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Love is such a powerful force.
It’s there for everyone to embrace –
that kind of unconditional love for all of humankind.

That is the kind of love that impels people to go into
the community and try to change conditions for others,
to take risks for what they believe in. Coretta Scott King
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ABSTRACT

This dissertation develops explainable and sparse predictive models applied to

two main healthcare applications: reproductive health and oncology. Through the

application of advanced machine learning techniques and survival analysis, we aim

to enhance predictive accuracy and provide actionable insights in these critical areas.

The thesis is structured into four distinct problems, each focusing on a particular

research question.

The first problem concerns the prediction of the probability of conception among

couples actively trying to conceive. Using self-reported health data from a North

American preconception cohort study, we analyzed factors such as sociodemograph-

ics, lifestyle, medical history, diet quality, and specific male partner characteristics.

Machine learning algorithms were employed to predict the probability of conception

demonstrating improved discrimination and potential clinical utility.
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The second problem explores the application of machine learning algorithms to

electronic health record (EHR) data for identifying predictor variables associated with

polycystic ovarian syndrome (PCOS) diagnosis. Employing gradient boosted trees

and feed-forward multilayer perceptron classifiers, we developed a scoring system

that improved the model’s performance, providing a valuable tool for early detection

and intervention.

The third problem focuses on predicting the risk of miscarriage among female

participants who conceived during the study period. Utilizing both static and survival

analysis, including Cox proportional hazard models, we developed predictive models

to assess miscarriage risk. The study revealed that most miscarriages were due to

random genetic errors during early pregnancy, indicating that miscarriage is not easily

predicted based on preconception sociodemographic and lifestyle characteristics.

Finally, the fourth problem focuses on the development of predictive models for

managing Chronic Myeloid Leukemia (CML) patients. We developed models to pre-

dict whether patients will achieve deep molecular response (DMR) at later treatment

stages and maintaining this status up to 60 months post-treatment initiation. These

models offer insights into treatment effectiveness and patient management, aiming to

support clinical decision-making and improve long-term patient outcomes.

By emphasizing the explainability of these models, this dissertation not only aims

to provide accurate predictions but also to ensure that the results are interpretable

and actionable for healthcare professionals. Overall, this thesis showcases the po-

tential of predictive modeling to improve reproductive health and oncology-related

outcomes. The development and validation of various models in these contexts un-

derscore the value of machine learning algorithms in healthcare research, analysis of

epidemiologic data, and prediction of critical health events. The findings have signifi-

cant implications for enhancing patient care, informing clinical practices, and guiding

viii



healthcare policy decisions.

Keywords: predictive modeling, machine learning, survival analysis, artificial in-

telligence in healthcare research, reproductive health, Chronic Myeloid Leukemia,

Polycystic Ovarian Syndrome, conception, miscarriage, electronic health record.
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Chapter 1

Introduction

In healthcare, predictive models are increasingly utilized to enhance patient outcomes,

reduce costs, and optimize resource utilization. By analyzing patterns and trends in

patient data, predictive models assist healthcare professionals in making precise and

timely diagnoses, identifying patients at risk for specific health issues, and providing

early interventions and preventive care. In the long run, this can lead to better patient

outcomes and decreased healthcare expenses.

1.1 Machine Learning in Healthcare

Machine learning (ML) significantly benefits healthcare by enhancing diagnostic ac-

curacy, improving treatment plans, and boosting patient outcomes. By analyzing

extensive medical data, ML algorithms can identify patterns that may be missed by

human practitioners, leading to earlier and more accurate diagnoses and personalized

treatments (Jiang et al., 2017) (Esteva et al., 2017). ML excels in predictive analytics,

helping healthcare providers anticipate disease outbreaks, predict patient deteriora-

tion, and manage chronic diseases, which allows for timely interventions that save

lives and reduce costs (Shickel et al., 2017) (Choi et al., 2016) (Amini et al., 2021)

(Amini et al., 2023) (Amini et al., 2024). Personalized medicine leverages ML’s capa-

bility to analyze genetic, lifestyle, and patient-specific data, resulting in more effective

and personalized treatments with fewer side effects (Obermeyer and Emanuel, 2016)

(Topol, 2019). In addition, machine learning techniques like federated learning en-
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able collaborative training of models across multiple healthcare institutions without

sharing patient data, thus enhancing privacy and security while improving diagnos-

tic accuracy and personalized treatment plans (Talaei and Izadi, 2024a) (Talaei and

Izadi, 2024c) (Talaei and Izadi, 2024b). Additionally, ML streamlines healthcare op-

erations by optimizing scheduling, managing supply chains, and enhancing resource

allocation, thus reducing waste and increasing efficiency (Rudin and Radin, 2019)

(Rajkomar et al., 2018) (Talaei et al., 2024). In drug discovery and development,

ML identifies potential drug candidates, predicts their efficacy, and optimizes clinical

trial designs, significantly reducing the time and cost required to bring new drugs to

market (Chen et al., 2018) (Vamathevan et al., 2019) (Hashemi et al., 2023). ML-

powered wearable devices and health apps facilitate continuous real-time monitoring

of patients’ vital signs, enabling early detection of anomalies and proactive interven-

tions, thereby preventing hospitalizations and improving the quality of life for patients

with chronic conditions (Ravì et al., 2016). Overall, ML’s capabilities demonstrate

its broad and significant impact on advancing healthcare practices and outcomes.

1.2 Survival Analysis in Healthcare

Survival analysis is crucial for understanding time-to-event data in healthcare, where

the timing of events such as disease recurrence or patient death is essential. Tra-

ditional regression models often fall short in these scenarios, but survival analysis

excels by effectively handling censored data, where the event has not occurred for

some subjects within the study period. This ensures that all available data is utilized

less bias (Klein et al., 2003) (Collett, 2023).

A key strength of survival analysis is its ability to estimate hazard functions, of-

fering insights into the risk of events occurring at different times. This is particularly

valuable for identifying high-risk periods and tailoring medical interventions accord-
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ingly (Cox, 1972) (Kalbfleisch and Prentice, 2011). Additionally, survival analysis

can incorporate time-dependent covariates, allowing for more dynamic and accurate

modeling of scenarios where influencing factors change over time, such as patient

conditions and treatment regimens (Therneau, 1997). The Cox regression model ef-

fectively conditions time out of the model, making it more parsimonious than other

regression models that estimate rate ratios, such as Poisson regression. It allows the

baseline hazard to vary over time, provided that the proportional hazards assump-

tion (i.e., constant hazard ratio) holds throughout the study period. A significant

advantage of using survival analysis is its ability to account for varying lengths of

follow-up, precisely capture the timing of events, and censor participants with unob-

servable person-time after the date of last contact. This ensures that rates are less

likely to be underestimated (Cox, 1972) (Klein et al., 2003).

Beyond understanding past events, survival analysis enhances predictive model-

ing, helping forecast future occurrences and improving preventive measures and re-

source allocation in healthcare. Its applications extend beyond healthcare to fields like

engineering, economics, and social sciences, demonstrating its versatility and broad

relevance (Bradburn et al., 2003) (Lee and Wang, 2003) (Kleinbaum and Klein, 1996).

1.3 Motivation

Reproductive health and oncology were chosen as focal points due to their profound

impact on individual and public health. Infertility and miscarriage are prevalent

issues affecting millions of couples, while cancers like chronic myeloid leukemia pose

significant treatment challenges. Improving predictive capabilities in these areas can

lead to substantial improvements in patient care and outcomes.

Despite the advancements in predictive modeling, challenges such as data quality,

integration of diverse data sources, and the need for explainable models remain. This
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dissertation addresses these challenges by employing robust machine learning algo-

rithms and advanced statistical methods to create models that are both accurate and

interpretable.

1.4 Contributions of the Thesis

This dissertation aims to develop and validate predictive models for various health

outcomes, with a particular focus on reproductive health and oncology. Through the

application of advanced machine learning techniques and survival analysis, we seek

to enhance early diagnosis, improve treatment plans, and ultimately contribute to

better patient outcomes.

In Chapter 3, we applied machine learning algorithms to develop predictive models

of pregnancy using three distinct, clinically relevant definitions: infertility, subfertility,

and fecundability. Infertility affects 10 to 15% of couples in North America and up

to 12% of reproductive-aged women and 9.4% of men aged 25-44 years in the US

use fertility treatments, costing more than $5 billion annually (Chandra et al., 2013)

(Macaluso et al., 2010). By developing predictive tools for couples attempting to

conceive, we aim to provide essential information for clinical practice and minimize

expenses. Accurate predictive models can help women who are anxious about their

fertility status make informed decisions about postponing pregnancy or addressing

other modifiable factors. Our models were based on comprehensive datasets and

included features such as demographic, lifestyle, and environmental factors, providing

a holistic approach to predicting pregnancy outcomes.

