
Boston University

OpenBU http://open.bu.edu

Boston University Theses & Dissertations Boston University Theses & Dissertations

2024

Building next-generation deep learning

hardware using photonic computing

https://hdl.handle.net/2144/49259

Downloaded from DSpace Repository, DSpace Institution's institutional repository

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

BUILDING NEXT-GENERATION DEEP LEARNING HARDWARE

USING PHOTONIC COMPUTING

by

CANSU DEMIRKIRAN

B.Sc., Middle East Technical University, Ankara, Turkey, 2019

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2024

© 2024 by
CANSU DEMIRKIRAN
All rights reserved except for Chapter 3, which is ©2023
by ACM, Chapter 4, which is ©2024 by Springer Nature,
and Chapter 5, which is ©2024 by IEEE.

Approved by

First Reader

Ajay Joshi, PhD
Professor of Electrical and Computer Engineering

Second Reader

Ayse Coskun, PhD
Professor of Electrical and Computer Engineering
Professor of Systems Engineering

Third Reader

Darius Bunandar, PhD
Chief Scientist
Lightmatter

Fourth Reader

Martin Herbordt, PhD
Professor of Electrical and Computer Engineering

Life is short,
and the art long,
opportunity fleeting,
experiment treacherous,
and judgment difficult.

– Hippocrates

iv

Acknowledgments

First, I would like to express my deepest appreciation and gratitude to my advisor, Prof.

Ajay Joshi. His continuous support and guidance throughout my PhD journey have shaped

my academic path and always pushed me to achieve more.

I am also deeply thankful to Dr. Darius Bunandar for his invaluable advice and mentor-

ship over the years. I feel incredibly fortunate to have had the opportunity to work directly

with him at Lightmatter from the early years of my PhD and for our continued collabora-

tion.

In addition, I extend my gratitude to the rest of my thesis committee members, Prof.

Ayse Coskun and Prof. Martin Herbordt, for their precious time, generous support, and

insightful feedback.

I am very grateful to all my collaborators and friends from Boston University and Light-

matter. Their contributions have been invaluable to my work.

Furthermore, I greatly appreciate the invaluable friendships I have built over the years in

Boston. These friendships have made me feel loved, appreciated, and at home in a foreign

country, helping me navigate the hardships of my PhD journey. I would especially like

to thank my amazing roommate and all-time cheerleader, Isabel, and my dearest friends

Agnieszka, Aleksandra, Ania, Genevieve, and many others for their generous friendships.

I also want to thank Tahir, Emre, Ekin, Malik, Yekta, Deniz, and many other friends and

family in Turkey who have kept in touch and supported me despite the distance. Finally, I

would like to thank my parents, Aliye and Serdar, for their unconditional love and support.

v

BUILDING NEXT-GENERATION DEEP LEARNING HARDWARE

USING PHOTONIC COMPUTING

CANSU DEMIRKIRAN

Boston University, College of Engineering, 2024

Major Professor: Ajay Joshi, PhD
Professor of Electrical and Computer Engineering

ABSTRACT

In recent years, the demand for computational power has skyrocketed due to the rapid

advancement of artificial intelligence (AI). As we move past Moore’s Law, the limita-

tions of traditional digital computing are pushing the exploration of alternative computing

paradigms. Among the emerging technologies, integrated photonics stands out as a highly

promising candidate for the next generation of high-performance AI computing as it offers

low latency, high bandwidth, and high parallelism. However, there still exist challenges

associated with photonic hardware for AI acceleration including the need for slower and

less efficient electronic circuits and memory units, lack of efficient nonlinearity in photon-

ics, limited precision, analog noise, and various device non-idealities. In this thesis, we

investigate the opportunities and challenges of photonics technology for accelerating state-

of-the-art AI workloads from a realistic perspective, evaluate the performance benefits, and

propose solutions to address the associated challenges.

First, we outline our strategy for designing and evaluating ADEPT, a complete electro-

photonic accelerator for deep neural network (DNN) inference. ADEPT leverages a pho-

tonic computing unit for general matrix-matrix multiplication (GEMM) operations, a vec-

torized digital electronic application-specific integrated circuit (ASIC) for non-GEMM op-

vi

erations, and static random-access memory (SRAM) arrays for storing DNN parameters

and activations. Unlike previous photonic DNN accelerators, we adopt a system-level per-

spective to provide a more realistic assessment of the photonics technology and its appli-

cability in accelerating state-of-the-art DNNs. We detail our design steps and introduce

optimizations to minimize the overhead of electronic devices. Our evaluation shows that

ADEPT achieves, on average, 5.73× higher throughput per watt compared to systolic ar-

rays (SAs), and more than 6.8× and 2.5× better throughput per watt compared to state-of-

the-art electronic and photonic accelerators, respectively.

Second, we focus on the precision limitations in analog computing and propose using

the residue number system (RNS) to compose high-precision operations from multiple low-

precision operations. This approach eliminates the need for high-precision data converters

and avoids information loss. Our study shows that our technology-agnostic RNS-based

approach can achieve ≥99% of 32-bit floating-point (FP32) accuracy for state-of-the-art

DNN inference with only 6-bit and training with 7-bit fixed-point (FXP) arithmetic. This

indicates that using RNS can significantly reduce the energy consumption of analog ac-

celerators while maintaining the same throughput and precision. In addition, we present a

fault-tolerant dataflow using redundant RNS (RRNS) to protect computations against noise

and errors inherent in analog hardware.

At last, leveraging this RNS-based framework, we propose Mirage, a photonic DNN

training accelerator. Mirage employs a novel micro-architecture to support modular arith-

metic in the analog domain, achieving high energy efficiency without compromising preci-

sion. Our study shows that, on average, Mirage achieves FP32 accuracy with 23.8× lower

training time and 32.1× lower energy-delay product (EDP) in an iso-energy scenario, and

42.8× less power consumption with comparable or better EDP in an iso-area scenario,

compared to SAs.

vii

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 AI Model Trends . 1

1.1.2 Technology Scaling and AI Hardware Trends 5

1.1.3 Integrated Photonics as a Computing Platform for AI 7

1.2 Thesis Contribution . 9

1.3 Organization . 11

2 Background and Related Work 12

2.1 Deep Neural Networks . 12

2.1.1 DNN Types . 12

2.1.2 Layer Types in DNNs . 14

2.1.3 DNN Inference and Training . 18

2.1.4 Data Formats for DNN Execution 19

2.2 Silicon Photonics Devices . 21

2.2.1 Mach Zehnder Interferometers (MZIs) 21

2.2.2 Microring Resonators (MRRs) . 23

2.2.3 Efficiency and Scalability of Photonic Devices 24

2.2.4 Device Modulation Mechanisms in Silicon Photonics 25

2.2.5 Noise and Errors in Photonics . 26

2.2.6 Nonlinear Operations . 28

2.3 The Residue Number System . 29

viii

2.3.1 RNS Basics . 29

2.3.2 Forward and Reverse Conversion 29

2.3.3 Redundant RNS . 30

2.4 Hardware Solutions for DNN Acceleration 31

2.4.1 CMOS-based Platforms . 31

2.4.2 Non-CMOS Platforms . 34

2.4.3 Optical Platforms . 35

3 System-Level Evaluation of Photonic DNN Inference 39

3.1 Photonic Tensor Core Design . 39

3.1.1 MZI Array . 40

3.1.2 Photo-core Dataflow . 41

3.1.3 Data Conversion . 43

3.1.4 Numerical Precision and Accuracy 44

3.1.5 Photo-core Performance . 46

3.2 Building the Full System . 50

3.2.1 Vectorized Processing Unit for Non-GEMM Operations 50

3.2.2 Memory Units . 52

3.2.3 Performance Optimizations . 53

3.2.4 Parallelism . 59

3.2.5 System Performance . 61

3.2.6 Execution Model . 63

3.3 Related Work . 64

3.3.1 Electronic Accelerators . 64

3.3.2 Photonic Accelerators . 65

3.4 Evaluation Methodology . 66

3.4.1 Architecture-level Analyses . 66

ix

3.4.2 Circuit- and Device-level Analyses 67

3.5 Discussion . 69

3.6 Chapter Summary . 72

4 Unlocking High-Precision in Analog Tensor Cores via the Residue Number
System 73

4.1 Precision Challenges in Analog Computing 73

4.2 RNS-Based Analog DNN Computation 74

4.3 RRNS for Fault Tolerance . 80

4.4 Energy and Area Efficiency . 84

4.5 Evaluation Methodology . 87

4.5.1 Data Converter Energy Estimation 87

4.5.2 Accuracy Modeling . 87

4.6 Related Work . 90

4.7 Discussion . 91

4.8 Chapter Summary . 92

5 RNS-based Photonic DNN Training Accelerator Design 93

5.1 RNS-Based Dataflow in Mirage . 93

5.2 Modular Arithmetic with Photonics . 96

5.2.1 Modular Multiplication Unit (MMU) 96

5.2.2 Modular Dot Product Unit (MDPU) and MMVMU 101

5.2.3 Phase Detection Unit . 102

5.3 Moduli Selection . 103

5.4 Mirage Accelerator Design . 104

5.5 Sensitivity Analysis . 105

5.5.1 BFP Parameters . 106

5.5.2 Choice of the Array Size and Number of Arrays 106

x

5.6 Accuracy Results . 111

5.7 Performance, Power, and Area Results . 111

5.8 Evaluation Methodology . 115

5.8.1 Accuracy Modeling . 115

5.8.2 Hardware Performance, Power and Area 116

5.9 Related Work . 118

5.10 Discussion . 119

5.11 Chapter Summary . 121

6 Summary and Future Work 122

6.1 Summary of Contributions . 122

6.2 Current Limitations and Future Research Directions 124

6.2.1 Device-Level Challenges . 124

6.2.2 Routing and Integration Challenges 125

6.2.3 Data Conversion Challenges . 127

6.2.4 Scaling Challenges . 128

6.2.5 Performance Modeling Challenges 128

6.2.6 Challenges around RNS-Based DNN Computation 129

6.2.7 Future of Photonic Computing . 131

6.3 Final Remarks . 132

A Appendix 134

A.1 Error distribution in the RRNS code space 134

A.2 Extended Dynamic Range via Positional Number System 136

References 139

Curriculum Vitae 163

xi

List of Tables

2.1 Device modulation mechanisms and corresponding device metrics in sili-

con photonics modulators. 26

3.1 Comparison against state-of-the-art electronic and photonic accelerators. . . 65

3.2 Comparison against state-of-the-art photonic accelerators. 66

4.1 Data and data converter precision in RNS-based, LP FXP, and HP FXP

analog cores. 76

4.2 MLPerf (Inference: Datacenters) benchmarks (Reddi et al., 2020). 78

4.3 Validation accuracy results after training/fine-tuning. 78

5.1 Validation accuracy of Mirage and various data formats (Zhang et al., 2022b).112

5.2 Performance, power, and area analysis of MAC units 112

5.3 Mirage versus DNN inference accelerators. 120

xii

List of Figures

1·1 Select AI Index technical performance benchmarks vs. human perfor-

mance, based on data from the 2024 Stanford AI Index Report (Maslej

et al., 2024) . 2

1·2 Training compute of notable AI models over time. The figure is taken from

Epoch AI’s 2023 study (Epoch AI, 2023). 3

1·3 Number of trainable parameters in notable AI models over time. The figure

is taken from Epoch AI’s 2023 study (Epoch AI, 2023). 4

2·1 (a) MLP architecture. (b) CNN architecture. (c) RNN architecture. (d)

Transformer architecture. 13

2·2 (a) MZI and MZI-based matrix-vector operation. (b) MRR and MRR-

based weight bank. 22

2·3 (a) Matrix multiplication between 4× 4 input matrix X and 4× 4 weight

matrix W . (b) OS dataflow. (c) WS dataflow. (d) IS dataflow. 33

xiii

3·1 Diagram showing different components of ADEPT and how operations are

performed. (a) Example GEMM operation in the photo-core. (b) Program-

ming input and weight matrices into the photo-core. The h×h (here h = 3

as an example) photo-core consists of 2 × h(h − 1)/2 = 6 MZIs (for U

and V T) and 3 attenuators (for Σ). (c) Microarchitecture for a single digi-

tal electronic vectorized processing unit. The unit comprises h = 3 digital

lanes, each consisting of arithmetic units to perform non-GEMM opera-

tions. (d) Full system architecture including the host CPU, the DRAM, and

ADEPT—interconnected using a PCI-e interface. As an example, we show

four photo-cores and four vectorized processing units. 42

3·2 (a) Throughput vs. batch size of 128× 128 photo-core (PC) and SA with

three dataflows at 1 GHz clock. (b) Power consumption of the OS SA and

the WS photo-core for different array sizes and clock frequencies. Laser

power is shown with solid color, ADCs/DACs with the white diagonal pat-

tern, and E-to-O/O-to-E conversion with the black diagonal pattern. (c)

Power efficiency of SAs and photo-core for different array sizes and clock

frequencies. 47

3·3 Latency of ADEPT with a 128×128 photo-core operating at 10 GHz clock

with and without pipelining the GEMM and non-GEMM operations. Here

the latency is for one batch of inputs for three networks. The results are

calculated for varying batch sizes. 54

xiv

3·4 Activation SRAM usage for computing on the current batch of inputs along

with data transfer for the next batch of inputs within ADEPT. Both input

and output activations for the current batch must be stored in the activation

SRAM (dark blue) while the input data are transferred for the next batch

(light blue). A 128× 128 photo-core at 10 GHz clock is used with batch

sizes of 58, 88, and 50 for ResNet-50, BERT-large, and RNN-T, respec-

tively to fully use the 100 MB activation SRAM capacity. 56

3·5 Roofline plot showing the effect of optimizations on ADEPT with a single

128× 128 photo-core. The arithmetic intensity is calculated using MAC

operations over activation SRAM reads/writes. 59

3·6 Latency of ADEPT (128×128 photo-core at 10 GHz clock) when execut-

ing the three neural networks with different photo-core counts using data

and tile parallelism. 60

3·7 Average total (static and dynamic) power distribution and area distribution

of ADEPT (128×128, 10 GHz photo-core) and the SA system (128×128,

10×1 GHz array, OS dataflow). 62

3·8 Compilation process of an ML model for ADEPT. 64

4·1 Dataflow for a conventional analog core. 75

4·2 (a) Energy consumption per conversion for DACs and ADCs. (b) Accuracy

degradation in ResNet50 on Imagenet in a conventional analog core. 75

xv

4·3 (a) The distribution of average error observed at the output of a dot product

performed with the RNS-based analog approach (pink) and the LP regular

FXP analog approach (cyan). Error is defined as the distance from the re-

sult calculated in FP32. The experiments are repeated for 10,000 randomly

generated vector pairs with a vector size of h = 128. The center lines of

the boxes represent the median. The boxes extend between the first and the

third quartile of the data, while whiskers extend 1.5× of the inter-quartile

range from the box. (b) Inference accuracy of regular FXP (LP) and RNS-

based cores (See Table 4.1) on MLPerf (Inference: Datacenters) bench-

marks. The accuracy numbers are normalized by the accuracy achieved

in FP32. (c-e) Loss during training for FP32 and the RNS-based approach

with varying moduli bit-width. ResNet-50 (c) is trained from scratch for 90

epochs. BERT-Large (d) and OPT-125M (e) are fine-tuned from pre-trained

models for 2 and 3 epochs, respectively. 77

4·4 RNS-based analog GEMM dataflow. The operation is shown for a moduli

set M = {m1, . . . ,mn}. The n h×h analog MVM units are represented as

generic blocks for n moduli. The dataflow is agnostic to the underlying

analog technology. 79

4·5 Calculated output error probability (perr) versus single residue error prob-

ability (p).a-c perr for one (a), two (b), and infinite (c) error correction

attempts and a varying number of redundant moduli (k). 81

xvi

4·6 (a-f) The plots show ResNet-50 (a-c) and BERT-Large (d-f) inference ac-

curacy under varying p for RRNS with one (a and d), two (b and e), and

infinite (c and f) error correction attempts and a varying number of redun-

dant moduli (k). (g-i) perr caused by shot and thermal noise versus the

output current at the photodetector in an analog photonic accelerator for

RRNS with one (g), two (h), and infinite (i) error correction attempts and

varying k. The horizontal black lines show the cut-off points where larger

perr starts degrading the accuracy for the evaluated DNNs (i.e., ResNet-50

and BERT-Large). 82

4·7 (a-b) Energy consumption of DACs and ADCs per dot product for the

RNS-based and the regular FXP (a) and the RNS and RRNS-based ana-

log approaches (b). (c) Normalized area of ADCs for the FXP, RNS, and

RRNS-based approaches. 85

5·1 Mirage’s RNS-based dataflow for a single tiled-MVM operation as part of

a forward pass. We show a four-moduli case in this figure as an example. . 94

5·2 (a) Simple MZM with phase shifters with length L and applied voltage V .

(b) 3-bit modular multiplication using cascaded phase shifters. (c) Routing

light using MRR switches. (d) 3-bit modular multiplication using MRR

switches. 98

5·3 (a) RNS-MMVMU micro-architecture. (b) Phase detection unit. The top

arms of the two rows detect the amplitude of the incoming signals directly

while the bottom arms apply π/2 radians phase shift and detect the am-

plitude. Phase detection is done by using these two amplitude values. (c)

Main components of Mirage architecture with four RNS-MMVMUs and

three moduli as an example. 102

xvii

5·4 (a) ResNet18 validation accuracy on Imagenet after training from scratch

for 60 epochs and (b) energy per MAC operation (pJ/MAC) for varying

bm and g. This analysis includes energy consumed by lasers and tuning

circuitry, TIAs, DACs and ADCs, FP-BFP, and RNS-BNS conversions.

Here, ResNet18 is shown as an example. We observed similar behavior for

other evaluated DNNs. 107

5·5 (a) Number of MDPUs versus spatial utilization (%). (b) Number of RNS-

MMVM units versus spatial utilization (%). 108

5·6 (a) Latency per step for each layer of AlexNet for Mirage (left) and a 1

GHz digital systolic array (right). (b) Latency per step for different DNNs

and impact of dataflow for Mirage (left) and a 1 GHz digital systolic array

(right). The numbers for all dataflows are normalized to the DF1 results for

all models. 109

5·7 Normalized training runtime, EDP and power comparison of Mirage (eight

16× 32 arrays) against systolic arrays using MAC units with various data

formats. The plots on the left-hand side show the iso-energy results where

the number of MAC units in the systolic arrays is scaled to consume the

same energy per MAC operations using the numbers in Table 5.2. The plots

on the right-hand side show iso-area results where the number of MAC

units in the systolic arrays is scaled to take up the same area as Mirage. As

we do not have the area footprint of the FMAC units, we do not show the

FMAC numbers in the iso-area results. 113

5·8 Peak power consumption and area breakdown for Mirage. The total peak

power consumption is 19.95 W and the total area is 476.6mm2. 115

xviii

List of Abbreviations

ADC Analog-to-Digital Converter
AI Artificial Intelligence
ASIC Application-Specific Integrated Circuit
A-to-D Analog-to-Digital
BFP Block Floating Point
BF16 Brain Floating Point 16-bit
BMM Batched Matrix Multiplication
BNS Block Number System
CiM Compute in Memory
CMOS Complementary Metal-Oxide-Semiconductor
CNN Convolutional Neural Network
CPU Central Processing Unit
CRT Chinese Remainder Theorem
DAC Digital-to-Analog Converter
DAG Directed Acyclic Graph
DNN Deep Neural Network
D2NN Diffractive Neural Networks
DOE Diffractive Optical Element
DPU Digital Processing Unit
DRAM Dynamic RAM
D-to-A Digital-to-Analog
ECRAM Electrochemical Random Access Memory
EDP Energy-Delay Product
EM Electromagnetic
E-to-O Electrical-to-Optical
FC Fully Connected
FeFET Ferroelectric Field-Effect Transistor
FHE Fully Homomorphic Encryption
FoM Figure of Merit
FP Floating Point
FP16 16-bit Floating Point
FP32 32-bit Floating Point

xix

FPGA Field-Programmable Gate Array
FXP Fixed Point
GELU Gaussian Error Linear Unit
GEMM General Matrix Multiplication
Ge-on-Si Germanium-on-Silicon
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
HP High Precision
IC Integrated Circuit
IM2COL Image to Column
INT8 8-bit Integer
IPS Inferences Per Second
IPS/W Inferences Per Second per Watt
IS Input Stationary
LLM Large Language Model
LLVM Low-Level Virtual Machine
LP Low Precision
LSB Least Significant Bit
LSTM Long Short-Term Memory
LUT Look-Up Table
MAC Multiply-Accumulate
MDPU Modular Dot Product Unit
MLP Multi-Layer Perceptron
MMU Modular Multiplication Unit
MMVMU Modular MVM Unit
MOEMS Micro-Opto-Electro-Mechanical Systems
MRR Microring Resonator
MVM Matrix-Vector Multiplication
MZI Mach-Zehnder Interferometer
MZM Mach-Zehnder Modulator
NLP Natural Language Processing
NOEMS Nano-Opto-Electro-Mechanical Systems
NVM Non-Volatile Memory
OP/s Operations per Second
OS Output Stationary
O-to-E Optical-to-Electrical
PCI-e Peripheral Component Interconnect Express
PDK Process Design Kit
PDF Probability Distribution Function
PE Processing Element

xx

PiM Processing in Memory
PNS Positional Number System
QAT Quantization-Aware Training
RAM Random-Access Memory
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
RNS Residue Number System
RRAM Resistive RAM
RRNS Redundant Residue Number System
RTL Register Transfer Level
SA Systolic Array
SAR Successive Approximation Register
SGD Stochastic Gradient Descent
SiN Silicon Nitride
SLM Spatial Light Modulator
SNR Signal-to-Noise Ratio
SOA Semiconductor Optical Amplifier
SOT-MRAM Spin-Orbit Torque Magnetic RAM
SRAM Static RAM
STT-MRAM Spin-Transfer Torque Magnetic RAM
SVD Singular Value Decomposition
TIA Transimpedance Amplifier
TOPS Tera Operations per Second
TPU Tensor Processing Unit
WDM Wavelength-Division Multiplexing
WS Weight Stationary

xxi

1

Chapter 1

Introduction

1.1 Motivation

1.1.1 AI Model Trends

Artificial intelligence (AI) has become pervasive in today’s world, influencing numerous

aspects of daily life and various industries. Deep neural networks (DNNs) are at the heart

of this AI revolution, with a broad spectrum of applications, including language process-

ing (Brown et al., 2020; Team et al., 2023; Touvron et al., 2023; Devlin et al., 2018; Zhang

et al., 2022a), computer vision (He et al., 2016; Redmon et al., 2016), healthcare (Rajpurkar

et al., 2017; Shen et al., 2019), coding (Chen et al., 2021; Feng et al., 2020b; Gupta et al.,

2017), audio processing (Amodei et al., 2016; Van Den Oord et al., 2016), robotics (Levine

et al., 2018; Mnih et al., 2016), and many others. Figure 1·1 illustrates the progress of

AI systems relative to human baselines across nine benchmarks, each corresponding to a

different task. This plot demonstrates that AI capabilities have already surpassed human

performance, especially in visual tasks.

This progress, however, comes with a significant cost. While the progress trajectory

of AI models is influenced by many factors, there is a strikingly consistent correlation

between the amount of compute in AI models and their capabilities, which makes compute

a quantifiable proxy for measuring progress in AI research (Kaplan et al., 2020; Hestness

et al., 2017; Li et al., 2020).

A recent study (Sevilla et al., 2022) explored AI compute trends and divided the history

of AI models into three distinct eras, as illustrated in Figure 1·2:

2

2012 2014 2016 2018 2020 2022
Year

0.2

0.4

0.6

0.8

1.0
P

er
fo

m
an

ce
 re

la
tiv

e
to

th
e

hu
m

an
 b

as
el

in
e

Human baseline

Image classification
Competition-level mathematics
Multitask language understanding
Basic-level reading comprehension
Medium-level reading comprehension
English language understanding
Visual commonsense reasoning
Visual reasoning
Natural language inference

Figure 1·1: Select AI Index technical performance benchmarks vs. human
performance, based on data from the 2024 Stanford AI Index Report (Maslej
et al., 2024)

• The Pre-Deep Learning Era: Before the advent of deep learning, training com-

pute requirements roughly followed Moore’s Law, doubling approximately every 20

months.

• The Deep Learning Era: Beginning around 2010, there has been a dramatic accel-

eration in compute requirements, with a doubling time of roughly 6 months.

• The Large-Scale Era: Starting from 2015, this era is marked by the development of

models that used two-to-three orders of magnitude more compute than those in the

Deep Learning Era. However, the compute growth for these large-scale models has

a relatively slower doubling time of about 10 months.

Although the doubling time in the Large-Scale Era appears relatively slower, it remains

extraordinarily rapid. Figure 1·2 shows the amount of training compute in notable AI

models over time. Since 2010, the amount of training compute for AI models has increased

by a factor of 10 billion, far outpacing Moore’s Law (Sevilla et al., 2022).

The number of parameters is another important metric correlated with AI capabilities,

3

Figure 1·2: Training compute of notable AI models over time. The figure
is taken from Epoch AI’s 2023 study (Epoch AI, 2023).

which greatly impacts the compute and memory requirements in AI systems. Figure 1·3

shows the increase in the number of trainable parameters in notable AI models over time

for the three eras of AI compute. The largest models available today include more than a

trillion trainable parameters.

This increasing trend in compute requirements and model sizes of models places sig-

nificant stress on today’s AI systems, necessitating faster compute cores, higher data band-

widths, and improved interconnect speeds. Supporting these large models also results in

very high power consumption, significantly escalating their environmental footprint. For

instance, Meta’s Llama 2 model with 70 billion parameters is reported to release 291.2

tonnes of carbon during training while consuming 400 MWh of power. This carbon emis-

sion is nearly 291× more than the emissions from a round-trip flight from New York to San

Francisco for one traveler, and roughly 16× more than the annual carbon footprint of an

average American (Touvron et al., 2023). Similarly, GPT-3 is reported to consume 1,287

4

Figure 1·3: Number of trainable parameters in notable AI models over time.
The figure is taken from Epoch AI’s 2023 study (Epoch AI, 2023).

MWh of power and emit 502 tonnes of carbon (Maslej et al., 2024). While the emissions

from individual inference queries may be relatively low, the total impact can surpass that

of training when models are queried thousands or even millions of times daily. Although

the prominent developers of AI models such as OpenAI, Google, Anthropic, and Mistral

do not disclose their carbon footprint, their recent models with over a trillion parameters

are expected to go well beyond the aforementioned numbers (Maslej et al., 2024). Hence,

beyond speed, improvements in energy efficiency are also crucial.

The current trend of escalating compute and energy requirements and model sizes is

unsustainable with existing technology, both in terms of performance and environmental

impact. The massive power consumption and carbon emissions associated with training and

deploying large-scale models underscore the critical need for innovation and advancements

in both hardware and software design. These innovations are crucial to ensure continued

progress in AI, driving advancements in numerous fields such as healthcare, education, and

5

finance.

1.1.2 Technology Scaling and AI Hardware Trends

For decades, processor performance improvements have been guided by Moore’s Law,

which states that the number of transistors in integrated circuits (ICs) doubles approxi-

mately every two years, driven by the continuous reduction in transistor dimensions through

advancements in complementary metal-oxide-semiconductor (CMOS) technology. Along-

side Moore’s Law, Dennard scaling (Bohr, 2007) suggested that as transistors become

smaller, their power consumption decreases proportionally to their area. However, as tran-

sistor sizes reached the nanometer scale, this power scaling decoupled from the device area

due to physical constraints, leading to increased power consumption per unit area (Gargini,

2023). This phenomenon created the so-called power wall, limiting the increase in clock

frequencies and posing a significant challenge to performance scaling. The rising transis-

tor densities given a power budget led to dark silicon (Esmaeilzadeh et al., 2011), where

parts of the IC are powered down to manage heat and power consumption. Techniques

like dynamic voltage and frequency scaling (Le Sueur and Heiser, 2010) can offer partial

mitigation, but the root problem persists at the device level.

Despite the power wall impeding performance scaling, the demand for high-performance

execution of complex workloads continued to grow. In response to the breakdown of Den-

nard scaling, architects increased the number of logical cores in general-purpose processors

and exploited parallelism at various levels. However, the benefits of large core counts are

constrained by memory bottlenecks in a Von Neumann execution model, even when the

workload offers a high degree of parallelism.

To boost performance further, architects have adopted heterogeneous computing frame-

works, offloading critical tasks to hardware accelerators. These specialized co-processors,

tailored for specific applications, outperform general-purpose processors in terms of through-

put and energy efficiency. By bypassing the limitations of the Von Neumann architec-

6

ture, accelerators achieve high levels of parallelism and concurrency, effectively mitigating

memory bottlenecks and enhancing compute density and energy efficiency. Today, mod-

ern AI hardware largely depends on these accelerators, such as graphic processing units

(GPUs) and application-specific integrated circuits (ASICs).

A recent study (Hobbhahn et al., 2023) reports that GPUs have seen an energy efficiency

doubling time of around 2.7 years over the past 15 years when using the 32-bit floating

point (FP32) format. Moreover, adopting more efficient data formats and lower numeric

precision has remarkably enhanced AI workload performance in recent years. For instance,

NVIDIA’s H100 GPU achieves speedups of approximately 7× with tensor-FP32, 15× with

tensor-FP16, and 30× with 8-bit integer (INT8) compared to FP32 (Hobbhahn et al., 2023).

Today, the highest-performing GPU, NVIDIA B200 SXM, has a 2.25e15 operations per

second (OP/s) peak throughput in tensor-FP16 and 4.5e15 OP/s in INT8 (NVIDIA Corpo-

ration, 2024b).

ASICs like Google’s Tensor Processing Unit (TPU), on the other hand, typically rely on

systolic array (SA)-based architectures. SAs involve an array of processing elements (PEs),

each connected to its neighbors. Each PE has a multiply-accumulate (MAC) unit along with

local buffers to store inputs and outputs. Depending on the dataflow, data moves from one

side of the SA to the other as MAC operations are performed. This structure, which has

been used in many AI accelerators (Chen et al., 2016; Chen et al., 2019; Lee et al., 2018;

Jouppi et al., 2017), enables data reuse and maximizes the energy efficiency in general

matrix-matrix multiplication (GEMM) operations. Today, the most recent TPU (vp5) has a

4.59e14 OP/s peak throughput in Brainfloat-16 (BF16) (Google Cloud, 2024).

In recent years, there have been remarkable advancements in GPU and ASIC designs,

maintaining an exponential trend in their performance improvements. However, these gains

are largely due to specialization, the adoption of efficient data formats, and hardware-

software co-design rather than technology scaling. As the benefits of specialization begin

7

to saturate and CMOS technology approaches its physical limits, performance improve-

ments in CMOS-based hardware are expected to plateau. Given the rapid growth of AI

workloads, engineers and researchers must seek alternative solutions to sustain the growth

in AI capabilities.

1.1.3 Integrated Photonics as a Computing Platform for AI

The idea of computing with light is not new and has been explored starting from the

1960s (Reimann and Kosonocky, 1965). Replacing traditional CMOS-based transistors

with optical transistors has been an appealing idea because of the high speed, bandwidth,

and unique parallelism opportunities that light signals inherently offer. As a result, free-

space optical computers have remained a major research interest over many decades (Bell,

1986; Caulfield, 1987; Hsu et al., 1988; Bernstein et al., 2021). However, these optical

computers have not been widely adopted due to challenges associated with optical align-

ment, precision control over the phase and amplitude of the light field, and the limited

component count that could not compete with digital electronics.

The advent of integrated photonics has largely solved the problem of controlling and

stabilizing many photonic components, offering greater compactness for high integration

compared to other photonic computing schemes. One particular flavor of integrated pho-

tonics, silicon photonics, has seen widespread integration in commercial CMOS foundries

alongside CMOS transistors (Giewont et al., 2019). Validated process design kits (PDKs)

developed by various foundries have pushed integrated photonics towards standardization,

ensuring reliable performance and accessibility for designers and users (Ning et al., 2024).

Consequently, many recent works leverage the highly parallel and efficient linear trans-

formations enabled by silicon photonics to develop specialized DNN accelerators. These

accelerators have demonstrated promising results, with orders of magnitude improvements

in speed and energy efficiency compared to their electrical counterparts (Shen et al., 2017;

Shiflett et al., 2021; Bangari et al., 2019; Shiflett et al., 2020; Peng et al., 2020; Wu et al.,

8

2021; Wetzstein et al., 2020; Shastri et al., 2021). Despite these promising results, several

challenges remain in building photonic AI systems with current technology. We categorize

the primary issues under two groups:

1. The need for electronic components in photonic DNN acceleration: The limi-

tations of weak photon-photon nonlinearities and the lack of photonic information

storage present significant challenges in designing practical general-purpose opti-

cal computing systems. The lack of efficient nonlinearity in photonics has led re-

searchers to focus on developing specialized photonic units for GEMM operations,

which dominate DNN workloads. However, electronic circuitry is still necessary for

performing nonlinear operations, control tasks, and data storage. Moreover, each

photonic operation results in some power loss in the optical signal. As the number

of consecutive photonic operations increases, the required input power grows expo-

nentially, fundamentally limiting the number of operations that can be performed

consecutively, even during linear operations. This limitation necessitates the stor-

age of intermediate data, which is not feasible in optical form alone. Consequently,

conversions between digital and analog domains are required, along with the use of

traditional memory units like static random access memory (SRAM) and dynamic

random access memory (DRAM). Frequent digital-to-analog (D-to-A) and analog-

to-digital (A-to-D) conversions, along with electrical-to-optical (E-to-O) and optical-

to-electrical (O-to-E) conversions, combined with electronic arithmetic and memory

operations, can create bottlenecks and significantly degrade the system’s energy effi-

ciency.

2. Limited numeric precision in photonics: In the analog domain, data are encoded

in physical properties such as amplitude or phase, unlike the multiple bits used in the

digital domain. This restricts analog operations to using only fixed-point (FXP) arith-

metic, which offers a much lower dynamic range than floating-point (FP) arithmetic

9

for the same bit-width. Besides the absence of FP arithmetic, analog FXP opera-

tions present unique precision challenges in photonic tensor cores. The achievable

precision in photonic hardware is limited by the signal-to-noise ratio (SNR) during

analog operations and the bit precision of the digital-to-analog converters (DACs) and

analog-to-digital converters (ADCs). Photonics suffers from multiple noise sources

and non-idealities, including process variations, device noise, and environmental fac-

tors. Achieving high SNR is challenging because it requires exponentially increasing

the input power with increasing bit-width to suppress noise. Moreover, the energy

consumption of DACs and ADCs increases exponentially with their bit precision,

making high-precision data converters impractical and limiting the input and output

precision in analog operations. These limitations in numeric precision can cause sig-

nificant accuracy loss in photonic hardware, even in DNN inference, especially in

large state-of-the-art DNNs tackling complex problems.

1.2 Thesis Contribution

The abovementioned challenges in photonic computing have limited its applicability to

only very small DNNs and outdated tasks. While prior research has laid the groundwork

for photonic AI hardware and shown promising results, there is a lack of detailed analysis to

understand the technology’s realistic potential and a clear roadmap for developing a hybrid

electro-photonic accelerator capable of deploying state-of-the-art DNNs. Furthermore, the

limited precision of photonic hardware has often been overlooked, as high precision was

not required for the simple workloads evaluated in earlier studies. However, state-of-the-

art DNNs demand higher precision to maintain accuracy, even for inference tasks. DNN

training, in particular, has remained a distant goal for photonics, with efforts confined to a

few studies focused on simple tasks and small models.

This thesis explores the opportunities and challenges of photonic computing for deep

10

learning acceleration with a pragmatic approach, to offer solutions to the abovementioned

challenges. It is divided into three parts as follows:

1. Architecting a complete electro-photonic system for DNN inference: In this part,

we design and evaluate a full electro-photonic accelerator, ADEPT, which leverages

a photonic computing unit for performing GEMM operations, a vectorized digital

electronic ASIC for performing non-GEMM operations, and SRAM arrays for stor-

ing DNN parameters and activations. In contrast to prior works in photonic DNN

accelerators, we adopt a system-level perspective and show that the gains, while

large, are tempered relative to prior expectations. Our goal is to encourage architects

to explore photonic technology in a more pragmatic way considering the system as

a whole to understand its general applicability in accelerating today’s DNNs. We

discuss the design steps and optimizations to minimize the overhead of electronic

devices. Our evaluation shows that ADEPT can provide, on average, 5.73× higher

throughput per watt compared to the traditional SAs in a full system, and at least

6.8× and 2.5× better throughput per watt, compared to state-of-the-art electronic

and photonic accelerators, respectively.

2. Unlocking high-precision in analog tensor cores: In this study, we target the nu-

meric precision challenge in analog computing and propose a solution based on the

residue number system (RNS). RNS can help compose high-precision operations

from multiple low-precision operations and eliminate the need for high-precision

data converters and information loss. Our study shows that the RNS-based approach

can achieve ≥ 99% of FP32 accuracy in state-of-the-art DNN inference using only

6-bit and training with 7-bit FXP arithmetic. These results imply that using RNS can

reduce the energy consumption of analog accelerators with the same precision by

several orders of magnitude while maintaining the same throughput. In addition, we

present a fault-tolerant dataflow using redundant RNS (RRNS) to protect the compu-

11

tation against noise and errors inherent within analog hardware.

3. High-precision photonic DNN training accelerator design: In this part, we present

a photonic DNN training accelerator, Mirage, based on the RNS-based framework in-

troduced in the second part. Mirage employs a novel micro-architecture to support

the RNS-based dataflow and modular arithmetic in the analog domain. By combining

RNS and photonics, Mirage provides high energy efficiency without compromising

precision and can successfully train state-of-the-art DNNs achieving accuracy com-

parable to FP32 training. Our study shows that on average across several DNNs when

compared to SAs, Mirage achieves more than 23.8× faster training and 32.1× lower

energy-delay product (EDP) in an iso-energy scenario and consumes 42.8× lower

power with comparable or better EDP in an iso-area scenario.

1.3 Organization

The remainder of this thesis is organized as follows. In Chapter 2, we review and pro-

vide a background on DNN basics, photonic devices in photonic tensor cores, RNS, and

related work on photonic DNN acceleration. Chapter 3 presents the design and evaluation

of our electro-photonic accelerator, ADEPT. In Chapter 4, we introduce our RNS-based

framework for analog tensor cores to overcome precision challenges in analog computing.

Chapter 5 presents our photonic DNN training accelerator, Mirage, that supports the RNS-

based framework introduced in Chapter 4. In Chapter 6, we summarize the completed work

and discuss several future directions.

12

Chapter 2

Background and Related Work

In this chapter, we provide background on DNNs, silicon photonic devices that are used to

perform DNN operations, and related work on photonic DNN accelerators.

2.1 Deep Neural Networks

This section provides information about DNN basics, different types of DNNs, different

layers in DNNs, DNN inference and training, and a summary of different data formats

used for executing DNNs.

2.1.1 DNN Types

Multi-Layer Perceptrons (MLPs)

MLPs are the simplest form of DNNs. They include an input layer, one or more hidden

layers, and an output layer, arranged in a feedforward fashion. Each neuron in a layer is

connected to every neuron in the subsequent layer without any cycles or loops in the net-

work, making these networks fully connected (FC). Figure 2·1(a) illustrates an example of

MLP architecture with a single hidden layer. MLPs consist of FC layers and an activation

function to introduce nonlinearity such as rectified linear unit (ReLU), Gaussian error lin-

ear unit (GELU), sigmoid, etc. MLPs are typically used for relatively naive classification

problems or as part of a larger DNN architecture.

13

...

xt-1 xt xt+1

ht-1 ht ht+1

yt-1 yt yt+1

y

x

unfold

...

h

Add & Norm

Attention

Add & Norm

Feed Forward

Add & Norm

Feed Forward

Input
Embedding

Output
Embedding

+ +

Linear

Softmax

Inputs Outputs

Output
probabilities

Positional
Encoding

Positional
Encoding

Add & Norm

Attention

Add & Norm

Attention

MatMul

Scale

Softmax

MatMul

Q K V

a

b

c d

Inputs

Outputs

Hidden
Layer

Input image
Convolution Convolution Pooling Linear

Attention

Figure 2·1: (a) MLP architecture. (b) CNN architecture. (c) RNN architec-
ture. (d) Transformer architecture.

Convolutional Neural Networks (CNNs)

CNNs are a class of DNNs specifically designed for processing structured grid data, such

as images. They mainly involve convolutional, pooling, and FC layers. CNNs excel in

tasks such as image and video recognition, object detection, and segmentation due to

their ability to capture the local dependencies in grid-like data structures. Figure 2·1(b)

illustrates an example of CNN architecture. Some well-known CNN examples include

AlexNet (Krizhevsky et al., 2012), VGG (Simonyan and Zisserman, 2014), and ResNet (He

et al., 2016).

Recurrent Neural Networks (RNNs)

RNNs are a type of DNNs designed for sequential data processing. Unlike feed-forward

neural networks, RNNs have connections that form directed cycles, allowing them to main-

tain a hidden state that captures information about previous inputs, as shown in Figure 2·1(c).

