to

dedicated ports. This ongoing project needs to be tested and evaluated with machine

learning models.

The goal of this system is not to replace existing GPU-based systems but to

augment GPU clusters with global control by adding execution pipeline stages to

both the GPU and the switch. This requires significant engineering effort, including

exploring GPU CUDA kernels and developing corresponding SmartNIC designs to

provide global control and synchronization for the GPU cluster. Our future work
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aims to enable this system for large machine learning applications, such as large

language models.
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