In Chapter 4, we aimed to determine predictor variables associated with polycys-

tic ovarian syndrome (PCOS) diagnosis by applying machine learning algorithms to

electronic health record (EHR) data. PCOS is the most common cause of anovulatory

infertility in women of reproductive age, with more than 90% of anovulatory women
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seeking infertility treatment having PCOS (Azziz et al., 2009). Along with infertility,

PCOS also increases the risk of endometrial hyperplasia and endometrial cancer and

has been linked to the development of metabolic syndrome, diabetes, cerebrovascular

disease, and hypertension compared to women without the condition (Barry et al.,

2014) (Lim et al., 2019) (Anagnostis et al., 2018) (Wekker et al., 2020). Despite the

serious health implications, PCOS often goes undiagnosed due to varying symptom

severity on presentation, leading to delayed treatment and potentially severe clinical

consequences (Barry et al., 2014). Predictive models have the potential to aid in the

earlier diagnosis of PCOS and can be used to guide early detection and interventions

for PCOS.

In Chapter 5, we employed various machine learning methods and Cox propor-

tional hazard models to predict miscarriage based on self-reported preconception data.

Approximately 20% of recognized pregnancies end in miscarriage, defined as preg-

nancy loss before 20 weeks of gestation (Rossen et al., 2018). While earlier studies

have created predictive models for pregnancy loss utilizing early pregnancy character-

istics, such as laboratory values and ultrasound measurements (Huang et al., 2022)

(DeVilbiss et al., 2020) (Li et al., 2022), our study took a different approach by using

prospectively collected data on lifestyle, environmental, and medical factors during

the preconception period to develop predictive models for miscarriage. Our models

identified significant predictors such as female age, history of miscarriage, and male

partner age, demonstrating the importance of these factors in predicting miscarriage.

In Chapter 6, we developed predictive models to achieve deep molecular response

(DMR) in chronic myeloid leukemia (CML) patients treated with imatinib. CML

comprises approximately 15% of all leukemia cases, and it is estimated that one

person in every 526 in the U.S. will suffer from CML during their lifetime (American

Cancer Society, 2022). With the discovery of BCR-ABL1, CML became one of the
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major success stories in cancer history (Mughal et al., 2016). The current management

approach for CML focuses on achieving a stable DMR and treatment-free remission

(TFR) through an individualized therapy plan based on efficacy, tolerance, toxicity,

and cost (Schiffer, 2019) (Bonifacio et al., 2019). Predictive models have the potential

to improve the management of CML by identifying patients more likely to achieve

DMR and those who do not, thus informing physician decisions to recommend TKI

discontinuation or earlier indication of hematopoietic stem cell transplantation. Our

models leveraged comprehensive clinical data and BCR-ABL1/ABL1IS quantification

to predict the likelihood of DMR achievement, providing a robust tool for optimizing

CML treatment strategies.

1.5 Overview of the Dissertation Structure

This dissertation is structured as follows: Chapter 1 introduces the scope and signif-

icance of the study. Chapter 2 discusses the methodologies used, including survival

analysis and machine learning techniques. Chapters 3 to 6 present case studies on

predictive models for pregnancy, miscarriage, PCOS, and CML. Finally, Chapter 7

includes the conclusion, summarizing the key findings and discussing future work.

1.6 Bibliographic Notes

Large parts of the thesis appear in published or working research papers: (Zad et al.,

2022; Zad et al., 2024; Yland et al., 2022; Yland et al., 2024).

Notational conventions: All vectors are column vectors. For economy of space,

we write x = (x1, . . . , xdim(x)) to denote the column vector x, where dim(x) is the

dimension of x. In case that we have y to represent the actual label, ŷ represents

the predicted value of y. Unless otherwise specified, ∥ · ∥ denotes the ℓ2 norm, ∥ · ∥1

the ℓ1 norm and ∥x∥p =
(∑dim(x)

i=1 |xi|p
)1/p

the ℓp norm, where p ≥ 1. ∥ · ∥0 denotes
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the ℓ0 counting norm. We use ∇ to denote the gradient operator. We use E and P

to denote operators of expectation and probability, respectively. We use P to denote

probability distribution. The notation EP denotes the expectation with respect to

the probability distribution P. The symbol exp denotes the exponential function,

which is a mathematical function denoted by ex, where e is the base of the natural

logarithm. The notation N represents the set of natural numbers. The notation R

represents the set of all real numbers. The notation Rd represents the d-dimensional

Euclidean space.
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Chapter 2

Methods

We use supervised methods to generate predictive models. We utilize both machine

learning and statistical methods for this sake. Machine learning methods typically

predict the risk or probability of an event of interest without explicitly considering

the time until the event occurs. In contrast, survival analysis methods are designed

to predict the time until an event of interest, often through the hazard or rate of

the event occurring. For machine learning models, we used a variety of supervised

classification methods including linear and non-linear algorithms. For survival analy-

sis models, we fit penalized Cox proportional hazards models. For both the machine

learning and survival analysis approach, we generated full and sparse models. The full

models contain all variables selected after statistical feature selection (SFS) whereas

the sparse models contain all variables after both statistical feature selection and uni-

variate feature selection for survival analysis models or recursive feature elimination

(RFE) for machine learning models. We evaluated model performance via the Area

Under the Curve of a Receiver Operating Characteristic (AUC-ROC), precision and

recall metrics, and the weighted-F1 score for machine learning models, and via the

concordance index for survival analysis models. These methods are described in more

detail below.
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2.1 Machine Learning in Healthcare

2.1.1 Classification methods

We explored a variety of supervised machine learning classification methods both

linear and non-linear algorithms. Linear classifiers included logistic regression (LR)

and linear support vector machines (SVM) (Cortes and Vapnik, 1995), which lead

to interpretable predictions. For instance, the LR coefficient of a feature represents

the sensitivity of the predicted likelihood to that feature and the absolute value of

this coefficient can be interpreted as feature importance. Linear classifiers were fitted

with an additional regularization term seeking to prevent the influence of outliers

in training or test data (Chen et al., 2020). Regularization prevents overfitting by

adding a penalty term to loss function in model training, and promotes simpler and

more generalized models. We discuss more on regularization in the Section 2.1.5.1.

Non-linear methods such as tree-based learning algorithms included Gradient Boosted

Trees (GBM), an ensemble tree-based model that uses a gradient boosting framework

(Ke et al., 2017), and Random Forest (RF), a large collection of decision trees which

classifies by averaging the decisions of trees (Breiman, 2001). We utilized the feed

forward Multilayer Perceptron neural network (MLP) as not only a classification

method in our study, but also as a mehtod to improve the performance of the linear

models. We discuss more on MLP models in the Section 2.1.6. Non-linear methods

are more complex and generally yield better classification performance. These algo-

rithms were chosen because of their extensive usage and their performance superiority

demonstrated in the literature (Brisimi et al., 2018) (Hao et al., 2020) (Wang et al.,

2020).

We define machine learning algorithms we used in more detail below:

■ Logistic Regression (LR): a linear model that predicts the probability of a binary

outcome based on input variables by fitting a logistic function to the data.
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■ Support Vector Machines (SVM): a linear model that aims to find an optimal

hyperplane in a high-dimensional space to separate different classes of data by

maximizing the margin between the classes.

■ Gradient Boosted Decision Trees (GBDT): a non-linear model that is an ensem-

ble learning method that combines multiple decision trees sequentially, training

each new tree to correct the mistakes made by the previous trees using gradient

information from a chosen loss function, resulting in an accurate and powerful

predictive model.

■ Random Forest (RF): a non-linear model that is an ensemble learning method

that constructs multiple decision trees and combines their predictions through

majority voting or averaging, providing robust and accurate predictions by re-

ducing overfitting and capturing complex relationships in the data.

■ Perceptron (MLP): a non-linear model that is a feedforward artificial neural

network that consists of multiple layers of interconnected nodes, including an

input layer, one or more hidden layers, and an output layer, with each node ap-

plying a non-linear activation function to produce predictions or classifications

based on the input data.

2.1.2 Data pre-processing

We perform several data pre-processing steps:

■ First, we convert each categorical variable into a set of indicator variables.

■ Second, we handle missing data as follows: For categorical variables with missing

data, we set the missing data as the reference category, and for continuous

variables, we replace missing values with the median value of available data.
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In some cases, based on suggestions of healthcare experts, we fill the missing

values with the mode of the variable. We elaborate on this step in each project.

■ Third, variables with very low variability (standard deviation < 0.0001) were

assessed for removal from the models.

■ Fourth, we address potential collinearity issues as follows: for each pair of highly

correlated variables (e.g., correlation coefficient > 0.8), we removed the variable

that had a lower correlation with the outcome.

■ Fifth, we performed statistical feature selection (described in Section 2.1.5.2).

■ Last, we standardized each variable by subtracting its mean and dividing by its

standard deviation to have a zero mean and unit variance.

By following these steps, the dataset is ready for model training and testing.

2.1.3 Model training-testing

We randomly split the dataset into n equal parts, where n-1 parts are used as the

training set, and one part as the test set. We use the training set to tune the model hy-

perparameters via k-fold cross-validation, explained in more detail in Section 2.1.3.1.

We evaluate the performance metrics on the test set. We repeat training and testing

t times, each time with a different random split between the training and test sets.

The mean and standard deviation of all metrics on the test sets over the t repetitions

are reported.

We evaluated model performance using AUC and weighted-F1 score (defined in

Section 2.1.4). AUC is more easily interpretable, while the weighted-F1 score is

more robust to imbalanced data than AUC (Saito and Rehmsmeier, 2015). We also

calculated weighted-precision (i.e., positive predictive value) and weighted-recall (i.e.,

sensitivity) metrics as follows: we calculated precision and recall among participants



12

with and without the event of interest, and calculated the average scores across groups,

weighted by the number individuals in each class.