This makes RNNs particularly effective for tasks where context and order are important,

such as time series prediction, natural language processing (NLP), and speech recognition.

14

Building on traditional RNNs, Long Short-Term Memory (LSTM) networks and Gated

Recurrent Units (GRUs), which include gating mechanisms to regulate the flow of infor-

mation, were developed to cope with issues like vanishing and exploding gradients and be

able to process longer sequential data.

Transformers

Transformers are a revolutionary type of DNN architecture that was introduced by Vaswani

et al. in 2017 (Vaswani et al., 2017). The key component of transformers is the self-

attention mechanism, which enables a better understanding of context and relationships

within the data and effectively captures long-range dependencies. Transformers are often

used in machine translation, text generation, and summarization tasks. Some influential

examples include BERT (Devlin et al., 2018) and GPT (Brown et al., 2020), which have

set new benchmarks across a wide range of NLP tasks.

2.1.2 Layer Types in DNNs

FC (Dense) Layer

In an FC layer, the input vector to the layer x is transformed through a weight matrix W and

a bias vector b to produce the output vector O, i.e., O = Wx+b. This operation is typically

followed by a nonlinear activation function.

Convolution Layer

Convolution involves a set of learnable filters (also known as kernels) that slide over the

input data to produce feature maps. Given an input image I of dimensions IH × IW ×Cin,

where IH is the height, IW is the width, and Cin is the number of channels (e.g., Cin = 3

for RGB images), a kernel K of dimensions KH ×KW ×Cin, and a stride s, the convolution

15

operation is performed as:

O[i][j] =
KH−1

∑
m=0

KW−1

∑
n=0

C−1

∑
c=0

(I[si+m][s j+n][c] ·K[m][n][c]), (2.1)

where O[i][j] is the output feature map at position (i, j). The input images can also be

padded by an amount p. For Cout kernels, Eq. (2.1) is repeated for each kernel to produce

an output with dimensions OH ×OW ×Cout, where OH = ⌊(IH +2p−KH)/s⌋+1 and OW =

⌊(IW +2p−KW)/s⌋+1.

Convolution operation consists of dot products that can easily be rearranged in a GEMM

form. This requires pre and post-processing of input and weight matrices. A commonly

used pre and post-processing method is image-to-column (im2col) (Anderson et al., 2017).

This method transforms the input image into a matrix where each column is a flattened

patch of the image that the convolution filter will slide over (OH · OW patches per im-

age, one for each output element). Similarly, all kernels are flattened to be multiplied

with the input patches. With the im2col technique, convolution operation becomes a

GEMM operation between two 2-dimensional matrices with dimensions KHKWCin ×Cout

and OHOW ×KHKWCin.

Recurrent Layer

Here, we will cover the LSTM layer as it is widely adopted in various architectures (He

et al., 2019; Wu et al., 2016). Other recurrent layer types, i.e., RNNs and GRUs have a

similar structure with only show slight differences. An LSTM layer consists of three gates:

the input gate controlling how much of the new input should influence the hidden state,

the forget gate deciding how much of the previous hidden state should be retained, and the

output gate determining how much of the hidden state should be outputted. The equations

for an LSTM cell are stated below:

16

it = σ(Wiixt +bii +Whiht−1 +bhi), (2.2)

ft = σ(Wi f xt +bi f +Wh f ht−1 +bh f), (2.3)

gt = tanh(Wigxt +big +Whght−1 +bhg), (2.4)

ot = σ(Wioxt +bio +Whoht−1 +bho), (2.5)

ct = ft ⊙ ct−1 + it ⊙gt , (2.6)

ht = ot ⊙ tanh(ct), (2.7)

where it , ft , gt , ot are the input, forget, cell, and output gates, ht is the hidden state, ct is

the cell state, and xt is the input at time t, σ is the sigmoid function, and ⊙ is the Hadamard

product. The learnable weights (to be multiplied with input and hidden states) are denoted

as Wi = (Wii|Wi f |Wig|Wio) and Wh = (Whi|Wh f |Whg|Who), and the biases are denoted as bi =

(bii|bi f |big|bio) and bh = (bhi|bh f |bhg|bho). The matrix multiplication operations shown in

Eqs. (2.2)-(2.5) can be performed at once as Wi×x+bi (for the whole input sequence) and

Wh × ht + bh for parallelization. The output for each gate (input, forget, cell, and output)

can then be used separately.

Attention Layer

The attention layer is a crucial component in transformers. In an attention layer (see Fig-

ure 2·1(d)), three main vectors are computed from the input: the query (Q), the key (K),

and the value (V). The attention mechanism computes a weighted sum of the values (V),

where the weights are determined by the similarity between the query (Q) and the key (K).

Mathematically, this mechanism can be described as follows:

O = softmax(Q×KT)×V, (2.8)

17

where O is the output. This process can be extended to multi-head attention, where multiple

sets of queries, keys, and values are used to allow the model to jointly attend to information

from multiple representation subspaces.

It is important to note that Q, K, and V , are all derived from the input sequence through

learned linear transformations and are computed at runtime, i.e., they are not trained and

fixed variables. This makes the GEMM operations in this layer different than the other

layers described before (e.g., FC, convolution, and recurrent) where the equation is in the

form of O =W ·X and W is learnable and fixed during inference.

Pooling Layer

Pooling layers are mostly used in CNNs and perform downsampling operations to reduce

the spatial dimensions of the input feature maps while retaining important information.

This dimensionality reduction helps reduce the computational load and mitigate overfit-

ting. There are different types of pooling operations such as max pooling where a defined

window is reduced to its maximum element and average pooling where a defined window

is reduced to the average of its elements.

Normalization Layer

Normalization is used to recenter the distribution of activation values by mapping all values

of a feature to be in a particular range. This helps overcome the challenges imposed by

exploding activations and fluctuating distributions at the layer’s input. There are two main

types of normalization: batch normalization where the activations are normalized across

the batch, separately for each feature, and layer normalization where the activations are

normalized across the feature, separately for each sample. Batch normalization is more

common in MLPs and CNNs and is typically fused with the previous FC or convolution

layer to reduce the number of operations, whereas layer normalization is frequently used in

RNNs and transformers.

18

2.1.3 DNN Inference and Training

A DNN consists of a sequence of L layers. During inference, where the DNN is previously

trained and its parameters are fixed, only a forward pass is performed. Generically, the

input X to (ℓ+1)-th layer of a DNN during the forward pass is the output generated by the

previous ℓ-th layer:

X (ℓ+1) = f (ℓ)
(
W (ℓ)X (ℓ)

)
, (2.9)

where O(ℓ) = W (ℓ)X (ℓ) is a GEMM operation, W (ℓ) is the weight matrix and f (ℓ)(·) is the

nonlinear function of the (ℓ)-th layer.

DNN training requires both forward and backward passes as well as weight updates.

The forward pass in the training is performed the same way as in Eq. (2.9). After the

forward pass, a loss value L is calculated using the output collected in the forward pass and

the ground truth. The gradients of the activations and DNN parameters with respect to L

for each layer are calculated by performing a backward pass after each forward pass:

∂L
∂X (ℓ)

=W (ℓ)T ∂L
∂O(ℓ)

, (2.10)

∂L
∂W (ℓ)

=
∂L

∂O(ℓ)
X (ℓ)T

. (2.11)

Using these gradients ∂L
∂W (ℓ) , i.e., ∆W (ℓ), the DNN parameters are updated in each iteration

i as:

W (ℓ)
i+1 =W (ℓ)

i −η∆W (ℓ)
i , (2.12)

using a step size η for the stochastic gradient descent (SGD) optimization algorithm. Es-

sentially, for each layer, one GEMM operation is performed during the forward pass and

two GEMM operations are performed during the backward pass.

19

2.1.4 Data Formats for DNN Execution

The efforts to optimize DNN training or inference mainly revolve around improving the

efficiency of MAC operations and matrix multiplications. To accelerate MAC operations

while maintaining high accuracy, prior works have proposed various data formats based on

integer/FXP and FP arithmetic. In this section, we provide a summary of these different

formats.

Integer/FXP Format

Both integer and FXP numbers are represented with a fixed number of bits allocated for

integer (and fractional) parts of a number. Integer arithmetic specifically deals with whole

numbers, while FXP arithmetic allows for fractional values. In these representations, the

gap between adjacent numbers is always equal to the same value.

For example, 8-bit integer arithmetic can only represent numbers between [0,28 − 1],

which can also be mapped around zero as [−(27 −1),27 −1] to represent signed integers.

Both formats are more compute-efficient compared to FP arithmetic with the same bit-

width. Therefore, scalar quantization and integer/FXP arithmetic have been extensively

explored for DNN inference and training (Courbariaux et al., 2014; Banner et al., 2018;

Hubara et al., 2017; Zhou et al., 2016; Gupta et al., 2015; Jacob et al., 2018). While being

more hardware-friendly, the dynamic range that FXP arithmetic can provide is much more

limited compared to FP arithmetic for the same bit-width. This limited range can lead to

accuracy degradation, especially in large, state-of-the-art DNNs handling complex tasks.

In particular, training requires a wider dynamic range, which typically necessitates the use

of FP arithmetic.

20

FP Format

FP arithmetic represents numbers as a sign bit, mantissa bits, and exponent bits. For ex-

ample, In the 32-bit IEEE format, the first bit is allocated as the sign bit (S), the next 8 bits

are allocated as the exponent field (E), biased by 127 to represent negative exponents, and

the last 23 bits are the mantissa bits (M) of the normalized number. This representation

is reconstructed as 1.M ×2E−127. Due to the exponential field, the gaps between adjacent

numbers are not equal, with large gaps between large numbers and small gaps between

small numbers. This representation offers a wider range of values and higher precision

compared to FXP and integer arithmetic with the same bit-width, however, FP arithmetic is

slower and more costly. In addition to FP32 and FP16, which are very commonly used data

types, especially for training, special FP formats have been proposed to improve hardware

performance. Examples include BFLOAT16 (Wang and Kanwar, 2019), HFP8 (Sun et al.,

2019), and TensorFloat (Stosic and Micikevicius, 2021).

Block FP (BFP) Format

BFP format provides a middle ground between FXP and FP formats. BFP format splits

tensors into groups and assigns an exponent to each group that is shared by the elements

within the group. For each group, the largest exponent among the group elements is cho-

sen to be the shared exponent (e⃗v). Given an e⃗v for a group v⃗ with a group size g, i.e.,

e⃗v = max(e⃗v[i]) ∀i ∈ {1, ..., g}, the mantissae of the group elements are shifted right by the

difference between the shared exponent and their original exponent, i.e., mv⃗[i] = mv⃗[i] >>

(e⃗v − e⃗v[i]), where v⃗[i] is the ith element of v⃗. The least-significant bits (LSBs) of the man-

tissae are then truncated depending on the number of mantissa bits.

This representation allows integer operations between groups using only sign and man-

tissa bits while preserving the dynamic range through a shared exponent. For example,

when element-wise multiplying the elements of two groups, v⃗1 and v⃗2, the multiplications

21

are performed using mv⃗1 and mv⃗2 as signed integers. Unlike the FP arithmetic, the exponent

of g output elements is also shared and is simply obtained by a single add operation, i.e.,

e⃗vout = e⃗v1 + e⃗v2 .

While this format is more efficient than FP arithmetic, thanks to the exponent shared by

a group of elements, a higher dynamic range than FXP arithmetic can be preserved during

operations. Prior works leveraged the BFP format for DNN inference (Song et al., 2018;

Basumallik et al., 2022; Darvish Rouhani et al., 2020) and training (Drumond et al., 2018;

Zhang et al., 2022b) as it is less costly than the FP formats and achieves better accuracy

than the FXP formats with the same bit-width.

2.2 Silicon Photonics Devices

In this section, we cover the basics of key devices in silicon photonics and ways to build

photonic tensor cores.

2.2.1 Mach Zehnder Interferometers (MZIs)

An MZI is a configurable photonic device that controls the interference of two light beams

by adjusting the relative phase shift between the beams. A simple MZI consists of two

directional couplers (DCs) and a differential phase-shift in between (see Figure 2·2(a)).

U(2) =
[

sinφ cosφ

cosφ −sinφ

]
, (2.13)

where φ is the phase difference between the two internal arms of the MZI. A larger rank-

N unitary matrix can be achieved by composing these 2 × 2 structures in a mesh form

using either a rectangular (Clements et al., 2016) or triangular (Reck et al., 1994) pattern.

The rectangular pattern proposed by (Clements et al., 2016) is more widely adopted as it

outperforms the triangular pattern due to its symmetry and reduced optical depth.

Previous works based on MZIs (Shen et al., 2017; Ramey, 2020) are mainly based on

22

Directional
Coupler

Phase shifters

Ø

-Ø
Waveguides

x1

x2

y1

y2

VT Ʃ U

x1

x2

y1

y2

Input Through

AddDrop

w1 w2 w3 w4λ1λ2λ3λ4 λ1λ2λ3λ4

Input
signals

Output
signals

MRR Weight bank

W = VTƩU

In
pu

t s
ig

na
ls

O
ut

pu
t s

ig
na

ls

a b

Figure 2·2: (a) MZI and MZI-based matrix-vector operation. (b) MRR and
MRR-based weight bank.

the idea that any real-valued matrix can be decomposed into unitary and diagonal matri-

ces by using singular value decomposition (SVD). A universal linear network can then be

composed of two universal unitary circuits and an additional column of attenuators (an MZI

with a single input and output) (Miller, 2013). By tuning the phase values of MZIs in this

mesh structure, any real-valued matrix can be programmed into the array. A full matrix-

vector multiplication (MVM) operation can then be performed by passing modulated input

signals through the programmed MZI array.

An MVM between a matrix M and a vector vin is achieved by (1) programming the

matrix M in the array of MZIs; (2) encoding the vector vin in the amplitude and phase

(0 or π for sign) of the optical signals entering the array; and (3) obtaining the resulting

vector vout = M · vin at the output of the array. When the vector vin is inserted at GHz

rate, a 100× 100 array enables us to perform linear operations at 10 Tera Operations per

Second (TOPS). Similarly, a full GEMM operation between two matrices can be achieved

by encoding one matrix in the MZI array and by sending the other matrix through the array

as modulated optical signals—one vector at a time.

23

2.2.2 Microring Resonators (MRRs)

MRRs are widely employed devices in photonic tensor cores because of their compactness

and wavelength-dependent transmission characteristics allowing wavelength division mul-

tiplexing (WDM). An add-drop MRR, illustrated in Figure 2·2(b), has four optical ports

where the microring is placed between two waveguides. The transfer characteristics (Ning

et al., 2024) for the drop and through ports can be mathematically represented by the fol-

lowing equations:

Tthrough =

∣∣∣∣ Et

Ein

∣∣∣∣2 = t2
1 + t2

2 α2
rt −2t1t2αrt cosφrt

1+ t2
1 t2

2 α2
rt −2t1t2αrt cosφrt

(2.14)

Tdrop =

∣∣∣∣ Ed

Ein

∣∣∣∣2 = κ2
1κ2

2αrt

1+ t2
1 t2

2 α2
rt −2t1t2αrt cosφrt

(2.15)

Here, κ and t represent the field coupling factor and transmission factor, respectively.

The parameters αrt = exp(−α ·2πR) and φrt = β ·2πR represent the round-trip field attenu-

ation factor and phase, where α and β are the real and imaginary parts of the complex trans-

mission coefficients, respectively. An all-pass MRR is a special case of an add-drop MRR,

without a drop bus waveguide and with t2 = 1 and κ2 = 0. The phase at the through/drop

port can be derived from the Eqs. (2.14) and (2.15).

Unlike MZIs, MRRs have a narrow bandwidth and are designed to have a resonant

wavelength. In simple terms, if the wavelength of the signal on a waveguide that is next

to an MRR matches the resonant wavelength of the MRR, the signal gets coupled into

the MRR, otherwise, it keeps propagating down the waveguide. Depending on how close

the two wavelengths (optical signal’s and MRR’s) are, the transmission coefficients, and

therefore, the amount of signal present in the four ports shown in Figure 2·2(b) changes.

The transmission coefficients can be adjusted by applying an electrical voltage to an MRR,

shifting its resonant wavelength by a desired amount.

24

The narrow bandwidth of MRRs makes them effective tunable filters. This property

is leveraged to build WDM-based structures, such as weight banks (Tait et al., 2016; Tait

et al., 2017). A weight bank consists of a series of cascaded MRRs, each tuned to a different

wavelength, as shown in Figure 2·2(b)(bottom). When a multi-color input, containing light

signals matching the resonant wavelengths of the MRRs, passes through the weight bank,

each component of the input signal is weighted by the corresponding MRR. Using this

design, a full dot product can be performed.

2.2.3 Efficiency and Scalability of Photonic Devices

The scalability and efficiency of a photonic GEMM core are influenced by factors such as

the type of optical devices used, the required bit precision, the operating frequency, and the

presence of noise sources, leading to distinct tradeoffs and limitations for each design. In

this section, we offer a brief comparison of two commonly used photonic devices, MZIs

and MRRs, to help clarify some of the design choices discussed in later sections.

As the input signal passes through each photonic device, it experiences power loss due

to the device’s insertion and propagation losses. Consequently, increasing the number of

optical devices along the optical path necessitates a higher input power to maintain signal

integrity at the output. Typically, optical losses are greater for MZIs compared to MRRs.

MRRs are also smaller in size (with a radius dimension of ∼10 µm) than MZIs (with a

dimension of ∼100 µm). When these metrics are considered, MRR-based designs can

provide superior power and area efficiency (Al-Qadasi et al., 2022).

However, the extinction ratio (ER)—a measure of how precisely light signals can be

modulated by the photonic device—is constrained by how closely critical coupling can be

achieved, which depends on the thermal stability of MRRs (Bogaerts et al., 2012). Recent

demonstrations of MRRs can achieve an ER of < 25 dB (Shen, Yun et al., 2017). This

limited ER of MRRs can pose challenges in achieving the adequate precision required

by DNN models. In contrast, MZI implementations demonstrated extremely high ER of

25

> 60 dB (Wilkes et al., 2016).

The ER in MRRs can be improved by employing stabilization circuits, which have

been successfully demonstrated in electro-photonic transceivers for communication in pre-

vious work (Padmaraju and Bergman, 2014; Thonnart et al., 2018; Sun et al., 2015). Un-

fortunately, these demonstrations have been limited to non-return-to-zero (NRZ) (Ramon

et al., 2018) or pulse amplitude modulation (PAM)-4 (Sun et al., 2018) keyings, respec-

tively. When higher precision is required, such as 8-bit, the power and area overhead of the

stabilization circuitry will increase compared to what has been previously demonstrated.

Recent studies also indicate that the ER of MRRs can be enhanced by cascading multi-

ple MRRs (Cheng et al., 2020). Challenges such as thermal crosstalk can be mitigated

with improved tuning efficiency by methods including placing air trenches (Dong et al.,

2010), simultaneously controlling the actuators (Milanizadeh et al., 2019), and using pho-

toconductive heaters (Jayatilleka et al., 2019). These developments represent significant

progress toward the realization of practical MRR-based photonic tensor cores.

2.2.4 Device Modulation Mechanisms in Silicon Photonics

n silicon photonics, efficient reprogrammability is crucial for devices like MZIs and MRRs,

which serve as the fundamental building blocks of computing units. Modulation in these

devices can be achieved through various mechanisms, each presenting different trade-

offs among key device metrics, such as modulation bandwidth, optical loss, and device

size—factors that significantly influence the scalability of the design. These modula-

tion mechanisms can be broadly categorized into three groups: thermo-optic, plasma-

dispersion-based, and nano/micro-opto-electro-mechanical systems (N/MOEMS)-based de-

vices, as outlined in Table 2.1. Thermo-optic devices are widely utilized in silicon photon-

ics because of their simple fabrication process and high modulation efficiency; however,

their modulation speed is generally limited to a few kHz (Harris et al., 2014; Watts et al.,

2013). In addition, the heaters used for modulation in thermo-optic devices dissipate signif-

26

Table 2.1: Device modulation mechanisms and corresponding device met-
rics in silicon photonics modulators.

Mod. Mechanism Optical loss VπL Mod. Bandwidth
Thermo-optic Low Low Low

Plasma dispersion High High High
N/MOEMS Low Low Moderate

icant power and can easily lead to thermal crosstalk. For high-speed modulation in silicon

photonics, the most commonly used actuation mechanisms rely on the plasma dispersion

effect, which controls the refractive index by manipulating the free carrier density through

carrier depletion (Sun et al., 2018), accumulation (Fujikata et al., 2016), or injection (Patel

et al., 2014). While these modulators can easily achieve bandwidths in the tens of GHz, they

are typically lossy and require longer device lengths. Recently, N/MOEMS-based devices

have emerged as a viable alternative to the other two mechanisms. These devices (Bagh-

dadi et al., 2021; Ramey, 2020; Feng et al., 2020a) offer moderate modulation frequencies

(up to a few hundred MHz) and low optical loss, with negligible static power consumption.

When designing a photonic tensor core, it is essential to carefully evaluate these meth-

ods and consider the tradeoffs between speed, energy, and area to achieve a practical and

efficient design.

2.2.5 Noise and Errors in Photonics

Photonic tensor cores are typically limited by thermal and shot noise (Garg et al., 2023).

Shot noise arises from the statistical fluctuations in the number of photons or electrons. It

can be approximated by a Gaussian distribution as

IS = N (0, 2qeID∆ f) , (2.16)

where qe is the elementary charge, ID is the photodetector current, and ∆ f is the bandwidth.

Thermal noise originates from the resistor in the trans-impedance amplifier (TIA) circuitry

27

and can be modeled as

IT = N
(

0,
4kBT

R
∆ f
)
, (2.17)

where kB is the Boltzman constant, T is the temperature, and R is the feedback resistor of

the TIA.

Both shot and thermal noise are additive to the output, i.e., Σ jx jw j +N (0,1)σnoise for

a dot product (Garg et al., 2023). In a photonic core, the output is captured as an analog

current, Iout. In the presence of noise, to achieve a desired bit precision b, one should

be able to reach 2b separable levels when reading Iout, i.e., SNR ≥ 2b. This leads to an

exponential increase in power consumption as bit precision rises. Additionally, higher

noise levels necessitate greater input power to maintain the same SNR, i.e., the same bit

precision, during analog operations.

In addition to noise, photonic devices are also affected by process variations and fab-

rication errors. These issues can lead to biases in phase shifters and drifts in the resonant

wavelength of MRRs, resulting in errors during operations. Previous works have proposed

various solutions, including careful selection of parameters during fabrication (Sunny et al.,

2021; Mirza et al., 2022), novel device modifications (Song et al., 2022), and error correc-

tion methods (Bandyopadhyay et al., 2021; Hamerly et al., 2021b) for MRR- and MZI-

based designs to mitigate or calibrate away these errors.

The achievable numerical precision of the output vector vout is limited by how well

the input vector vin and the weight matrix W can be encoded. This output precision can

be quantified by adding the errors in quadrature, i.e., ∆v2
out = ∆v2

in +∆W 2. The encoding

error of the input vector ∆vin ≤ 2−bin can be quantified by the bit precision of the DACs,

bin. For the output vector to be captured by ADCs with a bit precision of bout, ∆vout must

be ≤ 2−bout for the error to be dominated by the ADC precision. ∆W can be calculated

by considering the encoding error of the weight matrix (≤ 2−bin), and all the perturbations

caused by the imperfections in photonic devices during operations. By increasing the bit

28

precision of DACs, we can reduce the encoding error, and in turn, ∆vout to achieve a higher

output precision.

2.2.6 Nonlinear Operations

Nonlinear operations such as nonlinear activation functions or conditional if-else state-

ments in the optical domain require the use of nonlinear optical media (Jackson, 1975). A

nonlinear optical activation function can be achieved by using laser-cooled atoms, where

higher intensity light is absorbed more (Zuo et al., 2019). Saturable absorbers, in which

the amount of light absorbed decreases with increasing light intensity, have also been pro-

posed as optical nonlinear activations (Shen et al., 2017; Bao et al., 2011). However, the

practical implementation of these nonlinear optical activations remains challenging, partic-

ularly because (1) they have not yet been miniaturized, and (2) repeated use of the nonlinear

activation function rapidly degrades the signal.

Amplification-based nonlinear functions using semiconductor optical amplifiers (SOAs)

in III-V materials can help counteract the signal loss described above (Roelkens et al.,

2007). In principle, a photonic tensor core can be built in the III-V platform itself (Shi

et al., 2020), but it is still preferable to use silicon photonics as it can be monolithically

integrated with the CMOS transistors (Giewont et al., 2019) needed for controlling the

photonic devices. Packaging the III-V module with a silicon photonics module presents

a significant challenge to its feasibility. Even if a practical packaging solution were avail-

able, the power required to sustain the optical signal throughout the entire inference process

would increase exponentially with the number of neural network layers. Consequently, we

conclude that optical nonlinearities are impractical at this time, and have chosen to design

a system where these nonlinearities are handled electronically.

29

2.3 The Residue Number System

RNS, which will be used in the later chapters, is an alternative numeral system to the

traditional binary number system (BNS). This section provides a background on the RNS

and RRNS.

2.3.1 RNS Basics

The RNS represents an integer as a set of smaller integers, referred to as residues, which

are derived by applying a modulo operation to the integer using a selected set of n co-

prime moduli. As an example, consider an integer X . In RNS, X is represented with n

residues x={x1, ...,xn} for a set of n moduli M ={m1, ...,mn} where xi=|X |mi≡X mod mi

for i∈{1, ...,n}. The integer X can be uniquely reconstructed from its residues and the

corresponding moduli using the Chinese Remainder Theorem (CRT):

X =
n

∑
i=1

(xiMiTi)M, (2.18)

if all the moduli are co-prime and X ∈ [0,M) where M=∏i mi. Here, Mi=M/mi and Ti is

the multiplicative inverse of Mi (i.e., |MiTi|mi≡1).

The RNS is closed under both addition and multiplication. This allows GEMM opera-

tions in DNNs to be performed within the RNS space, provided that the output of the dot

products remains within the RNS range (i.e., [0,M)). This [0,M) range can be shifted to be

symmetric around zero, i.e., [−ψ,ψ], where ψ=⌊(M−1)/2⌋, to represent negative values.

2.3.2 Forward and Reverse Conversion

To perform operations in the RNS space, the operands must first be converted to the RNS

domain. Likewise, after completing operations in the RNS space, the output needs to be

converted back to the BNS. The forward conversion from BNS to RNS involves a mod-

ulo operation with the selected moduli. The reverse conversion from RNS to BNS can

30

be accomplished using several methods, including the CRT in Eq. (2.18) (Mohan, 2002).

However, several studies have demonstrated that traditional conversion methods, such as

CRT, present performance limitations for high dynamic ranges when arbitrary moduli sets

are used (Wang et al., 2002; Mohan, 2007). When designing a high-speed, low-energy

system, these conversions can quickly become a bottleneck, particularly as the dynamic

range of operation increases. To address this, alternative designs utilize look-up tables

(LUTs) (Lamb and DeBrunner, 1995), base-extension (Shenoy and Kumaresan, 1989; Gre-

gory and Matula, 1975), mixed-radix conversion (Yassine and Moore, 1991), and special

moduli sets (Gholami et al., 2009; Ahmadifar and Jaberipur, 2015; Wang et al., 2000; Mo-

han, 2007; Wang et al., 2002; Hiasat, 2019). In particular, using a moduli set in the form of

powers of two, e.g., {2k−1, 2k, 2k+1} where k is a positive integer, significantly reduces

the complexity of the modulo operations as they can be performed as simple shift oper-

ations. Numerous variations of this method have been explored and have been shown to

significantly reduce the hardware overhead associated with these forward and reverse con-

versions (Gholami et al., 2009; Ahmadifar and Jaberipur, 2015; Wang et al., 2000; Mohan,

2007; Wang et al., 2002; Hiasat, 2019).

2.3.3 Redundant RNS

In the case of RNS, even minor errors in the residues can lead to significant errors in

the corresponding integer they represent, as these errors are amplified during the reverse

conversion. The RRNS (James and Pe, 2015; Yang and Hanzo, 2001a; Yang and Hanzo,

2001b) can detect and correct errors—making the RNS-based analog core fault tolerant.

RRNS uses a total of n+k moduli: n non-redundant (as in RNS) and k redundant. In RRNS,

the same RNS operations are applied to both redundant and non-redundant residues. Once

the output residues are obtained, error detection is conducted using majority logic decoding,

wherein we divide the total n+k output residues into
(n+k

n

)
groups with n residues per group

and compare the results obtained from each group. An RRNS(n+ k,n) code can detect up

31

to k errors and can correct up to ⌊ k
2⌋ errors.

2.4 Hardware Solutions for DNN Acceleration

This section provides an overview of recent advancements in hardware platforms for DNNs,

highlighting their advantages, disadvantages, and notable examples.

2.4.1 CMOS-based Platforms

A variety of CMOS-based solutions have been developed to support the growing com-

pute requirements of AI. These solutions include general-purpose central processing units

(CPUs) (Intel Corporation, 2021; Intel Corporation, 2023), GPUs (NVIDIA Corporation,

2024b; Choquette et al., 2021; Choquette, 2023), field-programmable gate arrays (FP-

GAs) (Farabet et al., 2009; Gschwend, 2020; Qiu et al., 2016; Farabet et al., 2011a; Huimin

Li et al., 2016; Sankaradas et al., 2009), and specialized ASICs (Jouppi et al., 2017; Chen

et al., 2014b; Farabet et al., 2011b; Chen et al., 2016; Chen et al., 2019; Chen et al., 2014a;

Du et al., 2015), each with their unique capabilities and challenges, making them suitable

for different aspects of DNN workloads. While these solutions provide significant architec-

tural and performance benefits for DNN execution, they are based on CMOS transistors—

devices that no longer scale in area or energy consumption according to Moore’s Law and

Dennard Scaling (Theis and Wong, 2017).

CPUs are general-purpose platforms traditionally used for a wide range of computing

tasks. Recent advancements in CPU architectures have focused on improving parallelism

(e.g., vector operations), increasing core counts, and incorporating specialized instructions

to enhance DNN performance (Intel Corporation, 2021; Intel Corporation, 2023). While

being flexible and compatible with a broad array of software ecosystems and programming

frameworks, they generally exhibit slower performance in executing DNN tasks compared

to more specialized hardware and are less power-efficient due to their general-purpose de-

32

sign.

GPUs (NVIDIA Corporation, 2024b; Scherer et al., 2010; Choquette, 2023; Choquette

et al., 2021) have emerged as a cornerstone for DNN training and inference due to their

massively parallel processing capabilities. GPUs can execute thousands of operations si-

multaneously, significantly speeding up DNN tasks, and their high memory bandwidth,

which enhances data transfer rates and computational throughput. This performance has

been further supported with software packages and libraries such as NVIDIA’s CUDA

toolkit (NVIDIA Corporation, 2024a) that are optimized for tensor operations. However,

high-performance GPUs can consume substantial power, posing challenges to energy effi-

ciency, and their high cost can make them less accessible for smaller-scale applications.

FPGAs offer a customizable hardware platform that can be tailored to specific DNN

architectures, allowing them to be programmed to meet the specific needs of different DNN

models. They are often suitable for low-power systems due to their high power efficiency.

However, their performance typically does not match GPUs and ASICs. Moreover, pro-

gramming FPGAs requires specialized knowledge and tools, which can increase develop-

ment time and complexity.

ASICs are custom-designed chips optimized for specific applications, including DNNs.

Because ASICs are tailored specifically for DNN tasks, they can incorporate highly opti-

mized circuits that perform these tasks more quickly and with lower power consumption

compared to other types of hardware. The primary drawback is their lack of flexibility. Un-

like FPGAs, ASICs are hardwired for specific functions. Any changes in DNN algorithms

or new requirements necessitate redesigning and manufacturing new ASICs, which can be

both time-consuming and costly.

SAs are highly efficient structures, designed to accelerate parallel computation tasks,

particularly in GEMM operations. SAs are commonly used in many FPGAs and ASICs

developed in academia (Chen et al., 2016; Chen et al., 2019) and industry (Google Cloud,

33

x12 x13 x14x11

x22 x23 x24x21

x32 x33 x34x31

x42 x43 x44x41

w12 w13 w14w11

w22 w23 w24w21

w32 w33 w34w31

w42 w43 w44w41

x12 x13 x14x11

x22 x23 x24x21

x32 x33 x34x31

x42 x43 x44x41

w12 w13 w14w11

w22 w23 w24w21

x32 x33 x34w31

w42 w43 w44w41

x12x13x14 x11

x22x23x24 x21

x32x33x34 x31

x42x43x44 x41

w12w13w14 w11

w22w23w24 w21

w32w33w34 w31

w42w43w44 w41

x12x13x14 x11

x22x23x24 x21

x32x33x34 x31

x42x43x44 x41

w12

w13

w14

w11

w22

w23

w24

w21

w32

w33

w34

w31

w42

w43

w44

w41

o12 o13 o14o11

o22 o23 o24o21

o32 o33 o34o31

o42 o43 o44o41

×

X × W

a b c Pre-loaded stationary weights

Pre-loaded stationary inputsd

Figure 2·3: (a) Matrix multiplication between 4× 4 input matrix X and
4×4 weight matrix W . (b) OS dataflow. (c) WS dataflow. (d) IS dataflow.

2024). SAs consist of a grid of PEs that perform synchronized computations and pass

data to neighboring PEs in a rhythmic, pulse-like manner, hence the term "systolic". This

design minimizes the need for extensive data movement, reducing latency and increasing

throughput. Different dataflows can be implemented in systolic arrays to optimize for var-

ious performance metrics. The weight-stationary (WS) dataflow keeps the weights static

within the PEs, reducing the need for frequent weight reloading and saving on memory

bandwidth. Similarly, input-stationary (IS) dataflow keeps the inputs stationary within the

PEs and moves the weights and partial outputs across the array. The output-stationary (OS)

dataflow, on the other hand, keeps the partial sums stationary in the PEs until the final re-

sults are computed, which is beneficial for reducing the complexity of output data handling.

There also exist other dataflows, optimized for specific hardware, such as row-stationary,

adopted by the well-known DNN accelerator Eyeriss by Chen et al. (Chen et al., 2016). In

this thesis, we consider the main three dataflows: WS, IS, and OS.

Compute-in-Memory (CiM) accelerators have emerged as a promising solution to the

memory bottleneck in DNNs. These accelerators integrate memory and processing units

together, allowing computations to occur directly within the memory array. CMOS-based

34

CiM accelerators leverage traditional memory technologies, such as SRAM (Chih et al.,

2021; Sie et al., 2021) and DRAM (Kim et al., 2016; Gao et al., 2017), to perform oper-

ations like MVMs in parallel. This architecture significantly reduces data movement be-

tween memory and processing units. However, SRAM and DRAM are inherently volatile.

In such systems, standby leakage power or refresh power can become significant, especially

in low-power applications (Yu et al., 2021a).

2.4.2 Non-CMOS Platforms

In addition to advancements in CMOS-based technologies, several non-CMOS approaches

have been explored to accelerate DNNs, aiming to overcome the limitations of traditional

semiconductor methods. These emerging technologies leverage novel materials and com-

putational paradigms to build CiM designs using non-volatile memory (NVM) structures.

NVMs offer the advantage of on/off capability without losing stored data. They typi-

cally have a smaller layout area than SRAM cells, resulting in higher integration density

at the same technology node. These technologies include resistive random access mem-

ory (RRAM) (Song et al., 2017; Shafiee et al., 2016; Chi et al., 2016; Yao et al., 2020),

phase change memory (PCM) (Le Gallo et al., 2023; Joshi et al., 2020; Kim et al., 2019),

spin-transfer-torque magnetic random access memory (STT-MRAM) (Jain et al., 2017; Shi

et al., 2020), spin-orbit-torque magnetic random access memory (SOT-MRAM) (Garello

et al., 2019), ferroelectric field-effect transistor (FeFET) (Mikolajick et al., 2020), and

electrochemical random access memory (ECRAM) (Tang et al., 2018).

While offering better density and energy efficiency than digital CiM solutions, for such

technologies, multi-bit operation remains under exploration. Although there has been

progress in research towards multi-bit per cell capabilities (Yao et al., 2020; Kim et al.,

2019), currently, most foundries only offer single-bit NVM solutions (Yu et al., 2021a).

Furthermore, these technologies face challenges related to variability and reliability. Up-

dating values in an NVM array is costly and time-consuming, taking tens to hundreds of

35

nanoseconds (Xu et al., 2015; Yu et al., 2021b). Lastly, the low endurance of NVM cells

limits the number of writes in the NVM array (Yu et al., 2021a).

2.4.3 Optical Platforms

The history of optical (or photonic) computing dates back to the 1960s when Bell Labs

aimed to develop computers using optical transistors. Although this concept was appealing

with the promise of extremely low-energy and high-bandwidth properties of light, it did not

come to fruition due to the difficulties in optical alignment and calibration, bulky optical

devices, as well as the absence of optical memory, a challenge that persists today. Since

then, numerous advancements have made photonic platforms increasingly viable for com-

puting, particularly in the context of deep learning. In this section, we summarize these

advancements and explore how photonics is employed to accelerate deep learning.

Integrated photonics

After the optical transistor idea did not pan out after years of efforts, in 1994, (Reck et al.,

1994) described a system that used an array of MZIs to perform matrix multiplications,

which was initially for building an optical quantum processor. However, at the time, the

bulky optical components made it very difficult to form a practical system. Thanks to the

interest in optical telecommunications, advancements in photonics enabled the fabrication

of photonic ICs (PICs) with a large number of photonic components on a single die includ-

ing waveguides, modulators, and detectors to manipulate light and perform computations.

The integration of photonic devices alongside CMOS transistors (Giewont et al., 2019) and

PDKs becoming available in commercial CMOS foundries have further propelled research

in academia and industry. Specifically, neural network computation has been a popular

application for PICs, as the matrix-vector product is a fundamental operation in these ap-

plications where photonics offers an O(N) energy scaling for N2 fixed-point operations,

unlike the digital systems that scale with O(N2) (Nahmias et al., 2019). The fundamental

36

parallelism of optics combined with high-speed low-energy photonic devices makes PICs

a viable solution for DNNs (Ning et al., 2024).

As a result, many recent works leveraged the fundamental parallelism of optics com-

bined with high-speed low-energy photonic devices to build specialized DNN accelerators.

Prior works have explored MZI-based coherent architectures (Shen et al., 2017; Ramey,

2020), MRR weight banks (Tait et al., 2016; Tait et al., 2017; Bangari et al., 2019) and

crossbar arrays (Feldmann et al., 2021; Ohno et al., 2022), novel architectures combining

MZIs and MRRs (Shiflett et al., 2021; Shiflett et al., 2020), directional couplers (Zhu et al.,

2024), and photonic switches (Peng et al., 2020). Some of these works integrated optical

nonlinearities into their PICs with the goal of fully optical DNN accelerators (Feldmann

et al., 2019; Mourgias-Alexandris et al., 2019; Jha et al., 2020), however, this approach

poses significant scalability and practical implementation concerns due to the lack of ma-

turity in optical nonlinearities, accumulated errors, and deterioration in the optical signal.

While the experiments have almost exclusively focused on DNN inference, mainly due to

the limited precision of analog operations, there have been a few works on leveraging PICs

for DNN training (Bandyopadhyay et al., 2023; Filipovich et al., 2022; Pai et al., 2023;

Hughes et al., 2018; Zhang et al., 2021). However, most demonstrations, even for infer-

ence, have been constrained to very small DNNs with a few layers and simple classification

tasks.

Free-space optics

Free-space optics is another approach to optical computing that relies on the propaga-

tion of light through free space to perform computations, in contrast to integrated pho-

tonics. In these methods, diffractive optical elements (DOEs) can be employed to carry

out MVMs. By encoding the weights of a DNN onto the DOEs, the input can be mul-

tiplied by the weight matrix in a single step, utilizing the interference patterns generated

by the DOE. Some important examples include all-optical diffractive deep neural networks

37

(D2NNs) (Lin et al., 2018) and diffractive processing units (DPUs) (Zhou et al., 2021).

Another approach involves using diffractive lenses to implement convolution operations

to implement CNN-like neural network architectures. This technique typically employs

a combination of lenses (such as Fourier lenses) and spatial light modulators (SLMs) to

perform the convolution (Sui et al., 2020; Yan et al., 2019; Chang et al., 2018; Miscuglio

et al., 2020). Optalysys is an example from the industry that integrates silicon photonics

and Fourier optics to accelerate CNNs, transformers, and fully homomorphic encryption

(FHE) (Wilson, 2023; Cottle et al., 2020). While these systems can achieve exceptionally

high data throughput and parallel processing capabilities, they generally require precise

alignment and are sensitive to environmental disturbances, which limits their practical de-

ployment. Given the current advancements, we believe that integrated photonics offers a

more viable solution. Therefore, this thesis focuses on integrated photonics.