2.1.3.1 Tuning of hyperparameters

For tuning models parameters, we used 5-fold cross validation. First, we split the

training dataset (80% of the full dataset) into five equal parts, or folds. Second, we

train the model using four parts as training data. Third, we validate the model on the

fifth part. We repeat these three steps for each of the five folds, each time obtaining

different values for the model parameters. Finally, we select the values for the model

parameters that leads to the model with the best validation performance.

In Logistic Regression (LR) and Support Vector Machine (SVM) models, we con-

sider the inverse of regularization strength as a hyper parameter. We search for the

best hyper parameter for example among [0.001, 0.01, 0.1, 1, 10, 100] and choose the

one that leads to the best classifier (with the highest AUC). In the artificial neural

network (MLP) models, we have one input layer, a number of hidden layers, and one

output layer. We tune the number of hidden layers and the number of neurons in

the hidden layers. We try different options, for example: (i) one hidden layer with

32, 64, 128, 256, or 512 neurons, (ii) two hidden layers with 16, 32, 64, 128, 256

neurons in the first hidden layer and 2 neurons in the second hidden layer, (iii) two

hidden layers with 8, 16, 32, 64, or 128 neurons in the first hidden layer and 4 neu-

rons in the second hidden layer. In the Gradient Boosting Machine (GBM) models,

we used LightGBM which uses a leaf-wise tree growth algorithm, which converges

faster than the depth-wise growth used by many other tools but can lead to over-

fitting if not properly configured. Key parameters to tune for optimal results include:

num_leaves, which controls tree complexity and should generally be set lower than

2(max_depth) to avoid over-fitting; min_data_in_leaf, which prevents over-fitting by

ensuring each leaf has enough data points, with hundreds or thousands being suit-
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able for large datasets; and max_depth, which explicitly limits tree depth to control

complexity (LightGBM-Guide, 2024).

2.1.4 Performance metrics

We define key performance metrics below:

■ Precision is the ratio of correctly predicted positive observations to the total

predicted positive observations. It measures the accuracy of the positive pre-

dictions made by the model. Mathematically, it is defined as Equation (2.1):

Precision =
True Positives

True Positives + False Positives
. (2.1)

■ Recall, also known as sensitivity or true positive rate, is the ratio of correctly

predicted positive observations to all observations in the actual class. It mea-

sures the model’s ability to identify all relevant instances. Mathematically, it is

defined as Equation (2.2):

Recall =
True Positives

True Positives + False Negatives
. (2.2)

■ The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) is a

performance measurement for classification problems at various threshold set-

tings. The ROC is created by plotting the true positive rate (i.e., Recall) against

the false positive rate (equal to one minus specificity) at various thresholds. The

c-statistic, or the Area Under the ROC Curve (AUC), is used to evaluate pre-

diction performance. It tells how much the model is capable of distinguishing

between classes. A perfect predictor has an AUC of 1 and a predictor which

makes random guesses has an AUC of 0.5. For example, an AUC of 0.70 implies

that, on average, there is a 70% probability that the model will rank a randomly
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chosen positive instance higher than a randomly chosen negative instance. This

means that if you were to take one positive case and one negative case, 70% of

the time, the model will assign a higher probability to the positive case. In other

words, the model is likely to correctly identify 70% of the positive cases across

different thresholds. Correspondingly, the model will also misclassify some neg-

ative instances as positive, reflected by the 30% of cases where it fails to rank a

positive instance higher than a negative one. For practical decision-making, we

would still need to choose an appropriate threshold to convert these probabil-

ity estimates into class labels (positive or negative). This threshold choice will

depend on the specific context and the relative costs of false positives and false

negatives.

■ The AUPRC is the area under the curve of precision and recall. The weighted

score is the average of the score of each class weighted by the number of partic-

ipants in each class.

■ The F1 score is the harmonic mean of recall and precision. It is particularly

useful when the class distribution is imbalanced. The F1 Score is defined as

Equation (2.3):

F1 Score = 2× Precision× Recall
Precision + Recall

. (2.3)

We calculated a weighted-F1 score to account for imbalance in the proportion of

participants with respect to the event of interest. The weighted F1-score is the

average of the F1-scores of each class weighted by the number of participants

in each class. The weighted-F1 score is between 0 to 1, and a higher value

represents a more robust model.
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2.1.5 Feature Selection Techniques to Drive Sparse models

Sparsity was motivated by the earlier works (Brisimi et al., 2018) (Brisimi et al.,

2019) (Chen and Paschalidis, 2022) (Chen et al., 2019), where it was shown that

sparse classifiers can perform almost as well as very sophisticated classification meth-

ods. Sparse models are designed to promote sparsity by encouraging most feature

weights or coefficients to be close to zero. Sparse models identify a small subset of

features that contribute significantly to the prediction or decision-making process.

Sparsity enhances computational efficiency, helps with more interpretability, and im-

proves generalization performance of the models. The desirability of sparsity in statis-

tical estimators is particularly pronounced in high-dimensional environments, such as

those encountered in biological applications, where interpretability holds paramount

importance.

2.1.5.1 Regularization

Regularization is a technique used in machine learning to address overfitting, where a

model becomes too specialized to the training data and performs poorly on new data.

Two commonly used regularization techniques are ℓ1 and ℓ2 regularization. ℓ1 regu-

larization, also known as lasso regression (Tibshirani, 1996), adds a penalty to the

model’s loss function proportional to the absolute value of the weights. This penalty

encourages some weights to become zero, effectively reducing the number of features

used by the model. ℓ1 regularization is particularly useful when dealing with large

numbers of features and the goal is to select only the most relevant ones. Equation

(2.4) represents the loss function used in logistic regression with ℓ1 regularization in

which n is the number of samples, yi represents the actual label of the i-th sample,

while ŷi represents the predicted probability. The absolute value expression |βj| de-

notes the ℓ1 norm of the regression coefficient βj associated with each feature. Also to
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control the strength of regularization, the regularization parameter λ is introduced.

Loss = − 1

n

n∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) + λ

p∑
j=1

|βj|. (2.4)

On the other hand, ℓ2 regularization, also known as ridge regression, adds a penalty

proportional to the squared value of the weights. Unlike ℓ1 regularization, ℓ2 regu-

larization does not push any weights to become exactly zero. Instead, it encourages

all weights to be smaller, which can help prevent overfitting and improve model ac-

curacy. Equation (2.5) represents the loss function used in logistic regression with ℓ2

regularization.

Loss = − 1

n

n∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) + λ

p∑
j=1

β2
j . (2.5)

The choice between ℓ1 and ℓ2 regularization depends on the specific problem at

hand. ℓ1 regularization is often suitable when dealing with a large number of features

and feature selection is important. In contrast, ℓ2 regularization is beneficial when

the number of features is small, and accurate predictions are prioritized over feature

reduction. It has been shown that regularization is equivalent to deriving a “robust”

model, that is, a model that is robust to the presence of outliers in the training data

set.

The book by Chen and Paschalidis (2020, pp. 67-73) offers a comprehensive theo-

retical basis for understanding how the ℓ2-regularizer prevents overfitting to training

data. This regularization method can be viewed as a means of controlling the level

of ambiguity present in the data, thereby shedding light on the reliability of con-

taminated samples (Chen and Paschalidis, 2018) (Chen et al., 2019) (Chen et al.,

2020).
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2.1.5.2 Statistical Feature Selection (SFS)

Statistical feature selection (SFS) is a variable selection process. We tested the asso-

ciation between each variable and the outcome and removed variables that were not

independently associated with the outcome based on p-value greater than a thresh-

old (e.g. 0.01, 0.05, ...). We used the chi-squared test (Cochran, 1952) for binary

predictors and the Kolmogorov-Smirnov test for continuous predictors (Massey Jr,

1951).

2.1.5.3 Recursive Feature Elimination (RFE)

Recursive Feature Elimination (RFE) is a greedy heuristic algorithm used to solve

the combinatorial subset selection problem in feature selection. The objective of RFE

is to maximize the performance of the machine learning model while minimizing the

number of features. The specific objective function depends on the chosen perfor-

mance metric. Let’s assume we use AUC as our metric of interest. Inputs of this

optimization problem are a set of features F = {f1, f2, ..., fn}, a dataset X consist-

ing of input samples and corresponding output labels, and a model M that uses a

subset of features to make predictions. Constraints to this optimization problem is

a condition to terminate the elimination process. This stopping criterion can be de-

fined based on a desired performance threshold or the number of features remaining

k. Finally, the output of this optimization problem is S = {s1, s2, ..., sm} a subset

of features that minimizes the loss function and maximizes the performance of the

machine learning model. The RFE problem can be represented in Algorithm (1).
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minimize Loss(M(S))

subject to
|S| ≤ k (Subset Size Constraint),
Stopping Criterion:
e.g., Performance Threshold or Number of Features Remaining.

Algorithm 1 Recursive Feature Elimination (RFE)
1: Input:
2: Let F = {f1, f2, ..., fn} represent the set of features.
3: Let X be the input dataset, where each sample xi is associated with a correspond-

ing output label yi.
4: LetM be the machine learning model trained on a subset of features.
5: Let k be the desired number of features.
6: Output:
7: S = {s1, s2, ..., sm} represent the subset of features selected by RFE.
8:
9: procedure RFE(F , X,M, k)

10: Step 1: Start with all features F = {f1, f2, ..., fn}.
11: Step 2: Train machine learning modelM and Rank features according to their

importance.
12: Step 3: Remove the feature with the least importance and obtain S =
{s1, s2, ..., sm} the subset of features selected by RFE.

13: Step 4: Repeat steps 2 and 3 until k features are left or a desired performance
is met.

14: return S = {s1, s2, ..., sm}
15: end procedure

In this formulation, Loss(M(S)) represents the the loss function of the machine

learning model M trained on the subset of features S. The objective is to find

the subset S that minimizes the loss function and maximizes the performance while

satisfying the subset size constraint and the stopping criterion.

We used Recursive Feature Elimination (RFE) in conjunction with L1-penalized

logistic regression (L1LR). We explored different combinations of a regularization

parameter and the number of features to select. More specifically, by running L1LR
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we obtained weights associated with the variables (i.e., the coefficients of the model).

We eliminated the variable with the smallest absolute weight and performed L1LR

to obtain a new model. We kept iterating in this fashion, eliminating one variable at

each iteration, to select a model that maximizes a modified AUC value calculated by

subtracting the standard deviation from the mean AUC. This modified AUC value

helps assess the stability of the feature selections, providing insights into the reliability

of the chosen subsets.

RFE helps to identify the most relevant features in a dataset, which can be use-

ful for reducing dimensionality, improving model performance, and interpreting the

underlying relationships in the data (Pedregosa et al., 2011).

2.1.5.4 Comparing RFE technique with a Mixed Integer Linear Program-
ming approach

In Chapter 4, we tried another approach for feature selection using Outer-approximation

algorithm represented in (Bertsimas and Dunn, 2019). In the chapter of sparse and

robust classification, the authors mentioned that a natural way to induce sparsity is

to add a constraint on the number of nonzero coefficients of β and solve Equation

(2.6).

minβ∈Rp

n∑
i=1

l
(
yi, β

Txi

)
+

1

2γ
∥β∥22 s.t. ∥β∥0 ≤ k. (2.6)

The zero norm ∥β∥0 counts the number of non-zero elements in β. Equation

(2.6) is expressed as a convex binary optimization problem in the following theorem.

Theorem Problem (2.6) is equivalent to

min
s∈Sp

k

c(s), (2.7)
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with Sp
k = {s ∈ {0, 1}p, eT s ≤ k} and for any s ∈ {0, 1}p,

c(s) ≜ max
α∈Rn

f(α, s) ≜ −
n∑

i=1

ℓ̂(yi, αi)−
γ

2

n∑
j=1

sjα
Txjx

T
j α s.t. eTα = 0.

In particular, c(s) is convex for s ∈ [0, 1]p. The authors find a solution to Equation

(2.6) by iteratively constructing a piece-wise linear lower approximation of c. The

solver structure is represented as Outer-approximation algorithm in pseudocode in

Algorithm (2) .

Algorithm 2 Outer-approximation algorithm
1: Input: X ∈ Rn∗p, y ∈ {−1, 1}p, k ∈ [p] and an initial solution s1
2: Output: An optimal solution s∗ to the convex binary optimization problem of

Equation (2.6).
3: η1 ← 0
4: t← 1
5: repeat

6: st+1, ηt+1 ←

{
argmins,η η

s.t. η ≥ c(si) +∇c(si)T (s− si), ∀i ∈ [t]
s ∈ Sp

k
7: t← t+ 1
8: until ηt ≤ c(st)
9: return st

We utilized the paper associated with the book (Bertsimas et al., 2021) and its

github repository in Julia, as well as API from InterpretableAI (IAI)1, a company

associated with MIT that represents a couple of APIs implementing some algorithms

including the algorithm we are interested in. We used the method "OptimalFeature-

Selection" form the class "iai" via the package "interpretableai".

The models performance using the IAI method compared to the RFE method is

not considerably improved. In more detail, with first model we have AUC of 0.7866

with IAI and 0.7842 with RFE; with second model we have AUC of 0.6737 with IAI

and 0.6815 with RFE; with third model we have AUC of 0.7424 with IAI and 0.7420
1https://www.interpretable.ai/
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with RFE. Therefore, considering the expenses of implementing their approach and

the fact that, in our specific problem, results with IAI are not better than results

with RFE, there is no reason for us to prefer IAI method over the RFE method for

feature subset selection.

2.1.6 Our MLP score

In Chapter 4, there was a considerable difference between the AUC of linear models

and non-linear models. To improve the performance of our linear models, we utilized

nonlinear models, Gradient Boosted Trees (GBT) and multilayer perceptron (MLP),

to capture intricate relationships between features.

The multilayer perceptron (MLP) is an Artificial Neural Network (ANN) archi-

tecture that has gained popularity for its effectiveness in classification and regression

tasks. Composed of interconnected layers of nodes, the MLP applies a linear trans-

formation to the inputs and then applies a non-linear activation function to introduce

non-linearity into the network. The input layer of the MLP represents the features

of the data, and the output layer provides the predicted output or class probabili-

ties based on the task at hand. The hidden layers in between capture hierarchical

representations of the data, allowing the network to learn complex patterns and re-

lationships (Pedregosa et al., 2011).

In our specific work, we aim to utilize an MLP architecture with three hidden

layers, each employing the rectified linear unit (ReLU) activation function (Figure

2·1. ReLU is a commonly used activation function that helps address the vanishing

gradient problem and allows the network to learn more efficiently. By specifying three

hidden layers and using ReLU activation, we seek to enhance the model’s capacity to

capture intricate relationships and improve its performance in extracting meaningful

features from the input features x1, x2, x3, and x4.

Equation (2.8) shows the mathematical formula associated with our model in
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Figure 2·1: MLP architecture. (Lenail, 2022)

which f is our MLP architecture with three layers, w and b are the trainable parameter

of the model, and x are the input features. Also, m,n, p are the number of neurons

in each layer, respectively y is the output probability, and the ReLU (Equation (2.9))

is used in our analysis (Pedregosa et al., 2011).

y = f

 m∑
i=1

ReLU

 n∑
j=1

ReLU

(
p∑

k=1

ReLU

(
q∑

l=1

w
(1)
l xl + b

(1)
k

)
w

(2)
k + b

(2)
j

)
w

(3)
j + b

(3)
i

 .

(2.8)

ReLU(x) = max(0, x). (2.9)

In our case, we had four features (FSH, LH, SHBG, and estradiol levels) as input

features into the MLP model, and we utilized y, the output probability of the MLP

model, as a new feature into our predictive models. We only used the training dataset

to train this new composite feature.
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2.2 Survival Analysis in Healthcare

For survival models, we evaluated performance with the concordance index (defined in

Section 2.2.3.3). To develop and evaluate the survival models, we first split the dataset

into five random parts of equal size: four parts constituted the training dataset, and

the fifth part constituted the testing dataset. We fit the model on the training dataset

and evaluated its Concordance Index on the testing dataset. We repeated these

calculations (split the data into five random parts, fit the model using the training

dataset, evaluate Concordance Index in the testing dataset) five times. Finally, we

calculated the mean and standard deviation of the Concordance Index across these

five runs.

2.2.1 Survival Analysis Definition and Importance

Survival analysis is a branch of statistics that focuses on the time until an event of

interest occurs, such as death or failure. It is essential in healthcare research because

it can handle censored data, which occurs when the event has not happened for

some subjects during the study. Techniques like the Kaplan-Meier estimator and the

Cox proportional hazards model are used to estimate survival probabilities, compare

survival between groups, and assess the effects of covariates on survival time. This

aids in identifying risk factors and evaluating treatment efficacy, ultimately improving

patient care and outcomes (Kleinbaum and Klein, 1996) (Kalbfleisch and Prentice,

2011).

2.2.2 Survival Function Definition and Formulation

The survival function, denoted as S(t), represents the probability that a subject

survives beyond time t. Formally, it is defined as Equation (2.10).
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S(t) = P (T > t). (2.10)

Where T is the time to the event of interest. The survival function starts at 1 when

t = 0 and approaches 0 as t increases. It is crucial for methods like the Kaplan-

Meier estimator and the Cox proportional hazards model, which relate survival to

covariates. Understanding the survival function helps derive other key quantities,

such as the hazard function, facilitating comprehensive analysis of time-to-event data

(Kleinbaum and Klein, 1996) (Kalbfleisch and Prentice, 2011).

2.2.3 Cox Proportional Hazard Models

2.2.3.1 Definition

The Cox proportional hazards model, introduced by David Cox in 1972, is a re-

gression model that examines the relationship between survival time and covariates.

The Cox proportional hazards model evaluates the effect of covariates on the haz-

ard rate without specifying the baseline hazard function. The Cox regression model

conditions the baseline hazard out of the model, allowing it to vary over time. This

makes the model significantly more flexible than the traditional Poisson regression

approach, where both the rate and rate ratio are assumed to be constant throughout

the observation period (Cox, 1972) (Kleinbaum and Klein, 1996).

2.2.3.2 Hazard Function Definition and Formulation

The hazard function, h(t), indicates the instantaneous risk of an event at time t. It

is defined as Equation (2.11).

h(t) = lim
∆t→0

P (t ≤ T < t+∆t | T ≥ t)

∆t
. (2.11)

In the Cox model, it is formulated as Equation (2.12).