Evaluation of State-of-the-Art Photonic Architectures

Previous evaluations of several photonic tensor cores have typically been conducted in iso-

lation from the systems surrounding the photonic cores (Feldmann et al., 2021; Xu et al.,

2021; Shen et al., 2017; Wetzstein et al., 2020). While the performance numbers are im-

pressive, it is essential to consider them within the context of a practical system. Some

studies have attempted to integrate photonics with electronics (Shiflett et al., 2021; Mehra-

bian et al., 2018; Liu et al., 2019; Peng et al., 2020; Shiflett et al., 2020; Cheng et al., 2020),

however, they have generally provided either a conceptual design or only a partial system

evaluation. This section aims to highlight the importance of adopting a comprehensive,

full-system perspective to better understand the limitations and opportunities of utilizing

photonic cores.

Compute vs. Memory:

Small on-chip caches, typically on the order of hundreds of KBs as used in previous

works (Shiflett et al., 2021; Shiflett et al., 2020; Peng et al., 2020)), are insufficient to

38

simultaneously store large DNN models, input/output data, and intermediate data. This

limitation necessitates frequent off-chip memory accesses, which can stall the photonic

core. Moreover, non-GEMM operations must be executed quickly enough to avoid throt-

tling the high-throughput photonic core. Therefore, all electronic components within the

accelerator need to be carefully designed and thoroughly analyzed to draw fair conclusions

about the viability and performance of photonic technology.

Benchmarks: Prior photonic accelerators are either specifically designed for CNNs or

report results only for CNNs (Shiflett et al., 2021; Bangari et al., 2019; Wu et al., 2021;

Xu et al., 2021; Feldmann et al., 2021). While these accelerators excel at convolution

operations, many are under-utilized and perform poorly when handling linear layers. In

addition, several studies have relied on outdated and smaller neural networks that do not

place significant stress on the memory system compared to state-of-the-art models. With

the rise of non-CNN architectures, such as transformers, in recent years, focusing solely on

CNNs offers a narrow view of the potential for photonic cores in DNN acceleration.

Overall, while previous works have provided insights into the raw capabilities of pho-

tonic compute cores, it is crucial to evaluate the entire system to fully understand the gen-

eral applicability and real advantages of photonic technology in AI.

39

Chapter 3

System-Level Evaluation of Photonic DNN
Inference

In this chapter, we design a full electro-photonic accelerator, ADEPT, for DNN inference.

This study helps us understand the realistic potential of using photonics in today’s AI sys-

tems. Unlike previous works where the photonic core is typically isolated from the rest

of the system, we design and evaluate a complete system with a photonic tensor core

and electronic data converters, non-linear units, and on-chip and off-chip memory units.

Our evaluation shows that ADEPT can provide, on average, 5.73× higher throughput per

watt compared to the traditional SAs in a full system, and at least 6.8× and 2.5× bet-

ter throughput per watt, compared to state-of-the-art electronic and photonic accelerators,

respectively1.

3.1 Photonic Tensor Core Design

In ADEPT, we utilize an MZI-based tensor core due to the superior qualities of MZIs com-

pared to MRRs (see Section 2.2.3). This section discusses the design steps of the photonic

tensor core, the necessity of data conversion and tiling, and numerical precision during op-

erations and provides a quantitative comparison against SAs, which can be considered the

electrical counterparts of photonic tensor cores.

1Portions of this chapter were published previously in Demirkiran, Cansu, et al. "An electro-photonic sys-
tem for accelerating deep neural networks." ACM Journal on Emerging Technologies in Computing Systems
19.4 (2023): 1-31. DOI:10.1145/3606949.

40

3.1.1 MZI Array

An MZI-based photonic tensor core uses that any real-valued matrix M can be decomposed

into two unitary and one diagonal matrix via SVD, i.e., M = UΣV T , which can be repre-

sented by forming a mesh of MZIs (See Section 2.2.1. Figure 3·1(a) illustrates an example

of programming a 3× 3 matrix M into a 3× 3 MZI array in Figure 3·1(b). To program a

matrix M, it is first decomposed into the three matrices through the SVD. Next, the phase

values required to program each of these three matrices, i.e., (φU ,φΣ,φV T), are computed

by using a phase decomposition algorithm, which breaks a large orthogonal matrix U into

a series of 2×2 orthogonal matrices acting on different input rows (Clements et al., 2016).

Finally, for a h×h sized M, a total of h2 phase values are programmed into the array with h2

MZIs to represent M. Importantly, the total number of phase values is equal to the number

of elements in M. Therefore, the memory footprint required for storing the decomposed

parameters is the same as that for storing the original matrix. While SVD works for any

two-dimensional matrix, rectangular matrices result in unused optical channels in the MZI

array, reducing efficiency. Therefore, in this study, we consider M to be square, with the

dimensions of h×h.

Figure 3·1(b) illustrates an example of how the input and output vectors are programmed

and read out. Each element of the input vector is programmed using a Mach-Zehnder Mod-

ulator (MZM) along with a phase shifter, for encoding the amplitude and sign of the input

optical signals, respectively. The output vector from the MVM operation, including both

amplitude and sign, is detected using coherent detectors with the assistance of a local os-

cillator.

In this setup, once M is programmed into the MZI array, it can be reused for multi-

ple input vectors without the need for reprogramming. This operation’s rate is primarily

constrained by the speed at which input signals can be modulated through the MZMs. To

achieve high throughput, this design necessitates MZMs with a high modulation frequency.

41

Consequently, we opted for modulators based on the plasma dispersion effect, which can

be modulated at ≥ 10 GHz (See Section 2.2.4 for details). While this modulator has a rela-

tively high optical loss (1.2 dB), a single MZM per optical does not significantly impact the

total loss on the optical path. On the other hand, there exist 2h+1 MZIs per optical channel.

Although the high modulation rate is desirable, such high optical loss per MZI drastically

limits the scalability of the photo-core, which encourages us to use a low-loss thermo-optic

or N/MOEMS-based MZI. For the MZI array, we prefer a NOEMS-based MZI design, as it

provides a moderate modulation bandwidth (a few hundred MHz) as against a thermo-optic

design (in the range of KHz). The NOEMS-based MZI takes a few ns to program, meaning

that each time the matrix in the MZI array is reprogrammed, there will be an idle period

where the photo-core is inoperable. However, with a dataflow minimizing the number of

reprogramming in the MZI array, this overhead (e.g., ≤100 cycles for 10 GHz clock) is

tolerable and does not significantly slow down the operations.

3.1.2 Photo-core Dataflow

The analog photonic computing unit in ADEPT, referred to as a photo-core, is designed

to perform MVM operations that can eventually be composed into a GEMM operation.

GEMM operations in DNNs (e.g., FC and convolution layers) typically involve a multi-

plication between a weight matrix and an input matrix. The shapes of these matrices vary

in each layer in a DNN and can get quite large for some layers (≥1000). The photo-core,

however, has a fixed size of h×h. Therefore, matrices bigger than the photo-core size are

divided into h× h sized submatrices (also called tiles) and loaded into the photo-core one

by one.

Figure 3·1(a) shows a simple example of this step. First, the input and weight matri-

ces are flattened if necessary (for 2D convolutions) using im2col pre-processing (Anderson

et al., 2017), and the weight matrix is broken into h×h tiles. Each tile is then decomposed

into three matrices using SVD and the respective phase values (φU ,φΣ,φV T) are calculated

42

Flattened
weight matrix

Weight matrix -0.86 -0.79 -0.25

-0.25 -0.250.27

-0.86 -0.350.08

U ∑ VT
Single weight

tile (mxm)
Obtain phase values

SVD
1/2 1/2

1/21/2 1/ 2

1/ 2-1/ 2

1/ 2

0

1/2

1/ 2 0 1/2

1/2 0

0

0 0

0 0

0

0 0 -1

 3/2 3/2

- 3/2

Input matrix

Flattened
input matrix Single input

vector (mx1)

AttenuatorMach Zehnder Interferometer

Directional
Coupler

Phase shifter
Ø

-Ø

Ø = �

Ø = �/4

Ø = �/3

Ø = �/6

Ø = �/2

Ø = 0

Ø = -�/3Ø = �/4

U ∑ VT

Ø

Directional
Coupler

Phase shifter

Ø = �/4

MZM

WEIGHT BUFFER

Local
Oscillators

WEIGHT DAC (m2/ζ)
Vector

Modulators
(MZM)

Input
DAC [0] Amplitude Sign

Accumulators

Output [0]

Output [1]

Output [2]

Input [0]

Laser
Source

Input
DAC [1]Input [1]

Input
DAC [2]Input [2]

Output
ADC [0]

Output
ADC [1]

Output
ADC [2]

Homodyne
Detectors

Digital Electronic
Processing Unit

ADEPT

HOST
CPU

DRAM

P
C
I
e

Scheduler

PHOTO-CORE
[0]

Analog Photonic
Processing Unit

WEIGHT BUFFER WEIGHT BUFFER

WEIGHT BUFFER WEIGHT BUFFER

Vectorized
Processing Unit

[0]PHOTO-CORE
[1]

PHOTO-CORE
[2]

PHOTO-CORE
[3]

Vectorized
Processing Unit

[1]

Vectorized
Processing Unit

[2]

Vectorized
Processing Unit

[3]

WEIGHT
SRAM

Scheduler

ACTIVATION
SRAM

Lane[0]
Input [0]

Select
Inputs

Output [0]

Lane[1]

Lane[2]

Input [1]

Input [2]
Output [2]

Output [1]

Partial outputs (8 x 32 bits)

Enable
Signals

Scheduler

0.2

-0.5

-0.8

0.42

0.02

0.73

[Cout , Cin , KH , KW]

[N , Cin , IH , IW]

C in x K H x K W

C
ou

t

C
in

 x
K H

 x
K W

N x O H x O W

Add Mul Max Exp Div MACReLUSqrt

op2 op2
op1 op1 op1

op3

op2

op1

a

b

d

KH

KW

Cin

Cout

Cin

IH

IW

N

op1 op1 op1 op1

op2 op2 op2

 Register
File

-0.8

-0.5

0.2

c

Figure 3·1: Diagram showing different components of ADEPT and how
operations are performed. (a) Example GEMM operation in the photo-core.
(b) Programming input and weight matrices into the photo-core. The h×
h (here h = 3 as an example) photo-core consists of 2 × h(h− 1)/2 = 6
MZIs (for U and V T) and 3 attenuators (for Σ). (c) Microarchitecture for a
single digital electronic vectorized processing unit. The unit comprises h =
3 digital lanes, each consisting of arithmetic units to perform non-GEMM
operations. (d) Full system architecture including the host CPU, the DRAM,
and ADEPT—interconnected using a PCI-e interface. As an example, we
show four photo-cores and four vectorized processing units.

using the phase decomposition algorithm (Clements et al., 2016). Here, SVD and phase

composition are costly operations, typically handled by a host CPU. Therefore, perform-

ing SVD on runtime before each reprogramming of the photo-core would stall the DNN

execution. Fortunately, in DNN inference, the weights are fixed and reused for each new

input. This encourages us to program the weights into the MZI array (instead of the in-

put/activation matrices that are computed at runtime) and perform tiling, SVD, and phase

decomposition operations once offline. This way, all operations shown in Figure 3·1(a) can

be performed only once upfront for each weight tile in the host CPU. The phase values

obtained from above can then be directly programmed into the MZI array during DNN

inference, as shown in Figure 3·1(b).

43

In addition, we adopt a WS dataflow where a weight tile is kept stationary in the photo-

core. Once the tile is loaded into the photo-core, the values are maintained in the MZI

array while all input vectors that need to be multiplied with this specific tile are fed into the

photo-core sequentially, vector by vector. This WS dataflow is crucial for minimizing the

frequency of updates to the MZIs and for amortizing the power and latency costs associated

with programming the MZI array.

Due to our WS approach, the partial output vectors generated by a weight tile do not

contribute to the same final output result. Instead, the partial output vectors generated by

the subsequent weight tiles are added to those stored in the SRAM, with the accumulation

results then written back to the SRAM array. This approach requires additional SRAM

reads and writes for accumulation compared to an OS dataflow. However, the OS approach

necessitates reprogramming the MZI array every cycle, which either introduces long la-

tencies between each MVM operation—reducing the operation rate to just a few hundred

MHz—or results in high optical loss along the optical path, significantly limiting scala-

bility. Similarly, an IS approach is inefficient as it requires the costly SVD and phase

decomposition to be performed at runtime rather than offline.

3.1.3 Data Conversion

The input matrix and the computed phase matrix are initially stored as digital values. To

utilize these digital values in analog operations, DACs are required for both inputs and

weights. The outputs of the input DACs, which are analog voltages, are either passed

through the input modulators (MZMs) to convert the electrical signals into optical signals

with an amplitude proportional to the input value, or they are used directly to program the

corresponding MZI via the outputs of the weight DACs.

Once an input vector passes through the MZI array, the output signals are detected by

photodetectors, where the optical signals are converted into a photocurrent. This photocur-

rent is then converted into digital bits using ADCs. The precision of these DACs and ADCs

44

must be selected based on the required data precision to ensure the desired accuracy in the

DNN, which is typically around 8 bits for DNN inference.

In an h×h photo-core, h2 DACs will be needed. Depending on the chosen h, this many

DACs can take up a significant chip area. Instead, we can utilize the idle time between two

consecutive tiles to reprogram the MZIs, allowing us to perform multiple D-to-A conver-

sions using the same DAC. This requires ⌈h2/ζ⌉ DACs for ζ is the number of values that

can be programmed within this idle period by a single DAC.

3.1.4 Numerical Precision and Accuracy

Maintaining numerical precision during DNN computation is a significant challenge when

using an analog core. A similar issue arises in photonic computing: the numerical precision

of the output vector vout is limited by how well the input vector vin and the matrix M can be

encoded. The error of M can be calculated by considering all classical photonic operations,

i.e., the transformations afforded by U , Σ, and V T . We can then determine the magnitude

of the total perturbation in M, which can be defined as:

∆M =

√
⟨∥∆U∥2⟩+ ⟨∥∆Σ∥2⟩+ ⟨∥∆V∥2⟩. (3.1)

The error of each matrix can be quantified by its normalized Frobenius norm ∥∆X∥2 =

∑i j
∣∣∆Xi j

∣∣2 /m, such that ∆X =

√
∥∆X∥2 where X is a placeholder for U , Σ, and V T .

The phase encoding error and component error that can cause crosstalk are the two main

device limitations that contribute to the perturbation of each transformation (Bandyopad-

hyay et al., 2021; Shafiee et al., 2022; Zhu et al., 2020; Shokraneh et al., 2020). The phase

encoding can be quantified as εφ ≤ 2−bw , where bw is the bit precision of the weight DAC.

The error induced by a single-phase setting error is: ∥∆X∥2 ≈ ε2
φ
/m (Bandyopadhyay et al.,

2021). Given that the matrix is composed of MZIs, which only use 50:50 DCs, we consider

the DC splitting error as the component error. The matrix perturbation induced by a single

45

DC error εDC (typically due to fabrication imperfections) is ∥∆X∥2 ≈ 2ε2
DC/m (Bandyopad-

hyay et al., 2021).

In practice, fabrication imperfections are typically correlated, meaning that neighboring

devices often experience similar perturbations. However, accounting for these correlations

can significantly complicate analyses and obscure mathematical clarity. To address errors in

such scenarios, Monte Carlo simulation tools are advisable. For simplicity, we can assume

an uncorrelated error model for both encoding and component errors.

In each MZI, there are two DCs and a single-phase shifter. In the Σ matrix, there are

only m parallel MZIs, thus ⟨∥∆Σ∥2⟩= ε2
φ
+4ε2

DC. In the matrices U and V T , there are m(m−

1)/2 MZIs. The depth of the photonic circuits in M grows with O(m), and component

errors cascade as light propagates down the mesh. A naïve programming of the phases will

result ∆M that grows as O(m1/2ε) (Clements et al., 2016; Reck et al., 1994). However,

more sophisticated error-correction methodologies (Bandyopadhyay et al., 2021; Hamerly

et al., 2021a; Hamerly et al., 2021b) can provide a better scaling for the component errors,

such that the error grows as O(m1/2εφ +mε2
DC):

⟨∥∆U∥2⟩= ⟨
∥∥∆V T∥∥2⟩= m(m−1)

2

[
ε2

φ

m
+2

2ε4
DC

3m
(m+1)

]
, (3.2)

where the first term in the square bracket is the contribution due to phase encoding error

and the second is due to component error. The corrected programming strategy effectively

allows for a squaring of the component errors that is advantageous when εDC ≤ m−1/2.

Finally, the error for the overall matrix M can therefore be defined as in Eq. (3.1).

The precision of the input and output vectors can now be quantified by adding the

errors in quadrature: ∆v2
out = ∆v2

in +∆M2, where ∆vin ≤ 2−bin and ∆vout must be ≤ 2−bout .

Assuming a reasonable DC splitting error of < 0.1 % (this quantity should be measured in

the fabricated silicon photonic wafer), up to ∼8 bits output precision can be maintained in

matrices with the size up to 256× 256 when 10-bit and 12-bit DACs are used for inputs

46

and weights, respectively.

This analysis effectively correlates the SNR of the DACs with the SNR of the output

ADC. It is important to note that the input and weight data encoded in the photonic GEMM

device can still maintain 8-bit precision; however, they must be encoded using DACs with

SNRs that match the required bit precision.

3.1.5 Photo-core Performance

In this section, we analyze the hardware performance of the MZI-based photo-core de-

scribed earlier and explore the advantages of using a photonic core compared to a purely

electronic core. Much of our evaluation of ADEPT focuses on comparisons with SAs,

which are widely used for DNN acceleration due to their fast operations and high energy

efficiency. We consider SAs a strong comparison point because they serve as the elec-

trical counterpart to a photonic tensor core, given the similarity in dataflow between the

two structures. By implementing the SA at the register transfer level (RTL), we were also

able to explore various design choices (e.g., different array sizes and numbers of arrays) to

ensure a fair head-to-head comparison with ADEPT.

The photo-core leverages light, which oscillates at hundreds of terahertz, giving it a

significant bandwidth advantage over electronic SAs. In the photo-core, bandwidth is pri-

marily limited by the sampling rate of data converters (up to 10 GHz in this work), whereas

SAs are constrained by parasitic resistance, capacitance, and inductance. In fact, when us-

ing Cadence Genus with GF22FDX, the SAs could not meet the timing requirements for

frequencies of 2 GHz and above. To address this, we employed parallelism to effectively

operate the SA at higher frequencies. For instance, to achieve a 10 GHz operation, we used

ten 1 GHz SAs with clock cycles offset by 100 ps. While the latency of this parallelized

SA remains 1 ns, its throughput is equivalent to a single SA running at 10 GHz.

For this part of our analysis, we assume both photo-core and SA are isolated from the

system, with weights and inputs preloaded and available in the SRAM, and that read/write

47

(h)(h) (h)

(h) (h) (h)

Figure 3·2: (a) Throughput vs. batch size of 128×128 photo-core (PC) and
SA with three dataflows at 1 GHz clock. (b) Power consumption of the OS
SA and the WS photo-core for different array sizes and clock frequencies.
Laser power is shown with solid color, ADCs/DACs with the white diagonal
pattern, and E-to-O/O-to-E conversion with the black diagonal pattern. (c)
Power efficiency of SAs and photo-core for different array sizes and clock
frequencies.

speeds are sufficient to meet the demands of both arrays. To provide SAs a strong baseline,

we considered OS, WS, and IS for SAs as dataflow can have a significant impact on perfor-

mance. Figure 3·2(a) shows the throughput we can achieve when using the three dataflows

for SAs for three different benchmarks. We found that OS outperforms WS and IS for SAs,

primarily due to the high latency associated with loading data into the SA between tiles in

the WS and IS dataflows. Therefore, from here onwards, we use OS for SA in the rest of

the comparison.

48

Throughput

To compare throughput, we use a single 128×128 array (this choice will be justified later

in this section) for both the photo-core and the SA. Figure 3·2(a) shows the performance

of the photo-core and that of the SA, both operating at 1 GHz clock rate for three differ-

ent networks—ResNet-50, BERT-large, and RNN-T (one plot per network)—for different

batch sizes in terms of inferences per second (IPS). In general, we observe that the photo-

core’s WS dataflow is more advantageous compared to the OS SA when the weight matrices

are relatively large and the input matrices are small (e.g., RNN-T with small batch sizes)

because each weight tile needs to be loaded only once.

Throughput vs. Batch Size: Figure 3·2(a) shows that as the batch size increases,

throughput (and correspondingly utilization) of the arrays increases and eventually satu-

rates. Among the three DNNs, we observe that the throughput saturates for ResNet-50 and

BERT-large more quickly than RNN-T. This is mainly because the small input matrices

in RNN-T require a fewer number of vectors to be multiplied with the same tile. Thus,

the utilization and throughput continue to significantly increase until larger batch sizes for

RNN-T. Moreover, as the batch size increases, latency overhead for loading new tiles be-

comes less significant as the majority of time is spent on performing MVM operations per

tile.

Throughput vs. Clock Frequency: One approach to increase the throughput of any

computing device is to increase the clock frequency. We therefore attempt to increase

the clock frequency of the photo-core and the SAs from 1 GHz to 3 GHz, 5 GHz, and

10 GHz. The rate of MVM operations increases linearly with the clock frequency in both

the photo-core and the SAs. However, programming values into the MZI array requires

a fixed amount of time that is unaffected by changes in clock frequency. As a result, the

increase in the photo-core’s throughput is sub-linear.

49

Power Consumption

Figure 3·2(b) compares the average power consumed by the photo-core and the SA of

different sizes. For the photo-core, the power consumption for lasers, DACs and ADCs,

and E-to-O and O-to-E conversions are shown separately. For this analysis, we use a batch

size of 256 to ensure that the throughput is nearly maximized across all networks. Overall,

the photo-core’s power consumption is lower than the SA up to an array size of 256×256.

For the SAs, the power consumption increases linearly with the number of PEs, i.e.,

quadratically with the array size h. For the photo-core, the laser power increases expo-

nentially with the depth of the array. This is due to the fact that a linear increase in the

number of optical devices on an optical channel leads to an exponential impact on optical

power loss (in watts) in the propagating signal. As a result, Figure 3·2(b) illustrates that

laser power significantly increases as the tile size grows, eventually dominating the power

consumption for larger array sizes. For an h× h photo-core, we need h DACs, h E-to-O

conversion circuits, h ADCs, and h O-to-E conversion circuits for modulating the input

signals and reading out the output signals. The input/output DACs/ADCs perform a con-

version each cycle. In addition, we need DACs for programming the h×h weight matrix.

These DACs used for programming the weights into the MZIs are not active during each

cycle. The weights are programmed into the MZIs once per tile, and the DACs remain idle

until all MVMs for that tile are completed. However, as the array size increases and latency

decreases, the average power consumption of the DACs/ADCs rises. This is because the

same number of conversions are carried out in a shorter time span.

Power Efficiency

Figure 3·2(c) shows the power efficiency in IPS per watt (IPS/W) of SAs and photo-

cores for different array sizes and clock frequencies. We observe that, for the photo-core,

128×128 is the most power-efficient array size for all experiments. This can be explained

50

by the fact that beyond a certain size, the laser power starts dominating the power consump-

tion of the photo-core. Additionally, beyond a certain array size, the utilization decreases

and so the throughput saturates. Therefore, due to the exponentially increasing laser power

and saturating throughput, we observe a drop in the power efficiency beyond an array size

of 128×128. For SAs, the power increases quadratically with the array dimension h. How-

ever, because the throughput increases less than quadratically with h, the power efficiency

decreases as the array size increases.

Across different frequencies and array dimensions, we observe that photo-core can pro-

vide up to 9.87×, 9.32×, and 7.69× better power efficiency than OS SA for ResNet-50,

BERT-large, and RNN-T, respectively, when only GEMM operations are considered.

Overall, we observe that for the same clock frequency, while the throughput is com-

parable, photo-core provides a better power efficiency than the best-performing SA. As

128×128 array size and 10 GHz clock frequency is the most power-efficient combination,

we use this configuration for further evaluations in later sections.

3.2 Building the Full System

After analyzing the photonic core isolated from the rest of the system, we start building the

full accelerator architecture, ADEPT, which includes a custom digital electronic vector-

ized processing unit for non-GEMM operations and memory units for storing weight and

activation data. ADEPT is placed within a system with a host CPU and off-chip DRAM.

Additionally, we introduce optimizations and parallelism to the system and evaluate the

full performance.

3.2.1 Vectorized Processing Unit for Non-GEMM Operations

Although more than 90% of the DNN operations are GEMM operations, a non-trivial

amount of non-GEMM operations must also be performed as part of DNN inference. These

51

operations include element-wise non-linear operations (e.g., ReLU, GELU, and sigmoid);

reduction operations (e.g., softmax and max-pool); batch and layer normalizations; and

element-wise multiplication and addition (e.g., bias). It is more practical and efficient to

perform these non-GEMM operations in the digital domain (See Section 2.2.6).

In ADEPT, we use a digital electronic ASIC to perform non-GEMM operations. We

designed the ASIC in a vectorized manner where each unit has the same number of lanes

as the number of optical channels in a photo-core such that the output of each optical

channel in the photo-core is fed to one lane in the vectorized processing unit. The mi-

croarchitecture of a single lane in a vectorized processing unit is shown in Figure 3·1(c).

Each lane has separate units for multiplication, addition, division, max, square root, and

exponential operations (each 32-bit) that enable the system to complete a wide variety of

non-GEMM operations. These arithmetic units are implemented as custom digital CMOS

circuits. All lanes in the vectorized processing unit can operate in parallel and operations

can be pipelined for non-GEMM operations that require multiple arithmetic operations.

Each arithmetic unit uses a multiplexer to choose the input from 1) SRAM, 2) the output of

any of the arithmetic units, or 3) the register files of the vectorized unit, as operands. Here

the register files (64 KB each) are used to store the constants (which are loaded up front)

for the non-GEMM operations or the outputs of the arithmetic units. Multiplexers are con-

trolled by a scheduler that decides when each arithmetic operation is used. The outputs of

digital electronic ASIC are written back to the SRAM—to be used in the next layer of the

DNN.

To extract the maximum performance from ADEPT, we must match the throughput

of the photo-core and the digital electronic ASIC. It is, however, challenging to design a

digital ASIC at the photo-core’s clock rate. To maintain the balance between the analog

and digital parts of ADEPT, we use multiple vectorized processing units per photo-core.

For a photo-core operating at 10 GHz (See Section 3.1.5 for the justification of this design

52

choice), we use 10 logical units in parallel for each operation within the individual vector

lane, each operating at 1 GHz clock frequency and offset by 0.1 ns to one another.

3.2.2 Memory Units

ADEPT utilizes two separate SRAM units: one for input/output activations (referred to as

the activation SRAM) and one for weights (referred to as the weight SRAM). The SRAM

units can transfer data between each other through direct memory access (DMA) and com-

municate with the host and DRAM through the peripheral component interconnect express

(PCI-e) fabric. The two SRAM units are separated because, generally, a dichotomy exists

between the activations and the weights, and data transfer between them is not frequent.

The activation SRAM is used to store both input and output activations because effectively,

the output of one layer is the input of the next layer. At runtime, both the photo-core

and the digital electronic ASIC read and write a vector of size h = 128 (the size of the

photo-core, see Section 3.1.5 for the justification of this design choice) from and to the

activation SRAM. We use separate dedicated read/write ports in the activation SRAM for

the photo-core and the digital electronic ASIC.

Transferring a complete weight tile (128× 128) from weight SRAM to photo-core in

one step requires a large SRAM bandwidth. In contrast, transferring one vector at a time

requires a large latency between tiles. Hence, we use a weight buffer for each photo-core as

an intermediate stage. We load the tile for the next set of MVM operations into the weight

buffer, while the photo-core is performing operations with the current weight values. The

data is then programmed into the photo-core directly from the weight buffer, minimizing

the latency between consecutive tiles in the photo-core and increasing the photo-core’s

overall utilization and the system throughput.

We also consider an off-chip DRAM as part of the full system. While the weight ma-

trices fit the on-chip SRAM, inputs, and outputs need to be read from and written to an

off-chip DRAM before and after every inference.

53

3.2.3 Performance Optimizations

In this section, we introduce two optimizations designed to efficiently orchestrate opera-

tions in ADEPT and maximize system performance by minimizing the latency overhead

associated with non-GEMM operations and data transfers.

Pipelining

We implement pipelining for GEMM and non-GEMM operations in ADEPT. Specifically,

as soon as an output vector—the final result after accumulating partial outputs from a

GEMM operation—is generated, it is immediately sent to the digital electronic ASIC for

non-linear operations. This allows non-GEMM operations to commence without waiting

for the entire GEMM operation to complete.

Additionally, multiple non-GEMM layers may need to be executed consecutively, or

a single layer might require more than one logical unit. To further optimize ADEPT, we

pipeline these sequential non-GEMM operations within the digital electronic ASIC. For

instance, in a softmax layer, the exponential unit, max unit, and multiplication unit are used

in sequence. While one element is processed by the exponential unit, the previous output

from the exponential unit can be processed by the max unit. Consequently, as long as data

dependencies are maintained, different non-GEMM operations or various steps within a

non-GEMM operation using different arithmetic units in the digital electronic ASIC can be

parallelized and pipelined.

Figure 3·3 shows the impact of this optimization on the latency of ADEPT when run-

ning ResNet-50, BERT-large, and RNN-T. In ResNet-50, the max-pool, average-pool,

ReLU activations, and softmax layers; in BERT-large, the layer norm, GELU, and soft-

max operations; and in RNN-T, the element-wise addition and multiplication, sigmoid, and

tanh operations within the LSTM layers are all computed in the digital electronic ASIC.

Although non-GEMM operations constitute a small percentage of the overall operations in

54

Figure 3·3: Latency of ADEPT with a 128× 128 photo-core operating at
10 GHz clock with and without pipelining the GEMM and non-GEMM
operations. Here the latency is for one batch of inputs for three networks.
The results are calculated for varying batch sizes.

these networks, they can introduce significant overhead if not carefully pipelined.

In Figure 3·3, ResNet-50 experiences the least overhead from non-GEMM operations.

With batch normalization folded, ReLU becomes the most frequent non-GEMM operation,

which can be effectively overlapped with GEMM operations. In contrast, BERT-large and

RNN-T see an increase in the number of cycles spent in the digital electronic ASIC due to

division and exponential operations in GELU, softmax, sigmoid, and tanh functions.

As batch size increases, GEMM operations become more efficient because more input

vectors are multiplied with the same tile, allowing for more frequent reuse of weights.

However, the cycles required for non-GEMM operations increase linearly with batch size.

Consequently, the time spent on non-GEMM operations grows more rapidly than the time

spent on GEMM operations as batch size increases. This results in a smaller proportion of

non-GEMM operations being overlapped with GEMM operations. We observe a reduction

in latency of up to 5.73% in ResNet-50, 43.03% in BERT-large, and 48.22% in RNN-T

when we introduce pipelining in the accelerator.

55

Optimized Buffering

is constrained by the rate at which data are fed into the photo-core. Although the latency

and bandwidth of the activation and weight SRAM arrays can be designed to match the

photo-core’s throughput, the size of these arrays is limited. When activations and weights

do not fit within these SRAM arrays, frequent DRAM accesses become necessary, which

are slower and can easily bottleneck system performance.

To avoid being limited by DRAM latency during runtime, it may be necessary to limit

the batch size for a given neural network. However, larger batch sizes generally lead to

better throughput. To address this, we propose an optimized buffering method that maxi-

mizes the batch size stored in the activation SRAM without ever spilling back to DRAM

during runtime. This method efficiently utilizes the available space in the SRAM during

inference, allowing the inputs of the next batch to be loaded from DRAM without causing

performance degradation.

We describe this optimized buffering method as a convex optimization problem. Let

x⃗c = [xc(t0), xc(t1), . . . , xc(tmax)] be a vector representing the activation SRAM array usage

while performing inference on a batch of activations over time. Here ti+1 = ti +∆t where

∆t is some time interval chosen to ensure the optimization problem is tractable for the

host CPU. Similarly, x⃗pcie = [xpcie(t0), xpcie(t1), . . . , xpcie(tmax)] is a vector representing the

activation SRAM usage of the data (next input batch) being transferred from DRAM into

SRAM over time. For a given x⃗c, an optimal x⃗pcie data transfer schedule can be obtained

by solving the following optimization problem:

Maximize:
tmax
∑

t=t0
xpcie(t)

Subject to: 0 ≤ xc(t)+ xpcie(t)≤ xmax;
xpcie ≥ 0; xpcie(t−1) = 0; xpcie(tmax) = xinput;

0 ≤ ∆xpcie(t)≤ Max. PCI-e bandwidth

The constraints in the optimization problem can be described as: the total SRAM usage

56

Figure 3·4: Activation SRAM usage for computing on the current batch of
inputs along with data transfer for the next batch of inputs within ADEPT.
Both input and output activations for the current batch must be stored in
the activation SRAM (dark blue) while the input data are transferred for the
next batch (light blue). A 128× 128 photo-core at 10 GHz clock is used
with batch sizes of 58, 88, and 50 for ResNet-50, BERT-large, and RNN-T,
respectively to fully use the 100 MB activation SRAM capacity.

(1) should be less than the given SRAM size (xmax), (2) should not be negative at any time,

and (3) should start from zero; (4) the total amount of data transferred will be equal to

the input size of the next batch, and (5) the data transfer rate should be slower than the

maximum PCI-e bandwidth.

Here, maximizing this area under the curve of memory usage of the transferred data for

the next batch guarantees transferring the data as soon as possible under the constraint of a

maximum PCI-e bandwidth.

If the program fails to generate a schedule xpcie(t) that meets the specified constraints

for a given batch size and maximum PCI-e bandwidth, a smaller batch size or a larger

bandwidth (if available on the hardware) should be selected. We use the aforementioned

optimization program to determine the largest batch size that ensures the memory usage

for storing activations from both the current and next batch never exceeds the available

SRAM size. This approach guarantees that all DRAM data transfers for the next batch of

57

inputs occur concurrently with the inference of the current batch. The optimized schedule

is computed only once by the host CPU before runtime.

Up until now, we have used a large batch size of 256 to evaluate the saturated throughput

of both ADEPT and SAs. However, given that the limited SRAM array size, a batch size

of 256 may not be viable.

For this study, we choose a 100 MB activation SRAM and a 300 MB weight SRAM,

which is enough to accommodate the weights of all three networks comfortably within a

reasonable chip area. Figure 3·4 illustrates the usage of the activation SRAM array for

both the current and next batch when utilizing the optimized DRAM access mechanism.

We limit the batch size to the maximum value where inference on the entire batch can be

completed without requiring any DRAM transfers—58, 88, and 50 for ResNet-50, BERT-

large, and RNN-T, respectively. The activation SRAM stores the inputs and outputs of

all GEMM and non-GEMM operations over time. When GEMM and non-GEMM opera-

tions are pipelined and run concurrently, the memory usage reflects the activation data for

both operations. Figure 3·4 reveals that the networks do not use the whole SRAM array

throughout the inference, which creates an opportunity to transfer the inputs of the next

batch.

We compare the performance of our optimized buffering technique against double

buffering (Sancho and Kerbyson, 2008), a commonly used method for minimizing the im-

pact of data transfer latency. In double buffering, one-half of the memory is allocated

for the current inference, while the other half is used for transferring the inputs for the

next inference. Consequently, the maximum batch sizes for this scheme are half of those

achievable with our optimized buffering technique for the three networks. For ResNet-50

and BERT-large, the optimized buffering technique improves the throughput only by 1.3%

and 0.4% compared to double buffering. This is because these two networks have already

high utilization in the photo-core and their throughputs are saturated for the considered

58

batch sizes. Remarkably, however, this optimization increases the throughput of RNN-T

by 89.7% over double buffering.

Impact of Optimizations

Figure 3·5 summarizes the impact of the two optimizations—pipelining and optimized

DRAM buffering, on ADEPT at a system level. The roofline represents the peak through-

put of the photo-core, while the memory ceiling is determined by the bandwidth of the

activation SRAM. The baseline (no optimization) scenario refers to the setup without any

pipelining and with double buffering.

When comparing the three networks, ResNet-50 exhibits lower arithmetic intensity and

is primarily memory-bound. As a result, we observe that the performance of ResNet-50

without optimizations is already near the roofline, meaning that additional optimizations

only provide marginal performance improvements. BERT-large benefits from pipelining

with a 1.76× better throughput because of the frequent non-GEMM operations. In con-

trast, the optimized DRAM buffering, which allows for larger batch sizes compared to

double buffering, does not provide significant benefits for ResNet-50 because the photo-

core’s utilization is already saturated at smaller batch sizes. RNN-T, on the other hand,

exhibits lower utilization compared to the other two networks. This lower utilization is

primarily due to the recurrent nature of the network, which necessitates frequent changes

of weight tiles and frequent non-GEMM operations within the LSTM layers. Therefore,

supporting larger batch sizes via the optimized DRAM buffering increases the performance

significantly by 1.92×, and pipelining improves the throughput for RNN-T by 1.83×.

The analysis presented in this section underscores the importance of considering non-

GEMM operations and memory limitations, as well as the need to evaluate different types

of DNNs. While non-GEMM operations and memory constraints can limit the throughput

of the photo-core, these challenges can be mitigated and performance enhanced through

appropriate optimizations, such as pipelining and efficient data buffering.

59

Figure 3·5: Roofline plot showing the effect of optimizations on ADEPT
with a single 128× 128 photo-core. The arithmetic intensity is calculated
using MAC operations over activation SRAM reads/writes.

3.2.4 Parallelism

ADEPT can be scaled up to include multiple photo-cores. We offer two parallelization

strategies for distributing the workload among multiple photo-cores: data parallelism and

tile parallelism. Data parallelism aims to accelerate MVMs by copying the same weights

to all photo-cores. Each photo-core performs the same operations on different inputs in

a batch. Tile parallelism is a finer granularity model parallelism where different tiles of

a weight matrix are distributed across multiple photo-cores. Unlike data parallelism, all

inputs in one batch are sent to all photo-cores.

ADEPT can also use WDM-based parallelism. WDM uses multiple wavelengths for en-

coding different input vectors at once similar to data parallelism. The scheme requires mul-

tiplexing and demultiplexing circuits that can be constructed from microring resonators (Bo-

gaerts et al., 2012) or cascaded unbalanced MZIs (Xu and Shi, 2018). WDM parallelism is

equivalent to data parallelism in terms of throughput, but the same MZI array and weight

DACs can be used by all inputs encoded in the wavelengths.

Figure 3·6 shows how the latency scales with the increasing number of photo-core

counts for both data and tile parallelism. We use the batch sizes previously considered (see

60

Figure 3·6: Latency of ADEPT (128× 128 photo-core at 10 GHz clock)
when executing the three neural networks with different photo-core counts
using data and tile parallelism.

Section 3.2.3), i.e., 58, 88, and 50 for ResNet-50, BERT-large, and RNN-T, respectively.

We keep these values constant as we increase the number of photo-cores.

Figure 3·6 shows that data parallelism provides an almost linear decrease in inference

latency with increasing photo-core count when the number of input vectors within a batch

is large enough to be shared among the photo-cores. The latency is dominated by MVM op-

erations for large input sizes, and so as the number of photo-cores increases, the throughput

proportionally increases. We observe this in ResNet-50 and BERT-large where the input

matrices are large enough to be spread among the photo-cores and we can maintain high

utilization. In contrast, when the number of input vectors per core decreases, the reduction

in latency saturates due to the decrease in the utilization of the photo-cores. We observe

this in RNN-T. Data parallelism provides 11.30×, 14.47×, and 1.11× lower latency for

ResNet-50, BERT-large, and RNN-T when we increase the photo-core count from 1 to 16.

The advantage of tile parallelism is limited by the number of tiles in a GEMM layer.

The networks with larger weight matrices (i.e., BERT-large and RNN-T) better exploit this

parallelism. Tile parallelism provides 11.24×, 16.0×, and 4.62× lower latency for BERT-

61

large, RNN-T, and ResNet-50, respectively, when the photo-core count increases from 1 to

16.

Multiple photo-cores means a linear increase in the area and the power consumption

for the analog photonic computing unit. WDM provides an opportunity to reduce this area

increase. WDM allows the input vectors to be mapped across the different wavelengths

that are routed to the same photo-core. Therefore, WDM offers the same throughput as

data parallelism without using multiple copies of the MZI array and weight DACs. When

we compare data parallelism with n photo-cores against a single photo-core leveraging n

wavelengths in WDM, the photo-core with WDM uses (n− 1)m2 fewer MZIs and (n−

1)m2/ζ fewer weight DACs.

This WDM approach is, however, limited by the amount of optical power that can be

injected into a single waveguide. High optical power causes strong nonlinear absorption

in the waveguide and the peak optical power is limited to ∼30 mW for ensuring signal

integrity (Chen and Joshi, 2013). For a 128×128 array operating at 10 GHz with a single

wavelength, the peak laser power per waveguide is 20.7 mW, which is under the 30 mW

limit. To leverage WDM and still stay under the nonlinearity limit, we need to scale down

the photo-core size accordingly. For example, for multiplexing 2 wavelengths in an optical

waveguide, we need to reduce the photo-core size to 64 × 64. This configuration achieves

1.4× better IPS/W/mm2 compared to two 64× 64 photo-cores with a single wavelength

and 1.23× better IPS/W/mm2 compared to a single 128× 128 photo-core with a single

wavelength, on average among the three evaluated networks, ResNet-50, BERT-large, and

RNN-T, when all cores are operating at a 10 GHz clock frequency.