25

h(t|x) = h0(t) exp(f(x; β)). (2.12)

where h(t|x) is the hazard function at time t, h0(t) is the baseline hazard, and

f(x; β) is the log partial hazard function. The log partial hazard function represents

the combined effect of the covariates on the hazard function and is the logarithm of

the hazard function portion excluding the baseline hazard. This approach simplifies

the estimation process. The model’s semi-parametric nature and ability to handle

censored data make it crucial for estimating hazard ratios and understanding covari-

ate effects. This formulation separates the baseline hazard from covariate effects,

providing flexibility in survival analysis. It is crucial to verify whether the propor-

tional hazards assumption has been violated in Cox regression models. This can be

assessed by creating interaction terms between time and exposure, or by plotting

Kaplan-Meier curves and log-log survival curves. Additionally, Schoenfeld residuals

can be plotted to test this assumption. If the hazard ratio is not constant over time,

it is advisable to report the rate ratio results stratified by the time intervals used in

the model (e.g., rate ratio for the first 5 years of the study versus the rate ratio for

the last 5 years of the study) (Cox, 1972) (Kleinbaum and Klein, 1996).

2.2.3.3 Evaluation Metrics

Evaluation metrics in the context of Cox proportional hazards models include mea-

sures such as concordance index (C-index), which assesses the model’s ability to

correctly rank the survival times based on the predicted risk scores. The concordance

index is the fraction or percent of the pair of observations which are concordant and

shows a goodness-of-fit statistic for survival analysis. The concordance index is a

generalization of the AUC that accounts for event time and loss to follow-up (Lon-

gato et al., 2020)(Schmid et al., 2016). Like the AUC, a value of 0.5 indicates that
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discrimination is no better than random, while a value of 1 would indicate perfect

prediction.

2.2.3.4 Univariate feature selection

Univariate feature selection is a variable selection process, applied after statistical

feature selection for all survival models. Univariate feature selection evaluates each

feature independently based on its relationship with the target. We fit individual Cox

proportional hazards models for each variable, such that each model contained only

one independent variable, and we recorded the concordance index for each model.

We ranked variables based on the associated concordance index and we selected top

variables with higher concordance index, as many as we are interested in (in our case:

top 10 variables).

2.2.4 Original Cox Models

2.2.4.1 Original Cox Models Log Partial Hazard Function Formulation

In the original Cox proportional hazards model, the log partial hazard function, de-

noted as f(x; β), represents the linear combination of covariates. It is defined as

Equation (2.13).

f(x; β) = βTx. (2.13)

Where x is the feature vector and β is the corresponding coefficients. This function

quantifies the effect of covariates on the hazard rate, providing a multiplicative effect

on the baseline hazard function (Cox, 1972) (Kleinbaum and Klein, 1996).

2.2.4.2 Original Cox Models Hazard Function Formulation

The hazard function in the original Cox proportional hazards model, h(t|x), repre-

sents the instantaneous risk of an event occurring at time t given covariates x. It is
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formulated as Equation (2.14).

h(t|x) = h0(t) exp(β
Tx). (2.14)

Where h0(t) is the baseline hazard function, and exp(βTx) is the exponential of the

log partial hazard function. This formulation separates the baseline hazard from the

covariate effects, allowing for a flexible and robust analysis of survival data (Cox,

1972) (Kleinbaum and Klein, 1996).

2.2.4.3 Original Cox Models Hazard Ratio

The hazard ratio in the original Cox proportional hazards model is a measure of

the effect of covariates on the hazard rate. It is defined as the ratio of the hazard

functions for two individuals with different covariate values. For covariates xi and xj,

the hazard ratio is given by Equation (2.15).

HR =
h(t|xi)

h(t|xj)
= exp(f(xi; β)− f(xj; β)). (2.15)

This ratio indicates the relative risk of the event occurring for the two individuals,

with values greater than 1 suggesting higher risk for the individual with covariate

values xi compared to xj (Cox, 1972) (Kleinbaum and Klein, 1996).

2.2.4.4 Original Cox Models Negative Log Partial Likelihood

The negative log partial likelihood is used to estimate the coefficients β in the original

Cox proportional hazards model. The partial likelihood function for n observations

is given by Equation (2.16).

L(β) =
n∏

i=1

(
exp(f(xi; β))∑

j∈R(ti)
exp(f(xj; β))

)
. (2.16)
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Where R(ti) is the risk set at time ti. The negative log partial likelihood is then

equation (2.17).

− logL(β) = −
n∑

i=1

f(xi; β)− log
∑

j∈R(ti)

exp(f(xj; β))

 . (2.17)

Minimizing this quantity provides the maximum partial likelihood estimates of

the coefficients. This optimization problem can be formulated as Equation (2.18).

min
β

−
n∑

i=1

f(xi; β)− log
∑

j∈R(ti)

exp(f(xj; β))

 . (2.18)

Solving this optimization problem allows for the assessment of the impact of co-

variates on survival time (Cox, 1972) (Kleinbaum and Klein, 1996).

2.2.5 Research Gap

The Cox proportional hazards model is a cornerstone in survival analysis, widely

used for its ability to relate covariates to the hazard function. Despite its popularity,

the model’s assumptions about the fixed distribution of covariates and parameters

often do not hold true in real-world data. This can lead to significant inaccuracies in

survival predictions, especially in the presence of outliers, measurement errors, and

dynamic changes in covariate effects over time. To address these issues and enhance

the robustness of the Cox model, we propose developing a robust version of the Cox

proportional hazards model using Distributionally Robust Optimization (DRO). This

approach aims to mitigate the impact of outliers and data perturbations, ensuring

more accurate and reliable survival predictions in the presence of real-world data

complexities.(Chen et al., 2020)
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2.2.6 Distributionally Robust Cox Models

2.2.6.1 Motivation and Advantages of Distributionally Robust Optimiza-
tion (DRO)

Distributionally Robust Optimization (DRO) is an advanced optimization framework

designed to address uncertainties in the distribution of data. Unlike traditional opti-

mization methods that rely on specific assumptions about the data distribution, DRO

provides a more flexible and resilient approach by optimizing performance over a set

of possible distributions. This makes DRO particularly valuable in scenarios where

data is subject to perturbations, outliers, and other real-world complexities.

The key advantages of DRO include robustness to distributional uncertainty, im-

proved handling of outliers and perturbations, flexibility in model assumptions, and

enhanced predictive accuracy. DRO accounts for the uncertainty in the distribution

of data, providing solutions that are less sensitive to variations and inaccuracies in

the assumed data distribution. By considering a range of possible distributions, DRO

can mitigate the impact of outliers and data perturbations that can disproportion-

ately affect traditional optimization methods. Moreover, DRO does not require strict

assumptions about the exact form of the data distribution, making it applicable to

a wider range of real-world problems where such assumptions are often violated. By

optimizing over an ambiguity set of distributions, DRO can lead to more reliable and

accurate predictions, especially in complex and uncertain environments (Chen et al.,

2020). These advantages make DRO a powerful tool for improving the robustness

and reliability of predictive models, including the Cox proportional hazards model in

survival analysis.
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2.2.6.2 Definition and Formulation of Distributionally Robust Optimiza-
tion (DRO)

Distributionally Robust Optimization (DRO) is an advanced optimization framework

that addresses uncertainties in the data distribution by minimizing a worst-case ex-

pected loss function over a probabilistic ambiguity set. This ambiguity set is con-

structed from observed samples and characterized by known properties of the true

data-generating distribution. DRO provides robustness against data perturbations,

outliers, and modeling inaccuracies, ensuring that the optimization solution remains

resilient under various plausible distributions.

The general DRO problem can be formulated as Equation (2.19).

min
β∈Rd

sup
P∈P

EP [L(x, β)] . (2.19)

Where β represents the decision variables (model parameters), Rd is the parameter

space, P is a probability distribution within the ambiguity set P , and L(x, β) is the

loss function. The ambiguity set P captures the uncertainty in the distribution of

data.

The ambiguity set P can be defined using various approaches, such as moment

constraints, statistical distance measures, or confidence sets derived from historical

data. By solving the DRO problem, we obtain a decision β that minimizes the worst-

case expected loss, thus providing a robust solution that performs well across a range

of plausible distributions (Chen et al., 2020).

2.2.6.3 Definition of Wasserstein Distance

Wasserstein distance, also known as Earth Mover’s Distance (EMD), is a measure of

the distance between two probability distributions. It quantifies the minimum cost of

transforming one distribution into another, considering the ground distance between
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points. Given two probability distributions P and Q on a metric space (X , d), the

Wasserstein distance of order p (where p ≥ 1) is defined as Equation (2.20).

Wp(P,Q) =

 inf
γ∈Γ(P,Q)

∫
X×X

d(x, y)p dγ(x, y)

 1
p

. (2.20)

Where Γ(P,Q) denotes the set of all joint distributions γ on X × X with marginals

P and Q. The function d(x, y) represents the ground distance between points x and

y.

In the context of DRO, the Wasserstein Distance is used to define the ambiguity

set P as a Wasserstein ball around the empirical distribution P̂N . The ambiguity set

can be defined as Equation (2.21).

P =
{
Q ∈ P(X ) : Wp(Q, P̂N) ≤ ϵ

}
. (2.21)

Where P(X ) is the space of all probability distributions on X , P̂N is the empirical

distribution based on observed samples, and ϵ is a pre-specified radius.

By incorporating the Wasserstein Distance, DRO effectively handles the distribu-

tional uncertainty and ensures robust optimization solutions that account for possible

variations in the data distribution (Chen et al., 2020).

2.2.6.4 Challenges

Applying Distributionally Robust Optimization (DRO) to Cox models presents sev-

eral challenges. The DRO framework requires the loss function to depend solely on

individual data points. However, the current individual loss function used in Cox

models does not meet this requirement, complicating the direct application of DRO.

Additionally, while the loss function L(.) is convex with respect to the covariates

x and the model parameters β, it is not convex with respect to the event times y.
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This lack of convexity with respect to y poses significant difficulties in ensuring ro-

bustness in the presence of distributional uncertainty, as the DRO approach relies

on robustifying against the worst-case distribution within the defined ambiguity set.

Addressing these challenges is crucial for effectively integrating DRO with Cox models

and leveraging its robustness to handle real-world data complexities.

2.2.6.5 Proposed Methodologies

The proposed methodologies include DRO-Cox Sample Splitting and DRO-Cox Global

Fixation. The DRO-Cox Sample Splitting method, as outlined by (Hu and Chen,

2022), is designed to enhance fairness in the model. However, it does not achieve su-

perior accuracy under noise compared to the original Cox model. On the other hand,

the DRO-Cox Global Fixation method, introduced in (Jin and Paschalidis, 2024),

treats all duration data as fixed constants and redefines the individual loss function

as Equation (2.22). The data point i ∈ [N ] has feature vectors xi ∈ X, observed

duration time yi ≥ 0, and event indicator δi ∈ {0, 1}. If δi = 1, then the event of

interest occurs after duration ti = yi.

ℓi(xi, yi, δi, β) = δi

log
eβ

T xi +
∑

j:yj≥yi

eβ
T xj

− βTxi

 . (2.22)

This redefined loss function aims to improve the robustness of the model under

distributional uncertainties by incorporating fixed duration data into the optimization

process (Jin and Paschalidis, 2024).

2.2.6.6 DRO-Cox Global Fixation

The N data points {(x, y, δ)i}i∈[N ] form an empirical distribution, which serves as the

center of the ambiguity set Ωϵ.

The optimization problem is formulated as Equation (2.23).
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min
β∈Rd

sup
P∈Ωϵ

EP

δ
log

eβ
T x +

∑
j:yj≥y

eβ
T xj

− βTx

 . (2.23)

This optimization problem is inherently complex and cannot be solved directly.

Therefore, it is essential to find a tractable form to facilitate estimation (Jin and

Paschalidis, 2024).

Theorem (Global Fixation DRO-Cox.) (Jin and Paschalidis, 2024). Suppose

the data are sorted in decreasing order with regard to duration y, and the Wasserstein

distance is induced by lp-norm. Let (p, q) be Hölder conjugates, so that 1
p
+ 1

q
= 1.

Then the following program provides an upper bound for Equation (2.24).

min
β,α

∥β, α∥qϵ+ 1
N

∑N
i=1 δisi,

s.t. si ≥ log
(
eβ

T xi +
∑k

j=1 e
βT xj

)
− βTxi − α(yi − yk), ∀1 ≤ i ≤ k ≤ N

.

(2.24)
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Chapter 3

Predictive Models of Pregnancy Based on
Data from a Preconception Cohort Study

3.1 Introduction

Predictive models could guide clinical care and help couples make informed decisions

regarding childbearing. Previous research has identified many individual risk factors

for infertility and predictors of fecundability (i.e., the per-cycle probability of con-

ception). Female age and body mass index (BMI), as well as male BMI, have been

identified as risk factors for infertility (Best and Bhattacharya, 2015) (Homan et al.,

2007) (Sundaram et al., 2017) (Wesselink et al., 2017). In addition, female preconcep-

tion exposures including alcohol consumption (Fan et al., 2017); sleep quality (Willis

et al., 2019); cigarette smoking (Wesselink et al., 2019); use of certain hormonal

contraceptives (Yland et al., 2020); dietary factors (Gaskins and Chavarro, 2018);

depressive symptoms (Evans-Hoeker et al., 2018) (Nillni et al., 2016); stress (Akhter

et al., 2016) (Louis et al., 2011) (Lynch et al., 2014) (Wesselink et al., 2018); and

environmental exposures such as air pollution (Conforti et al., 2018) and endocrine

disrupting chemicals (Kahn et al., 2021) are associated with reduced fecundability.

Other male risk factors include exposure to environmental chemicals (Buck Louis

et al., 2016) (Snijder et al., 2012), cigarette smoking (Soares and Melo, 2008), and

short sleep duration (Wise et al., 2018). However, few studies have moved beyond

individual risk factors to develop predictive models of pregnancy probability, and the
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predictive power of these models was modest (Collins et al., 1995) (Coppus et al.,

2009) (Eimers et al., 1994) (Hunault et al., 2004) (Hunault et al., 2005) (Snick et al.,

1997) (Van der Steeg et al., 2007).

In this study, we used supervised machine learning methods to predict the cumu-

lative probability of pregnancy over 6 and 12 menstrual cycles and to predict fecund-

ability (per-cycle probability of conception) in an incident cohort study of pregnancy

planners. We considered 163 potential predictors and applied several classification

algorithms and variable selection procedures to identify the most accurate models

and to evaluate the relative predictive strength of individual risk factors.

3.2 Methods

3.2.1 Study population

Pregnancy Study Online (PRESTO) is a web-based preconception cohort study that

examines the extent to which environmental and behavioral factors such as diet,

exercise, and medication use influence fertility and pregnancy outcomes (Wise et al.,

2015). The study began in 2013 and is ongoing. Eligible female participants are

aged 21-45 years, residing in the U.S. or Canada, trying to conceive, and not using

fertility treatments. We excluded participants with more than one menstrual cycle

of pregnancy attempt time at enrollment because these women may have changed

their behaviors in response to difficulties conceiving (Wise et al., 2020). We analyzed

data from couples who had not yet tried to conceive and those who had tried for one

cycle at study entry together. This is consistent with a report by Joffe et al., which

indicated that grouping couples with reports of “zero” and “one” cycle of pregnancy

attempt time does not induce bias (Joffe et al., 2005). This study included data from

4,133 participants enrolled during 2013 through 2019.
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3.2.2 Data collection

Female participants completed a baseline questionnaire at enrollment, on which they

reported data on sociodemographic factors, behavioral factors, medical and repro-

ductive history, and selected male partner characteristics. Ten days after enrollment,

participants were invited to complete the diet history questionnaire (DHQ II). The

DHQ II was designed by the National Cancer Institute and the first version of the

DHQ was validated against 24-hour dietary recalls in a U.S. population (Millen et al.,

2006) (Subar et al., 2001). In validation studies, correlations between energy-adjusted,

DHQ-reported food servings and 24-hour recall-reported food servings ranged from

0.43 for other starchy vegetables to 0.84 for milk. Based on dietary factors reported

via the DHQ II, we assessed overall diet quality using the Healthy Eating Index-2010

(HEI-2010) score (Guenther et al., 2013). Participants completed bimonthly follow-

up questionnaires for 12 months, or until reported pregnancy, cessation of pregnancy

attempts, study withdrawal, or loss to follow-up, whichever occurred first. Data on

menstrual cycle dates, pregnancy attempts, and pregnancy status were obtained via

the baseline questionnaire and updated on each follow-up questionnaire. A complete

list of the 163 variables included in this analysis is provided in Table 3.1 and 3.2.

3.2.3 Outcomes

We developed three models to predict 1) pregnancy in fewer than 12 menstrual cycles;

2) pregnancy within six menstrual cycles; and 3) the average probability of pregnancy

per menstrual cycle. We chose these outcome measures to reflect clinically relevant

definitions of infertility, subfertility, and fecundability (Evers, 2002) (Gnoth et al.,

2005). For the first two models, we used a dataset with one observation per participant

and excluded participants who were lost to follow-up before reaching a study endpoint

(for the first model, N = 3,195; for the second model, N=3,476). For the third model
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Table 3.1: Complete list of variables included in analysis. Part 1.

Category Variables Included in Preliminary Analysis
Demographic and
socioeconomic
characteristics

Age, marital status, race, We conceptualized race as a so-
cial construct that serves as a rough proxy for exposure to
interpersonal and structural racism. ethnicity, region of res-
idence, urbanization of residential area, year at study entry,
highest level of education, parents’ education level, house-
hold income, employment status, hours/week of work, shift
work, night shift frequency in the past month.

Lifestyle, behav-
ioral, and wellness
factors

Cigarette smoking (if so, number per day); total duration
of smoking; history of smoking during pregnancy; use of e-
cigarettes (if so, ml/day); frequency of marijuana use; expo-
sure to second-hand smoke; alcohol intake; caffeine consump-
tion; moderate physical activity; vigorous physical activ-
ity; sedentary activity; sleep duration; trouble sleeping; per-
ceived stress scale score; major depression inventory score.