3.2.5 System Performance

The full electro-photonic system consists of a host CPU, DRAM, PCI-e bus and the electro-

photonic accelerator ADEPT (see Figure 3·1(d)). ADEPT is connected to the host CPU and

DRAM through a PCI-e bus. Host CPU handles the compilation and any other operations

62

Non-GEMM
ASIC (1.5%)

Systolic Array
(10.33%)

ResNet-50
Batch Size: 58

Non-GEMM
ASIC (0.01%)

SRAM
(15.8%)

DRAM
(4.81%)

E-O/O-E
(12.04%)

Die-to-die
interconnect

(23.12%)

DAC/ADC
(32.71%)

Non-GEMM
ASIC (0.96%)

Optical
Devices
(11.51%)

E-O/O-E
(12.75%)

DRAM
(1.25%)

SRAM
(16.32%)

DAC/ADC
(25.19%)

DAC/ADC
(34.41%)

Non-GEMM
ASIC (0.87%)

SRAM
(11.77%)

Optical
Devices
(10.43%)

Die-to-die
interconnect

(23.88%)

BERT-Large
Batch Size: 88

DRAM
(2.17%)

E-O/O-E
(8.88%)

Die-to-die
interconnect

(17.22%)

Optical
Devices
(33.89%) SRAM

(85.57%)

E-O/O-E
(8.88%)

Optical
Devices
(6.99%)

DAC/ADC
(5.98%)

Non-GEMM
ASIC (1.45%)

Area

PE-to-PE
(65.88%)

PE (MAC)
(28.24%)

PE-to-PE
(66.89%)

DRAM
(1.04%)

SRAM (4.84%)
Non-GEMM
ASIC (0.01%)

PE (MAC)
(28.67%)

PE-to-PE
(65.11%)

PE (MAC)
(27.91%)

SRAM
(88.17%)

DRAM (0.29%)
SRAM (3.93%)

Non-GEMM
ASIC (0.22%)

DRAM (0.38%)

SRAM (6.44%)
Non-GEMM
ASIC (0.15%)

35,698 IPS
22.48 W

5,748 IPS
7.75 W

4,303 IPS
18.06 W

37,577 IPS
109.8 W

9,720 IPS
74.0 W

3,507 IPS
61,7 W

706.32
mm2

681.37
mm2

RNN-T
Batch Size: 50

S
A

 S
ys

te
m

A
D

E
P

T
S

ys
te

m

Figure 3·7: Average total (static and dynamic) power distribution and area
distribution of ADEPT (128×128, 10 GHz photo-core) and the SA system
(128×128, 10×1 GHz array, OS dataflow).

required by the DNN model that can be performed offline including pre/post-processing

(e.g., resizing, decoding, etc.) and precomputation of the phase values for the MZIs. The

inference is then performed fully in ADEPT without any interference from the host CPU.

In this section, to answer the main question of how much the real benefit in a complete

system is, we include all the components of the system and the optimizations discussed in

Section 3.2.3 and provide a full system-level comparison between 128×128 WS ADEPT

and a 128×128 OS SA (see Figure 3·7).

From Figure 3·7, we can see that the optical devices in the photo-core (i.e., laser, MZIs,

modulators) used for the GEMM computation take up only between 10-35% of the over-

all power consumption in the ADEPT system depending on the DNN model. The other

components of the system (i.e., ADCs/DACs, O-to-E/E-to-O conversions, die-to-die com-

munication, and SRAM) consume significant power—which proves the necessity of the

system-level evaluation. For the SA, data transfer between the register files of the PEs

dominates the power consumption of the SA system. We observe that SRAM dominates

the area distribution for both electronic SAs and ADEPT for the chosen configuration.

In ADEPT, the photo-core and the digital electronic ASIC are in different chiplets to

63

take advantage of the technology nodes that provide the best performance for each individ-

ual electronic and photonic ICs. The two chiplets are 3D integrated through an interposer.

In the latter, the SA and the rest of the electronic components share the same chiplet. The

optimizations used for ADEPT are also applied to the SA system.

Our analysis shows that a system with ADEPT consumes 4.88× (109.8 W vs. 22.48 W),

3.42× (61.7 W vs. 18.06 W), and 9.55× (74.0 W vs. 7.75 W) less power for ResNet-50,

BERT-large, and RNN-T, respectively. This translates to 4.89×, 3.24× and 9.06× better

power efficiency (IPS/W). Also, ADEPT provides 4.5×, 2.97× and 8.34× better power-

area efficiency (IPS/W·mm2) compared to a SA. This shows us that although including the

system components in evaluation decreases the performance of the standalone photo-core,

we can still benefit from using photo-cores instead of SAs in a system.

3.2.6 Execution Model

In this section, we describe the execution model for using ADEPT as part of the full system.

This process is summarized in Figure 3·8. In this process, we take a DNN model and

compile it on the host CPU to generate a program in the form of a tensor-type graph. We

use ONNX models (exported from common frameworks like PyTorch) and a loader to build

a high-level program graph, where the nodes represent operations on higher-dimensional

array data types. A directed acyclic graph (DAG) is then created using a cost-model-based

partitioner, with nodes annotated to indicate whether the operations will be executed on the

CPU or the ADEPT device.

For code generation and optimizations, we utilize a low-level virtual machine (LLVM)-

based optimizer on the host CPU. The operations marked for execution on the ADEPT

device are expanded into a stream of ADEPT instructions, and a scheduling pass is per-

formed to overlap GEMM and non-GEMM operations. The annotated program graph is

then used to optimize the schedule and pipeline computations between the host CPU and

the ADEPT device, ensuring efficient communication between the two.

64

ADEPT
Device
Library

Operator
Library

Model
params

ADEPT
 Library

Compiler

ADEPT Backend

IR Nodes Optimizer

ADEPT Scheduler

CPU Bundle
CPU Backend

High Level
DAG

DNN
Model Loader IR NodesIR Nodes

IR Nodes Partitioner

Driver
Codegen

Optimizer

ADEPT Host
Library

Model
params

x86
 Library

Driver
Library

Figure 3·8: Compilation process of an ML model for ADEPT.

The generated code for these three partitions is linked with the corresponding libraries

to produce two executable binaries: one for the host and one for ADEPT. Notably, the

host CPU performs this compilation only once, after which all subsequent inferences are

offloaded to ADEPT.

3.3 Related Work

For completeness, in this section, we compare the full ADEPT system against state-of-the-

art electronic (Chen et al., 2019; Chen et al., 2016; Lee et al., 2018; Jouppi et al., 2020)

and photonic (Shiflett et al., 2021; Peng et al., 2020; Liu et al., 2019) accelerators.

3.3.1 Electronic Accelerators

Besides the traditional SAs, over the years, more flexible electronic accelerator architec-

tures have been proposed to efficiently accelerate DNN inference. Table 3.1 compares

ADEPT against state-of-the-art electronic accelerators. Broadly, while is not the most area

efficient, ADEPT provides at least 6.8× higher IPS/W compared to other electronic accel-

erators.

When compared to NVIDIA’s H100 GPU (results obtained from MLPerf Inference

v3.1 (Reddi et al., 2020) for an 8×H100 system), ADEPT provides 13.6×, 22.2×, and

65

Table 3.1: Comparison against state-of-the-art electronic and photonic ac-
celerators.

ADEPT Eyeriss Eyeriss v2 UNPU TPU v3
(This work) (Chen et al., 2016) (Chen et al., 2019) (Lee et al., 2018) (Jouppi et al., 2020)

Tech Node 90 nm photonics + 22 nm CMOS 65 nm 65 nm 65 nm 16 nm
Clock rate 10 GHz 200 MHz 200 MHz 200 MHz 940 MHz
Benchmark AlexNet ResNet-50 AlexNet AlexNet AlexNet ResNet-50
Batch size 192 58 4 1 15 N/A
IPS 217, 201 35,698 35 102 346 32,716
IPS/W 7,476.78 1,587.99 124.80 174.80 1,097.50 18.18
IPS/W/mm2 10.59 2.25 10.18 N/A 68.59 0.01

24.8× better IPS/W for ResNet-50, BERT-Large, and RNN-T, respectively.

3.3.2 Photonic Accelerators

For completeness, we provide Table 3.2, which provides a quantitative comparison against

the state-of-the-art photonic accelerators. However, the limitations of these works men-

tioned in Section 2.4.3 should be taken into account for a fair comparison. The numbers re-

ported in Table 3.2 depend on many design choices, i.e., optical components, ADCs/DACs,

memory array sizes, non-linear arithmetic units, communication, etc., and how comprehen-

sive the evaluation is.

Table 3.2 shows that while the full system of ADEPT has a relatively low area efficiency

(due to large SRAM arrays), it can achieve 2.5 × better IPS/W than Albireo-C and 10.2 ×

better IPS/W than DNNARA for the same batch size of 1. Although the batch size is not

reported in HolyLight, ADEPT’s and HolyLight’s power efficiencies are comparable when

ADEPT uses a batch size of 1. However, ADEPT’s activation SRAM array is adequate to

support larger batch sizes which helps increase the utilization of the photo-core—providing

a better system performance. When the maximum batch size available is used for ADEPT, it

can achieve more than 8.3× better IPS/W compared to all other three photonic accelerators.

It should be noted that the small on-chip memory arrays used by previous works have

a smaller area footprint than ADEPT, but the energy overhead of required DRAM transfers

66

Table 3.2: Comparison against state-of-the-art photonic accelerators.

ADEPT (This work) Albireo-C DNNARA HolyLight-A
(This work) (Shiflett et al., 2021) (Peng et al., 2020) (Liu et al., 2019)

Clock rate 10 GHz 5 GHz 1.2 GHz 1.28 GHz
Benchmark AlexNet ResNet-50 AlexNet ResNet-50 AlexNet
Batch size 1 192 1 58 1 1 N/A
IPS 6,478 217, 201 12,641 35,698 7,692 9,345 50,000
IPS/W 872.17 7,476.78 1,021.17 1,587.99 344.17 100 900
IPS/W/mm2 1.23 10.59 1.59 2.25 2.75 0.45 40.07

should be considered to provide a fair comparison. The goal of this section is not to claim

a more performant photonic core; in contrast, we aim to highlight the importance of a

system-level analysis when evaluating photonic accelerators and encourage the community

to adopt a pragmatic approach.

3.4 Evaluation Methodology

In this section, we describe our evaluation approach when we compare ADEPT against SAs

and state-of-the-art accelerators. For our evaluation, we picked three DNNs: ResNet-50(He

et al., 2016), BERT-large (Devlin et al., 2018), and RNN-T (He et al., 2019). These three

state-of-the-art networks—all part of the MLPerf inference data-center benchmarks (Reddi

et al., 2020)—represent the diversity in layer types, sizes, and shapes that we observe in

DNNs. We combine architecture, circuit, and device-level analyses to evaluate the full

system.

3.4.1 Architecture-level Analyses

For our architecture-level evaluation, we used a mix of SCALE-Sim (Samajdar et al., 2018)

and RTL simulations. SCALE-Sim is a cycle-accurate simulator specifically designed for

SA-based DNN accelerators. The simulator takes the SA configuration (such as array size

and dataflow type) and the neural network specifications (like layer sizes and batch size)

as inputs, calculates the number of cycles required to run the neural network, and gener-

67

ates traces for SRAM and DRAM reads and writes. To accurately model the photo-core in

ADEPT, we adapted the WS dataflow within SCALE-Sim to reflect the WS methodology

used by the photo-core. This involved incorporating the latency associated with program-

ming the weight tile into the MZI array and accounting for the latency overhead from

transferring weights from the SRAM to the weight buffer.

SCALE-Sim allows us to simulate our specific dataflow and make direct performance

comparisons between the photo-core and SAs. However, since SCALE-Sim focuses solely

on GEMM operations, we designed the digital electronic ASIC using SystemVerilog RTL

to assess the performance of non-GEMM operations and incorporated the optimizations

described in Section 3.2.3. For each DNN, we combined the timing results from SCALE-

Sim and RTL simulations to determine the overall performance.

3.4.2 Circuit- and Device-level Analyses

We synthesized our RTL designs for the digital electronic ASIC in ADEPT and SAs using

Cadence Genus (Cadence, 2024) with a standard cell library designed in the GF22FDX

technology node (Global Foundries, 2024). We generated the SRAM arrays using an

SRAM compiler for GF22FDX.

To minimize the impact of slow DRAM transfers on performance, we adopt a simi-

lar strategy to that used in previous works employing large on-chip memory arrays (Kim

et al., 2021; Lavely, 2022). However, maintaining low access latency with a single large

SRAM array is challenging. Therefore, we use multiple smaller SRAM sub-arrays to con-

struct larger memory arrays, which helps achieve the desired capacity while maintaining

manageable access latency. Each SRAM sub-array has 64 KB capacity with ∼ 1 ns access

latency. For high clock rates (fc > 1 GHz), we read from multiple arrays, each offset by

1/ fc ns with its neighbor. In total, we use 300 MB weight SRAM and 100 MB activation

SRAM.

The photo-core is powered by a laser. To determine the required laser power per channel

68

P, we conducted an analytical calculation that factors in (1) the laser wall-plug efficiency,

(2) the losses of the various optical devices, and (3) the SNR needed for an 8-bit output, as

follows:

P =
(κ SNRshot)

2 · (q ∆ f/4)
ηdet ·ηarray ·ηmod ·ηcpl ·ηlaser

, (3.3)

where SNRshot is the SNR assuming shot noise only and κ (assumed to be ≈ 3) accounts for

noise contributions (e.g., thermal noise and transistor noise) other than the shot noise. The

overall SNR = κ SNRshot = 2bout with bout being the bit precision of the output ADC. Here,

q is the elementary charge, and ∆ f is the bandwidth of the coherent detector (related to

the clock frequency). The ηs account for the transmissivity from the laser to the detectors.

ηmod is the transmissivity of the modulator (≈1.2 dB loss (Akiyama et al., 2012)), ηarray

is the transmissivity of the MZI array (≈0.04 dB loss per MZI (Baghdadi et al., 2021) and

each signal passes through 2m+1 MZIs), ηcpl is the fiber laser-to-chip coupling efficiency

(≈2 dB loss), ηdet is the efficiency of the photodetectors (≈80% (Lischke et al., 2015)), and

ηlaser is the wall-plug efficiency of the laser (≈20% (Mourou et al., 2013)). All the photonic

devices in the photo-core are simulated using Lumerical Maxwell-Equations solver FDTD

and circuit-level simulator INTERCONNECT (Ansys, 2024).

The 10-bit inputs require a high ER in the input modulators. This can be achieved

by using active optimization approaches (Wilkes et al., 2016; Miller, 2015). We use two

additional MZIs per modulator as variable beam splitters for obtaining a perfect 50:50

splitting in both ends of the modulator. In addition, an equalized phase-dependent loss

between the two middle arms is achieved as the MZM is driven in a differential push-pull

manner.

The inputs and the weights require 10-bit and 12-bit DACs, respectively, to guarantee

the 8-bit-precise outputs read by the ADCs (See Section 3.1.4). Due to the lack of publicly

available DAC prototypes in GF22FDX with our desired precision, for our analysis, we

used a 14-bit DAC (Huang et al., 2021) designed with 28 nm CMOS technology with a 10

69

GS/s sampling rate and 177 mW power consumption. Note that the power consumption

of 10-bit and 12-bit DACs will be less than a 14-bit DAC. Therefore, we scaled the power

numbers using a widely accepted figure of merit (FoM) for the performance of DACs, i.e.,

FoM = 2B · fs|6(bDAC−1) /PDAC. Here, bDAC is the bit precision of the DAC, fs|6(bDAC−1)

is the output signal frequency where the spurious free dynamic range has dropped with

6 dB (= 1 bit) in comparison with the expected results (≈ 6bDAC), and PDAC is the power

consumption of the whole DAC (Li and Zhou, 2020). In essence, the power consumption

of a DAC—with the same FoM—is proportional to 2b
DAC. Therefore, it can be assumed

that a 12-bit DAC (for the weights) with the same FoM will consume 22 = 4 times less

power than a 14-bit DAC. Similarly, a 10-bit DAC (for the inputs) will consume 24 = 16

times less power than a 14-bit DAC. The 10-bit input and 12-bit weight DACs will then

consume 11.06 mW and 44.25 mW, respectively. Similar to DACs, we use 10-bit ADCs

in 28 nm technology at the output. As mentioned in Section 3.1.3, each 10 GS/s DAC is

responsible for multiple conversions per tile (ζ = 100). Each ADC has a 5 GS/s sampling

rate and consumes 29 mW (Guo et al., 2020).

The E-O and O-E conversion power is based on the total energy required to oper-

ate the modulator circuitry, which is ∼ 20 fJ/bit, and the detector circuitry, which is ∼

297 fJ/bit (Sun et al., 2015). Each DRAM access is assumed to be 20 pJ/bit (Horowitz,

2014). The die-to-die interconnect between the photonic and electronic chiplets consumes

0.3 pJ/bit (Dehlaghi and Chan Carusone, 2016).

3.5 Discussion

In this study, our goal was to develop a balanced architecture that harnesses the advantages

of photonics for accelerating GEMM operations while (1) avoiding bottlenecks from dig-

ital electronic processes or storage limitations, and (2) more than offsetting the overheads

associated with electrical-optical and analog-digital conversions. We demonstrate that, al-

70

though performance expectations should be moderated compared to prior works that eval-

uated photonic cores in isolation, photonics technology can still be effectively leveraged

for DNN acceleration through careful hybrid system design. In this section, we address

the limitations of photonics technology and our proposed design, along with potential so-

lutions.

In a hybrid architecture like ADEPT, frequent data conversions between the analog

and digital domains are necessary, and these conversions contribute significantly to the

overall energy consumption. Although advancements in process technology may reduce

the overhead of these conversions, they will continue to pose a fundamental limitation on

the system’s speed and efficiency. As a potential solution, performing more operations in

the optical domain could be considered. However, this approach increases the cumulative

optical loss due to the larger number of optical devices, which in turn reduces the SNR and

the achieved bit precision at the output.

The modulation bandwidth of MZIs can be seen as another limitation, contributing to

latency overhead when reprogramming the MZI array. Furthermore, this MZI-based ap-

proach necessitates SVD and phase decomposition of the original values before they can

be programmed into the MZIs. For completeness, we measured this one-time cost for a

128× 128 matrix. We performed SVD on a 128× 128 array with randomly chosen val-

ues between [-1,1] using the NumPy Linear Algebra module. Then, we implemented and

timed the phase decomposition algorithm as described in Clements et al. (Clements et al.,

2016). We repeated the experiment 10 times for different matrices on a 2 sixteen-core 2.8

GHz Intel Gold 6242 (Intel, 2024) and calculated the average energy consumption to be

1728.9 Joules (DRAM energy included, calculated using PyRAPL (PowerAPI, 2024)) and

the average runtime to be 11.5 seconds. As an example, in ResNet-50, there are a total

number of 1756 128× 128 tiles. This makes the total energy consumption approximately

2724.7 kJ and the total latency approximately 5 hours in total. This process can be further

71

accelerated through GPU implementations. In the context of DNN inference, where the

weight values remain constant, the SVD and phase decomposition need to be performed

only once, and the associated cost is spread across all inferences. However, in situations

where the weight values are not fixed—such as during DNN training—the MZI-based ap-

proach becomes impractical. Performing SVD and phase decomposition in real-time would

introduce significant delays, severely hindering the performance of the photo-core.

In addition, in a photonic core, the dynamic range of values is constrained by the output

ADCs. During MVM operations, the product of 8-bit inputs and weights generates more

than 16 bits of information, but the ADCs reduce the precision of these MVM outputs back

to 8 bits. This loss of information in the partial outputs is a challenge unique to analog cores

and can lead to accuracy degradation in DNNs compared to 8-bit digital hardware. For

DNN inference, additional training efforts can help mitigate this accuracy loss and maintain

it within the desired range. We verify that 8-bit precision is adequate to achieve a ≥ 99%

of the FP32 accuracy in the benchmarks we evaluated (e.g. ResNet-50, BERT-large, and

RNN-T) after performing several epochs of quantization-aware training (QAT) (Wu et al.,

2020; Krishnamoorthi, 2018). While this precision is adequate for inference, training in the

photo-core requires higher precision, which is challenging to maintain in analog hardware.

This precision limitation due to ADCs and solutions for achieving higher dynamic range

for DNN inference and training will be explored in Chapter 4.

Lastly, in our study, we utilized large SRAM arrays to accommodate all DNN weights

on-chip and support large batch sizes without being bottlenecked by DRAM transfers. Con-

sequently, SRAM occupies the majority of the area in both ADEPT and electronic SAs.

While having large local SRAMs is advantageous for performance, it also tends to reduce

chip yield due to the larger chip size. Moreover, SRAM size cannot be increased indefi-

nitely; therefore, for larger DNNs with billions to trillions of parameters, DRAM transfers

will become unavoidable.

72

In such scenarios, scaling out to multiple chips is necessary to expand the total SRAM

cache size and enhance performance. Addressing the challenge of designing a scaled-out

system with multiple chips, each featuring multiple photo-cores, mapping a DNN model

across these accelerators, and coordinating the communication between them, remains part

of our future work

3.6 Chapter Summary

In this chapter, we proposed and evaluated a complete hybrid system for accelerating DNN

inference and introduced an electro-photonic accelerator, ADEPT. We demonstrated that

effectively accelerating DNN inference with photonics requires a tight interplay between

photonic compute units for GEMM operations, electronic logic units for non-GEMM op-

erations, and memory units. Through the implementation of optimization methods for

pipelining operations and data transfers, we showed that it is possible to leverage the high

throughput of the photonic tensor core without being constrained by slower electronic units.

Our evaluation compared the performance of the entire system against a similar system

where the photo-core is replaced by an SA, revealing that ADEPT can achieve a 5.7× im-

provement in throughput per watt on average among the evaluated state-of-the-art DNNs.

Furthermore, ADEPT can achieve 6.8× and 2.5× better throughput per watt compared

to state-of-the-art electronic and photonic DNN accelerators, respectively. Our reported

numbers suggest that while the performance expectations should be tempered compared

to prior works, photonics technology is still a promising candidate for next-generation AI

hardware.

73

Chapter 4

Unlocking High-Precision in Analog Tensor
Cores via the Residue Number System

In this chapter, we target the precision challenges in analog computing, agnostic to the

underlying technology, and propose using RNS to overcome this challenge by breaking

high-precision operations into multiple low-precision operations. We apply this RNS-based

approach to DNN inference and training to build high-precision, energy-efficient analog

tensor cores that provide high DNN accuracy. We also explore fault tolerance in RNS-

based analog tensor cores and use RRNS error-correcting codes to protect the computation

against errors and noise present in analog hardware1.

4.1 Precision Challenges in Analog Computing

Independent of the technology, in an analog MVM core, inputs and weights in a DNN layer

are passed through DACs and encoded in an analog property (e.g., phase, amplitude, etc.).

After the analog dot products are performed, the output data are passed through ADCs.

Figure 4·1 illustrates this dataflow in a conventional analog core performing a single MVM

operation. The precision of the analog operation is determined by (1) the precision of

DACs, (2) the precision of ADCs, and (3) the SNR during the analog operations.

A dot product between bin-bit input and bw-bit weight—both h-long vectors and en-

coded by DACs—results in bout=bin+bw+log2(h)−1 bits of information. For example,

1Portions of this chapter were published previously in Demirkiran, Cansu, et al. "A blueprint
for precise and fault-tolerant analog neural networks." Nature Communications 15.1 (2024): 5098.
DOI:10.1038/s41467-024-49324-8

74

for 8-bit DACs, the output will require more than 16 bits, necessitating an ADC with

bADC≥16 to ensure no information loss. Figure 4·2(a) shows the approximate energy con-

sumption per conversion for different bit precision in DACs and ADCs (Murmann, 2021).

As shown in the figure, ADC energy consumption is significantly higher—by two orders

of magnitude—than DAC energy consumption. Furthermore, ADC energy consumption

increases exponentially with bit precision, approximately 4× energy per conversion for

each additional bit. For the aforementioned 8-bit example, a single A-to-D conversion

would require ≥1 nJ energy. Considering the low energy consumption of MAC opera-

tions performed in the analog domain (tens-to-hundreds of fJ/MAC), high-precision ADCs

can easily dominate the total energy consumption. Furthermore, as bit precision increases,

the required SNR during analog operations also increases exponentially, leading to higher

power demands and limiting the precision achievable in analog cores.

As a result, energy-efficient analog accelerator designs typically employ ADCs with

lower precision than bout and only capture the badc most significant bits (MSBs) from

the bout bits of each partial output. Figure 4·2(b) shows the impact of this approach on

inference accuracy in ResNet-50 CNN (He et al., 2016) when classifying the ImageNet

dataset (Krizhevsky et al., 2012). The figure shows that this approach causes accuracy

degradation, especially as the vector size h increases. Essentially, to efficiently execute

large DNNs using analog accelerators, finding a better way to achieve high accuracy is

crucial than simply increasing the bit precision of the data converters.

4.2 RNS-Based Analog DNN Computation

The RNS uses n co-prime integer moduli to represent numbers as a set of residues. These

residues are calculated by performing a modulo operation on the integer in the BNS using

the selected moduli set (See Section 2.3.1) RNS is closed under addition and multiplication

operations, allowing for an MVM operation to be performed in the RNS space. Using the

75

 IN
PU

T
D

AC
 (h

)

WEIGHT DAC (h2)

bin-bit FXP

bw-bit FXP

bout-bit FXP

Flatten

Weight matrix hxh weight tile
(FP32)Input matrix

Flatten

hx1 input
vector
(FP32)

bADC-bit FXP

 O
U

PU
T

AD
C

 (h
)

Figure 4·1: Dataflow for a conventional analog core.

2 4 6 8 10 12 14 16
Number of bits

10
3

10
1

10
1

10
3

pJ
 p

er
 c

on
ve

rs
io

n ADC
DAC

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

Vector size (h)

0

20

40

60

80

A
cc

ur
ac

y(
%

)

FP32 accuracy: 76.1%

FP32
2 bits
4 bits
6 bits
8 bits

Figure 4·2: (a) Energy consumption per conversion for DACs and ADCs.
(b) Accuracy degradation in ResNet50 on Imagenet in a conventional analog
core.

RNS, Eq. (2.9) can be rewritten as:

X (ℓ+1) = f (ℓ)
(

CRT
(∣∣∣∣∣W (ℓ)

∣∣
M
∣∣X (ℓ)

∣∣
M

∣∣∣
M

))
. (4.1)

The same approach applies to Eqs. (2.10) and (2.11) in the backward pass.

A moduli set M = {m1,m2, ...mn} must ensure that the outputs of the RNS operations

stay in the RNS range, i.e.,

log2M ≥ bout = bin +bw + log(h)−1 (4.2)

76

Table 4.1: Data and data converter precision in RNS-based, LP FXP, and
HP FXP analog cores.

RNS-based Core (This work) LP FXP Core HP FXP Core

bin, bw bdac log2M badc Moduli Set (M) RNS Range (M) bdac bout badc Lost LSBs bdac bout badc

4 4 4 4 {15,14,13,11} ≃ 215 4 14 4 10 4 14 14
5 5 5 5 {31,29,28,27} ≃ 219 5 16 5 11 5 16 16
6 6 6 6 {63,62,61,59} ≃ 224 6 18 6 12 6 18 18
7 7 7 7 {127,126,125} ≃ 221 7 20 7 13 7 20 20
8 8 8 8 {255,254,253} ≃ 224 8 22 8 14 8 22 22

should be guaranteed for a dot product between h-long bin-bit input and bw-bit weight

vectors. This constraint prevents overflow during RNS operations.

The selection of M , constrained by Eq. (4.2), has a direct impact on the precision

and the energy efficiency of the RNS-based analog core. Table 4.1 compares RNS-based

analog GEMM cores with example moduli sets and regular FXP analog GEMM cores with

various bit precision. Here, we show two cases for the regular FXP representation: (1)

the low-precision (LP) case where bout > badc = bdac, and (2) the high-precision (HP) case

where bout = badc > bdac. It is important to note that all three types of analog cores represent

data as FXP numbers. We refer to a conventional analog core that performs computations

using the standard representation as a regular FXP core. Conversely, an RNS-based core

refers to an analog core that executes computations on FXP residues.

The LP approach uses low-precision ADCs causing bout −badc bits of information loss

in every dot product. In contrast, the HP approach uses high-precision ADCs to prevent

this loss. For the RNS-based core, we picked bin = bw = badc = bdac = ⌈log2 mi⌉ ≡ b for

ease of comparison against the FXP cores. Table 4.1 shows example moduli sets that are

chosen to guarantee Eq. (4.2) for h = 128 while keeping the moduli under the chosen bit-

width b. For n moduli with bit-width of b, M covers ≈ n · b bits of range at the output.

In Table 4.1, h is chosen to be 128 as an example considering the common layer sizes in

the evaluated MLPerf (Inference: Datacenter) benchmarks, providing high throughput with

77

4-bit 5-bit 6-bit 7-bit 8-bit

Number of bits

10

5

0

5

10

E
rr

or

RNS Fixed-point (LP)

ResNet-50 BERT-Large RNN-T ResNet-34 (SSD) DLRM OPT-125M OPT-350M

Benchmarks

0

25

50

75

100

A
cc

ur
ac

y
(n

or
m

.)

4-bit fixed-point
4-bit RNS

5-bit fixed-point
5-bit RNS

6-bit fixed-point
6-bit RNS

7-bit fixed-point
7-bit RNS

8-bit fixed-point
8-bit RNS

0 20 40 60 80

Epochs

0

5

10

15

Tr
ai

n
lo

ss

ResNet-50 Training

0 5 10 15 20 25

Steps

0.5

1.0

1.5

2.0

2.5

Bert-Large Fine-tuning

FP32 8-bit 7-bit 6-bit 5-bit 4-bit

0 20 40 60 80

Steps

3.0

3.5

4.0

4.5

OPT-125M Fine-tuning

a b

c d e

Figure 4·3: (a) The distribution of average error observed at the output of
a dot product performed with the RNS-based analog approach (pink) and
the LP regular FXP analog approach (cyan). Error is defined as the dis-
tance from the result calculated in FP32. The experiments are repeated for
10,000 randomly generated vector pairs with a vector size of h = 128. The
center lines of the boxes represent the median. The boxes extend between
the first and the third quartile of the data, while whiskers extend 1.5× of
the inter-quartile range from the box. (b) Inference accuracy of regular FXP
(LP) and RNS-based cores (See Table 4.1) on MLPerf (Inference: Datacen-
ters) benchmarks. The accuracy numbers are normalized by the accuracy
achieved in FP32. (c-e) Loss during training for FP32 and the RNS-based
approach with varying moduli bit-width. ResNet-50 (c) is trained from
scratch for 90 epochs. BERT-Large (d) and OPT-125M (e) are fine-tuned
from pre-trained models for 2 and 3 epochs, respectively.

high utilization of the GEMM core.

Figure 4·3a compares the error (relative to the FP32 results) observed when perform-

ing dot products using both the RNS-based core and the LP FXP core with the same bit

precision. Both cores employ the configurations listed in Table 4.1 for the example vector

size h = 128. The larger absolute error observed in the LP FXP case highlights the impact

of the abovementioned information loss due to badc < bout. The HP FXP scenario is not

shown, as the observed error is equivalent to that of the RNS case.

Figure 4·3b compares the inference accuracy in MLPerf (Inference: Datacenters) bench-

marks (Reddi et al., 2020) and OPT (Zhang et al., 2022a) (a transformer-based large lan-

78

Table 4.2: MLPerf (Inference: Datacenters) benchmarks (Reddi et al.,
2020).

DNN Task Dataset

ResNet-50 Image classification ImageNet (Deng et al., 2009)
BERT-Large Question answering SQuADv1.1 (Rajpurkar et al., 2016)

RNN-T Speech recognition Librispeech (Panayotov et al., 2015)
ResNet-34 (SSD) Object detection MS COCO (Lin et al., 2014)

DLRM Recommendation 1TB Click Logs (Zhao et al., 2021)
OPT-125M Language Modeling Wikitext (Merity et al., 2016)
OPT-350M Language Modeling Wikitext (Merity et al., 2016)

Table 4.3: Validation accuracy results after training/fine-tuning.

ResNet-50 BERT-Large OPT-125M
Precision Acc.(%) F1 Score (%) Acc.(%)/PPL

FP32 75.80 91.03 43.95/19.72
8-bit 75.77 90.98 43.86/20.00
7-bit 75.68 90.97 43.59/20.71
6-bit 75.13 90.85 42.79/22.62
5-bit 59.72 90.81 41.45/26.17
4-bit 42.15 89.66 38.64/35.65

guage model (LLM)) when run on an RNS-based analog core and a FXP (LP) analog core.

The HP FXP analog core is not shown as its accuracy is the same as the RNS-based core.

The evaluated DNNs, their corresponding tasks, and the datasets are listed in Table 4.2. Fig-

ure 4·3b shows that the RNS-based approach significantly ameliorates the accuracy drop

caused by the low-precision ADCs used in the LP FXP approach for all evaluated DNNs.

By using the RNS-based approach, it is possible to achieve ≥99% of FP32 accuracy (this

cut-off is defined in the MLPerf benchmarks (Reddi et al., 2020)) for all evaluated bench-

marks when using residues with 6 bit precision. This number can be lowered to 5 bits for

BERT-Large and RNN-T and 4 bits for DLRM.

Besides its success in DNN inference, the RNS-based approach opens the way for ana-

log computing to be used in tasks that require higher precision than DNN inference such as

79

IN
PU

T
D

AC
 (h

)

IN
PU

T
D

AC
 (h

)

Y

y1 y2 yn

Reverse conversion

RRAM MZI/MRR PCM

WEIGHT DAC (h2)

X

W

Analog MAC units

mod m1

mod m2

mod mn

|W |m1

|X
 | m

1

|W |m2

|X
 | m

2

Forward
conversion

log m1 - bits |W |mn

|X
 | m

n

Analog MVM units

IN
PU

T
D

AC
 (h

)

WEIGHT DAC (h2)WEIGHT DAC (h2)

ANALOG MOD

OUTPUT ADC (h)

ANALOG MOD

OUTPUT ADC (h)

ANALOG MOD

OUTPUT ADC (h)

log m2 - bits

log mn - bits

log m1 - bits log m2 - bits log mn - bits

Figure 4·4: RNS-based analog GEMM dataflow. The operation is shown
for a moduli set M = {m1, . . . ,mn}. The n h× h analog MVM units are
represented as generic blocks for n moduli. The dataflow is agnostic to the
underlying analog technology.

DNN training. Figures 4·3(c-e) show the loss calculated during DNN training/fine-tuning.

Table 4.3 reports the validation accuracy after FP32 and RNS-based low-precision train-

ing. Here, the GEMM operations during the forward and backward passes of training are

performed using the same methodology as in inference, with weight updates carried out

in FP32. These experiments reveal that our approach can achieve ≥99% FP32 validation

accuracy after training ResNet-50 from scratch using only 6-bit moduli and fine-tuning

BERT-Large and OPT-125M by using 5-bit and 7-bit moduli, respectively. These results

are particularly promising, as previous attempts at analog DNN hardware using the LP FXP

approach fail to successfully demonstrate the training of state-of-the-art DNNs due to the

limited precision inherent in this method.

Figure 4·4 illustrates the dataflow of the RNS-based analog core when performing

MVM as part of the DNN inference/training. An input vector X and a weight matrix W to

be multiplied in the MVM unit are first mapped to signed integers. To mitigate the quanti-

zation effects, X and each row in W are scaled by an FP32 scaling factor that is unique to the

vector (See Section 4.5). The signed integers are then converted into RNS residues through

80

modulo operation (i.e., forward conversion). By construction, each residue is within the

range of [0,mi). To achieve the same throughput as a FXP analog core, the RNS-based

analog core with n moduli requires using n analog MVM units—one for each modulus—

and running them in parallel. Each analog MVM unit requires a set of DACs for converting

the associated input and weight residues into the analog domain. The MVM operations

are followed by an analog modulo operation on each output residue vector. Thanks to the

modulo operation, the output residues—to be captured by ADCs—are reduced back to the

[0,mi) range. Therefore, a bit precision of ⌈log2 mi⌉ is adequate for both DACs and ADCs

to perform input and output conversions without any information loss. The output residues

are then converted back to the standard representation in the digital domain using Eq. (2.18)

to generate the signed-integer output vector, which is then mapped back to an FP32 final

output Y . The non-linear function f (e.g., ReLU, sigmoid, etc.) is then applied digitally in

FP32.

4.3 RRNS for Fault Tolerance

Analog compute cores are highly sensitive to noise. With RNS, even minor errors in the

residues can lead to significant errors in the corresponding integer values they represent.

The RRNS (James and Pe, 2015; Yang and Hanzo, 2001a; Yang and Hanzo, 2001b) can

detect and correct errors—making the RNS-based analog core fault tolerant. RRNS uses a

total of n+k moduli: n non-redundant and k redundant. An RRNS(n+k,n) code can detect

up to k errors and can correct up to ⌊ k
2⌋ errors. In particular, the error in the codeword (i.e.,

the n+ k residues representing an integer in the RRNS space) can be one of the following

cases:

• Case 1: Fewer than ⌊ k
2⌋ residues have errors—thereby they are correctable,

• Case 2: Between ⌊ k
2⌋ and k residues have errors or the codeword with more than k

errors does not overlap with another codeword in the RRNS space—thereby the error

81

1 Redundant
modulo

2 Redundant
moduli

4 Redundant
moduli 4 Redundant

moduli

1 Redundant
modulo

2 Redundant
moduli

1 Redundant
modulo

2 Redundant
moduli

4 Redundant
moduli

Figure 4·5: Calculated output error probability (perr) versus single residue
error probability (p).a-c perr for one (a), two (b), and infinite (c) error cor-
rection attempts and a varying number of redundant moduli (k).

is detectable,

• Case 3: More than k residues have errors and the erroneous codeword overlaps with

another codeword in the RRNS space—thereby the error goes undetected.

Errors are detected by using majority logic decoding wherein we divide the total n+ k

output residues into
(n+k

n

)
groups with n residues per group and compare the results ob-

tained from each group. If more than 50% of the groups have the same result, then the

generated codeword is assumed correct. This either corresponds to Case 1 where the result

is actually correct or Case 3, where the erroneous codeword generated by the majority of the

groups overlaps with another codeword. The latter situation leads to an incorrect majority

among the groups causing the error to go undetected. In contrast, not having a majority in-

dicates that the generated codeword is erroneous and cannot be corrected. This corresponds

to Case 2. In this case, the detected errors can be eliminated by repeating the calculation.

One simple way of performing majority logic decoding in this context is to convert the

residues in each
(n+k

n

)
group back to the standard representation via CRT to generate an

output value for each group and compare the results. To optimize the hardware performance

of this error detection process, more efficient base-extension-based algorithms (Shenoy and

Kumaresan, 1989) instead of CRT can be applied.

The final error probability in an RRNS code is determined by the non-correctable er-

82

0.00 0.20 0.40 0.60 0.80 0.99

Single residue error probability (p)

0

20

40

60

76.1

R
es

N
et

-5
0

A
cc

ur
ac

y(
%

)

One attempt

0.00 0.20 0.40 0.60 0.80 0.99

Single residue error probability (p)

0.0

20.0

40.0

60.0

76.1

Two attempts

0.00 0.20 0.40 0.60 0.80 0.99

Single residue error probability (p)

0.0

20.0

40.0

60.0

76.1

Infinite attempts

0.00 0.20 0.40 0.60 0.80 0.99

Single residue error probability (p)

0

20

40

60

80

93.5

B
E

R
T-

La
rg

e

A
cc

ur
ac

y(
%

)

One attempt

0.00 0.20 0.40 0.60 0.80 0.99

Single residue error probability (p)

0.0

20.0

40.0

60.0

80.0

93.5

Two attempts

Number of redundant moduli 1 2 4 Number of bits 6 7 8

0.00 0.20 0.40 0.60 0.80 0.99

Single residue error probability (p)

0.0

20.0

40.0

60.0

80.0

93.5

Infinite attempts

10
1

10
0

Output current (mA)

10
12

10
9

10
6

10
3

10
0

p e
rr

One attempt

10
1

10
0

Output current (mA)

10
12

10
9

10
6

10
3

10
0

Two attempts

10
1

10
0

Output current (mA)

10
12

10
9

10
6

10
3

10
0

Infinite attempts

a b c

d e f

g h i

(FP32)

(FP32)

BERT-Large

ResNet-50

BERT-Large

ResNet-50

BERT-Large

ResNet-50

Figure 4·6: (a-f) The plots show ResNet-50 (a-c) and BERT-Large (d-f)
inference accuracy under varying p for RRNS with one (a and d), two (b
and e), and infinite (c and f) error correction attempts and a varying number
of redundant moduli (k). (g-i) perr caused by shot and thermal noise versus
the output current at the photodetector in an analog photonic accelerator for
RRNS with one (g), two (h), and infinite (i) error correction attempts and
varying k. The horizontal black lines show the cut-off points where larger
perr starts degrading the accuracy for the evaluated DNNs (i.e., ResNet-50
and BERT-Large).

ror probability observed in the residues. The overall error rate is also influenced by the

selected moduli set and the number of correction attempts made for the detected errors

(See Appendix A.1). Let pc, pd, and pu be the probabilities of Cases 1, 2, and 3 oc-

curring, respectively, when computing a single output. Overall, pc + pd + pu = 1. For

a single attempt (i.e., R = 1), the probability of producing the incorrect output integer is

perr(R = 1) = 1− pc = pu + pd . It is possible to repeat the detected erroneous calculations

R>1-times to minimize the amount of uncorrected error at the expense of increasing com-

83

pute latency and energy. In this case, the probability of having an incorrect output after R

attempts of error correction is

perr(R) = 1− pc

R−1

∑
r=0

(pd)
r. (4.3)

As the number of attempts increases, the output error probability decreases and converges

to limR→∞ perr(R) = pu/(pu + pc).

Figure 4·5 shows how perr changes with the error probability in a single residue (p) for

different numbers of redundant moduli (k) and attempts (R) and moduli sets with different

bit-widths. Broadly, as p increases, the perr tends to 1. For a given number of R, a higher

bit precision and higher k results in a lower perr. For a fixed k and a fixed number of bits

per moduli, perr decreases as R increases.

Figure 4·6 investigates the impact of noise on the accuracy of two large and impor-

tant MLPerf benchmarks—ResNet-50 and BERT-Large—when error correction is imple-

mented using RRNS. The two models show similar behavior: increasing k and increasing

R decrease perr for the same p, enabling to sustain high accuracy for higher p. ResNet-50

requires ∼3.9 GigaMAC operations (GOp) per inference on a single input image. For a

128× 128 MVM unit, inferring an ImageNet image through the entire network involves

computing ∼29.4M partial output elements. Therefore, the expected transition point from

an accurate network to an inaccurate network is at perr =≤ 1/29.4M = 3.4× 10−8. This

perr transition point is ≤ 1/358.6M = 2.8×10−9 for BERT-Large. Figure 4·6 shows, how-

ever, that the evaluated DNNs are more resilient to noise than expected: they can toler-

ate higher perr while maintaining good accuracy. The accuracy of ResNet-50 only starts

degrading (below 99% FP32) when perr ≈ 4.5× 10−5 (1000× higher than the estimated

value) on average amongst the experiments shown in Figure 4·6. This transition proba-

bility is perr ≈ 4×10−4 for BERT-Large (on average 100,000× higher than the estimated

value).

84

In analog hardware, expected p and perr depend on the underlying analog technology,

device characteristics, and many other device-specific factors. As an example, we examine

a photonics-based RNS analog accelerator design that is constrained by thermal and shot

noise. In such a system, the noise can be modeled as a Gaussian distribution that is additive

to the output value, i.e., Σ jx jw j +N (0,1)σnoise for a dot product (Garg et al., 2023). For

an analog core where output is captured as an analog current, let us define the maximum

achievable current as Iout, representing the largest output value. A higher Iout requires a

higher input power, but results in a higher SNR and lower perr, creating a tradeoff between

power consumption and noise tolerance.

Without any redundant moduli (k = 0), Iout ≤ 1 mA is adequate to prevent accuracy loss

due to analog noise in both DNNs (6-bit case). This cut-off is at 2 mA and 8 mA for 7-bit

and 8-bit cases, respectively. For instance, for a photonic system, Iout ≤ 1 mA requires

∼1 mW (0 dBm) output power (for a photodetector with 1 A/W responsivity)—which is

feasible assuming a 10 dBm laser source and 10 dB loss along the optical path.

The required Iout can be further lowered by using RRNS. Figs. 4·6(g-i) shows the re-

lationship between Iout and the expected perr for different RRNS. For a smaller number of

bits and a higher k, a lower Iout is adequate to stay under the cut-off perr for the evaluated

DNNs. For example, a 6-bit RRNS with k = 1 requires Iout = 0.1 mA for a single error

correction attempt as against the k = 0 case where Iout = 1 mA is needed to avoid accuracy

loss due to analog noise. The required Iout similarly decreases with the increasing R. Please

see Noise Modeling under Methods for details.

4.4 Energy and Area Efficiency

Figure 4·7a shows the energy consumption of DACs and ADCs per dot product for the

RNS-based and FXP (LP and HP) analog hardware configurations. To achieve the same

throughput as the (LP/HP) FXP cores, the RNS-based core with n moduli must use n sets

85

10
13

10
10

10
7

10
4

Data converter energy per dot product (J)

4 b
its

5 b
its

6 b
its

7 b
its

8 b
its

N
um

be
r o

f b
its

Compared to fixed-point with the same
precision (HP), RNS is 40.4× more
energy efficient

485.3×

6.3K×

114.2K×

1.6M×

RNS DAC
RNS ADC

Fixed-point (LP) DAC
Fixed-point (LP) ADC

Fixed-point (HP) DAC
Fixed-point (HP) ADC

10
15

10
14

10
13

10
12

10
11

Data converter energy per dot product (J)

5 b
its

6 b
its

7 b
its

8 b
its

N
um

be
r o

f b
its

DAC (k = 0)
ADC (k = 0)

DAC (k = 1)
ADC (k = 1)

DAC (k = 2)
ADC (k = 2)

DAC (k = 4)
ADC (k = 4)

10
0

10
1

10
2

ADC area footprint (normalized)

4 b
its

5 b
its

6 b
its

7 b
its

8 b
its

N
um

be
r o

f b
its

Fixed-point (LP)
Fixed-point (HP)

RNS (k = 0)
RRNS (k = 1)

RRNS (k = 2)
RRNS (k = 4)

a

b

c

Figure 4·7: (a-b) Energy consumption of DACs and ADCs per dot product
for the RNS-based and the regular FXP (a) and the RNS and RRNS-based
analog approaches (b). (c) Normalized area of ADCs for the FXP, RNS, and
RRNS-based approaches.

of DACs and ADCs. This makes the energy consumption of the RNS-based core n× larger

compared to the LP FXP approach. However, the LP FXP approach with low-precision

ADCs experiences information loss in the partial outputs and hence has lower accuracy.

The RNS-based and HP FXP approaches provide the same bit precision (i.e., the same

DNN accuracy). Yet, using the RNS-based approach is orders of magnitude more energy-

efficient than the HP FXP approach. This is mainly because of the high cost of high-

precision ADCs required to capture the full output in the HP FXP approach. ADCs domi-

86

nate the energy consumption with approximately three orders of magnitude higher energy

usage than DACs with the same bit precision. In addition, energy consumption in ADCs

increases exponentially with increasing bit precision (Murmann, 2021). This favors using

multiple DACs and ADCs with lower precision in the RNS-based approach over using a sin-

gle high-precision ADC. The RNS-based approach briefly provides a sweet spot between

the LP and HP FXP approaches without compromising accuracy and energy efficiency.

Figure 4·7b shows the energy consumption of DACs and ADCs when RRNS is used.

The plot only shows the 5-to-8-bit cases as there are not enough co-prime moduli smaller

than 15 to use RRNS for the 4-bit case. RRNS results in an approximately linear increase

in energy consumption as the number of moduli (n+ k) increases. The compute time does

not increase with the increasing k as operations for different moduli are independent and

can be performed in parallel.

The area footprint of data converters has a weaker correlation with their bit precision

than their energy consumption. In a study by Verhelst and Murmann in 2012 (Verhelst and

Murmann, 2012), the authors observed that the area footprint of ADCs is proportional to

2αb where α∈ [0.11,1.07] depending on the type of the ADC, and is α= 0.5 when all ADC

types are considered. Assuming the same technology node is used, Figure 4·7c shows the

normalized area footprint of ADCs for the LP and HP FXP, RNS (k = 0,n ADCs per dot

product) and RRNS (k > 0,n+ k ADCs per dot product) approaches. While the area foot-

print of the RNS and RRNS-based approaches are higher than the LP FXP approach, they

have a smaller area footprint than the HP FXP approach for all bit precisions. In addition,

the same study points out that the sampling frequency of ADCs is independent of the area

footprint. Therefore, in the RNS and RRNS approaches, instead of having multiple ADCs

per dot product, one can use a single and faster ADC and perform multiple conversions

using the same ADC to achieve the same throughput with better area efficiency.

87

4.5 Evaluation Methodology

In this section, we describe our evaluation methodology for data converter energy calcula-

tion and accuracy modeling.

4.5.1 Data Converter Energy Estimation

The DAC and ADC energy numbers in Figs. 4·7a and 4·7b are estimated by using equations

formulated by Murmann (Murmann, 2021; Murmann, 2024). The energy consumption of

a DAC per b-bit conversion is

Edac = b2CuV 2
DD, (4.4)

where Cu = 0.5 fF is a typical unit capacitance and VDD = 1V is the supply voltage (Mur-

mann, 2021). The energy consumption of an ADC per b-bit conversion can be estimated

as

Eadc = k1b+ k24b. (4.5)

For calculating the coefficients k1 and k2, we used the data from the ADC survey col-

lected by Murmann (Murmann, 2024). The dataset includes all ADC literature published in

the two main venues of the field, the International Solid-State Circuits Conference (ISSCC)

and the VLSI Circuit Symposium, between the years 1997 and 2023. We removed the data

points with a sampling frequency lower than 1 GHz as our design requires high-speed data

converters. k1 is calculated as the average of the three samples with the smallest EADC/b

and k2 as the average of the three samples with the smallest EADC/4b among the available

data points (Murmann, 2024).

4.5.2 Accuracy Modeling

Both RNS-based and conventional FXP analog cores are modeled using PyTorch to esti-

mate inference and training accuracy. Convolution, linear, and batched matrix multipli-

cation (BMM) layers are executed as GEMM operations, which are computed tile-by-tile

88

through a series of tiled-MVM operations, determined by the tile size of the analog core.

Each input, weight, and output tile is quantized according to the specified bit precision.

Before quantization, the input vectors and weight tiles are first dynamically scaled at

runtime to mitigate the quantization effects as follows: For an h× h weight tile Wt , we

denote each row vector as Wrt where the subscript r stands for the row and t for the tile.

Similarly, an input vector of length h is denoted as Xt where t indicates the tile. Each

weight row Wrt shares a single FP32 scale sw
rt = max(|Wrt |) and each input vector Xt

shares a single FP32 scale sx
t = max(|Xt |). h scales per h×h weight tile and one scale per

input vector, in total h+1 scales, are stored for each tiled-MVM operation. The tiled MVM

is performed between the scaled weight and input vectors, Ŵrt = Wrt/sw
rt and X̂t = Xt/sx

t ,

respectively, to produce Ŷrt = ŴrtX̂t . The output Ŷrt is then quantized (if required) to

resemble the output ADCs and multiplied back with the appropriate scales so that the actual

output elements Yrt = Ŷrt · sw
rt · sx

t are obtained.

Here, the methodology is the same for RNS-based and regular FXP cores. For the

RNS-based case, in addition to the description above, the quantized input and weight in-

tegers are converted into the RNS space before the tiled-MVM operations. MVMs are

performed separately for each set of residues and are followed by a modulo operation be-

fore the quantization step. The output residues for each tiled MVM are converted back to

the standard representation using the CRT.

To accurately model the quantization during forward and backward passes, all GEMM

operations (i.e., convolution, linear, and BMM layers) are sandwiched between an input

operation Oin and an output operation Oout. This makes the operation order Oin-GEMM-

Oout during the forward pass, and Oout-GEMM-Oin in the backward pass. Oin quantizes the

input and weight tensors in the forward pass and is a null operation in the backward pass. In

contrast, Oout is a null operation in the forward pass and quantizes the activation gradients

in the backward pass. In this way, the quantization is always performed before the GEMM

89

operation. The optimizer (i.e., SGD or Adam) is modified to keep a copy of the FP32

weights to use during the weight updates. Before each forward pass, the FP32 weights are

copied and stored. After the forward pass, the quantized model weights are replaced by

the previously stored FP32 weights before the step function so that the weight updates are

performed in FP32. After the weight update, the model parameters are quantized again for

the next forward pass. This high-precision weight update step is crucial for achieving high

accuracy in training.

We trained ResNet-50 from scratch by using SGD optimizer for 90 epochs with a mo-

mentum of 0.9 and a learning rate starting from 0.1. The learning rate was scaled down

by 10 at epochs 30, 60, and 80. We fine-tuned BERT-Large and OPT-125M from the im-

plementations available in the Huggingface transformers repository (Huggingface,). We

used the Adam optimizer for both models with the default settings. The script uses a linear

learning rate scheduler. The learning rate starts at 3e−05 and 5e−05 and the models are

trained for 2 and 3 epochs, respectively for BERT-Large and OPT-125M.

Noise Analysis

In analog hardware, both shot noise and thermal noise can be modeled as Gaussian distri-

butions, i.e., Ishot ∼
√

2qe∆ f IoutN (0,1) where qe is the elementary charge, ∆ f is the band-

width, Iout is the output current of the analog dot product and Ithermal ∼
√

4kB∆ f T
RTIA

N (0,1)

where kB is the Boltzmann constant, T is the temperature, and RTIA is the feedback resistor

of the transimpedance circuitry.

For a modulus m, the consecutive output residues represented in the analog output cur-

rent should be at least Iout/m apart from each other to differentiate m distinct levels. An

error occurs in the output residue when
√

I2
shot + I2

thermal ≥ Iout/2m as the residue will be

rounded to the next integer otherwise. Therefore, the error probability in a single residue

can be calculated as p = P(
√

2qe∆ f Iout +
4kB∆ f T

RTIA
N (0,1) ≥ Iout/2m). We used ∆ f = 5

GHz, T = 300 K and RTIA = 200Ω as typical values in the experiments shown in Fig-

90

ure 4·6(g-i). For a calculated p, perr = 1− (1− p)n for an n-moduli RNS (k = 0). For

RRNS (k > 0), perr can be obtained using Figure 4·5 or Eq. (4.3).

4.6 Related Work

RNS is a well-explored numeral system that has been used in a variety of applications

including digital signal processing (Jenkins, 1980), cryptography (Yen et al., 2003), and

DNNs (Samimi et al., 2020; Salamat et al., 2018). RNS-based DNN computation in digital

hardware was proposed for improving energy efficiency by breaking numbers into residues

with fewer bits. Res-DNN (Samimi et al., 2020) proposes an RNS-based version of the pop-

ular DNN accelerator Eyeriss (Chen et al., 2016) and RNS-Net (Salamat et al., 2018) uses

a PiM-based design and simplifies RNS operations to PIM-friendly ones. A similar work,

DNNARA (Peng et al., 2020), is a nanophotonic (not analog) RNS-based DNN inference

accelerator where the authors use 2×2 optical switches to build a network and manipulate

the route of the light through this network to perform multiplication and additions using a

one-hot encoded mapping. While all three works are similar to our study in terms of using

RNS for DNN inference, we are the first to propose using RNS in the context of analog

DNN computation. In addition, these accelerators all propose fully RNS-based dataflows

without switching back and forth between RNS and BNS. Although this approach of stay-

ing in the RNS domain removes the cost of the RNS-BNS conversions, it requires periodi-

cally performing overflow detection and ranging operations in the RNS domain to preserve

the integrity of RNS operations. More importantly, these fully RNS-based computations

force the end-to-end DNN to be computed in FXP arithmetic. Performing nonlinear op-

erations in the RNS domain requires using approximations (e.g., Taylor series expansion)

to reduce nonlinear operations into multiply and add operations. These approximations in

nonlinear functions cause information loss and demand higher data precision. As a result,

these previous works use 16-bit or higher precision to represent data to achieve high accu-

91

racy and their proposals are limited to DNN inference. In our approach, switching back and

forth between RNS and BNS for each MVM operation allows us to control the precision

of nonlinear operations (which are performed on digital hardware) independently and per-

form scaling (dynamic quantization) before MVM operations to alleviate the quantization

errors at the data converters (See Section 4.5.2). This approach also enables us to per-

form backpropagation and successfully train DNNs with low-precision arithmetic (7-bit)

besides DNN inference. In contrast to the few previous analog DNN training demonstra-

tions(Bandyopadhyay et al., 2023; Filipovich et al., 2022; Pai et al., 2023; Hughes et al.,

2018; Zhang et al., 2021) that were limited to very simple tasks (e.g., MNIST classifica-

tion) and DNNs with a few small layers, our approach can achieve a much higher dynamic

range through RNS and can successfully train state-of-the-art DNNs. At last, different from

previous works, we analyze the impact of noise on accuracy in RNS-based DNN inference

and integrate RRNS to combat the accuracy loss caused by the errors in analog hardware.

4.7 Discussion

The RNS (and the fault-tolerant RRNS) framework proposed in this chapter is agnostic

to the analog technology employed. This framework requires GEMM operations to be

performed in the RNS space, requiring modular arithmetic in the analog domain. Analog

GEMM is well-explored in the literature. Previous works leveraged photonics (Shen et al.,

2019; Xu et al., 2021; Tait et al., 2017; Peng et al., 2020; Shiflett et al., 2020; Shiflett

et al., 2021), crossbar arrays consisting of RRAM (Yao et al., 2020; Chi et al., 2016;

Shafiee et al., 2016; Hu et al., 2016; Tang et al., 2017), switched capacitors (Bankman

and Murmann, 2015; Bankman and Murmann, 2016), PCM cells (Feldmann et al., 2021),

STT-RAM (Jain et al., 2017; Shi et al., 2020), etc. One can use these methods followed by

a modulo operation in the analog domain to perform modular GEMM operations.

The analog modulo operation can be performed electrically or optically. As an electri-

92

cal solution, one can use ring oscillators, a circuit that generates a continuous waveform

by cycling through a series of inverters (Ordentlich et al., 2018), to perform modulo oper-

ations. By carefully designing the parameters of the ring oscillator, it is possible to create

an output frequency that corresponds to the desired modulus value.

Alternatively, the phase of an optical signal can be leveraged for performing modulo

due to the periodicity of phases in optical systems. The optical phase is inherently modular

against 2π. By modulating the phase of an optical signal, one can achieve modular MAC

operations in the analog domain. We leverage this idea in Chapter 5 to design an RNS-

based photonic DNN accelerator.

The moduli sets and tile sizes provided in this chapter are used as examples. For a spe-

cific analog technology, a thorough design space exploration should be conducted, taking

into account the trade-offs unique to that technology. The design can be optimized for var-

ious metrics, such as throughput, energy efficiency, and area efficiency, leading to different

optimal configurations. In these varying configurations, the required bit precision for RNS

operations may differ from the reported discussed in this chapter.

4.8 Chapter Summary

In this chapter, we addressed the precision challenges in analog computing by employing

the RNS, which constructs high-precision operations from multiple low-precision oper-

ations. This approach mitigates the need for high-precision data converters and prevents

information loss. Our experiments demonstrated that the RNS-based technique can achieve

over 99% of FP32 accuracy for DNN inference using only 6-bit and for training with 7-

bit FXP arithmetic. These findings suggest that RNS can significantly reduce the energy

consumption of analog accelerators without compromising throughput or precision. In ad-

dition, we introduced a fault-tolerant dataflow utilizing RRNS to detect and correct errors

in analog hardware.

93

Chapter 5

RNS-based Photonic DNN Training Accelerator
Design

In this chapter, we leverage the RNS-based framework proposed in Chapter 4 and design

an electro-photonic DNN training accelerator, Mirage. To perform RNS operations, we

propose novel photonic modular arithmetic units based on cascaded phase shifters. By

combining RNS and photonics, Mirage provides high energy efficiency without compro-

mising precision and can successfully train state-of-the-art DNNs achieving comparable

accuracy to FP32 training. Our study shows that on average across several DNNs when

compared to systolic arrays, Mirage achieves more than 23.8× faster training and 32.1×

lower EDP in an iso-energy scenario and consumes 42.8× lower power with comparable

or better EDP in an iso-area scenario1.

5.1 RNS-Based Dataflow in Mirage

As mentioned in Chapter 4, RNS is closed under addition and multiplication, allowing a

GEMM operation to be performed in the RNS space. Figure 5·1 shows the dataflow for

a tiled-GEMM operation as part of the forward pass in Mirage. In the RNS space, each

matrix is represented by n residue matrices for n moduli. GEMM in the RNS space is then

a set of modular GEMM operations—one GEMM per modulus, n GEMMs in total. After

the GEMM operations are performed, the resulting n output residue matrices are converted

1Portions of this chapter were published previously in Demirkiran, Cansu, et al. "Mirage: An RNS-
Based Photonic Accelerator for DNN Training." 2024 ACM/IEEE 51st Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2024. DOI: 10.1109/ISCA59077.2024.00016

94

O
U

TP
U

T
AD

C

Photonic MMVMUs

FP32

Input
residue vectors

FP32

Output
residue vectors

log m bits

Weight
residue tiles

WEIGHT DAC
Ti

lin
g

FP

 ͢
BF

P
FP

 ͢

BF
P

Shared
exponent

Signed
integer

Shared
exponent

Signed
integer

Forward
Conversion

Forward
Conversion Reverse

Conversion

BFP ͢ FPExponent
Calculation

Accumulation

FP32

log m bits

log m bits

log m bits

log m bits

FP32

FP32

Weight matrix

Input matrix
Ti

lin
g

1

1 2

2
3

3

4

5 6

7

8

9

Nonlinearity10

Weight tiles

Input vectors

Figure 5·1: Mirage’s RNS-based dataflow for a single tiled-MVM opera-
tion as part of a forward pass. We show a four-moduli case in this figure as
an example.

back to a single output matrix in BNS by using Eq (2.18). The same approach applies to

the GEMM operations in the backward pass as stated in Eqs. (2.10) and (2.11).

The dataflow follows these steps:

1 The FP32 input and FP32 weight matrices are tiled with a tile size equal to the

photonic MVM array size.

2 The FP32 values are converted to BFP. In an MVM operation with BFP values, the

input vector and each row of the weight tile represent a BFP group2. For each group, the

largest exponent among the group elements is chosen to be the shared exponent (e⃗v). Given

an e⃗v for a group v⃗ with a group size g, i.e., e⃗v = max(e⃗v[i]) ∀i ∈ {1, ..., g}, the mantissae

of the group elements are shifted right by the difference between the shared exponent and

their original exponent, i.e., mv⃗[i] = mv⃗[i] >> (e⃗v − e⃗v[i]), where v⃗[i] is the ith element of v⃗.

The LSBs of the mantissae are then truncated depending on the number of mantissa bits

(bm).

3 We perform ‘forward conversion’ to convert the ‘bm+1’-bit signed integers, i.e., sign

and mantissa bits of the BFP values, of the input vector and weight tile into the RNS space.

2The group size in BFP, denoted as g, the vector size, denoted as h, and the horizontal dimension of the
photonic MMVMU (the number of optical MAC units within a row), all signify the count of elements within
the vectors subjected to a dot product. From this point onward, we will collectively refer to these three terms
as g.

95

Forward conversion generates n input vectors and n weight tiles in total for n moduli. Here

each residue is represented by ⌈log2(mi)⌉ bits where mi is the ith modulus value. Forward

conversion is a modulo operation that can be simplified into a simple shift operation when

special moduli sets are used (See Section 2.3.2.

4 Each weight residue tile is passed through ⌈log2(mi)⌉-bit DACs to ensure no infor-

mation loss and programmed into the MMVMUs. The input vectors do not require DACs

thanks to our photonic core design as each individual digit of the binary input is multiplied

separately (more details in Section 5.2).

5 Analog modular MVM operations are performed in the modular MVM units (MMV-

MUs) using cascaded phase shifter blocks. The operations are inherently modular as the

operands are encoded directly in the amount of phase shift applied to an optical signal (See

Section 5.2).

6 The outputs are detected by photodetectors and converted into the digital domain

by using ⌈log2(mi)⌉-bit ADCs. Here, it is important to note that weight DACs and output

ADCs have the same precision. This is because the use of modular arithmetic in the analog

domain ensures that the data bit-width does not grow during operations. Therefore, the

output can be collected with no information loss at the ADCs with the same bit-width as

DACs.

7 The collected output residues are converted back to BNS. This ‘reverse conversion’

can be implemented using Eq. (2.18). Similar to forward conversion, using special moduli

sets alleviates the complexity and overhead of this step.

8 The exponents of the output vector are digitally calculated in parallel with the analog

modular MVM operations. Using the output mantissae and exponents, FP32 values are

constructed.

9 The partial outputs are accumulated to compose the final GEMM output. The

dataflow in Mirage requires the partial outputs to be written to the on-chip memory. For

96

each partial output, a read-accumulate-write operation is performed.

10 Steps 2-9 are repeated for each tile in a layer and nonlinearity is then applied to the

final GEMM result (digitally in FP32).

Steps 1-10 are repeated for each layer until the forward pass is complete. Input and

weight gradients are then calculated in a similar manner where input and weight matrices

in the diagram are replaced by the operands in Eqs. (2.10) and (2.11). Once the weight

gradients are obtained, the weight values are updated according to Eq. (2.12). Here, we

perform all the GEMM operations in BFP, however, we store the weights in FP32 in the

memory and perform the weight updates in FP32.

5.2 Modular Arithmetic with Photonics

In Mirage, we perform tiled-MVM operations in the RNS domain, as shown in Figure 5·1,

step 5. This step requires a new photonic core design for performing modular arithmetic

in the analog domain, unlike the conventional photonic cores relying on standard FXP

arithmetic. This section describes our novel modular MAC unit and how we build modular

dot products and MVMs using this unit.

5.2.1 Modular Multiplication Unit (MMU)

The phase difference between input and output in a typical dual-rail MZM (as shown Fig-

ure 5·2(a)) is

∆Φ =
V L
Vπ·L

, (5.1)

where Vπ·L is the modulation efficiency of the phase shifter and a constant value. ∆Φ is

then proportional to both the length of the phase shifter, L, and the applied voltage, V . A

regular multiplication, i.e., xw, is performed through amplitude modulation by adjusting

the attenuation caused by the phase shift on the input signal. However, in RNS, a modular

multiplication, i.e., |xw|m is needed. In Mirage, this behavior is achieved through phase

97

modulation. By encoding x and w in L and V , we can obtain a phase shift that is proportional

to xw and inherently modular with 2π in the same MZM design, i.e., ∆Φ ∝ |xw|2π.

However, L is fixed after fabrication and cannot be changed at runtime. Therefore, we

use separate phase shifters for each digit of the binary operand, with the length of each

shifter proportional to the weight of the corresponding binary digit, as illustrated in Fig-

ure 5·2(b). To encode a b-bit value, we use b phase shifters with lengths 20L, 21L, ..., 2b−1L

for each bit from LSB to MSB and control each digit separately. For performing a multipli-

cation, we map one operand (w in this example) to the applied voltage and apply the same

voltage to all b digits. We then use the second operand (x) digit-by-digit to turn ON or

OFF the voltage on each shifter separately. This mapping requires an AND operation be-

tween the first operand and each digit of the second operand, i.e., V (d)=(wV0)∧ x(d), ∀d ∈

{0, ..., b−1}.

Figure 5·2(b) shows a multiplication between two 3-bit integers where w is encoded in

the applied voltage as an analog value while the digits of x control if V is applied to each

digit or not. For example, assume x=101 and w=011. In this case, we set V=wV0=3V0

for all three digits3. As the LSB of x, x(0)=1 and 1∧V=3V0, 3V0 is applied to the L-

long phase shifter. This creates a 3Φ0 phase shift on the optical signal passing through.

The second digit of x, x(1)=0. As 0∧V=0, no voltage is applied to the 2L-long phase

shifter resulting in no phase shift on the optical signal. Similar to the LSB, x(2)=1 and

1∧V=3V0 voltage is applied to the 4L-long phase shifter. This causes a 12Φ0 phase shift

as the phase shift is proportional to V · L. As the same optical signal goes through all

the cascaded phase shifters, the sequentially introduced phase shifts are accumulated. By

applying opposite signed voltages to the symmetrical arms of the dual-rail setup, a total of

(3+0+12)Φ0 = 15Φ0 ∝ xw is applied to the signal (15/2 Φ0 from each arm). The observed

phase shift, however, is |15Φ0|2π as the optical phase is modular with 2π.

3V0 represents a unit voltage value that results in a unit phase shift (Φ0) in a L-long phase shifter. Φ0 is
set to be 2π/m to perform a modulo m operation, which is explained later in the section. For a given Φ0, the

98

LL

LL

LL LL

4L4L

4L4L

2L2L

2L2L

LL

LL

+V

-V

+V +V

x(2)^ (+wV0) x(1)^ (+wV0) x(0)^ (+wV0)

x(2)^ (-wV0) x(1)^ (-wV0) x(0)^ (-wV0)

x(d)=0 x(d)=0

ΔΦ = Φ0VL

ΔΦ = 0 ΔΦ = Φ0
VL

 2

ΔΦ=|Φ0xw|2π

b

a c
x(d)=1 x(d)=1

180º
bend

MRR

4L4L 2L2L LL

4L4L 2L2L LL

MMU

wV0x(2) x(2) x(1) x(1) x(0) x(0)

x(2) x(2) x(1) x(1) x(0) x(0)

d wV0 wV0

-wV0 -wV0 -wV0

Figure 5·2: (a) Simple MZM with phase shifters with length L and applied
voltage V . (b) 3-bit modular multiplication using cascaded phase shifters.
(c) Routing light using MRR switches. (d) 3-bit modular multiplication
using MRR switches.

By adjusting Φ0 to be 2π/m, modular arithmetic with arbitrary modulus m instead of

2π, i.e., |xw|m, can be obtained as

∆Φtotal =
∣∣(b−1

∑
d=0

(2dx(d)w
2π

m
)
)∣∣

2π
=

2π

m

∣∣(xw)
∣∣
m. (5.2)

This adjustment is done through the unit applied voltage, i.e., V0 = 2Vπ/m. The resulting

output value (∆Φtotal) read at the end of the optical path is then multiplied back by m/2π to

obtain the output.

absolute values for V0 and L depend on the Vπ·L of the phase shifters and the maximum available bias voltage.

99

For a modulus m, both x and w are both integer residues varying between [0, m− 1],

which can be mapped around zero as [−⌊m−1
2 ⌋,⌈m−1

2 ⌉]. In this case, the maximum output

on an MMU is xw = ⌈ (m−1)2

2 ⌉, requiring a ∆Φmax = ⌈ (m−1)2

2 ⌉2π

m phase shift. The MMU

should be able to reach ∆Φmax when the bias voltage (Vbias) is fully applied. This requires

a total phase shifter length of

Ltotal =
VπL

Vbias

∆Φmax

π
. (5.3)

Given a ∆Φmax, there is a trade-off between Vbias and Ltotal caused by the constant VπL

of the phase shifters. VπL depends on the chosen actuation mechanism of the devices as

mentioned in Section 2.2.4.

In Mirage, the input operands of the MMU (x and w) are integer elements of the residue

matrices to be multiplied during a tiled-GEMM operation—which is a series of tiled-MVM

operations. During the tiled-GEMM operation, one MVM is performed every cycle. For

each MVM operation, at least one of the input operands needs to be updated. In the MMU

design shown in Figure 5·2(b), an update in x, w, or both, all result in reprogramming the

phase shifters every cycle. In this case, phase shifters must have high modulation band-

widths (≥GHz) to perform high-speed MAC operations. As mentioned in Section 2.2.4,

this high bandwidth in phase shifters can be obtained through free-charge dispersion, how-

ever, such devices are typically quite lossy and have relatively high VπL values (the lower the

better) causing longer device lengths. Using these high-bandwidth phase shifters, one can

achieve high-speed operations, but this can easily lead to ≥10 dB optical loss and tens of

mm length per MMU, significantly limiting the scalability of the design. Alternatively, one

can use thermo-optic or M/NOEMS-based phase shifters with lower optical loss and lower

VπL. Yet, these tuning mechanisms require long delays (µs-to-ms) for reprogramming, lim-

iting the clock speed of the photonic core to KHz to a few hundred MHz. Effectively, both

options, high optical loss/longer device length or low modulation bandwidth, result in poor

performance.

100

To resolve this issue, we modified our design to leverage data stationarity during op-

erations by encoding the two operands (x and w) onto separate devices, which is shown

in Figure 5·2(c) for a single MMU digit. Here, instead of turning the applied voltage ON

or OFF via a digital AND operation, we obtain the same behavior using MRR switches to

change the route of the light to go through or bypass the phase shifter to avoid frequent

reprogramming in phase shifters.

MRRs are optical devices that are designed to have a resonant wavelength. If the wave-

length of the signal on a waveguide that is next to an MRR matches the resonant wavelength

of the MRR, the signal is coupled into the MRR, otherwise, it keeps propagating down the

waveguide. By applying a voltage to an MRR, its resonant wavelength, and therefore, the

route of the light on the waveguide can be changed. In Figure 5·2(c), assume the default

resonant wavelength (when no voltage is applied to the MRR) and the passed optical sig-

nal’s wavelength are the same. If the corresponding binary digit of the input operand is

zero, i.e., x(d)=0, no voltage is applied to the MRR so the optical signal is coupled into the

MRR and routed through the bypass waveguide with no phase shifter (Figure 5·2(c), left).

In contrast, if x(d)=1, a voltage high enough to shift the resonant wavelength is applied to

the MRRs so that the input signal is not affected and it propagates on the upper arm con-

taining the phase shifter (Figure 5·2(c), right). Figure 5·2(d) shows the same multiplication

unit as Figure 5·2(b) with MRR switches for the abovementioned example where x = 101

and w = 011.

In the modified design (Figure 5·2(c-d)), as x and w are encoded onto separate devices,

the change in x does not impact the voltage applied to the phase shifter. Therefore, with a

dataflow where w is stationary, the voltage applied to the phase shifters (wV0) can be kept

fixed during MVM operations and requires reprogramming only once for each tiled-GEMM

operation, instead of every cycle. By minimizing the number of times we have to repro-

gram the phase shifters, we can use more efficient and low-bandwidth phase shifters with-

101

out compromising performance. The new design requires adding MRR switches, which

introduces extra optical loss and increases the area. However, previous works show that

MRRs can easily achieve tens of Gb/s with a much smaller optical loss and area footprint

compared to high-bandwidth phase shifters (Ohno et al., 2021). Therefore, using a com-

bination of MRR switches and low-bandwidth phase shifters in the MMU enables us to

achieve a high-speed and scalable design.

5.2.2 Modular Dot Product Unit (MDPU) and MMVMU

Similar to cascading phase shifters in a single MMU, we can cascade multiple MMUs to

construct an MDPU and perform a modular dot product. The phase shifts introduced by

each MMU accumulate and the modular dot product is obtained by measuring the total

phase shift (∆Φtotal) on the optical signal. As the MMU operands are already scaled by

2π/m, the dot product result will also be modular with m. ∆Φtotal in an MDPU with g

MMUs in a row is

∆Φtotal =
∣∣g−1

∑
j=0

(b−1

∑
i=0

(2ix(i)j w j
2π

m
)
)∣∣

2π
=

2π

m

∣∣g−1

∑
j=0

(x jw j)
∣∣
m. (5.4)

The final result of the dot product is collected at the end of the MDPU by detecting the

optical phase and multiplying it by m/2π.

Multiple MDPUs construct an MMVMU and can perform a modular MVM operation

in a single cycle. In Mirage, we utilize n MMVMUs to perform n modular MVMs in

parallel for an RNS with n moduli. The n MMVMUs together form an RNS-MMVMU. As

illustrated in Figure 5·3(a), the input residue vector xi and weight residue tile wi for each

modulus i ∈ {1, ..., n} are sent to the ith MMVMU. xi is broadcasted to all MDPUs within

an MMVMU. As w is mapped to an analog value representing an integer smaller than m, it

passes through ⌈log2m⌉-bit DACs without any information loss. In contrast, x is encoded

digit-by-digit so the digits can directly be used to control the MRRs without DACs. The

results from each MMVMU are detected via phase detection units and are passed through

102

Weight SRAM

Ac
tiv

at
io

n
SR

AM

4L4L

MMVMUn

MMU21MMU21
2L2LMMU22MMU22 MMU2hMMU2h

MMUh1MMUh1
2L2LMMUh2MMUh2 MMUhhMMUhh

MMU11MMU11 MMU12MMU12 MMU1hMMU1h

Ph
as

e
D

et
ec

tio
n

A
D

C
 B

an
k

DAC Bank

La
se

rs

wnxn

X11 W111 X12 W112 X1h W11h

X11 W121 X12 W122 X1h W12h

X11 W1h1 X12 W1h2 X1h W1hh

MDPU

MMU21MMU21
2L2LMMU22MMU22 MMU2hMMU2h

MMUh1MMUh1
2L2LMMUh2MMUh2 MMUhhMMUhh

MMU11MMU11 MMU12MMU12 MMU1hMMU1h

Ph
as

e
D

et
ec

tio
n

A
D

C
 B

an
k

DAC Bank

La
se

rs

w2x2

X11 W111 X12 W112 X1h W11h

X11 W121 X12 W122 X1h W12h

X11 W1h1 X12 W1h2 X1h W1hh

MDPU

MMVMU2

MMU21MMU21
2L2LMMU22MMU22 MMU2hMMU2h

MMUh1MMUh1
2L2LMMUh2MMUh2 MMUhhMMUhh

MMU11MMU11 MMU12MMU12 MMU1hMMU1h

Ph
as

e
D

et
ec

tio
n

A
D

C
 B

an
k

DAC Bank

La
se

rs
w1x1

X11 W111 X12 W112 X1h W11h

X11 W121 X12 W122 X1h W12h

X11 W1h1 X12 W1h2 X1h W1hh

MDPU

MMVMU1

...

...

...

...

...

...
...

RNS-MMVMU

ba

Fo
rw

ar
d

C
on

ve
rs

io
n

FP

 B

FP

Re
ve

rs
e

C
on

ve
rs

io
n

G
ra

di
en

t S
RA

M

c
RNS-MMVMU1 RNS-MMVMU2

RNS-MMVMU3 RNS-MMVMU4

4L4L

4L4L

π/2

π/2

A
D

C

Phase detection

Φ
Det1Det2

Φ+π/2

A
D

C

Figure 5·3: (a) RNS-MMVMU micro-architecture. (b) Phase detection
unit. The top arms of the two rows detect the amplitude of the incoming sig-
nals directly while the bottom arms apply π/2 radians phase shift and detect
the amplitude. Phase detection is done by using these two amplitude values.
(c) Main components of Mirage architecture with four RNS-MMVMUs and
three moduli as an example.

⌈log2m⌉-bit ADCs. These values are then converted to BNS via the reverse conversion unit.

5.2.3 Phase Detection Unit

In Mirage, the output of a modular MVM operation is stored in the phase of the output

signal from an MMVMU. However, a photodetector can only detect the amplitude of a sig-

nal. To detect the phase successfully, we need two amplitude measurements with 90 degree

separation (Taylor, 2009). Figure 5·3(b) shows the detection setup in Mirage. Here, the

idea is to read both x and y coordinates in the polar plane to determine the phase angle. We

first directly measure the amplitude (x coordinate). Then, we apply a π/2 phase shift and

measure the amplitude again (y coordinate). The combination of these two measurements

is unique to the corresponding phase level. To measure the x and y components separately,

we split both arms in the dual-rail setup into two. The upper splits of both arms (output of

the MDPUs) are directly sent to the first set of balanced photodetectors. We apply a π/2

phase shift to the lower splits of the two arms and send them to the second set of balanced

photodetectors. It should be noted that this setup requires two detections and two ADCs

per MDPU and twice the laser power to be injected (compared to a single-detection setup).

103

5.3 Moduli Selection

Moduli selection plays a crucial role in designing Mirage. For a chosen M , there is a

limited range of values that can be uniquely represented. This range is called the dynamic

range of the RNS and is [0,M), where M=∏i mi. To preserve the integrity of operations,

the residues in the RNS space must stay within the RNS range, limiting the bit-width of the

operands and the number of operations that can be performed in the RNS space. To this

end, for a tiled-MVM operation in the RNS space, we need to ensure that

log2 M ≥ bout = 2(bm+1)+ log2(g)−1, (5.5)

for a BFP configuration with bm bits of mantissa and a group size of g. Here, bm+1 is used

for bin and bw as both inputs and weights use the same BFP configuration.

In Mirage, the DNN accuracy is determined by the chosen bm and g and is independent

of the exact values of the moduli as there is no information loss during RNS operations as

long as M is chosen to be large enough to guarantee we satisfy Eq. (5.5). However, the

selected moduli set has a significant impact on the hardware performance. Higher bm or

g naturally dictates a larger M. A larger M requires either a higher number of moduli or

larger moduli values. While the number of moduli determines the number of MMVMUs in

Mirage, the bit-width of the moduli determines the bit precision of the data converters and

the SNR that needs to be maintained in the photonic core.