Dietary factors
and use of supple-
ments

Healthy Eating Index-2010 score; supplemental intake of vi-
tamins A, B1, B2, B3, B4, B5, B6, B7, B12, C, D, E, K;
beta-carotene; folic acid; iron; zinc; calcium; magnesium;
selenium; omega-3 fatty acids; consumption of whole milk,
2% milk, 1% milk, skim milk, soy milk, other milk, fruit
juice, bottled water, tap water, sugar-sweetened soda, diet
soda, sugar-sweetened energy drinks, diet energy drinks; use
of multivitamins or folic acid supplements.

Early life expo-
sures and family
history

Adopted; number of siblings; multiple gestation; born
preterm; born with low birthweight; breastfed; delivered via
cesarean section; mother’s cigarette smoking during preg-
nancy; mother’s age at participant’s birth; mother’s history
of pregnancy complications, miscarriage.
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Table 3.2: Complete list of variables included in analysis. Part 2.

Category Variables Included in Preliminary Analysis
Reproductive
characteristics
and disorders

Age at menarche; menstrual regularity; menstrual period
characteristics (typical length, Menstrual cycle length and
regularity were assessed via the following questions on the
baseline questionnaire: 1) Did your period become regular
on its own without the use of hormonal contraceptives like
the pill, patch, implants, or injectables (regular in a way
so you can usually predict about when the next period will
start)? 2) Within the past couple of years, has your men-
strual period been regular? Please think about those times
you were not using hormonal contraceptives. 3) Thinking
about the time(s) when you have not used hormonal contra-
ceptives, what is your typical menstrual cycle length? That
is, the number of days from the first day of one menstrual
period to the first day of your next menstrual period. num-
ber of flow days, flow amount, pain); received human papillo-
mavirus vaccine; abnormal pap smear; ever diagnosed with a
thyroid condition, fibroids, polycystic ovarian syndrome, en-
dometriosis, a urinary tract infection, pelvic inflammatory
disease, chlamydia, herpes, vaginosis, genital warts; recent
use of medications for polycystic ovarian syndrome; gravid-
ity; parity; history of cesarean section; years since last preg-
nancy; history of unplanned pregnancy; history of subfer-
tility or infertility; history of infertility treatment; history
of breastfeeding; number of lifetime sexual partners; doing
something to improve pregnancy chances; intercourse fre-
quency; using a fertility app; last method of contraception.

Physical char-
acteristics, non-
reproductive
medical history,
and medication
use

Body mass index; waist measure; Ferriman-Gallwey Hir-
sutism Score; handedness; number of primary care visits
last year; high blood pressure; received influenza vaccine last
year; ever diagnosed with migraines (if so, recent migraine
frequency), asthma, hay fever, depression, anxiety, gastroe-
sophageal reflux disease, diabetes; use of the following med-
ications in the 4 weeks before baseline: pain medications,
antibiotics, asthma medications, diabetes medications; use
of psychotropic medications.

Environmental
exposures (oc-
cupational and
personal care
product use)

Exposed regularly to agricultural pesticides; metal particu-
lates or fumes; solvents, oil-based paints, or cleaning com-
pounds; high temperature environments; chemotherapeutic
drugs; engine exhaust; chemicals for hair dyeing, straight-
ening, or curing; chemicals for manicure/pedicure. Use of
chemical hair relaxer.

Male partner
characteristics

Age, body mass index, education, cigarette smoking (if so,
number per day), circumcision status.
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(fecundability), we included all participants under observation regardless of follow-up

duration (N=4,133).

3.2.4 Predictive Models

3.2.4.1 Pre-processing and statistical feature selection

We performed data pre-processing steps, explauned in more detail in Section 2.1.2

to prepare the dataset for developing predictive models. The threshold for correla-

tion coefficient is considered 0.8. Furthermore, statistical feature selection (SFS), as

explained in more detail in Section 2.1.5.2, is done with 0.05 threshold for p-value.

3.2.4.2 Classification methods

For Models I (pregnancy in fewer than 12 menstrual cycles) and II (pregnancy within

six menstrual cycles), we explored four supervised classification methods, LR, SVM,

MLP, and GBM, to develop predictive models for pregnancy (Hastie et al., 2009)

(Jiang et al., 2020), explained in more detail in Section 2.1.1. We considered both an

L1-norm (L1LR, L1SVM) and an L2-norm regularizer (L2LR, L2SVM) (Lee et al.,

2006) to address overfitting. The former is appropriate if we believe that few variables

are predictive of the outcome (sparse model), whereas the latter is appropriate in cases

where a dense model is more appropriate. Explained in more detail in Section 2.1.5.1.

We present results for full, sparse, and parsimonious models. The full models (i.e.,

least parsimonious) contain all variables selected after statistical feature selection

(eliminating variables with no statistically significant relationship with the outcome).

The sparse models contain variables selected after both statistical feature selection

and recursive feature elimination (RFE), explained in more detail in Section 2.1.5.3.

The parsimonious models were generated by limiting recursive feature elimination

to select a model with up to 15 variables. The parsimonious models are easier to

implement and interpret relative to the full models, which have more variables but
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similar discrimination. To accommodate categorical variables that were recoded as

indicator variables in the preprocessing phase, we selected a reference level for each

categorical variable and forced every non-reference level to be included in a model if

any other (non-reference) level of the categorical variable was selected.

For Model III (fecundability), we fit a discrete-time analog of the Cox proportional

hazards model with cycle number as the time scale, allowing for delayed entry into

the risk set (i.e., if a participant already had one cycle of pregnancy attempt at

enrollment). Participants contributed at-risk cycles to the analysis from enrollment

until reported pregnancy or a censoring event, which included initiation of fertility

treatment, withdrawal from the study, cessation of pregnancy attempts, loss-to-follow-

up, or 12 cycles of pregnancy attempt, whichever occurred first. We present results

for the full model after statistical feature selection, as described above, and for a

parsimonious model. To derive the parsimonious model, we fit separate Cox models

with each individual predictor and then sorted the variables based on each model’s

concordance index. The concordance index is similar to the AUC (described below)

but accounts for event time and loss to follow-up (Longato et al., 2020) (Schmid

et al., 2016). We selected the top fifteen variables and forced non-selected levels of

polytomous categorical variables into the final model, as described above.

3.2.4.3 Performance metrics

For Models I and II, we evaluated model performance using the AUC and weighted-

F1 score, defined in Section 2.1.4. While the AUC is more easily interpretable, the

weighted F1-score is more robust to data imbalances (Saito and Rehmsmeier, 2015).

We present weighted-precision and weighted-recall metrics. For Model III, we evalu-

ated performance using the concordance index, defined in Section 2.2.3.3.

All analyses were performed with Python statistical functions. Relevant programs

can be accessed at github repository. Additional methodological information on how
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we addressed imbalance in the data and tuning of hyperparameters is as follows. To

address the class imbalance in our dataset, we use a class weight (inversely propor-

tional to class size) in the loss function used for training the model. This has the

effect of balancing contributions to the loss from both classes. Class weights are used

differently depending on the algorithm: for linear models (such as linear SVM or

logistic regression), the class weights alter the loss function by weighting the loss of

each sample by its class weight. For tree-based algorithms, the class weights are used

for reweighting the splitting criterion. However, this rebalancing does not take the

weight of samples in each class into account. We tune hyperparameters through cross-

validation. In Logistic Regression (LR) and Support Vector Machine (SVM) models,

we consider the inverse of regularization strength as a hyper parameter. We search for

the best hyper parameter among [0.001, 0.01, 0.1, 1, 10] and choose the one that leads

to the best classifier (with the highest AUC). In the artificial neural network (MLP)

models, we have one input layer, a number of hidden layers, and one output layer.

We tune the number of hidden layers and the number of neurons in the hidden layers.

We try different options: (i) one hidden layer with 32, 64, 128, 256, or 512 neurons,

(ii) two hidden layers with 16, 32, 64, 128, 256 neurons in the first hidden layer and 2

neurons in the second hidden layer, (iii) two hidden layers with 8, 16, 32, 64, or 128

neurons in the first hidden layer and 4 neurons in the second hidden layer. In the

Gradient Boosting Machine (GBM) models, we used LightGBM which is a fast and

high-performance GBM framework that grows trees leaf-wise rather than level-wise

and incorporates advanced techniques, such as gradient-based one-side sampling and

exclusive feature bundling to deal with a large number of data instances and features.

We tune a number of hyper parameters such as learning rate, maximum number of

leaves in one tree, and minimal number of data in one leaf. More details on the range

of numbers used for the tuning of hyper parameters of our LightGBM can be found
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in the scripts at the github repository1.

3.2.4.4 Addressing the distribution and bias of positive and negative cases
in the data

To address the class imbalance in our dataset, we use a class weight (inversely pro-

portional to class size) in the loss function used for training the model. This has

the effect of balancing contributions to the loss from both classes. Class weights are

used differently depending on the algorithm: for linear models (such as linear SVM

or logistic regression), the class weights alter the loss function by weighting the loss

of each sample by its class weight. For tree-based algorithms, the class weights are

used for reweighting the splitting criterion. However, this rebalancing does not take

the weight of samples in each class into account.

3.2.5 Sensitivity analysis

We restricted our analyses to nulligravid women with no history of infertility to

evaluate the robustness of our results in a population that was presumably naïve

to their fertility status.