Importantly, the selection of moduli impacts the cost of the forward and reverse conver-

sion circuits. Typically, as M and the moduli values get larger, these conversions get slower

and more energy-consuming. Several works showed that traditional conversion methods

such as CRT pose performance limitations for high dynamic range when arbitrary mod-

uli sets are used (Wang et al., 2002). In a high-speed low-energy design such as Mirage,

these conversions can easily become the bottleneck. Instead, using special moduli sets

and conversion hardware can alleviate the hardware overhead of these operations signifi-

104

cantly. In Mirage, we use a three-moduli set in the form of {2k−1, 2k, 2k+1} where k is

a positive integer (Hiasat, 2019). This set reduces modulo operations into simple shift op-

erations. During the forward conversion, |A|2k=A>>k, |A|2k+1=|A|2k+1 (subtract 2k + 1

if ≥ 2k +1), and |A|2k−1 = |A|2k−1 (add 2k−1 if <0). The reverse conversion is typically

more costly than the forward conversion due to the modulo M operation with large M val-

ues. Similar to the forward conversion, the special moduli set can simplify this operation

as M = 23k−2k and |R|M = |R|23k−|R|2k = (R>>3k)−(R>>k) (add M if < 0). Previous

works show that this design can provide a high dynamic range (up to 24 bits) with ∼2 GHz

throughput with very low power consumption (∼1 mW). Please refer to Hiasat (Hiasat,

2019) for implementation details.

5.4 Mirage Accelerator Design

Figure 5·3(c) shows the main components of Mirage. Mirage consists of a photonic and

an electronic chiplet that are integrated via 3D integration. When executing a DNN layer,

first, the input and weight matrices are tiled and the FP-to-BFP and BNS-to-RNS (forward)

conversions are performed on these tiles (steps 1-3 in Figure 5·1). These operations are

handled by the electronic chiplet. The integer residues obtained by the forward conversion

are then sent to the photonic chiplet (after passing through DACs if the data are mapped

to analog voltages). Each input vector-weight tile residue pair for a modulus is sent to

the corresponding MMVMU on the photonic chiplet. The outputs of the analog modular

MVM operations are collected from the photonic chiplet through photodetectors and the

TIA circuitry that are placed on the electronic chiplet. The results are converted back to the

digital domain via ADCs. The RNS-to-BNS (reverse) conversion is then performed on the

output residues and the values are converted back to FP from BFP on the electronic chiplet.

The outputs of the tiled-GEMM operations are accumulated and nonlinearity (ReLU, Max-

Pool, etc.) is applied digitally in FP32. Steps 7-10 are performed via dedicated electronic

105

circuitry in Mirage.

The data is read/written from/to the on-chip SRAM arrays. In our design, there are three

separate SRAM arrays for storing activations, weights, and gradients, that are placed on the

electronic chiplet along with the other digital circuitry. In Mirage, the photonic circuit is

clocked at 10 GHz, whereas the digital circuits are clocked at 1 GHz. It is crucial to match

the throughput of the digital electronic components with the photonic compute unit as

digital operations are much slower and can easily become the bottleneck in the accelerator.

For this purpose, we use 10 copies of each digital circuit that are interleaved by 0.1 ns. Each

RNS-MMVMU has its own 10 dedicated SRAM sub-arrays for each SRAM type. Every

0.1 ns cycle, an RNS-MMVMU reads and writes from/to one of these 10 interleaved SRAM

sub-arrays. The same approach is used for digital conversion circuits. For each RNS-

MMVMU, there exist 10 RNS-BNS converters and 10 FP-BFP converters, each triggered

with 0.1 ns offset. This interleaved structure enables memory accesses and digital compute

to be fast enough such that it does not limit the performance of the photonic core even

though the SRAM sub-arrays and digital circuits individually have a 1 ns clock period.

All operations, i.e., SRAM reads, BFP conversions, forward conversions, DAC operations,

modular MVMs, photodetections, ADC operations, reverse conversions, accumulations,

and SRAM writes, are pipelined to achieve a 10 Giga MVM per second throughput in each

RNS-MMVMU.

5.5 Sensitivity Analysis

In this section, we analyze the impact of the number of mantissa bits (bm) and group size

(g) in the BFP representation and the accuracy-energy consumption tradeoffs introduced by

these choices. After selecting the optimal bm and g, we perform sensitivity analysis for the

number of MDPUs in an MMVMU and the number of RNS-MMVMUs in Mirage. Lastly,

we explore several dataflows for Mirage and the systolic array to improve utilization.

106

5.5.1 BFP Parameters

The BFP configuration, i.e., bm and g choice, significantly impacts the accuracy and hard-

ware performance of Mirage. Figure 5·4(a) shows the validation accuracy after training

ResNet18 with varying bm and g in Mirage. The results indicate that we cannot reach high

accuracy when bm=3 and the minimum bm we can use is 4 to achieve comparable accuracy

to FP32 training. However, choosing bm=4 allows us to go up to only g=16 without a drop

in accuracy. When bm=5, we can go up to higher g values (up to 64), which enables us to

perform more MAC operations in parallel. This encourages us to take a deeper look into

the bm=4 and bm=5 cases.

Using the {2k−1,2k,2k+1} moduli set, the minimum k we can choose that satisfies

Eq. (5.5), kmin=4 when bm=3. Similarly, kmin=5 for bm=4, and kmin=6 for bm=5. In Fig-

ure 5·4(b), we compare the energy consumption per MAC operation of an RNS-MMVMU

consisting of 3 MMVMUs (one for each modulus) for varying g and bm. This energy con-

sumption includes lasers, MRR tuning, DACs and ADCs, TIAs, FP-BFP and RNS-BNS

conversions. While a higher g increases the number of MACs performed in parallel and

helps amortize the cost of the components over g MACs, it also requires more optical ele-

ments cascaded in an optical channel and increases the optical loss. A higher optical loss

requires an exponentially higher laser power in the photonic array to maintain the same

SNR. As it can be seen from Figure 5·4(b), bm=4 when g=16 provides the best energy

efficiency among all the options that yield high accuracy in Figure 5·4(a). Considering

these results, in Mirage, we choose bm=4 and g=16 and use these values for the rest of the

experiments.

5.5.2 Choice of the Array Size and Number of Arrays

As mentioned earlier, g controls the horizontal array size of the RNS-MMVMU, i.e., the

number of MMUs in each MDPU. We can, however, increase the vertical size by increasing

107

22 23 24 25 26 27

Group size (g)

40

50

60

70
Va

lid
at

ion
 a

cc
. (

%
)

FP32
bm = 5

bm = 4
bm = 3

22 23 24 25 26 27

Group size (g)

10 1

100

101

102

103

pJ
/M

AC

FP32
bm = 3

bm = 4
bm = 5

Figure 5·4: (a) ResNet18 validation accuracy on Imagenet after training
from scratch for 60 epochs and (b) energy per MAC operation (pJ/MAC)
for varying bm and g. This analysis includes energy consumed by lasers
and tuning circuitry, TIAs, DACs and ADCs, FP-BFP, and RNS-BNS con-
versions. Here, ResNet18 is shown as an example. We observed similar
behavior for other evaluated DNNs.

the number of optical channels (MDPUs) for higher throughput. Additionally, we can uti-

lize multiple RNS-MMVMUs on the same chip to further improve parallelism. Figure 5·5

(a) and (b) show the spatial utilization (how fully the MMVMUs are used) for a varying

number of MDPUs in an MMVMU and a varying number of RNS-MMVMUs when g=16,

respectively. The spatial utilization starts decreasing for almost all DNN models after 32

MDPUs per MMVMU. In Figure 5·5 (b), we fix the MMVMU array size to be 16×32 and

increase the number of RNS-MMVMUs in Mirage. Here, we observe a decline in spatial

utilization after 8 RNS-MMVMUs for most models. Considering these experiments, in

Mirage, we choose MMVMU array size to be 16×32 and the number of RNS-MMVMUs

to be 8.

Dataflow Choice

Dataflow choice has been shown to have a critical impact on the performance of DNN

hardware accelerators (Chen et al., 2016). For DNN inference, the typical dataflows can

be listed as weight stationary, input stationary, and output stationary. The performance

108

21 22 23 24 25 26 27 28

Number of MDPUs

0

20

40

60

80

100
Ut

iliz
at

ion
(%

)

AlexNet
ResNet18
ResNet50
VGG16

MobileNet v2
YOLO v2
Transformer

21 22 23 24 25 26 27 28

Number of RNS-MVMUs

0

20

40

60

80

100

Ut
iliz

at
ion

(%
)

AlexNet
ResNet18
ResNet50
VGG16

MobileNet v2
YOLO v2
Transformer

Figure 5·5: (a) Number of MDPUs versus spatial utilization (%). (b) Num-
ber of RNS-MMVM units versus spatial utilization (%).

of these dataflows depends on the DNN model (layer shapes and sizes), the chosen batch

size, and the underlying hardware. In this section, we investigate the impact of different

dataflow options on the performance of Mirage and traditional systolic arrays. The dataflow

names are intuitive for DNN inference. However, during training, we perform three GEMM

operations per layer and the operands change for each operation. In the forward pass, we

perform O=WX . In the backward pass, we perform ∆X=W T ∆O and ∆W=∆OXT .

To avoid confusion, we renamed these three dataflows, weight, input, and output sta-

tionary, to DF1, DF2, and DF3, respectively. DF1 is equivalent to the weight stationary

dataflow where the first operands (W for the forward pass, W T for ∆X calculation, ∆O

for ∆W calculation) in the abovementioned GEMM operations are kept stationary, DF2 is

equivalent to the input stationary dataflow where the second operands (X for the forward

pass, ∆O for ∆X calculation, XT for ∆W calculation) are kept stationary, and DF3 is equiv-

alent to the output stationary dataflow where the output of the GEMM operations (O, ∆X ,

and ∆W , respectively) are kept stationary.

Figure 5·6(a) shows the latency per training step (a single batch of 256) for different

dataflows when running AlexNet on Mirage and a traditional systolic array with the same

array size as Mirage and a clock frequency of 1 GHz. In Mirage, we only consider DF1 and

109

1 2 3 4 5 6 7 8
AlexNet Layers

105

106

La
te

nc
y (

ns
)

Mirage

1 2 3 4 5 6 7 8
AlexNet Layers

106

107

SA (1 GHz)

Fwd (DF1)
I. Grad (DF1)
W. Grad (DF1)

Fwd (DF2)
I. Grad (DF2)
W. Grad (DF2)

Fwd (DF3)
I. Grad (DF3)
W. Grad (DF3)

AlexNet

ResNet18
ResNet50

VGG16
MobileNet

YOLO

Transformer
0.0

0.5

1.0

La
te

nc
y (

No
rm

.)

Mirage

AlexNet

ResNet18
ResNet50

VGG16
MobileNet

YOLO

Transformer
0.0

0.5

1.0

a

b
SA (1 GHz)

DF1 DF2 DF3 OPT1 OPT2

Figure 5·6: (a) Latency per step for each layer of AlexNet for Mirage (left)
and a 1 GHz digital systolic array (right). (b) Latency per step for different
DNNs and impact of dataflow for Mirage (left) and a 1 GHz digital systolic
array (right). The numbers for all dataflows are normalized to the DF1 re-
sults for all models.

DF2 dataflows. This is because the DF3 dataflow requires both operands to be modified

every cycle in the photonic arrays. However, as discussed in Section 2.2.4, the modulation

bandwidth of phase shifters is a limiting factor on the operation speed in the photonic core.

Therefore, it is preferable to minimize the number of updates in phase shifters to achieve

high utilization of the photonic core. DF1 encodes the first operand in the phase shifters and

DF2 encodes the second operand in the phase shifters. In both cases, the values encoded in

the phase shifters are kept stationary–which allows for high operation frequency. All three

110

dataflows are applicable to systolic arrays.

In Figure 5·6(a), we observe that different dataflows perform better for different com-

putations and different layers in a DNN model. For example, in the first layer of AlexNet,

DF1 achieves a lower latency in the forward pass while DF2 achieves a lower latency in

the input gradient calculation in Mirage. A similar observation can be made for the systolic

array design. So to maximize performance, in both Mirage and the systolic array, we added

flexibility in the choice of the dataflow. Figure 5·6(b) shows the impact of using different

dataflows as well as the added data flexibility optimizations (OPT1 and OPT2) for different

DNNs. OPT1 chooses the best dataflow for each type of computation (i.e., forward pass,

input gradient, and weight gradient calculation) which is kept the same for all layers. A

more aggressive optimization, OPT2, picks the best dataflow for each GEMM operation

separately for each layer. This dataflow scheduling is done once and offline for a DNN via

analytical performance estimations.

In Figure 5·6(b), for Mirage, we observe that DF1 performs better for all models ex-

cept Transformer in which DF2 achieves a better performance. In all DNNs, the flexible

dataflows (OPT1 and OPT2) bring minor to no benefit in Mirage. For the systolic array,

however, there exists more variety in the performance of different dataflows. On average

across all reported models, OPT1 boosts the performance by 11.7% and OPT2 boosts the

performance by 12.5% over the best-performing dataflow. Although the OPT1 and OPT2

optimizations do not improve the performance of Mirage by much, we believe that it is

important to consider this performance boost in systolic arrays to have the best possible

baseline for comparison. For this purpose, we use OPT2 for both Mirage and systolic

arrays for the rest of the analysis.

111

5.6 Accuracy Results

We evaluated Mirage’s accuracy in commonly deployed CNNs for image classification

on the ImageNet dataset (Deng et al., 2009), in YOLO-v2 (Redmon and Farhadi, 2017)

for object detection on the PASCAL VOC2012 dataset (Everingham et al., 2010), and

in a transformer (Vaswani et al., 2017) model for machine translation on the IWSLT14

German-English dataset (Bojar et al., 2014). The CNN models were trained for 60 epochs

using the SGD optimizer with a batch size of 256 and a learning rate starting from 0.01 and

scaled down by 10 after each 20 epoch. YOLO-v2 was trained for 120 epochs using the

SGD optimizer with an initial learning rate of 10−4, and scaled down by 10 after epochs

60 and 90. The 12-layer transformer model with 12 heads and a hidden size of 768 was

trained for 150 epochs using the Adam optimizer with a learning rate of 10−4, β1 = 0.9

and β2 = 0.999. Table 5.1 shows the accuracy results for Mirage and several other data

formats. The accuracy results for the data formats other than Mirage in Table 5.1 were

obtained from the work by Zhang et al. (Zhang et al., 2022b). For Mirage, we used the

exact same training parameters for fair comparison. It can be seen that Mirage can provide

comparable validation accuracy to FP32 training for all benchmarks. All other reported

data formats except for INT8 (2−5% accuracy degradation) achieve similar accuracy.

5.7 Performance, Power, and Area Results

Table 5.2 compares the energy consumption and area per MAC operation and clock rate

for Mirage’s RNS-MMVMUs against systolic arrays with various data formats. While

we could synthesize the digital INT units at 1 GHz, FP units are typically more complex

circuits with longer critical paths than INT MAC units forcing us to reduce the clock fre-

quency to 500 GHz. Compared to other data formats, the main advantage of Mirage is

the high clock speed of 10 GHz with comparable or less energy consumption per MAC.

In addition to its speed advantage, Mirage also provides a lower energy consumption per

112

Table 5.1: Validation accuracy of Mirage and various data formats (Zhang
et al., 2022b).

Model Mirage FP32 bfloat16 INT8 INT12 HFP8 FMAC

ResNet18 68.51 68.6 68.55 65.53 68.51 68.53 68.52
ResNet50 75.15 75.17 75.12 71.01 75.03 75.07 75.11

MobileNet v2 68.20 68.27 68.22 65.97 68.16 68.11 68.17
VGG16 69.5 69.74 69.71 64.5 69.33 69.62 69.78

YOLO v2 73.2 73.36 73.32 61.12 73.07 72.88 73.28
Transformer 35.4 35.41 35.39 29.18 35.27 35.38 35.4

Table 5.2: Performance, power, and area analysis of MAC units

Mirage FP32 bfloat16 HFP8 INT12 INT8 FMAC

pJ/MAC 0.21 12.42 3.20 1.47 0.71 0.42 0.11
mm2/MAC 0.12 9.6E-3 3.5E-3 1.4E-3 7.7E-4 4.1E-4 N/A

f (Hz) 10G 500M 500M 500M 1G 1G 500M

MAC (2−59.1×) compared to all data formats besides FMAC (Zhang et al., 2022b) (∼2×

higher).

While optical MAC units can reach higher speed and energy efficiency, they typically

fall short in computational density as optical devices such as phase shifters and MRRs have

a much larger area footprint than digital CMOS gates. Therefore, Mirage has a larger area

footprint per MAC operation and is less area-efficient than its electronic counterparts.

Figure 5·7 compares the hardware performance of Mirage against systolic arrays with

MAC units using various data formats when training various DNNs. In Figure 5·7, the

energy/power consumption of systolic arrays only consists of MAC units while for Mirage,

we consider the energy/power consumption of lasers, photonic devices, TIAs, DACs and

ADCs, RNS and BFP conversion units, and FP32 accumulators. The analyses in the figure

include iso-energy (per MAC) designs (left) and iso-area designs (right). We report results

for Mirage with 8 RNS-MMVMUs, each with 3 16× 32 MMVMUs (See Section 5.5 for

the justification of the design choices). For the iso-energy analysis, we scaled the number

113

AlexNet ResNet18 ResNet50 VGG16 MobileNet YOLO Transformer

101

103

Ru
nt

im
e

ISO-energy

Mirage FP32 BFLOAT16 HFP8 INT12 INT8 FMAC

AlexNet ResNet18 ResNet50 VGG16 MobileNet YOLO Transformer
10 1

100

Ru
nt

im
e

ISO-area

AlexNet ResNet18 ResNet50 VGG16 MobileNet YOLO Transformer

102

105

ED
P

AlexNet ResNet18 ResNet50 VGG16 MobileNet YOLO Transformer

100
101
102

ED
P

AlexNet ResNet18 ResNet50 VGG16 MobileNet YOLO Transformer

10 1

100

Po
we

r

AlexNet ResNet18 ResNet50 VGG16 MobileNet YOLO Transformer
100

101

Po
we

r

Figure 5·7: Normalized training runtime, EDP and power comparison of
Mirage (eight 16×32 arrays) against systolic arrays using MAC units with
various data formats. The plots on the left-hand side show the iso-energy
results where the number of MAC units in the systolic arrays is scaled to
consume the same energy per MAC operations using the numbers in Ta-
ble 5.2. The plots on the right-hand side show iso-area results where the
number of MAC units in the systolic arrays is scaled to take up the same
area as Mirage. As we do not have the area footprint of the FMAC units, we
do not show the FMAC numbers in the iso-area results.

of MAC units in systolic arrays to match the energy consumption per MAC operation of

Mirage for different data formats using the numbers in Table 5.2. Similarly, in the iso-

area analysis, we increase the number of MAC units in systolic arrays to take up the same

area as Mirage. We observed that increasing size leads to long latencies to load up the

new tile and causes the systolic array performance to go down significantly. To avoid this

performance drop in systolic arrays, while increasing the number of MAC units, we kept

the 16×32 array size fixed and used multiple systolic arrays instead. While INT8 cannot

meet the high accuracy criteria, it is shown for completeness (See Section 5.6).

In the iso-energy analysis, the best-performing data format among the systolic array

designs is FMAC (Zhang et al., 2022b). Given the same energy per MAC budget, on av-

erage across the reported DNNs, Mirage achieves a 23.8× lesser runtime and 32.1× lower

EDP than the systolic array with FMAC units. However, in this case, Mirage consumes

17.2× higher power consumption. Compared to the systolic array with FP32 MAC units,

on average, Mirage provides 3.5× lesser runtime and 521.7× lower EDP while consuming

114

42.8× less power.

The iso-area results show that the most efficient datatype that achieves high accuracy,

INT12, achieves 5.4× better runtime than Mirage on average due to the large area footprint

of Mirage. However, while being slower in the iso-area scenario, Mirage has 42.8× lower

power consumption and 1.27× lower EDP compared to INT12. Mirage has 3.5× lesser

runtime, 521.7× lower EDP and 42.8× lower power consumption compared to FP32 for

the iso-area scenario.

Overall, the results indicate that there exists a tradeoff between runtime, area, and power

consumption. Compared to digital systolic arrays, given the same energy budget, Mirage

can perform faster DNN training, however comes with a higher power consumption and

area footprint. In contrast, given the same area budget, Mirage has lower power consump-

tion with comparable or better EDP.

Figure 5·8 shows the peak power and area breakdown for Mirage. It can be seen that

SRAM accesses consume most of the power (61.2%) in Mirage. This is mainly because

we store all data in FP32 and perform frequent SRAM operations. To reduce this cost,

more efficient data formats (FP16, BFP, etc.) can be chosen to store data and perform

nonlinearities—which would reduce the total data storage requirements and the energy

consumption per SRAM access.

Figure 5·8 (right) shows that most of the area is occupied by photonic devices and

SRAM. All the components take up 476.6 mm2 in total, 234 mm2 for the photonic and

242.7 mm2 for the electronic chiplet. As the photonic and electronic chiplets are stacked

via 3D integration, the total area can be considered as the largest of the two chiplets

(242.7 mm2).

Compared to NVIDIA GPUs, Mirage can achieve ∼18.5× better EDP per epoch when

training ResNet-50 according to MLPerf Training v4.0 results (Reddi et al., 2020). It

should be noted that the GPU system considered consists of eight NVIDIA H100 GPUs

115

Laser
(14.4%)

BFP Conv. (0.5%)RNS Conv. (6.2%)

SRAM
(61.9%)

Acc.(1.4%)

TIA(14.4%)

DAC &
ADC (1.1%)

Peak Power
Photonic devices
(49.1%)

SRAM
(36.0%)

ADC (9.7%)

DAC (4.0%)
Others (1.2%)

Total Area

Figure 5·8: Peak power consumption and area breakdown for Mirage. The
total peak power consumption is 19.95 W and the total area is 476.6mm2.

and two host CPUs. Our results do not include the energy and latency overhead of the host

CPUs and the corresponding operations (e.g., weight updates), so the actual performance

gain is expected to be slightly less than reported. In addition, there are differences between

the MLPerf implementation and our training script, including the optimizer type and pa-

rameters and the number of training epochs. Therefore, we compare the EDP of the GPU

system and Mirage on a per-epoch basis. Despite these differences in the two results, as

the accelerator’s latency and energy consumption dominate the overall training process, we

anticipate that Mirage will outperform the GPU system by more than an order of magnitude

in EDP.

5.8 Evaluation Methodology

5.8.1 Accuracy Modeling

We modeled the accuracy of Mirage in PyTorch using customized GEMM layers. In all

models, we swapped each GEMM operation, i.e., convolution and linear layers, with our

customized BFP versions for a given bm and g. Once the values are converted to the BFP

format, BNS-RNS and RNS-BNS conversions and the chosen moduli set have no direct

impact on the DNN accuracy as long as the RNS operations are guaranteed to stay within

the RNS range. So we omit these conversions in the accuracy model for faster training

116

experiments.

In our customized GEMM layers, the tensors are first flattened and grouped. For each

BFP group, we calculate the shared exponent and align the mantissae for a given bm and

g. We then perform the convolution or linear operation and collect the result. This BFP

conversion is done for all GEMM layers during both forward and backward passes of each

layer. While the gradients are calculated in BFP, we make the weight updates in FP32.

For this purpose, we store the weights in FP32 instead of BFP and call them within the

optimizer right before the parameter update step. After updating the weights, we switch

back to the BFP format before the next forward pass.

5.8.2 Hardware Performance, Power and Area

Photonic Devices and Lasers

The latency of the photonic RNS-MMVMUs in Mirage for GEMM operations is calculated

through an in-house simulator. This simulator calculates the number of tiles and the num-

ber of operations per tile within a DNN layer given the hardware configuration and layer

shapes. For each tile, the reprogramming of phase shifters (similar design to Baghdadi et

al. (Baghdadi et al., 2021), internally simulated) takes 5 ns during which the photonic com-

pute core is inoperable. Once the values in the phase shifters are settled, one RNS-MMVM

operation is completed every 0.1 ns (10 Giga MVMs per second). This operation rate is

based on the modulation bandwidth of the MRRs (Ohno et al., 2021). ADCs (Xu et al.,

2016) achieve ≥10 GS/s sampling rate so they do not cause a latency overhead when the

operations are pipelined.

The photonic core power consumption includes the laser source power and MRR tuning

power. The laser power injected into the MMVMUs needs to ensure that a target SNR,

which is dependent on the modulus value, is achieved. For a modulus m, we should be able

to differentiate m phase levels (log2m bits), i.e., SNR>m where the noise includes shot and

thermal noise mentioned in Section 2.2.5. From the photodetector, we back-calculate the

117

required laser power that can maintain an adequate SNR accounting for all the optical losses

on the optical path. The phase shifters have a VπL = 0.002 V·cm modulation efficiency and

1.6 dB/mm loss.

The tuning cost of the phase shifters is negligible (a few fJ/bit). Each MRR has a ra-

dius of 10 µm and a total (insertion and propagation) loss of 0.2 dB when coupled with

the light (Ohno et al., 2021). MRRs use electro-optical tuning and have a very small

power consumption of 0.3 pW for switching (Ohno et al., 2021). This power dissipation is

∼107× smaller than thermo-optic shifters which resolves the thermal crosstalk problem in

MRRs (Ohno et al., 2021). Each 180 degree bend waveguide has a 5 µm radius and 0.01

dB insertion loss (Bahadori et al., 2019). The laser-to-chip coupler has a 0.2 dB loss (Hu

et al., 2023) and the laser has a 20% efficiency (Mourou et al., 2013). The length of the

phase shifters varies depending on the modulus value in the selected set {2k−1,2k,2k+1}

where k = 5 (choice of k will be justified in Section 5.5). Using the Eq (5.3) and device

metrics (VπL = 0.002 V·cm and Vbias=1.08V), the total phase shifter length for the largest

moduli 33 can be calculated as 0.57 mm. With the MRRs included, the total horizontal

length of a single MMU becomes 0.8 mm.

Digital Circuitry

The output signal of the photonic core is converted to the electrical domain through pho-

todetectors and TIAs. The photodetectors have a 1.1 A/W responsivity. The TIAs consume

75 fJ/bit (Rakowski et al., 2018). Each 6-bit DAC with 20 GS/s sample rate consumes

136 mW power and takes up 0.072 mm2 area (Kim et al., 2018). Each 6-bit ADC with 24

GS/s sample rate consumes 23 mW power and takes up 0.03 mm2 area (Xu et al., 2016).

As DACs in Mirage are used only once for each tile and ADCs perform conversions every

0.1 ns (10<24 GS/s), the power consumption of DACs and ADCs is amortized over the

total training time. The bit precision required for DACs and ADCs is determined by the

moduli set {2k−1,2k,2k+1} where k = 5 (choice of k will be justified in Section 5.5). For

118

m=2k+1 with k=5, ⌈log2m⌉=6 so we use the 6-bit DACs and ADCs as is. For 2k and

2k−1, ⌈log2m⌉=5 so we scale the energy consumption down by 1 bit (Murmann, 2021).

All three SRAM arrays (activation, weights, and gradients) are generated using the SRAM

compiler for TSMC 40 nm technology node (TSMC, 2024). In Mirage, we employ three

SRAM arrays, each with 8 MB size, consisting of 32 kB memory banks with an access

latency of ≤1 ns. The BFP-FP and BNS-RNS conversion circuits are implemented in RTL

and synthesized using Cadence Genus (Cadence, 2024) and the TSMC 40 nm library with

a clock rate of 1 GHz. Each BFP-FP unit consumes 1.32 pJ and has a 1318.4µm2 area

footprint. Each BNS-RNS unit consumes 0.17 pJ with a 231.7µm2 area footprint Each

RNS-BNS unit consumes 0.48 pJ energy per conversion and requires 1545.8µm2 area (Hi-

asat, 2019).

For comparison, we use systolic arrays that support several data formats including

FP32 (Hauser, 2019), BFLOAT16 (Wang and Kanwar, 2019), HPF8 (Sun et al., 2019),

INT8, INT12, and FMAC (Zhang et al., 2022b). We chose systolic arrays for their common

usage in DNN acceleration and their superior performance over CPUs and GPUs (Chen

et al., 2016; Jouppi et al., 2020). We implemented MAC units with the abovementioned

data formats in RTL except FMAC for which the energy number is obtained from the recent

work by Zhang et al. (Zhang et al., 2022b). The power and area per MAC unit are collected

through synthesis using Cadence Genus and the TSMC 40 nm library.

5.9 Related Work

Besides the related work mentioned in Section 4.6, it is noteworthy to mention RRAM-

based PiM designs targeting similar precision limitations using multiple low-bit cells to

compose higher-bit results. For example, PRIME (Chi et al., 2016) uses two 3-bit cells to

achieve 6-bit precision. Another example, PipeLayer (Song et al., 2017), uses four 4-bit

cells to achieve 16-bit precision through shift-and-add operations for DNN inference and

119

training. While this approach is similar to using RNS in terms of composing high-precision

from low-precision arithmetic, each b-bit MAC still produces ≥ 2b-bit result. In RNS, bit

precision does not grow during operations. Compared to PipeLayer, Mirage is 14.4× more

power-efficient (OPs/s/W) while being 8.8× less area efficient (OPs/s/mm2).

In addition, over the years, several photonic DNN inference accelerators have been

proposed. While Mirage is designed for DNN training, it can still be used for DNN infer-

ence. For completeness, we compare Mirage’s performance while running DNN inference

against existing photonic and electronic DNN inference accelerators. This comparison is

shown in Table 5.3. Mirage achieves a better IPS than all accelerators (by 1.12−8.4×

compared to photonic and by 176−1,856× compared to electronic accelerators) except

for ADEPT (3.37× slower) and TPU v3 (3.12× slower). Mirage provides a better power

efficiency (IPS/W) than all photonic (by 2.1−15.4×) and electronic (by 1.74−84.7×) ac-

celerators except for ADEPT (2.48× lower). Mirage is more area-efficient (IPS/mm2)

than all photonic (by 1.03−4.36×) and electronic (by 2.38−93.9×) accelerators except

for ADEPT and HolyLight (1.16× and 8.32× lower, respectively). It should be noted that

these photonic inference accelerators in Table 5.3 provide a much lower dynamic range

than Mirage (∼8 bit vs. ∼15 bit in Mirage). Even for DNN inference, these works can

typically achieve high accuracy only through quantization-aware training. With the same

methods applied, in Mirage, a lower bm and a moduli set with a much smaller M can be

utilized, resulting in significantly better hardware performance.

5.10 Discussion

Over the years, researchers have developed many ADC designs including traditional ∆Σ

ADCs, Flash ADCs, Successive Approximation Register (SAR) ADCs, and hybrid ADCs.

In recent years, the architecture trends have shifted mainly towards hybrid and SAR-based

architectures combined with advanced techniques such as pipelining and time-interleaving

120

Table 5.3: Mirage versus DNN inference accelerators.

ResNet50 AlexNet

Accelerator IPS IPS/W IPS/mm2 IPS IPS/W IPS/mm2

Mirage 10,474 1,540.6 43.2 64,963 1,904.5 267.67
ADEPT 35,698 1,587.99 50.57 217, 201 7,476.78 307.64

Albireo-C (Shiflett et al., 2021) N/A N/A N/A 7,692 344.17 61.46
DNNARA (Peng et al., 2020) 9,345 100 42.05 N/A N/A N/A
HolyLight (Liu et al., 2019) N/A N/A N/A 50,000 900 2,226.11

Eyeriss (Chen et al., 2016) N/A N/A N/A 35 124.80 2.85
Eyeriss v2 (Chen et al., 2019) N/A N/A N/A 102 174.80 N/A
TPU v3 (Jouppi et al., 2020) 32,716 18.18 18.00 N/A N/A N/A

UNPU (Lee et al., 2018) N/A N/A N/A 346 1,097.50 21.62
Res-DNN (Samimi et al., 2020) N/A N/A N/A 386.11 427.78 N/A

to push the envelope further. Typically, for low-speed ADCs (fs≤108 samples/sec), a

widely accepted limit is the minimum possible energy spent on a class-B switch capacitor

circuit, i.e., EADC ≥ 8kT×SNR, whereas most high-speed ADCs are technology-limited (Mur-

mann, 2022). This indicates that there can be some room for improvement in high-speed

data converters with further technology scaling. However, with technology scaling signifi-

cantly slowing down, specialization and new designs can only provide limited opportunities

to improve energy efficiency. Therefore, we believe that our work holds an important role

in terms of enabling energy-efficient next-generation analog hardware.

It is noteworthy that in our design, data converters consume only 1.1% of the overall

power consumption–which is contrary to a typical analog accelerator where data converter

power consumption is a dominating component. This is mainly because the reduced bit-

precision of DACs/ADCs results in an exponential decrease in their power consumption.

While the decreasing bit-precision also reduces the required SNR during analog operations,

the increased phase shifter length and optical loss prevent the laser power from going down

exponentially. In addition, the power consumption of other components (SRAM arrays,

TIAs, accumulators, etc.) increases due to the increasing component count with the use of

121

multiple moduli. This results in a significant reduction in the relative contribution of data

converter power.

Overall, the results indicate that there exists a tradeoff between runtime, area, and power

consumption. Compared to digital systolic arrays, given the same energy budget, Mirage

can perform faster DNN training, however comes with a higher power consumption and

area footprint. In contrast, given the same area budget, Mirage has lower power consump-

tion with comparable or better EDP.

5.11 Chapter Summary

In this chapter, we introduced Mirage, an electro-photonic DNN training accelerator that

overcomes these precision challenges using the RNS. The RNS-based dataflow introduced

in Chapter 4 allows for high-precision operations through multiple low-precision modular

operations. In Mirage, we employed novel photonic modular arithmetic units based on

cascaded phase shifters to support this dataflow and perform modular operations in the

analog domain. By combining RNS with photonics, we showed that Mirage can achieve

high energy efficiency without sacrificing precision, enabling the training of state-of-the-art

DNNs with accuracy comparable to FP32 training. Our evaluation showed that, on average,

Mirage can achieve over 23.8× faster training and 32.1× lower EDP compared to SAs in

an iso-energy scenario, and consumes 42.8× less power with comparable or better EDP in

an iso-area scenario.

122

Chapter 6

Summary and Future Work

In this chapter, we summarize the findings and major contributions of this thesis, the limi-

tations of the completed work, and future research directions.

6.1 Summary of Contributions

In this thesis, we pointed out the lack of system-level analysis and a clear roadmap for

designing hybrid electronic-photonic accelerators capable of training and deploying state-

of-the-art DNNs despite the promise of the prior works. Furthermore, we focused on the

precision limitation in photonic hardware, which has often been overlooked in earlier stud-

ies. We underlined that today’s DNNs require higher precision to maintain accuracy, even

during inference, making training a distant goal in photonics. To this end, we explored the

opportunities and challenges of photonic computing for DNN acceleration with a pragmatic

approach, offering solutions to these challenges.

In Chapter 3, we detailed the design and evaluation of a full electronic-photonic ac-

celerator for DNN inference, ADEPT. ADEPT leveraged a photonic computing unit for

GEMM operations, a vectorized digital electronic ASIC for non-GEMM operations, and

SRAM arrays for storing DNN parameters and activations. Unlike previous works on pho-

tonic DNN accelerators, we adopted a system-level perspective, demonstrating that while

the gains were substantial, they needed to be tempered relative to prior expectations. The

aim was to encourage architects to explore photonics technology pragmatically, consider-

ing the system as a whole to understand its applicability in accelerating modern DNNs. We

123

discussed design steps and optimizations to minimize the overhead of electronic devices.

Our evaluation showed that this complete accelerator system provided, on average, 5.73×

higher throughput per watt compared to traditional SAs in a full system, and at least 6.8×

and 2.5× better throughput per watt compared to state-of-the-art electronic and photonic

accelerators, respectively.

Chapter 4 tackled the precision challenge in analog computing by using RNS to perform

high-precision operations from multiple low-precision operations, thus avoiding the need

for high-precision data converters and preventing information loss. The study showed that

the RNS-based approach could achieve ≥ 99% of FP32 accuracy in state-of-the-art DNN

inference using only 6-bit arithmetic and training with 7-bit FXP arithmetic. These findings

suggested that employing RNS could drastically reduce the energy consumption of analog

accelerators for the same precision. In addition, we incorporated RRNS to improve the

fault tolerance of the dataflow against the noise and errors inherent in analog hardware.

Chapter 5 introduced Mirage, a photonic DNN training accelerator based on the RNS

framework discussed in Chapter 4. Mirage employed a novel micro-architecture to sup-

port RNS-based dataflow and modular arithmetic in the analog domain. By combining

RNS and photonics, we showed that Mirage could achieve high energy efficiency without

compromising precision and successfully train state-of-the-art DNNs with accuracy com-

parable to FP32 training. The study showed that, on average, across several DNNs, Mirage

achieved more than 23.8× faster training and 32.1× lower EDP in an iso-energy scenario

and consumed 42.8× lower power with comparable or better EDP in an iso-area scenario.

Overall, this thesis demonstrated that while performance expectations for photonic ac-

celerators should be moderated compared to prior works evaluating photonic cores in isola-

tion, photonics technology remains a promising candidate for next-generation AI hardware.

124

6.2 Current Limitations and Future Research Directions

In this section, we discuss the limitations of current electro-photonic DNN accelerator sys-

tems and the research conducted as part of this dissertation. We highlight several key

challenges in the field and propose future research directions to address these issues.

6.2.1 Device-Level Challenges

The characteristics of optical components directly influence the performance and scala-

bility of the photonic compute circuits. Improving the quality, efficiency, and density of

photonic devices is an active research field. As mentioned in Section 2.2.4, there exist

tradeoffs between different device metrics, making it highly challenging to achieve low

optical loss, high modulation bandwidth, short device lengths with CMOS-level voltages,

and low reprogramming costs in the same photonic device.

Heterogeneous Material Integration

Expanding beyond the conventional silicon platform, recent advances in emerging mate-

rials and novel devices leveraging electro-optic effects such as Pockels effect, Kerr effect,

and quantum-confined stark effect present new avenues for improving the performance of

PICs (Ning et al., 2024). For example, heterogeneous modulators utilizing III-V materi-

als (Han et al., 2017), 2D materials (Sorianello et al., 2018), organic materials (Kieninger

et al., 2018), and ferroelectric materials (Petraru et al., 2002) show significant enhance-

ments in various device metrics. These devices can achieve modulation bandwidths of

GHz or more, along with high modulation efficiency and low power consumption. How-

ever, integrating these technologies is complex and not without challenges. The integration

and packaging issues and unique challenges of each material offer future research opportu-

nities for developing more compact and energy-efficient photonic devices.

125

Operating at Visible Wavelengths

Device characteristics can also be enhanced by adjusting the operating wavelength (Shi-

flett, 2022). Most silicon photonic devices use the O-band (1260-1360 nm) and C-band

(1530-1565 nm). Shifting to visible or ultraviolet wavelengths offers a potential approach

for achieving smaller device sizes (Liang et al., 2021). However, this shift presents new

challenges as silicon becomes opaque at these shorter wavelengths. As a result, current

visible-wavelength PICs are often fabricated using silicon nitride (SiN). Although SiN is

transparent at visible wavelengths, SiN waveguides suffer from higher propagation losses at

visible wavelengths compared to silicon waveguides at infrared wavelengths (Sacher et al.,

2019). Additionally, current SiN modulators primarily rely on the thermo-optic effect in

active devices (Yong et al., 2022; Sacher et al., 2019) and cannot support carrier-depletion

modulation (Shiflett, 2022), significantly limiting their modulation bandwidth. Neverthe-

less, recent advancements have demonstrated the potential for high-speed SiN modulators

utilizing electro-optic modulation based on the Pockels effect (Alexander et al., 2018),

showing promise for next-generation PICs operating in the visible spectrum.

6.2.2 Routing and Integration Challenges

Photonic Routing

Electrical circuits are commonly connected using Manhattan directions, with metal wires

making 90 degree turns. However, waveguides in photonic circuits cannot accommodate

such abrupt bends. Even with high-contrast silicon strip waveguides, bends must have radii

of several micrometers, complicating the routing of photonic circuits. These larger bend

radii make Manhattan-style routing impractical, necessitating smoothly curved connections

at various angles for photonic circuits. This requirement for larger bends and the flexibil-

ity of all-angle connections significantly complicates the routing constraints for multiple

waveguides.

126

Moreover, while CMOS circuits have long been manufactured with multiple metal

layers, photonic circuits have traditionally been limited to planar designs. SiN has been

proposed as a CMOS-compatible material for creating multilayer 3D PICs (Sacher et al.,

2018). This approach could substantially increase integration density and reduce the num-

ber of lossy waveguide crossings in planar circuits with future advancements in SiN PICs.

Integration with Electronics

The integration of PICs with electronic ICs is another promising area of exploration. Sili-

con photonics enables the monolithic integration of photonic devices with CMOS electron-

ics, showing significant potential in recent studies (Stojanović et al., 2018; Giewont et al.,

2019). Moreover, advanced packaging techniques such as 3D (Ramey, 2020) and 2.5D

integration can be advantageous as they allow for the use of different technology nodes for

the individual electronic and photonic ICs that provide the best performance.

On-chip Laser Integration

While off-chip light sources offer better temperature stability and high light-emitting ef-

ficiency, they typically suffer from significant coupling losses between the off-chip light

source and the silicon chip, as well as high packaging costs. In contrast, an on-chip

light source can achieve higher integration density, compact size, and superior energy effi-

ciency (Zhou et al., 2015). However, silicon’s low emission efficiency (Liang and Bowers,

2010) encouraged the use of off-chip light sources and delayed the development of on-chip

lasers.

To address this, various promising alternatives have been explored such as erbium-

related light sources (Kenyon, 2005; Yerci et al., 2010), Germanium-on-Silicon (Ge-on-Si)

lasers (Liu et al., 2010), and III-V-based lasers (Fang et al., 2006; Sun et al., 2009). Electri-

cally pumped Erbium-related lasers have not yet been demonstrated due to their low power

efficiency and problems such as energy back-transfer and device instability (Zhou et al.,

127

2015). Ge-on-Si lasers offer potential for optoelectronic integration but face challenges like

high threshold currents (Sukhdeo et al., 2013) and redshift effects (Zhou et al., 2015). III-V-

based hybrid silicon lasers, produced via bonding techniques, show the best performance

but encounter heat dissipation issues and limitations for mass production (Van Campen-

hout et al., 2007). Alternatively, III-V quantum-dot lasers grown directly on silicon (Tan-

abe et al., 2012) appear promising for future low-cost, high-yield, temperature-insensitive,

large-scale monolithic integration.

6.2.3 Data Conversion Challenges

Many prior works, including this thesis, have demonstrated that optical MAC operations

are significantly faster and more energy-efficient compared to their electrical counterparts.

However, the necessary conversions between digital and analog, as well as between elec-

trical and optical domains, dominate the energy consumption in electro-photonic systems,

posing a major constraint on their overall energy efficiency.

To mitigate the number of conversions, current systems aim to maximize data reuse

through techniques such as optical broadcasting (Tait et al., 2017; Zhu et al., 2024) for

spatial sharing of encoded signals and time-integration (Zhu et al., 2024; Li et al., 2023)

for temporal accumulation in the analog domain (Ning et al., 2024). In addition to mini-

mizing the number of conversions, lowering bit precision is crucial for reducing the energy

consumption of these conversions. The RNS-based approach proposed in this thesis seeks

to minimize the bit precision of data converters without compromising accuracy, thereby

alleviating this energy bottleneck.

Another promising solution is to combine the digital-to-analog and electrical-to-optical

steps (or optical-to-electrical and analog-to-digital steps) using photonic data converters.

These converters can offer high sampling rates, precision, and low distortion while being

less susceptible to jitter and EM noise (Shastri et al., 2021). Photonic compute circuits

can greatly benefit from this approach, as photonic data converters provide a reduced foot-

128

print, high sampling rates, and low power consumption. Previous works have demonstrated

2-bit photonic DAC structures based on optical intensity weighting of multiwavelength sig-

nals, modulated with MRRs (Sun et al., 2018) and MZMs (Patel et al., 2015). However,

achieving high-speed operation with high ER in these designs remains a significant chal-

lenge (Shastri et al., 2021). A potential solution for scaling to higher bit numbers is the use

of coherent parallel photonic DACs (Meng et al., 2021; Shastri et al., 2021).

6.2.4 Scaling Challenges

In Chapter 3, we highlighted the necessity of large SRAMs in photonic DNN acceleration,

but the SRAM sizes are constrained by several factors. Large SRAMs suffer from high

leakage power and low yield, making them less efficient. Additionally, as models grow

increasingly large and reticle size stays limited, scaling out to multiple chiplets becomes

inevitable.

Scaling up to multiple photonic chiplets creates new challenges as these chiplets require

significantly higher bandwidth compared to their electronic counterparts. To address these

challenges, exploring advanced integration techniques such as wafer-scale approaches,

2.5D, and 3D integration becomes critical. Innovations in interconnect technologies (e.g.,

silicon photonics for high-bandwidth, low-latency communication (Harris et al., 2022)) and

advanced packaging techniques to enhance thermal management will be essential.

Moreover, developing design automation tools for multi-chiplet electronic-photonic

systems can help optimize the layout and connectivity of chiplets, ensuring maximum effi-

ciency and performance.

6.2.5 Performance Modeling Challenges

The lack of robust simulation tools for electro-photonic systems poses a significant chal-

lenge, primarily due to the complexity of integrating multiple components that must func-

tion together. It is essential to develop comprehensive simulator frameworks that can ef-

129

fectively evaluate the performance of such computing systems. An ideal simulator should

support the integration of new optical hardware, provide automatic algorithms for hard-

ware mapping, and offer detailed evaluations of chip-level performance (Ning et al., 2024).

These tools are vital for ensuring fair and straightforward comparisons across various opti-

cal circuit designs, helping to identify system bottlenecks and guide further optimizations.

To integrate optical computing hardware into mainstream AI software stacks, it is also

necessary to create specialized compilers and instruction sets tailored for photonic comput-

ing architectures (Ferreira De Lima et al., 2020). Existing deep learning frameworks like

PyTorch and TensorFlow can still be used as front-end interfaces, while the compiler must

be adapted to generate machine code optimized for accelerators, ensuring effective use of

photonic hardware (Ning et al., 2024).

6.2.6 Challenges around RNS-Based DNN Computation

Forward and Reverse Conversion

RNS-based DNN computation presents several challenges that must be addressed to op-

timize its effectiveness. One significant issue is the expense associated with forward and

reverse conversions between BNS and RNS performed before and after every matrix op-

eration. Conversion methods relying on special moduli are proven to be the most efficient

among various methods. For example, the cost of these conversion circuits was 6.2% of

the overall power consumption in Mirage as reported in Section 5.7. However, the special

moduli set approach restricts the range of moduli that can be used, often leading to less op-

timal choices from an accelerator performance perspective. Alternatively, when methods

supporting arbitrary moduli are used such as CRT, this energy and latency overhead signif-

icantly increases and becomes the dominating factor. Therefore, developing cost-effective

conversion techniques for arbitrary moduli or reducing the number of conversions could

significantly enhance accelerator performance.

To reduce the number of forward and reverse conversions, prior works proposed com-

130

puting DNN inference fully in the RNS space (Samimi et al., 2020; Salamat et al., 2018).

As mentioned in Section 4.6, these methods use approximations for nonlinear operations

and periodically need ranging operations to avoid overflow. This fully-RNS approach lim-

its us to use all-integer operations, however, it requires forward and reverse conversion only

once before and after each pass, eliminating the need for using special moduli sets. Scaling

operations are still possible in RNS, yet, the cost of extra operations and the impact of the

lack of FP numbers on inference and training accuracy should be investigated.

Extending the RNS Approach

The RNS-based approach can reduce data converter energy and provide a sufficient dy-

namic range for DNN inference and training, especially since full FP32 precision is typi-

cally unnecessary, However, it encounters limitations when higher precision is required. In

such cases, the bit-width of the moduli must be increased, causing the RNS-based approach

to suffer from inefficiencies similar to those of traditional analog methods. Addressing

these challenges is crucial for improving the performance and scalability of RNS-based

DNN computations for high-precision computing.

The precision limitation can be eliminated by combining the RNS framework with a

positional number system (PNS), allowing it to work freely with arbitrary precision. One

can represent an integer value as D separate digits where each digit is represented as a

set of residues in the RNS domain and has an RNS range of M. This hybrid scheme can

achieve D log2 M bit precision where D can be liberally increased without increasing the bit

precision of the data converters. Different from the RNS-only scheme, the hybrid scheme

requires overflow detection and carry propagation from lower digits to higher digits. More

details are provided in Appendix A.2.

Besides the PNS approach, some works explored hierarchical RNS (Djath et al., 2019;

Yassine, 1992; Hollmann et al., 2018) methodologies to break down the large moduli of an

RNS into smaller moduli within residue number subsystems. Hierarchical RNS involves

131

multiple levels where each level has a distinct moduli set and the residues of a level are

represented in a residue number subsystem. This approach allows hierarchical RNS to

achieve large dynamic ranges using only a few distinct, small moduli. This approach,

however, requires performing multiple forward and reverse conversions for each level to

convert numbers between BNS and RNS.

6.2.7 Future of Photonic Computing

Our experiments in Chapter 3 reveal that current electro-photonic systems for DNN infer-

ence offer less than an order of magnitude improvement over purely electronic systems.

While a ∼5× performance gain might seem modest, it is important to recognize that this

is only the initial potential of what photonics can accomplish with today’s technology. The

current limitations are primarily due to the reliance on electrical components, which domi-

nate power consumption.

To truly unlock the potential of photonics, future developments must focus on per-

forming more operations in the optical domain, thereby reducing the need for frequent

data conversions and minimizing memory access bottlenecks. Although this increases the

optical loss and, consequently, laser power requirements, as mentioned in Section 6.2.1,

advancements in photonic devices are expected to mitigate these issues. Emerging optical

components with lower optical losses can enable the development of more scalable and

efficient photonic cores, significantly reducing the impact of electrical overhead.

Moreover, replacing nonlinear operations with optical alternatives can allow systems

to remain within the optical domain longer, further enhancing performance. In addition,

exploring alternative memory structures, such as PCM-based memory that can operate via

optical signals, offers the potential for performing memory operations in the optical do-

main. While these technologies still face challenges and may not yet match the density

of traditional memory arrays like SRAM or DRAM, their integration into electro-photonic

systems can lead to a significant step toward achieving superior performance. As we scale

132

towards larger systems, the power of photonic compute units can be enhanced with data

movement and communication via photonics between these units. This can amplify the

efficiency and performance of photonic systems, enabling them to fully realize their advan-

tages over traditional electronic approaches.

Finally, algorithmic innovations can play a vital role in enhancing the energy efficiency

of photonic systems. For instance, the RNS-based approach proposed in this thesis demon-

strates how reducing bit-precision through algorithmic novelty can lead to significant per-

formance gains, pushing photonic computing beyond the results observed in Chapter 3.

These advancements suggest that, as photonics technology evolves, the performance ben-

efits can far exceed the initial improvements, making photonics a strong candidate for re-

placing the CMOS technology for future computing paradigms.

6.3 Final Remarks

In conclusion, this thesis has delved into the intricate challenges and promising opportu-

nities within photonic computing for deep learning inference and training. Through the

design and evaluation of ADEPT, we have underscored the need for a more realistic ap-

proach to evaluating photonic computing. This work offers practical insights for designing

electro-photonic systems and highlights the significant potential of these systems for next-

generation DNN inference hardware. Furthermore, our innovative application of the RNS

has effectively addressed precision challenges, a critical limitation not only in photonics

but across various analog technologies. This RNS-based methodology has brought the

once far-fetched goal of using photonic computing for state-of-the-art DNN training tasks

within reach. This work opens the path for the development of next-generation analog

systems for AI and other computationally intensive, high-precision tasks, such as cryptog-

raphy and scientific computing. Overall, we believe that our contributions offer valuable

insights and inspiration for researchers and engineers seeking to harness the power of pho-

133

tonics technology in shaping the future of computing, advancing the rapidly evolving field

of AI, and pioneering other next-generation computing paradigms.

134

Appendix A

Appendix

A.1 Error distribution in the RRNS code space

For an RRNS(n+ k,n) with n non-redundant moduli, i.e., {(m1,m2, ...,mn} and k redun-

dant moduli, i.e., {mn+1,mn+2, ...,mn+k}, the probability distributions, i.e., pc, pd , and pu,

of different types of errors, i.e., Case 1, Case 2, and Case 3 that were mentioned in the

RRNS for Fault Tolerance subsection are related to the Hamming distance distribution of

the RRNS code space. In an RRNS(n+ k,n), every integer is represented as n+ k residues

(ri where i ∈ {1, ...,n+ k}) and this vector of n+ k residues is considered as an RRNS

codeword. A Hamming distance of η ∈ {0,1, ...,n+ k} between the original codeword and

the erroneous codeword indicates that η out of n+ k residues are erroneous. The erro-

neous codewords create a new vector space of n+ k-long vectors where at least one ri is

replaced with r′i ̸= ri with i ∈ {1, ...,n+ k} and r′i < mi. This vector space includes all the

RRNS(n+ k,n) codewords as well as other possible n+ k-long vectors that do not overlap

with any codeword in the RRNS code space. A vector represents a codeword and is in

the RRNS code space if and only if it can be converted into a value within the legitimate

range [0,M) of the RRNS(n+ k,n) by using the CRT. The number of all vectors that have

a Hamming distance η from a codeword in RRNS(n+ k,n) can be expressed as

Vη = ∑
Q(n+k

η)

η

∏
i=1

(mi −1), (A.1)

135

where Q
(n+k

η

)
represents one selection of η moduli from n+ k moduli while ∑Q(n+k

η) rep-

resents the summation over all distinct
(n+k

η

)
selections. The number of codewords that are

in the RNS code space with a Hamming distance of η ∈ {0,1, ...,n+ k} can be expressed

as

Dη =
η−1−k

∑
h=0

(−1)h
(

n+ k−η+h
n+ k−η

)
ζ(n+ k,η−h), (A.2)

for k + 1 ≤ η ≤ n+ k. For 1 ≤ η ≤ k, Dη = 0 and D0 = 1. ζ(n+ k,η) represents the

total number of non-zero common divisors in the legitimate range [0,M) for any n+ k−η

moduli out of the n+ k moduli of the RRNS(n+ k,n) code and can be denoted as

ζ(n+ k,η) = ∑
Q(n+k

n+k−η)

⌊
M−1

mi1mi2...mi(n+k−η)

⌋
, (A.3)

where (mi1,mi2, ...,miλ) with 1 ≤ λ ≤ n+ k is a subset of the RRNS(n+ k,n) moduli set.

An undetectable error occurs only if a codeword with errors overlaps with another code-

word in the same RRNS space. Given the distance distributions for the vector space V and

the codespace D (Eqs. (A.1), (A.2), respectively), the probability of observing an unde-

tectable error (pu) for RRNS(n+ k,n) can be computed as

pu =
n+k

∑
η=k+1

Dη

Vη

pE(η), (A.4)

where pE(η) is the probability of having η erroneous residues in a codeword which can be

calculated as

pE(η) = ∑
Q(n+k

η)

pη(1− p)(n+k−η), (A.5)

for a given error probability in a single residue, p.

Eq. (A.2) indicates that for up to η = k erroneous residues Dη = 0, and so an erroneous

codeword cannot overlap with another codeword in the RRNS code space. This guarantees

136

the successful detection of the observed error. If the Hamming distance of the erroneous

codeword is η ≤ ⌊ k
2⌋, the error can be corrected by the majority logic decoding mechanism.

In other words, the probability of observing a correctable error is equal to observing less or

equal to ⌊ k
2⌋ errors in the residues and can be calculated as

pc =
⌊ k

2 ⌋

∑
η=0

pE(η) =
⌊ k

2 ⌋

∑
η=0

(
∑

Q(n+k
η)

pη(1− p)(n+k−η)
)
. (A.6)

All the errors that do not fall under the undetectable or correctable categories are referred

to as detectable but not correctable errors with a probability pd where pd = 1− (pc + pd).

The equations in this section were collected from the work conducted by (Yang and Hanzo,

2001b).

To model the error in the RNS core for the analysis shown in Fig. 4·6, pc, pd , and pu

are computed for a given RRNS(n+ k,n) and p value using Eqs. (A.4) and (A.6). Given

the number of error correction attempts, perr is calculated according to Eq. (4.3). Random

noise is injected at the output of every tiled-MVM operation using a Bernoulli distribution

with a probability of perr.

A.2 Extended Dynamic Range via Positional Number System

By combining RNS and PNS, an integer value Z can be represented as D separate digits, zd

where d ∈ {0,1, ...,D−1} and 0 ≤ zd < M:

Z =
D−1

∑
d=0

zdM, (A.7)

and can provide up to D log2 M bit precision. This hybrid scheme requires carry propagation

from lower digits to higher digits, unlike the RNS-only scheme. For this purpose, one can

use two sets of moduli, primary and secondary, where every operation is performed for

both sets of residues. After every operation, overflow is detected for each digit and carried

137

over to the next higher-order digit.

Let us define and pick np primary moduli mi where i ∈ {1, ...,np} and ns secondary

moduli m j where j ∈ {1, ...,ns}, and mi ̸= m j ∀ {i, j}. Here M = Mp ·Ms = ∏
np
i=1 mi ·

∏
ns
j=1 m j is large enough to represent the largest possible output of the operations performed

in this numeral representation and Mp and Ms are co-prime.

In this hybrid number system, operations for each digit are independent of one another

and can be parallelized except for the overflow detection and carry propagation. Assume

zd = zd|p;s consists of primary and secondary residues and is a calculated output digit of

an operation before overflow detection. zd can be decomposed as zd|p = Qd|pMp +Rd|p

where Qd|p and Rd|p are the quotient and the remainder of the digit, with respect to the

primary RNS. To detect a potential overflow in the digit zd , a base extension from primary

to secondary RNS is performed on zd|p and the base extended residues are compared with

the original secondary residues of the digit, zd|s. If the residues are the same, this indicates

that there is no overflow, i.e., Qd|p;s = 0, and both primary and secondary residues are

kept without any carry moved to the next higher digit. In contrast, if the base-extended

secondary residues and the original secondary residues are not the same, there exists an

overflow (i.e., Qd|p;s ̸= 0). In the case of overflow, the remainder of the secondary RNS,

Rd|s, is calculated through a base extension from primary to secondary RNS on Rd|p where

Rd|p = zd|p. Qd|s can then be computed as Qd|s = (zd|s−Rd|s)M−1
p where |Mp ·M−1

p |Ms ≡

1. Qd|p is calculated through base extension from the secondary to primary RNS on the

computed Qd|s. The full quotient Qd|p;s is then propagated to the higher-order digit.

Algorithm 1 shows the pseudo-code for handling an operation □ using the extended

RNS representation. The operation can be replaced by any operation that is closed under

RNS. It should be noted that zd|p;s cannot always be computed as xd|p;s□yd|p;s. For oper-

ations such as addition, each digit before carry propagation is computed by simply adding

the same digits of the operands, i.e., zd|p;s = xd|p;s + yd|p;s. However, for multiplication,

138

each digit of zd|p;s should be constructed as in long multiplication. The multiplication of

two numbers in the hybrid number system with Dx and Dy digits requires DxDy digit-wise

multiplications and the output will result in Dz = Dx +Dy digits in total. Similarly, a dot

product is a combination of multiply and add operations. If two vectors with h elements

where each element has Dx and Dy digits, the output will require in Dz = Dx +Dy + log2 h

digits.

Algorithm 1 Pseudocode for performing a □ operation using the hybrid number system. Here, x and y are the input operands
of □. zd represents the digits of the output where d ∈ {1, ...,Dz}, zd |p are the primary residues, and zd |s are the secondary residues.
Primary and secondary residues together are referred to as z′d |p;s. Q is the quotient and R is the remainder where zd = QdMp +Rd . p2s()
and s2p() refer to base extension algorithms from primary to secondary residues and from secondary to primary residues, respectively.

Q−1|p;s = 0
for d in (0,Dz) do

z′d|p;s = (x|p;s □ y|p;s)d
end for
for d in (0,Dz) do

zd|p;s = z′d|p;s +Qd−1|p;s
Rd|p = zd|p
Rd|s = p2s(Rd|p)
if Rd|s = z′d|s then

Qd|p;s = 0
else

Qd|s = (z′d|s −Rd|s)M−1
p

Qd|p = s2p(Qd|s)
end if

end for

References

Ahmadifar, H. and Jaberipur, G. (2015). A new residue number system with 5-moduli
set:{22 q, 2 q±3, 2 q±1}. The Computer Journal, 58(7):1548–1565.

Akiyama, S., Baba, T., Imai, M., Akagawa, T., Takahashi, M., Hirayama, N., Takahashi,
H., Noguchi, Y., Okayama, H., Horikawa, T., and Usuki, T. (2012). 12.5-Gb/s operation
with 0.29-V·cm VπL using silicon Mach-Zehnder modulator based-on forward-biased
pin diode. Optics Express, 20(3):2911–2923.

Al-Qadasi, M., Chrostowski, L., Shastri, B., and Shekhar, S. (2022). Scaling up silicon
photonic-based accelerators: Challenges and opportunities. APL Photonics, 7(2).

Alexander, K., George, J. P., Verbist, J., Neyts, K., Kuyken, B., Van Thourhout, D., and
Beeckman, J. (2018). Nanophotonic pockels modulators on a silicon nitride platform.
Nature communications, 9(1):3444.

Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case, C., Casper,
J., Catanzaro, B., Cheng, Q., Chen, G., et al. (2016). Deep speech 2: End-to-end speech
recognition in english and mandarin. In International conference on machine learning,
pages 173–182. PMLR.

Anderson, A., Vasudevan, A., Keane, C., and Gregg, D. (2017). Low-memory
gemm-based convolution algorithms for deep neural networks. arXiv preprint
arXiv:1709.03395.

Ansys (2024). [Online]. Available: https://www.ansys.com/products/photonics.

Baghdadi, R., Gould, M., Gupta, S., Tymchenko, M., Bunandar, D., Ramey, C., and Harris,
N. C. (2021). Dual slot-mode noem phase shifter. Optics Express, 29(12):19113–
19119.

Bahadori, M., Nikdast, M., Cheng, Q., and Bergman, K. (2019). Universal design of
waveguide bends in silicon-on-insulator photonics platform. Journal of Lightwave Tech-
nology, 37(13):3044–3054.

Bandyopadhyay, S., Hamerly, R., and Englund, D. (2021). Hardware error correction for
programmable photonics. Optica, 8(10):1247–1255.

139

https://www.ansys.com/products/photonics

140

Bandyopadhyay, S., Sludds, A., Krastanov, S., Hamerly, R., Harris, N., Bunandar, D.,
Streshinsky, M., Hochberg, M., and Englund, D. (2023). A photonic deep neural net-
work processor on a single chip with optically accelerated training. In 2023 Conference
on Lasers and Electro-Optics (CLEO), pages 1–2. IEEE.

Bangari, V., Marquez, B. A., Miller, H., Tait, A. N., Nahmias, M. A., De Lima, T. F., Peng,
H.-T., Prucnal, P. R., and Shastri, B. J. (2019). Digital electronics and analog photonics
for convolutional neural networks (deap-cnns). IEEE Journal of Selected Topics in
Quantum Electronics, 26(1):1–13.

Bankman, D. and Murmann, B. (2015). Passive charge redistribution digital-to-analogue
multiplier. Electronics Letters, 51(5):386–388.

Bankman, D. and Murmann, B. (2016). An 8-bit, 16 input, 3.2 pj/op switched-capacitor dot
product circuit in 28-nm fdsoi cmos. In 2016 ieee asian solid-state circuits conference
(a-sscc), pages 21–24. IEEE.

Banner, R., Hubara, I., Hoffer, E., and Soudry, D. (2018). Scalable methods for 8-bit
training of neural networks. Advances in neural information processing systems, 31.

Bao, Q., Zhang, H., Ni, Z., Wang, Y., Polavarapu, L., Shen, Z., Xu, Q.-H., Tang, D., and
Loh, K. P. (2011). Monolayer Graphene as a Saturable Absorber in a Mode-locked
Laser. Nano Research, 4(3):297–307.

Basumallik, A., Bunandar, D., Dronen, N., Harris, N., Levkova, L., McCarter, C., Nair, L.,
Walter, D., and Widemann, D. (2022). Adaptive block floating-point for analog deep
learning hardware. arXiv preprint arXiv:2205.06287.

Bell, T. E. (1986). Optical Computing: A Field in Flux. IEEE Spectrum, 23(8):34–38.

Bernstein, L., Sludds, A., Hamerly, R., Sze, V., Emer, J., and Englund, D. (2021). Freely
Scalable and Reconfigurable Optical Hardware for Deep Learning. Scientific Reports,
11(1):3144.

Bogaerts, W., De Heyn, P., Van Vaerenbergh, T., De Vos, K., Kumar Selvaraja, S., Claes, T.,
Dumon, P., Bienstman, P., Van Thourhout, D., and Baets, R. (2012). Silicon Microring
Resonators. Laser & Photonics Reviews, 6(1):47–73.

Bohr, M. (2007). A 30 year retrospective on dennard’s mosfet scaling paper. IEEE Solid-
State Circuits Society Newsletter, 12(1):11–13.

Bojar, O., Buck, C., Federmann, C., Haddow, B., Koehn, P., Leveling, J., Monz, C., Pecina,
P., Post, M., Saint-Amand, H., et al. (2014). Findings of the 2014 workshop on statis-
tical machine translation. In Proceedings of the ninth workshop on statistical machine
translation, pages 12–58.

141

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901.

Cadence (2024). Genus Synthesis Solution. [Online]. Available: https:
//www.cadence.com/en_US/home/tools/digital-design-and-signoff/
synthesis/genus-synthesis-solution.html.

Caulfield, H. J. (1987). Parallel N4 Weighted Optical Interconnections. Applied Optics,
26(19):4039–4040.

Chang, J., Sitzmann, V., Dun, X., Heidrich, W., and Wetzstein, G. (2018). Hybrid optical-
electronic convolutional neural networks with optimized diffractive optics for image
classification. Scientific reports, 8(1):12324.

Chen, C. and Joshi, A. (2013). Runtime management of laser power in silicon-photonic
multibus noc architecture. IEEE Journal of Selected Topics in Quantum Electronics,
19(2):3700713–3700713.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O., Kaplan, J., Edwards, H., Burda,
Y., Joseph, N., Brockman, G., et al. (2021). Evaluating large language models trained
on code. arXiv preprint arXiv:2107.03374.

Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., and Temam, O. (2014a). Diannao:
A small-footprint high-throughput accelerator for ubiquitous machine-learning. ACM
SIGARCH Computer Architecture News, 42(1):269–284.

Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L., Chen, T., Xu, Z., Sun, N.,
et al. (2014b). Dadiannao: A machine-learning supercomputer. In 2014 47th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 609–622. IEEE.

Chen, Y.-H., Krishna, T., Emer, J. S., and Sze, V. (2016). Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks. IEEE journal of
solid-state circuits, 52(1):127–138.

Chen, Y.-H., Yang, T.-J., Emer, J., and Sze, V. (2019). Eyeriss v2: A flexible accelerator
for emerging deep neural networks on mobile devices. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, 9(2):292–308.

Cheng, Q., Kwon, J., Glick, M., Bahadori, M., Carloni, L. P., and Bergman, K. (2020).
Silicon photonics codesign for deep learning. Proceedings of the IEEE, 108(8):1261–
1282.

Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., Wang, Y., and Xie, Y. (2016). Prime:
A novel processing-in-memory architecture for neural network computation in reram-
based main memory. In 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), pages 27–39.

https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html

142

Chih, Y.-D., Lee, P.-H., Fujiwara, H., Shih, Y.-C., Lee, C.-F., Naous, R., Chen, Y.-L.,
Lo, C.-P., Lu, C.-H., Mori, H., et al. (2021). 16.4 an 89tops/w and 16.3 tops/mm 2
all-digital sram-based full-precision compute-in memory macro in 22nm for machine-
learning edge applications. In 2021 IEEE International Solid-State Circuits Conference
(ISSCC), volume 64, pages 252–254. IEEE.

Choquette, J. (2023). Nvidia hopper h100 gpu: Scaling performance. IEEE Micro,
43(3):9–17.

Choquette, J., Gandhi, W., Giroux, O., Stam, N., and Krashinsky, R. (2021). Nvidia a100
tensor core gpu: Performance and innovation. IEEE Micro, 41(2):29–35.

Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S., and Walmsley, I. A.
(2016). Optimal Design for Universal Multiport Interferometers. Optica, 3(12):1460–
1465.

Cottle, E., Michel, F., Wilson, J., New, N., and Kundu, I. (2020). Optical convolutional
neural networks–combining silicon photonics and fourier optics for computer vision.
arXiv preprint arXiv:2103.09044, :.

Courbariaux, M., Bengio, Y., and David, J.-P. (2014). Training deep neural networks with
low precision multiplications. arXiv preprint arXiv:1412.7024.

Darvish Rouhani, B., Lo, D., Zhao, R., Liu, M., Fowers, J., Ovtcharov, K., Vinogradsky,
A., Massengill, S., Yang, L., Bittner, R., et al. (2020). Pushing the limits of narrow
precision inferencing at cloud scale with microsoft floating point. Advances in neural
information processing systems, 33:10271–10281.

Dehlaghi, B. and Chan Carusone, A. (2016). A 0.3 pj/bit 20 gb/s/wire parallel interface for
die-to-die communication. IEEE Journal of Solid-State Circuits, 51(11):2690–2701.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

Djath, L., Bigou, K., and Tisserand, A. (2019). Hierarchical approach in rns base extension
for asymmetric cryptography. In 2019 IEEE 26th Symposium on Computer Arithmetic
(ARITH), pages 46–53. IEEE.

Dong, P., Qian, W., Liang, H., Shafiiha, R., Feng, N.-N., Feng, D., Zheng, X., Krish-
namoorthy, A. V., and Asghari, M. (2010). Low power and compact reconfigurable mul-
tiplexing devices based on silicon microring resonators. Optics Express, 18(10):9852–
9858.

143

Drumond, M., Lin, T., Jaggi, M., and Falsafi, B. (2018). Training dnns with hybrid block
floating point. Advances in Neural Information Processing Systems, 31.

Du, Z., Fasthuber, R., Chen, T., Ienne, P., Li, L., Luo, T., Feng, X., Chen, Y., and Temam,
O. (2015). Shidiannao: Shifting vision processing closer to the sensor. In Proceedings
of the 42nd annual international symposium on computer architecture, pages 92–104.

Epoch AI (2023). Key trends and figures in machine learning. [Online]. Available:
https://epochai.org/trends.

Esmaeilzadeh, H., Blem, E., St. Amant, R., Sankaralingam, K., and Burger, D. (2011).
Dark silicon and the end of multicore scaling. In Proceedings of the 38th annual inter-
national symposium on Computer architecture, pages 365–376.

Everingham, M., Van Gool, L., Williams, C. K., Winn, J., and Zisserman, A. (2010). The
pascal visual object classes (voc) challenge. International journal of computer vision,
88:303–338.

Fang, A. W., Park, H., Cohen, O., Jones, R., Paniccia, M. J., and Bowers, J. E. (2006). Elec-
trically pumped hybrid algainas-silicon evanescent laser. Optics express, 14(20):9203–
9210.

Farabet, C., LeCun, Y., Kavukcuoglu, K., Culurciello, E., Martini, B., Akselrod, P., and
Talay, S. (2011a). Large-scale fpga-based convolutional networks. Scaling up machine
learning: parallel and distributed approaches, 13(3):399–419.

Farabet, C., Martini, B., Corda, B., Akselrod, P., Culurciello, E., and LeCun, Y. (2011b).
Neuflow: A runtime reconfigurable dataflow processor for vision. In CVPR 2011
WORKSHOPS, pages 109–116.

Farabet, C., Poulet, C., Han, J. Y., and LeCun, Y. (2009). Cnp: An fpga-based processor
for convolutional networks. In 2009 International Conference on Field Programmable
Logic and Applications, pages 32–37. IEEE.

Feldmann, J., Youngblood, N., Karpov, M., Gehring, H., Li, X., Stappers, M., Le Gallo,
M., Fu, X., Lukashchuk, A., Raja, A. S., et al. (2021). Parallel convolutional processing
using an integrated photonic tensor core. Nature, 589(7840):52–58.

Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H., and Pernice, W. H. (2019).
All-optical spiking neurosynaptic networks with self-learning capabilities. Nature,
569(7755):208–214.

Feng, Y., Thomson, D. J., Mashanovich, G. Z., and Yan, J. (2020a). Performance analysis
of a silicon noems device applied as an optical modulator based on a slot waveguide.
Optics Express, 28(25):38206–38222.

https://epochai.org/trends

144

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T.,
Jiang, D., et al. (2020b). Codebert: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155.

Ferreira De Lima, T., Tait, A. N., Mehrabian, A., Nahmias, M. A., Huang, C., Peng, H.-T.,
Marquez, B. A., Miscuglio, M., El-Ghazawi, T., Sorger, V. J., et al. (2020). Primer on
silicon neuromorphic photonic processors: architecture and compiler. Nanophotonics,
9(13):4055–4073.

Filipovich, M. J., Guo, Z., Al-Qadasi, M., Marquez, B. A., Morison, H. D., Sorger, V. J.,
Prucnal, P. R., Shekhar, S., and Shastri, B. J. (2022). Silicon photonic architecture for
training deep neural networks with direct feedback alignment. Optica, 9(12):1323–
1332.

Fujikata, J., Takahashi, S., Takahashi, M., Noguchi, M., Nakamura, T., and Arakawa,
Y. (2016). High-performance mos-capacitor-type si optical modulator and surface-
illumination-type ge photodetector for optical interconnection. Japanese Journal of
Applied Physics, 55(4S):04EC01.

Gao, M., Pu, J., Yang, X., Horowitz, M., and Kozyrakis, C. (2017). Tetris: Scalable and
efficient neural network acceleration with 3d memory. In Proceedings of the Twenty-
Second International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 751–764.

Garello, K., Yasin, F., and Kar, G. S. (2019). Spin-orbit torque mram for ultrafast embed-
ded memories: From fundamentals to large scale technology integration. In 2019 IEEE
11th International Memory Workshop (IMW), pages 1–4. IEEE.

Garg, S., Lou, J., Jain, A., Guo, Z., Shastri, B. J., and Nahmias, M. (2023). Dynamic
precision analog computing for neural networks. IEEE Journal of Selected Topics in
Quantum Electronics, 29(2: Optical Computing):1–12.

Gargini, P. A. (2023). Overcoming semiconductor and electronics crises with irds: Plan-
ning for the future. IEEE Electron Devices Magazine, 1(3):32–47.

Gholami, E., Farshidi, R., Hosseinzadeh, M., and Navi, K. (2009). High speed residue
number system comparison for the moduli set {2n-1, 2n, 2n+ 1}. Journal of communi-
cation and computer, 6(3):40–46.

Giewont, K., Nummy, K., Anderson, F. A., Ayala, J., Barwicz, T., Bian, Y., Dezfulian,
K. K., Gill, D. M., Houghton, T., Hu, S., Peng, B., Rakowski, M., Rauch, S., Rosenberg,
J. C., Sahin, A., Stobert, I., and Stricker, A. (2019). 300-mm Monolithic Silicon Pho-
tonics Foundry Technology. IEEE Journal of Selected Topics in Quantum Electronics,
25(5):1–11.

145

Global Foundries (2024). GF22nm FD-SOI Technology. [Online]. Available: https:
//gf.com/technology-platforms/fdx-fd-soi/.

Google Cloud (2024). Tpu v5p. [Online]. Available: https://cloud.google.com/
tpu/docs/v5p.

Gregory, R. T. and Matula, D. W. (1975). Base conversion in residue number systems. In
1975 IEEE 3rd Symposium on Computer Arithmetic (ARITH), pages 117–125. IEEE.

Gschwend, D. (2020). Zynqnet: An fpga-accelerated embedded convolutional neural net-
work. arXiv preprint arXiv:2005.06892.

Guo, M., Mao, J., Sin, S.-W., Wei, H., and Martins, R. P. (2020). A 5 GS/s 29 mW
Interleaved SAR ADC With 48.5 dB SNDR Using Digital-Mixing Background Timing-
Skew Calibration for Direct Sampling Applications. IEEE Access, 8:138944–138954.

Gupta, R., Pal, S., Kanade, A., and Shevade, S. (2017). Deepfix: Fixing common c
language errors by deep learning. In Proceedings of the aaai conference on artificial
intelligence, volume 31.

Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan, P. (2015). Deep learning
with limited numerical precision. In International conference on machine learning,
pages 1737–1746. PMLR.

Hamerly, R., Bandyopadhyay, S., and Englund, D. (2021a). Accurate Self-Configuration
of Rectangular Multiport Interferometers. arXiv, abs/2106.03249:.

Hamerly, R., Bandyopadhyay, S., and Englund, D. (2021b). Stability of Self-Configuring
Large Multiport Interferometers. arXiv, abs/2106.04363:.

Han, J.-H., Boeuf, F., Fujikata, J., Takahashi, S., Takagi, S., and Takenaka, M. (2017). Ef-
ficient low-loss ingaasp/si hybrid mos optical modulator. Nature Photonics, 11(8):486–
490.

Harris, N. C., Bunandar, D., Joshi, A., Basumallik, A., and Turner, R. (2022). Passage: A
wafer-scale programmable photonic communication substrate. In 2022 IEEE Hot Chips
34 Symposium (HCS), pages 1–26. IEEE Computer Society.

Harris, N. C., Ma, Y., Mower, J., Baehr-Jones, T., Englund, D., Hochberg, M., and Galland,
C. (2014). Efficient, compact and low loss thermo-optic phase shifter in silicon. Optics
express, 22(9):10487–10493.

Hauser, J. R. (2019). Bsg-external/hardfloat. [Online]. Available: https://github.
com/bsg-external/HardFloat.

https://gf.com/technology-platforms/fdx-fd-soi/
https://gf.com/technology-platforms/fdx-fd-soi/
https://cloud.google.com/tpu/docs/v5p
https://cloud.google.com/tpu/docs/v5p
https://github.com/bsg-external/HardFloat
https://github.com/bsg-external/HardFloat

146

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recogni-
tion. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778.

He, Y., Sainath, T. N., Prabhavalkar, R., McGraw, I., Alvarez, R., Zhao, D., Rybach, D.,
Kannan, A., Wu, Y., Pang, R., Liang, Q., Bhatia, D., Shangguan, Y., Li, B., Pundak,
G., Sim, K. C., Bagby, T., Chang, S.-y., Rao, K., and Gruenstein, A. (2019). Stream-
ing end-to-end speech recognition for mobile devices. In ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
6381–6385.

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., Patwary, M.
M. A., Yang, Y., and Zhou, Y. (2017). Deep learning scaling is predictable, empirically.
arXiv preprint arXiv:1712.00409.

Hiasat, A. (2019). A residue-to-binary converter with an adjustable structure for
an extended rns three-moduli set. Journal of Circuits, Systems and Computers,
28(08):1950126.

Hobbhahn, M., Heim, L., and Aydos, G. (2023). Trends in machine learning hardware.
[Online]. Available: https://epochai.org/blog/trends-in-machine-learning-
hardware.

Hollmann, H. D., Rietman, R., de Hoogh, S., Tolhuizen, L., and Gorissen, P. (2018). A
multi-layer recursive residue number system. In 2018 IEEE International Symposium
on Information Theory (ISIT), pages 1460–1464. IEEE.

Horowitz, M. (2014). Computing’s Energy Problem (and What We Can Do About It).
In 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), pages 10–14, . .

Hsu, K., Brady, D., and Psaltis, D. (1988). Experimental Demonstrations of Optical Neural
Computers. In Anderson, D., editor, Neural Information Processing Systems. American
Institute of Physics.

Hu, M., Strachan, J. P., Li, Z., Grafals, E. M., Davila, N., Graves, C., Lam, S., Ge, N., Yang,
J. J., and Williams, R. S. (2016). Dot-product engine for neuromorphic computing:
Programming 1t1m crossbar to accelerate matrix-vector multiplication. In Proceedings
of the 53rd annual design automation conference, pages 1–6.

Hu, R., Sun, L., Zhang, Z., Sun, Q., Pan, Y., and Su, Y. (2023). Ultrabroadband and com-
pact 2× 2 3-db coupler based on trapezoidal subwavelength gratings. Optics Express,
31(14):23542–23550.

https://epochai.org/blog/trends-in-machine-learning-hardware
https://epochai.org/blog/trends-in-machine-learning-hardware

147

Huang, H.-Y., Chen, X.-Y., and Kuo, T.-H. (2021). A 10-GS/s NRZ/Mixing DAC With
Switching-Glitch Compensation Achieving SFDR gt; 64/50 dBc Over the First/Second
Nyquist Zone. IEEE Journal of Solid-State Circuits, ():1–1.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y. (2017). Quantized
neural networks: Training neural networks with low precision weights and activations.
The Journal of Machine Learning Research, 18(1):6869–6898.

Huggingface. Huggingface/transformers: State-of-the-art machine learning for pytorch,
tensorflow, and jax. [Online]. Available: https://github.com/huggingface/
transformers.

Hughes, T. W., Minkov, M., Shi, Y., and Fan, S. (2018). Training of photonic neural
networks through in situ backpropagation and gradient measurement. Optica, 5(7):864–
871.

Huimin Li, Xitian Fan, Li Jiao, Wei Cao, Xuegong Zhou, and Lingli Wang (2016). A High
Performance FPGA-based Accelerator for Large-scale Convolutional Neural Networks.
In 2016 26th International Conference on Field Programmable Logic and Applications
(FPL), pages 1–9, . .

Intel (2024). Intel® xeon® gold 6242 processor (22m cache, 2.80 ghz) product specifi-
cations. [Online]. Available: https://ark.intel.com/content/www/us/en/ark/
products/192440/intel-xeon-gold-6242-processor-22m-cache-2-80-ghz.
html.

Intel Corporation (2021). Intel® advanced vector extensions 512. [On-
line]. Available: https://www.intel.com/content/www/us/en/architecture-
and-technology/avx-512-solution-brief.html.

Intel Corporation (2023). 4th gen intel® xeon® scalable processors. [Online]. Available:
https://www.intel.com/content/www/us/en/products/docs/processors/
xeon-accelerated/4th-gen-xeon-scalable-processors-product-brief.
html.

Jackson, J. D. (1975). Classical Electrodynamics. Wiley, New York, NY.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H., and
Kalenichenko, D. (2018). Quantization and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2704–2713.

Jain, S., Ranjan, A., Roy, K., and Raghunathan, A. (2017). Computing in memory with
spin-transfer torque magnetic ram. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 26(3):470–483.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://ark.intel.com/content/www/us/en/ark/products/192440/intel-xeon-gold-6242-processor-22m-cache-2-80-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192440/intel-xeon-gold-6242-processor-22m-cache-2-80-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192440/intel-xeon-gold-6242-processor-22m-cache-2-80-ghz.html
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-solution-brief.html
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-solution-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon-accelerated/4th-gen-xeon-scalable-processors-product-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon-accelerated/4th-gen-xeon-scalable-processors-product-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon-accelerated/4th-gen-xeon-scalable-processors-product-brief.html

148

James, J. and Pe, A. (2015). Error correction based on redundant residue number system.
In 2015 IEEE International Conference on Electronics, Computing and Communication
Technologies (CONECCT), pages 1–5. IEEE.

Jayatilleka, H., Shoman, H., Chrostowski, L., and Shekhar, S. (2019). Photoconductive
heaters enable control of large-scale silicon photonic ring resonator circuits. Optica,
6(1):84–91.

Jenkins, W. K. (1980). Complex residue number arithmetic for high-speed signal process-
ing. Electronics Letters, 16:660.

Jha, A., Huang, C., and Prucnal, P. R. (2020). Reconfigurable all-optical nonlinear activa-
tion functions for neuromorphic photonics. Optics letters, 45(17):4819–4822.

Joshi, V., Le Gallo, M., Haefeli, S., Boybat, I., Nandakumar, S. R., Piveteau, C., Dazzi,
M., Rajendran, B., Sebastian, A., and Eleftheriou, E. (2020). Accurate deep neural
network inference using computational phase-change memory. Nature communications,
11(1):2473.

Jouppi, N. P., Yoon, D. H., Kurian, G., Li, S., Patil, N., Laudon, J., Young, C., and Pat-
terson, D. (2020). A domain-specific supercomputer for training deep neural networks.
Commun. ACM, 63(7):67–78.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia,
S., Boden, N., Borchers, A., et al. (2017). In-datacenter performance analysis of a
tensor processing unit. In Proceedings of the 44th annual international symposium on
computer architecture, pages 1–12.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S.,
Radford, A., Wu, J., and Amodei, D. (2020). Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361.

Kenyon, A. (2005). Erbium in silicon. Semiconductor Science and Technology,
20(12):R65.

Kieninger, C., Kutuvantavida, Y., Elder, D. L., Wolf, S., Zwickel, H., Blaicher, M., Kemal,
J. N., Lauermann, M., Randel, S., Freude, W., et al. (2018). Ultra-high electro-optic
activity demonstrated in a silicon-organic hybrid modulator. Optica, 5(6):739–748.

Kim, D., Kung, J., Chai, S., Yalamanchili, S., and Mukhopadhyay, S. (2016). Neurocube:
A programmable digital neuromorphic architecture with high-density 3d memory. ACM
SIGARCH Computer Architecture News, 44(3):380–392.

Kim, S., Kim, J., Kim, M. J., Jung, W., Rhu, M., Kim, J., and Ahn, J. H. (2021).
Bts: An accelerator for bootstrappable fully homomorphic encryption. arXiv preprint
arXiv:2112.15479, :.

149

Kim, S.-N., Kim, W.-C., Seo, M.-J., and Ryu, S.-T. (2018). A 65-nm cmos 6-bit 20
gs/s time-interleaved dac with full-binary sub-dacs. IEEE Transactions on Circuits and
Systems II: Express Briefs, 65(9):1154–1158.

Kim, W., Bruce, R. L., Masuda, T., Fraczak, G., Gong, N., Adusumilli, P., Ambrogio,
S., Tsai, H., Bruley, J., Han, J.-P., et al. (2019). Confined pcm-based analog synaptic
devices offering low resistance-drift and 1000 programmable states for deep learning.
In 2019 Symposium on VLSI Technology, pages T66–T67. IEEE.

Krishnamoorthi, R. (2018). Quantizing deep convolutional networks for efficient infer-
ence: A whitepaper. CoRR, abs/1806.08342:.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25.

Lamb, C. C. and DeBrunner, L. (1995). A table-lookup scheme for residue-to-binary
conversion. In Conference Record of The Twenty-Ninth Asilomar Conference on Signals,
Systems and Computers, volume 1, pages 214–217. IEEE.

Lavely, A. (2022). Powering extreme-scale hpc with cerebras waferscale ac-
celerators. Technical report, Cerebras Systems. [Online]. Available:
https://8968533.fs1.hubspotusercontent-na1.net/hubfs/8968533/
Powering-Extreme-Scale-HPC-with-Cerebras.pdf.

Le Gallo, M., Khaddam-Aljameh, R., Stanisavljevic, M., Vasilopoulos, A., Kersting, B.,
Dazzi, M., Karunaratne, G., Brändli, M., Singh, A., Mueller, S. M., et al. (2023). A
64-core mixed-signal in-memory compute chip based on phase-change memory for deep
neural network inference. Nature Electronics, 6(9):680–693.

Le Sueur, E. and Heiser, G. (2010). Dynamic voltage and frequency scaling: The laws
of diminishing returns. In Proceedings of the 2010 international conference on Power
aware computing and systems, pages 1–8.

Lee, J., Kim, C., Kang, S., Shin, D., Kim, S., and Yoo, H.-J. (2018). Unpu: An energy-
efficient deep neural network accelerator with fully variable weight bit precision. IEEE
Journal of Solid-State Circuits, 54(1):173–185.

Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., and Quillen, D. (2018). Learning hand-eye
coordination for robotic grasping with deep learning and large-scale data collection. The
International journal of robotics research, 37(4-5):421–436.

Li, S., Yang, H., Wong, C. W., Sorger, V. J., and Gupta, P. (2023). Photofourier: A photonic
joint transform correlator-based neural network accelerator. In 2023 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages 15–28. IEEE.

https://8968533.fs1.hubspotusercontent-na1.net/hubfs/8968533/Powering-Extreme-Scale-HPC-with-Cerebras.pdf
https://8968533.fs1.hubspotusercontent-na1.net/hubfs/8968533/Powering-Extreme-Scale-HPC-with-Cerebras.pdf

150

Li, X. and Zhou, L. (2020). A survey of high-speed high-resolution current steering DACs.
Journal of Semiconductors, 41(20060024):111404.

Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein, D., and Gonzalez, J. (2020).
Train big, then compress: Rethinking model size for efficient training and inference
of transformers. In International Conference on machine learning, pages 5958–5968.
PMLR.

Liang, D. and Bowers, J. E. (2010). Recent progress in lasers on silicon. Nature photonics,
4(8):511–517.

Liang, G., Huang, H., Mohanty, A., Shin, M. C., Ji, X., Carter, M. J., Shrestha, S., Lipson,
M., and Yu, N. (2021). Robust, efficient, micrometre-scale phase modulators at visible
wavelengths. Nature Photonics, 15(12):908–913.

Lin, T., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick, R. B., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., and Zitnick, C. L. (2014). Microsoft COCO: common objects
in context. CoRR, abs/1405.0312.

Lin, X., Rivenson, Y., Yardimci, N. T., Veli, M., Luo, Y., Jarrahi, M., and Ozcan, A.
(2018). All-optical machine learning using diffractive deep neural networks. Science,
361(6406):1004–1008.

Lischke, S., Knoll, D., Mai, C., Zimmermann, L., Peczek, A., Kroh, M., Trusch, A., Krune,
E., Voigt, K., and Mai, A. (2015). High Bandwidth, High Responsivity Waveguide-
coupled Germanium p-i-n Photodiode. Optics Express, 23(21):27213–27220.

Liu, J., Sun, X., Camacho-Aguilera, R., Kimerling, L. C., and Michel, J. (2010). Ge-on-si
laser operating at room temperature. Optics letters, 35(5):679–681.

Liu, W., Liu, W., Ye, Y., Lou, Q., Xie, Y., and Jiang, L. (2019). Holylight: A nanophotonic
accelerator for deep learning in data centers. In 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 1483–1488. IEEE.

Maslej, N., Fattorini, L., Perrault, R., Parli, V., Reuel, A., Brynjolfsson, E.,
Etchemendy, J., Ligett, K., Lyons, T., Manyika, J., Niebles, J. C., Shoham, Y.,
Wald, R., and Clark, J. (2024). Artificial intelligence index report 2024. [On-
line]. Available: https://aiindex.stanford.edu/wp-content/uploads/2024/
04/HAI_2024_AI-Index-Report.pdf.

Mehrabian, A., Al-Kabani, Y., Sorger, V. J., and El-Ghazawi, T. (2018). Pcnna: A photonic
convolutional neural network accelerator. In 2018 31st IEEE International System-on-
Chip Conference (SOCC), pages 169–173. IEEE.

Meng, J., Miscuglio, M., George, J. K., Babakhani, A., and Sorger, V. J. (2021). Electronic
bottleneck suppression in next-generation networks with integrated photonic digital-to-
analog converters. Advanced photonics research, 2(2):2000033.

https://aiindex.stanford.edu/wp-content/uploads/2024/04/HAI_2024_AI-Index-Report.pdf
https://aiindex.stanford.edu/wp-content/uploads/2024/04/HAI_2024_AI-Index-Report.pdf

151

Merity, S., Xiong, C., Bradbury, J., and Socher, R. (2016). Pointer sentinel mixture models.
CoRR, abs/1609.07843.

Mikolajick, T., Schroeder, U., and Slesazeck, S. (2020). The past, the present, and the
future of ferroelectric memories. IEEE Transactions on Electron Devices, 67(4):1434–
1443.

Milanizadeh, M., Aguiar, D., Melloni, A., and Morichetti, F. (2019). Canceling thermal
cross-talk effects in photonic integrated circuits. Journal of Lightwave Technology,
37(4):1325–1332.

Miller, D. A. B. (2013). Self-configuring Universal Linear Optical Component. Photonics
Research, 1(1):1–15.

Miller, D. A. B. (2015). Perfect optics with imperfect components. Optica, 2(8):747–750.

Mirza, A., Sunny, F., Walsh, P., Hassan, K., Pasricha, S., and Nikdast, M. (2022). Sili-
con photonic microring resonators: A comprehensive design-space exploration and op-
timization under fabrication-process variations. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 41(10):3359–3372.

Miscuglio, M., Hu, Z., Li, S., George, J., Capanna, R., Bardet, P. M., Gupta, P., and Sorger,
V. J. (2020). Massively parallel amplitude-only fourier neural network. arXiv preprint
arXiv:2008.05853.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and
Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In
International conference on machine learning, pages 1928–1937. PMLR.

Mohan, P. A. (2002). Residue number systems: algorithms and architectures. Springer
Science & Business Media.

Mohan, P. V. A. (2007). Rns-to-binary converter for a new three-moduli set {2n +
1,2n,2n−1}. IEEE Transactions on Circuits and Systems II: Express Briefs, 54(9):775–
779.

Mourgias-Alexandris, G., Tsakyridis, A., Passalis, N., Tefas, A., Vyrsokinos, K., and
Pleros, N. (2019). An all-optical neuron with sigmoid activation function. Optics
express, 27(7):9620–9630.

Mourou, G., Brocklesby, B., Tajima, T., and Limpert, J. (2013). The future is fibre accel-
erators. Nature Photonics, 7(4):258–261.

Murmann, B. (2021). Mixed-signal computing for deep neural network inference. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 29(1):3–13.

152

Murmann, B. (2022). Introduction to adcs/dacs: metrics, topologies, trade space, and
applications. ISSCC Short Course.

Murmann, B. (2024). ADC Performance Survey 1997-2024. [Online]. Available: https:
//github.com/bmurmann/ADC-survey.

Nahmias, M. A., De Lima, T. F., Tait, A. N., Peng, H.-T., Shastri, B. J., and Prucnal, P. R.
(2019). Photonic multiply-accumulate operations for neural networks. IEEE Journal of
Selected Topics in Quantum Electronics, 26(1):1–18.

Ning, S., Zhu, H., Feng, C., Gu, J., Jiang, Z., Ying, Z., Midkiff, J., Jain, S., Hlaing, M. H.,
Pan, D. Z., et al. (2024). Photonic-electronic integrated circuits for high-performance
computing and ai accelerator. arXiv preprint arXiv:2403.14806.

NVIDIA Corporation (2024a). Cuda toolkit. [Online]. Available: https://developer.
nvidia.com/cuda-toolkit.

NVIDIA Corporation (2024b). Nvidia dgx b200. [Online]. Available: https://www.
nvidia.com/en-us/data-center/dgx-b200/.

Ohno, S., Li, Q., Sekine, N., Tang, H., Monfray, S., Boeuf, F., Toprasertpong, K., Takagi,
S., and Takenaka, M. (2021). Si microring resonator optical switch based on optical
phase shifter with ultrathin-inp/si hybrid metal-oxide-semiconductor capacitor. Optics
Express, 29(12):18502–18511.

Ohno, S., Tang, R., Toprasertpong, K., Takagi, S., and Takenaka, M. (2022). Si microring
resonator crossbar array for on-chip inference and training of the optical neural network.
Acs Photonics, 9(8):2614–2622.

Ordentlich, O., Tabak, G., Hanumolu, P. K., Singer, A. C., and Wornell, G. W. (2018). A
modulo-based architecture for analog-to-digital conversion. IEEE journal of selected
topics in signal processing, 12(5):825–840.

Padmaraju, K. and Bergman, K. (2014). Resolving the thermal challenges for silicon
microring resonator devices. Nanophotonics, 3(4-5):269–281.

Pai, S., Sun, Z., Hughes, T. W., Park, T., Bartlett, B., Williamson, I. A., Minkov, M.,
Milanizadeh, M., Abebe, N., Morichetti, F., et al. (2023). Experimentally real-
ized in situ backpropagation for deep learning in photonic neural networks. Science,
380(6643):398–404.

Panayotov, V., Chen, G., Povey, D., and Khudanpur, S. (2015). Librispeech: An ASR
Corpus Based on Public Domain Audio Books. In 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 5206–5210, . .

https://github.com/bmurmann/ADC-survey
https://github.com/bmurmann/ADC-survey
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://www.nvidia.com/en-us/data-center/dgx-b200/
https://www.nvidia.com/en-us/data-center/dgx-b200/

153

Patel, D., Samani, A., Veerasubramanian, V., Ghosh, S., and Plant, D. V. (2015). Silicon
photonic segmented modulator-based electro-optic dac for 100 gb/s pam-4 generation.
IEEE Photonics Technology Letters, 27(23):2433–2436.

Patel, D., Veerasubramanian, V., Ghosh, S., Samani, A., Zhong, Q., and Plant, D. V. (2014).
High-speed compact silicon photonic michelson interferometric modulator. Optics ex-
press, 22(22):26788–26802.

Peng, J., Alkabani, Y., Sun, S., Sorger, V. J., and El-Ghazawi, T. (2020). Dnnara: A
deep neural network accelerator using residue arithmetic and integrated photonics. In
Proceedings of the 49th International Conference on Parallel Processing, pages 1–11.

Petraru, A., Schubert, J., Schmid, M., and Buchal, C. (2002). Ferroelectric batio 3 thin-film
optical waveguide modulators. Applied Physics Letters, 81(8):1375–1377.

PowerAPI (2024). Powerapi-ng/pyrapl: A library to measure the python energy con-
sumption of python code. [Online]. Available: https://github.com/powerapi-ng/
pyRAPL.

Qiu, J., Wang, J., Yao, S., Guo, K., Li, B., Zhou, E., Yu, J., Tang, T., Xu, N., Song, S.,
et al. (2016). Going deeper with embedded fpga platform for convolutional neural
network. In Proceedings of the 2016 ACM/SIGDA international symposium on field-
programmable gate arrays, pages 26–35.

Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A.,
Langlotz, C., Shpanskaya, K., et al. (2017). Chexnet: Radiologist-level pneumonia
detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016). SQuAD: 100,000+ ques-
tions for machine comprehension of text. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pages 2383–2392, Austin, Texas.
Association for Computational Linguistics.

Rakowski, M., Ban, Y., De Heyn, P., Pantano, N., Snyder, B., Balakrishnan, S.,
Van Huylenbroeck, S., Bogaerts, L., Demeurisse, C., Inoue, F., Rebibis, K. J., Nol-
mans, P., Sun, X., Bex, P., Srinivasan, A., De Coster, J., Lardenois, S., Miller, A., Absil,
P., Verheyen, P., Velenis, D., Pantouvaki, M., and Van Campenhout, J. (2018). Hybrid
14nm finfet - silicon photonics technology for low-power tb/s/mm2 optical i/o. In 2018
IEEE Symposium on VLSI Technology, pages 221–222.

Ramey, C. (2020). Silicon photonics for artificial intelligence acceleration : Hotchips 32.
In IEEE Hot Chips 32 Symposium, HCS 2020, Palo Alto, CA, USA, August 16-18, 2020,
pages 1–26, . IEEE.

https://github.com/powerapi-ng/pyRAPL
https://github.com/powerapi-ng/pyRAPL

154

Ramon, H., Vanhoecke, M., Verbist, J., Soenen, W., De Heyn, P., Ban, Y., Pantouvaki,
M., Van Campenhout, J., Ossieur, P., Yin, X., et al. (2018). Low-power 56gb/s nrz
microring modulator driver in 28nm fdsoi cmos. IEEE Photonics Technology Letters,
30(5):467–470.

Reck, M., Zeilinger, A., Bernstein, H. J., and Bertani, P. (1994). Experimental Realization
of Any Discrete Unitary Operator. Physics Review Letters, 73:58–61.

Reddi, V. J., Cheng, C., Kanter, D., Mattson, P., Schmuelling, G., Wu, C., Anderson, B.,
Breughe, M., Charlebois, M., Chou, W., Chukka, R., Coleman, C., Davis, S., Deng,
P., Diamos, G., Duke, J., Fick, D., Gardner, J. S., Hubara, I., Idgunji, S., Jablin, T. B.,
Jiao, J., John, T. S., Kanwar, P., Lee, D., Liao, J., Lokhmotov, A., Massa, F., Meng, P.,
Micikevicius, P., Osborne, C., Pekhimenko, G., Rajan, A. T. R., Sequeira, D., Sirasao,
A., Sun, F., Tang, H., Thomson, M., Wei, F., Wu, E., Xu, L., Yamada, K., Yu, B., Yuan,
G., Zhong, A., Zhang, P., and Zhou, Y. (2020). MLPerf Inference Benchmark. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA),
pages 446–459, . .

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 779–788.

Redmon, J. and Farhadi, A. (2017). Yolo9000: better, faster, stronger. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 7263–7271.

Reimann, O. A. and Kosonocky, W. F. (1965). Progress in Optical Computer Research.
IEEE Spectrum, 2(3):181 – 195.

Roelkens, G., Van Campenhout, J., Brouckaert, J., Van Thourhout, D., Baets, R., Romeo,
P. R., Regreny, P., Kazmierczak, A., Seassal, C., Letartre, X., Hollinger, G., Fedeli, J.,
Di Cioccio, L., and Lagahe-Blanchard, C. (2007). III-V/Si Photonics by Die-to-wafer
Bonding. Materials Today, 10(7):36–43.

Sacher, W. D., Luo, X., Yang, Y., Chen, F.-D., Lordello, T., Mak, J. C., Liu, X., Hu, T.,
Xue, T., Lo, P. G.-Q., et al. (2019). Visible-light silicon nitride waveguide devices and
implantable neurophotonic probes on thinned 200 mm silicon wafers. Optics express,
27(26):37400–37418.

Sacher, W. D., Mikkelsen, J. C., Huang, Y., Mak, J. C., Yong, Z., Luo, X., Li, Y., Dumais,
P., Jiang, J., Goodwill, D., et al. (2018). Monolithically integrated multilayer silicon
nitride-on-silicon waveguide platforms for 3-d photonic circuits and devices. Proceed-
ings of the IEEE, 106(12):2232–2245.

Salamat, S., Imani, M., Gupta, S., and Rosing, T. (2018). Rnsnet: In-memory neural net-
work acceleration using residue number system. In 2018 IEEE International Conference
on Rebooting Computing (ICRC), pages 1–12.

155

Samajdar, A., Zhu, Y., Whatmough, P. N., Mattina, M., and Krishna, T. (2018). SCALE-
Sim: Systolic CNN Accelerator. arXiv, abs/1811.02883:.

Samimi, N., Kamal, M., Afzali-Kusha, A., and Pedram, M. (2020). Res-dnn: A residue
number system-based dnn accelerator unit. IEEE Transactions on Circuits and Systems
I: Regular Papers, 67(2):658–671.

Sancho, J. C. and Kerbyson, D. J. (2008). Analysis of double buffering on two different
multicore architectures: Quad-core Opteron and the Cell-BE. In 2008 IEEE Interna-
tional Symposium on Parallel and Distributed Processing, pages 1–12, . .

Sankaradas, M., Jakkula, V., Cadambi, S., Chakradhar, S., Durdanovic, I., Cosatto, E., and
Graf, H. P. (2009). A Massively Parallel Coprocessor for Convolutional Neural Net-
works. In 2009 20th IEEE International Conference on Application-specific Systems,
Architectures and Processors, pages 53–60, . .

Scherer, D., Schulz, H., and Behnke, S. (2010). Accelerating Large-Scale Convolutional
Neural Networks with Parallel Graphics Multiprocessors. In Diamantaras, K., Duch,
W., and Iliadis, L. S., editors, Artificial Neural Networks – ICANN 2010, pages 82–91,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Sevilla, J., Heim, L., Ho, A., Besiroglu, T., Hobbhahn, M., and Villalobos, P. (2022).
Compute trends across three eras of machine learning. In 2022 International Joint
Conference on Neural Networks (IJCNN), pages 1–8. IEEE.

Shafiee, A., Banerjee, S., Chakrabarty, K., Pasricha, S., and Nikdast, M. (2022). Loci: An
analysis of the impact of optical loss and crosstalk noise in integrated silicon-photonic
neural networks. In Proceedings of the Great Lakes Symposium on VLSI 2022, pages
351–355, . .

Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J. P., Hu, M.,
Williams, R. S., and Srikumar, V. (2016). Isaac: A convolutional neural network acceler-
ator with in-situ analog arithmetic in crossbars. ACM SIGARCH Computer Architecture
News, 44(3):14–26.

Shastri, B. J., Tait, A. N., Ferreira de Lima, T., Pernice, W. H. P., Bhaskaran, H., Wright,
C. D., and Prucnal, P. R. (2021). Photonics for Artificial Intelligence and Neuromorphic
Computing. Nature Photonics, 15(2):102–114.

Shen, L., Margolies, L. R., Rothstein, J. H., Fluder, E., McBride, R., and Sieh, W. (2019).
Deep learning to improve breast cancer detection on screening mammography. Scientific
reports, 9(1):12495.

Shen, Y., Harris, N. C., Skirlo, S., Prabhu, M., Baehr-Jones, T., Hochberg, M., Sun, X.,
Zhao, S., Larochelle, H., Englund, D., and Soljačić, M. (2017). Deep Learning with
Coherent Nanophotonic Circuits. Nature Photonics, 11(7):441–446.

156

Shen, Yun, Wang, Xiaodong, Zhang, Wei, Qiu, Ciyuan, and Cheng, Xiulan (2017). Fab-
rication of Depletion Type Micro-ring Modulator with High Extinction Ratio and High
Coupling Quality Factor. MATEC Web Conf., 139:00066.

Shenoy, A. and Kumaresan, R. (1989). Fast base extension using a redundant modulus in
rns. IEEE Transactions on Computers, 38(2):292–297.

Shi, B., Calabretta, N., and Stabile, R. (2020). Deep Neural Network Through an InP
SOA-Based Photonic Integrated Cross-Connect. IEEE Journal of Selected Topics in
Quantum Electronics, 26(1):1–11.

Shi, Y., Oh, S., Huang, Z., Lu, X., Kang, S. H., and Kuzum, D. (2020). Performance
prospects of deeply scaled spin-transfer torque magnetic random-access memory for in-
memory computing. IEEE Electron Device Letters, 41(7):1126–1129.

Shiflett, K., Karanth, A., Bunescu, R., and Louri, A. (2021). Albireo: Energy-efficient
acceleration of convolutional neural networks via silicon photonics. In 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA), pages 860–
873. IEEE.

Shiflett, K., Wright, D., Karanth, A., and Louri, A. (2020). Pixel: Photonic neural network
accelerator. In 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 474–487. IEEE.

Shiflett, K. D. (2022). Photonic Deep Neural Network Accelerators for Scaling to the Next
Generation of High-Performance Processing. Doctoral dissertation, Ohio University.
[Online]. Available: .

Shokraneh, F., Geoffroy-Gagnon, S., and Liboiron-Ladouceur, O. (2020). The diamond
mesh, a phase-error-and loss-tolerant field-programmable mzi-based optical processor
for optical neural networks. Optics Express, 28(16):23495–23508.

Sie, S.-H., Lee, J.-L., Chen, Y.-R., Yeh, Z.-W., Li, Z., Lu, C.-C., Hsieh, C.-C., Chang, M.-
F., and Tang, K.-T. (2021). Mars: Multimacro architecture sram cim-based accelerator
with co-designed compressed neural networks. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 41(5):1550–1562.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

Song, L., Chen, T., Liu, W., Liu, H., Peng, Y., Yu, Z., Li, H., Shi, Y., and Dai, D.
(2022). Toward calibration-free mach–zehnder switches for next-generation
silicon photonics. Photonics Research, 10(3):793–801.

Song, L., Qian, X., Li, H., and Chen, Y. (2017). Pipelayer: A pipelined reram-based accel-
erator for deep learning. In 2017 IEEE international symposium on high performance
computer architecture (HPCA), pages 541–552. IEEE.

157

Song, Z., Liu, Z., and Wang, D. (2018). Computation error analysis of block floating point
arithmetic oriented convolution neural network accelerator design. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 32.

Sorianello, V., Midrio, M., Contestabile, G., Asselberghs, I., Van Campenhout, J., Huyghe-
baert, C., Goykhman, I., Ott, A., Ferrari, A., and Romagnoli, M. (2018). Graphene–
silicon phase modulators with gigahertz bandwidth. Nature Photonics, 12(1):40–44.

Stojanović, V., Ram, R. J., Popović, M., Lin, S., Moazeni, S., Wade, M., Sun, C., Alloatti,
L., Atabaki, A., Pavanello, F., et al. (2018). Monolithic silicon-photonic platforms in
state-of-the-art cmos soi processes. Optics express, 26(10):13106–13121.

Stosic, D. and Micikevicius, P. (2021). Accelerating ai training with nvidia tf32 tensor
cores. [Online]. Available: https://developer.nvidia.com/blog/accelerating-
ai-training-with-tf32-tensor-cores/.

Sui, X., Wu, Q., Liu, J., Chen, Q., and Gu, G. (2020). A review of optical neural networks.
IEEE Access, 8:70773–70783.

Sukhdeo, D. S., Lin, H., Nam, D., Yuan, Z., Vulovic, B. M., Gupta, S., Harris, J. S., Dutt,
B., and Saraswat, K. C. (2013). Approaches for a viable germanium laser: tensile strain,
gesn alloys, and n-type doping. In 2013 Optical Interconnects Conference, pages 112–
113. IEEE.

Sun, C., Wade, M., Lee, Y., Orcutt, J., Alloatti, L., Georgas, M., Waterman, A., Shainline,
J., Avizienis, R., Lin, S., Moss, B., Kumar, R., Pavanello, F., Atabaki, A., Cook, H., Ou,
A. J., Leu, J., hsin Chen, Y., Asanović, K., Ram, R. J., Popovic, M., and Stojanović, V.
(2015). Single-chip microprocessor that communicates directly using light. Nature,
528:534–538.

Sun, J., Kumar, R., Sakib, M., Driscoll, J. B., Jayatilleka, H., and Rong, H. (2018). A 128
gb/s pam4 silicon microring modulator with integrated thermo-optic resonance tuning.
Journal of Lightwave Technology, 37(1):110–115.

Sun, X., Choi, J., Chen, C.-Y., Wang, N., Venkataramani, S., Srinivasan, V. V., Cui, X.,
Zhang, W., and Gopalakrishnan, K. (2019). Hybrid 8-bit floating point (hfp8) training
and inference for deep neural networks. Advances in neural information processing
systems, 32.

Sun, X., Zadok, A., Shearn, M. J., Diest, K. A., Ghaffari, A., Atwater, H. A., Scherer, A.,
and Yariv, A. (2009). Electrically pumped hybrid evanescent si/ingaasp lasers. Optics
letters, 34(9):1345–1347.

Sunny, F., Mirza, A., Nikdast, M., and Pasricha, S. (2021). Crosslight: A cross-layer
optimized silicon photonic neural network accelerator. In 2021 58th ACM/IEEE Design
Automation Conference (DAC), pages 1069–1074. IEEE.

https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/
https://developer.nvidia.com/blog/accelerating-ai-training-with-tf32-tensor-cores/

158

Tait, A. N., De Lima, T. F., Zhou, E., Wu, A. X., Nahmias, M. A., Shastri, B. J., and
Prucnal, P. R. (2017). Neuromorphic photonic networks using silicon photonic weight
banks. Scientific reports, 7(1):7430.

Tait, A. N., Wu, A. X., De Lima, T. F., Zhou, E., Shastri, B. J., Nahmias, M. A., and
Prucnal, P. R. (2016). Microring weight banks. IEEE Journal of Selected Topics in
Quantum Electronics, 22(6):312–325.

Tanabe, K., Watanabe, K., and Arakawa, Y. (2012). Iii-v/si hybrid photonic devices by
direct fusion bonding. Scientific reports, 2(1):349.

Tang, J., Bishop, D., Kim, S., Copel, M., Gokmen, T., Todorov, T., Shin, S., Lee, K.-T.,
Solomon, P., Chan, K., et al. (2018). Ecram as scalable synaptic cell for high-speed,
low-power neuromorphic computing. In 2018 IEEE International Electron Devices
Meeting (IEDM), pages 13–1. IEEE.

Tang, T., Xia, L., Li, B., Wang, Y., and Yang, H. (2017). Binary convolutional neural
network on rram. In 2017 22nd Asia and South Pacific Design Automation Conference
(ASP-DAC), pages 782–787. IEEE.

Taylor, M. G. (2009). Phase estimation methods for optical coherent detection using digital
signal processing. Journal of Lightwave Technology, 27:901–914.

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu, J., Soricut, R., Schalkwyk,
J., Dai, A. M., Hauth, A., et al. (2023). Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805.

Theis, T. N. and Wong, H.-S. P. (2017). The end of moore’s law: A new beginning for
information technology. Computing in Science Engineering, 19(2):41–50.

Thonnart, Y., Zid, M., Gonzalez-Jimenez, J. L., Waltener, G., Polster, R., Dubray, O.,
Lepin, F., Bernabé, S., Menezo, S., Parès, G., Castany, O., Boutafa, L., Grosse, P.,
Charbonnier, B., and Baudot, C. (2018). A 10gb/s si-photonic transceiver with 150
µw 120 µs-lock-time digitally supervised analog microring wavelength stabilization for
1tb/s/mm2 die-to-die optical networks. In 2018 IEEE International Solid - State Circuits
Conference - (ISSCC), pages 350–352, . .

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N.,
Batra, S., Bhargava, P., Bhosale, S., et al. (2023). Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288.

TSMC (2024). 40nm technology. [Online]. Available: https://www.tsmc.com/
english/dedicatedFoundry/technology/logic.

https://www.tsmc.com/english/dedicatedFoundry/technology/logic
https://www.tsmc.com/english/dedicatedFoundry/technology/logic

159

Van Campenhout, J., Rojo-Romeo, P., Van Thourhout, D., Seassal, C., Regreny, P., Di Cioc-
cio, L., Fedeli, J.-M., and Baets, R. (2007). Thermal characterization of electrically
injected thin-film ingaasp microdisk lasers on si. Journal of Lightwave technology,
25(6):1543–1548.

Van Den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalch-
brenner, N., Senior, A., Kavukcuoglu, K., et al. (2016). Wavenet: A generative model
for raw audio. arXiv preprint arXiv:1609.03499, 12.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,
and Polosukhin, I. (2017). Attention is all you need. Advances in neural information
processing systems, 30.

Verhelst, M. and Murmann, B. (2012). Area scaling analysis of cmos adcs. Electronics
letters, 48(6):1.

Wang, S. and Kanwar, P. (2019). Bfloat16: The secret to high performance on cloud tpus.
[Online]. Available: https://cloud.google.com/blog/products/ai-machine-
learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus.

Wang, W., Swamy, M., Ahmad, M., and Wang, Y. (2000). A high-speed residue-to-binary
converter for three-moduli (2/sup k/, 2/sup k/-1, 2/sup k-1/-1) rns and a scheme for its
vlsi implementation. IEEE Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, 47(12):1576–1581.

Wang, Y., Song, X., Aboulhamid, M., and Shen, H. (2002). Adder based residue to binary
number converters for (2/sup n/-1, 2/sup n/, 2/sup n/+1). IEEE Transactions on Signal
Processing, 50(7):1772–1779.

Watts, M. R., Sun, J., DeRose, C., Trotter, D. C., Young, R. W., and Nielson, G. N. (2013).
Adiabatic thermo-optic mach–zehnder switch. Optics letters, 38(5):733–735.

Wetzstein, G., Ozcan, A., Gigan, S., Fan, S., Englund, D., Soljačić, M., Denz, C., Miller,
D. A. B., and Psaltis, D. (2020). Inference in artificial intelligence with deep optics and
photonics. Nature, 588(7836):39–47.

Wilkes, C. M., Qiang, X., Wang, J., Santagati, R., Paesani, S., Zhou, X., Miller, D. A. B.,
Marshall, G. D., Thompson, M. G., and O’Brien, J. L. (2016). 60dB High-extinction
Auto-configured Mach–Zehnder Interferometer. Optics Letters, 41(22):5318–5321.

Wilson, J. (2023). The multiply and fourier transform unit: A micro-scale optical pro-
cessor. [Online]. Available: https://optalysys.com/wp-content/uploads/2023/
09/Multiply_and_Fourier_Transform_white_paper_12_12_20.pdf.

Wu, C., Yu, H., Lee, S., Peng, R., Takeuchi, I., and Li, M. (2021). Programmable phase-
change metasurfaces on waveguides for multimode photonic convolutional neural net-
work. Nature communications, 12(1):96.

https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://optalysys.com/wp-content/uploads/2023/09/Multiply_and_Fourier_Transform_white_paper_12_12_20.pdf
https://optalysys.com/wp-content/uploads/2023/09/Multiply_and_Fourier_Transform_white_paper_12_12_20.pdf

160

Wu, H., Judd, P., Zhang, X., Isaev, M., and Micikevicius, P. (2020). Integer quantization for
deep learning inference: Principles and empirical evaluation. CoRR, abs/2004.09602:.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M.,
Cao, Y., Gao, Q., Macherey, K., et al. (2016). Google’s neural machine translation
system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144.

Xu, B., Zhou, Y., and Chiu, Y. (2016). A 23mw 24gs/s 6b time-interleaved hybrid two-step
adc in 28nm cmos. In 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), pages
1–2.

Xu, C., Niu, D., Muralimanohar, N., Balasubramonian, R., Zhang, T., Yu, S., and Xie,
Y. (2015). Overcoming the challenges of crossbar resistive memory architectures. In
2015 IEEE 21st international symposium on high performance computer architecture
(HPCA), pages 476–488. IEEE.

Xu, H. and Shi, Y. (2018). Flat-top cwdm (de)multiplexer based on mzi with bent direc-
tional couplers. IEEE Photonics Technology Letters, 30(2):169–172.

Xu, X., Tan, M., Corcoran, B., Wu, J., Boes, A., Nguyen, T. G., Chu, S. T., Little, B. E.,
Hicks, D. G., Morandotti, R., Mitchell, A., and Moss, D. J. (2021). 11 TOPS Photonic
Convolutional Accelerator for Optical Neural Networks. Nature, 589(7840):44–51.

Yan, T., Wu, J., Zhou, T., Xie, H., Xu, F., Fan, J., Fang, L., Lin, X., and Dai, Q. (2019).
Fourier-space diffractive deep neural network. Physical review letters, 123(2):023901.

Yang, L.-L. and Hanzo, L. (2001a). Minimum-distance decoding of redundant residue
number system codes. In ICC 2001. IEEE International Conference on Communica-
tions. Conference Record (Cat. No.01CH37240), volume 10, pages 2975–2979 vol.10.

Yang, L.-L. and Hanzo, L. (2001b). Redundant residue number system based error correc-
tion codes. In IEEE 54th Vehicular Technology Conference. VTC Fall 2001. Proceed-
ings (Cat. No. 01CH37211), volume 3, pages 1472–1476. IEEE.

Yao, P., Wu, H., Gao, B., Tang, J., Zhang, Q., Zhang, W., Yang, J. J., and Qian, H.
(2020). Fully hardware-implemented memristor convolutional neural network. Na-
ture, 577(7792):641–646.

Yassine, H. (1992). Hierarchical residue numbering system suitable for vlsi arithmetic
architectures. In [Proceedings] 1992 IEEE International Symposium on Circuits and
Systems, volume 2, pages 811–814 vol.2.

Yassine, H. and Moore, W. (1991). Improved mixed-radix conversion for residue number
system architectures. IEE Proceedings G (Circuits, Devices and Systems), 138(1):120–
124.

161

Yen, S.-M., Kim, S., Lim, S., and Moon, S.-J. (2003). Rsa speedup with chinese remainder
theorem immune against hardware fault cryptanalysis. IEEE Transactions on comput-
ers, 52(4):461–472.

Yerci, S., Li, R., and Dal Negro, L. (2010). Electroluminescence from er-doped si-rich
silicon nitride light emitting diodes. Applied Physics Letters, 97(8).

Yong, Z., Chen, H., Luo, X., Govdeli, A., Chua, H., Azadeh, S. S., Stalmashonak, A., Lo,
G.-Q., Poon, J. K., and Sacher, W. D. (2022). Power-efficient silicon nitride thermo-
optic phase shifters for visible light. Optics express, 30(5):7225–7237.

Yu, S., Jiang, H., Huang, S., Peng, X., and Lu, A. (2021a). Compute-in-memory chips
for deep learning: Recent trends and prospects. IEEE circuits and systems magazine,
21(3):31–56.

Yu, S., Shim, W., Peng, X., and Luo, Y. (2021b). Rram for compute-in-memory: From
inference to training. IEEE Transactions on Circuits and Systems I: Regular Papers,
68(7):2753–2765.

Zhang, H., Thompson, J., Gu, M., Jiang, X. D., Cai, H., Liu, P. Y., Shi, Y., Zhang, Y.,
Karim, M. F., Lo, G. Q., et al. (2021). Efficient on-chip training of optical neural
networks using genetic algorithm. Acs Photonics, 8(6):1662–1672.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M., Chen, S., Dewan, C., Diab, M.,
Li, X., Lin, X. V., et al. (2022a). Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Zhang, S. Q., McDanel, B., and Kung, H. (2022b). Fast: Dnn training under variable pre-
cision block floating point with stochastic rounding. In 2022 IEEE International Sym-
posium on High-Performance Computer Architecture (HPCA), pages 846–860. IEEE.

Zhao, P., Xiao, K., Zhang, Y., Bian, K., and Yan, W. (2021). Ameir: Automatic behav-
ior modeling, interaction exploration and mlp investigation in the recommender system.
In Zhou, Z.-H., editor, Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI-21, pages 2104–2110. International Joint Conferences on
Artificial Intelligence Organization. Main Track.

Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., and Zou, Y. (2016). Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160.

Zhou, T., Lin, X., Wu, J., Chen, Y., Xie, H., Li, Y., Fan, J., Wu, H., Fang, L., and Dai,
Q. (2021). Large-scale neuromorphic optoelectronic computing with a reconfigurable
diffractive processing unit. Nature Photonics, 15(5):367–373.

162

Zhou, Z., Yin, B., and Michel, J. (2015). On-chip light sources for silicon photonics.
Light: Science & Applications, 4(11):e358–e358.

Zhu, H., Gu, J., Wang, H., Jiang, Z., Zhang, Z., Tang, R., Feng, C., Han, S., Chen, R. T.,
and Pan, D. Z. (2024). Lightening-transformer: A dynamically-operated optically-
interconnected photonic transformer accelerator. In 2024 IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA), pages 686–703. IEEE.

Zhu, Y., Zhang, G. L., Li, B., Yin, X., Zhuo, C., Gu, H., Ho, T.-Y., and Schlichtmann, U.
(2020). Countering variations and thermal effects for accurate optical neural networks.
In Proceedings of the 39th International Conference on Computer-Aided Design, pages
1–7, . .

Zuo, Y., Li, B., Zhao, Y., Jiang, Y., Chen, Y.-C., Chen, P., Jo, G.-B., Liu, J., and Du,
S. (2019). All-optical Neural Network with Nonlinear Activation Functions. Optica,
6(9):1132–1137.

163

CURRICULUM VITAE

164

165

166

167