3.3 Results

After excluding participants with incomplete follow-up for Models I and II, we ana-

lyzed data from 3,195 and 3,476 participants for Models I and II, respectively, and

16,876 cycles from 4,133 participants for Model III. The study participants were aged

30 years on average and ranged in age from 21 to 44 years. Among the 3,195 par-

ticipants included in Model I, 2,747 (86%) became pregnant in 12 menstrual cycles.

Among the 3,476 participants included in Model II, 2,406 (69%) became pregnant

within six menstrual cycles. The distributions of class (i.e., pregnant versus non-
1https://github.com/noc-lab/Predictive-models-of-pregnancy
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pregnant), overall and by number of menstrual cycles of attempt time at study entry,

are presented in Tables 3.3 and 3.4. For each of the three models, the same 163

variables were considered for preprocessing (Table 3.1 and 3.2). After statistical fea-

ture selection, 40 variables were selected into the full model predicting pregnancy

in 12 menstrual cycles (Model I) and 41 variables were selected into the full model

predicting pregnancy within six menstrual cycles (Model II). After recursive feature

elimination, 30 and 25 variables were selected for the sparse Models I and II, respec-

tively. The final parsimonious models included 14 and 15 variables for Models I and

II, respectively. We present performance statistics for the parsimonious models in

Table 3.5. The AUC for Model I was 68-70% for all classification algorithms con-

sidered (std: 0.8% to 1.9%). Term std stands for standard deviation. The AUCs

for Model II were 65-66% (std: 1.9% to 2.6%). The L2LR and L2SVM algorithms

generally yielded the highest AUC. The weighted-F1 scores were similar across each

algorithm, and no algorithm consistently yielded the highest score. The weighted-F1

scores obtained with the L2LR algorithm were 81.8 (std: 1.0) for Model I and 67.5

(std: 1.6) for Model II. The parsimonious models performed similarly to the full and

sparse models (Table 3.6). The concordance index for Model III was 63.5% for the

full model after statistical feature selection (24 variables) and 62.6% for the final

parsimonious model. Figure 3·1 presents area under the precision-recall curves for

Models I, II, IV, and V.

In order of decreasing magnitude of the regression coefficients (i.e., strongest to

weakest predictor), the variables selected into the parsimonious Model I that were

positively associated with pregnancy were menstrual cycle length, living in a rural

region, daily use of multivitamins or folic acid, using the hormonal intrauterine device

(IUD) as one’s most recent method of contraception, having previously breastfed an

infant, having ever been pregnant, female education, recent influenza vaccination, and
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Table 3.3: Distribution of class and number of menstrual cycles of attempt time at
study entry.

Pregnant Non-pregnant Cycles1

N n (%) n (%) 0 1
Model I 3195 2747 (86%) 448 (14%) 1348 (42%) 1847 (58%)
Model II 3476 2406 (69%) 1070 (31%) 1462 (42%) 2014 (58%)
Model III 4133 2747 (66%) 1386 (34%) 1737 (42%) 2396 (58%)
Model IV 1571 1320 (84%) 251 (16%) 663 (42%) 908 (58%)
Model V 1722 1139 (66%) 583 (34%) 726 (42%) 996 (58%)
Model VI 1957 1333 (68%) 624 (32%) 819 (42%) 1138 (58%)
1 Menstrual cycles of attempt time at study entry

Note: Model I predicts pregnancy in <12 menstrual cycles; Model II predicts
pregnancy in <7 menstrual cycles; Model III predicts the probability of pregnancy
within each menstrual cycle for up to 12 cycles of follow-up; Model IV predicts
pregnancy in <12 menstrual cycles among nulligravid women with no history of
infertility; Model V predicts pregnancy in <7 menstrual cycles among nulligravid
women with no history of infertility; Model VI predicts the probability of pregnancy
within each menstrual cycle for up to 12 cycles of follow-up among nulligravid
women with no history of infertility.

Table 3.4: Distribution of each class by the number of menstrual cycles of attempt
time at study entry.

No cycles of attempt at study entry One cycle of attempt at study entry

Pregnant Non-pregnant Pregnant Non-pregnant
Model I 1205 (38%) 143 (4%) 1542 (48%) 305 (10%)
Model II 1086 (31%) 376 (11%) 1320 (38%) 694 (20%)
Model III 1213 (29%) 524 (13%) 1557 (38%) 839 (20%)
Model IV 588 (37%) 75 (5%) 732 (46%) 176 (11%)
Model V 518 (30%) 208 (12%) 621 (36%) 375 (22%)
Model VI 591 (30%) 228 (12%) 742 (38%) 396 (20%)

Note: Model I predicts pregnancy in <12 menstrual cycles; Model II predicts pregnancy in
<7 menstrual cycles; Model III predicts the probability of pregnancy within each menstrual
cycle for up to 12 cycles of follow-up; Model IV predicts pregnancy in <12 menstrual cycles
among nulligravid women with no history of infertility; Model V predicts pregnancy in <7
menstrual cycles among nulligravid women with no history of infertility; Model VI predicts
the probability of pregnancy within each menstrual cycle for up to 12 cycles of follow-up
among nulligravid women with no history of infertility.
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Table 3.5: Performance metrics for the parsimonious models, PRESTO 2013-2019.

Algorithm1 Performance Measure (%) (Standard Deviation)

Model I Model II
AUC Weighted

F1

Score

Weighted

Preci-

sion

Weighted

Recall

AUC Weighted

F1

Score

Weighted

Preci-

sion

Weighted

Recall

L2LR 70.2
(1.6)

81.8
(1.0)

80.8
(1.0)

83.3
(1.3)

66.1
(2.1)

67.5
(1.6)

67.2
(1.5)

69.5
(1.4)

L1LR 69.8
(1.8)

81.6
(0.6)

80.6
(0.8)

83.5
(1.1)

66.0
(1.9)

67.4
(1.3)

66.9
(1.3)

69.3
(1.5)

L1SVM 69.8
(1.9)

81.5
(0.8)

80.6
(0.8)

83.5
(0.8)

66.0
(1.9)

67.4
(1.3)

66.9
(1.3)

69.1
(1.3)

L2SVM 70.0
(1.6)

81.5
(1.1)

80.7
(1.3)

83.3
(1.3)

66.2
(1.4)

67.1
(1.3)

66.9
(1.1)

69.6
(0.9)

MLP 69.9
(0.8)

82.1
(0.9)

80.9
(1.2)

83.9
(1.2)

65.1
(2.1)

65.7
(1.5)

66.5
(1.7)

68.5
(1.7)

LightGBM 68.1
(1.4)

81.6
(0.8)

80.9
(1.0)

82.9
(1.2)

64.9
(2.6)

66.9
(1.3)

66.6
(1.4)

67.6
(1.1)

1 L2LR, ℓ2-penalized logistic regression; L1LR, ℓ1-penalized logistic regression; L1SVM,
Support Vector Machine (SVM) with an ℓ1-norm regularizer; L2SVM, SVM with an
ℓ2-norm regularizer; MLP, Feed Forward Multilayer Perceptron Neural Networks; Light-
GBM, Light Gradient Boosting Machine.

Note: Model I predicts pregnancy in <12 menstrual cycles (N = 3,195 participants). Model
II predicts pregnancy in <7 menstrual cycles (N = 3,476 participants). The parsimonious
models contain variables selected after both statistical feature selection and recursive feature
elimination, and limiting recursive feature elimination to select a model with up to 15
variables.
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Figure 3·1: Area under the precision-recall curves (AUPRC) for Models I, II, IV,
and V. Note: Model I predicts pregnancy in <12 menstrual cycles; Model II predicts
pregnancy in <7 menstrual cycles; Model IV predicts pregnancy in <12 menstrual
cycles among nulligravid women with no history of infertility; Model V predicts preg-
nancy in <7 menstrual cycles among nulligravid women with no history of infertility.
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Table 3.6: Performance metrics for the full and sparse Models I-II, PRESTO 2013-
2019.

Algorithm1 Performance Measure (%) (Standard Deviation)

Model I Model II
AUC Weighted

F1 Score

Weighted

Preci-

sion

Weighted

Recall

AUC Weighted

F1 Score

Weighted

Preci-

sion

Weighted

Recall

Full Model2

L2LR 70.5
(1.2)

82.0
(0.5)

81.3
(0.6)

82.8
(0.5)

65.9
(1.3)

67.1
(1.4)

66.7
(1.3)

68.4
(2.0)

L1LR 70.3
(1.4)

82.7
(0.7)

81.9
(0.5)

84.1
(1.1)

65.5
(1.5)

66.8
(0.8)

66.4
(0.9)

68.1
(1.6)

L1SVM 70.5
(1.5)

82.6
(0.5)

81.7
(0.4)

83.9
(0.9)

65.2
(1.7)

66.3
(0.9)

65.9
(0.9)

67.0
(1.1)

L2SVM 70.8
(1.4)

82.2
(0.6)

81.5
(0.5)

83.2
(1.1)

65.6
(1.3)

66.8
(1.1)

66.4
(1.1)

67.9
(1.7)

MLP 69.7
(2.1)

81.8
(1.0)

81.2
(0.8)

82.8
(1.8)

63.4
(1.4)

65.5
(1.0)

64.9
(1.2)

66.9
(0.8)

LightGBM 68.8
(0.6)

81.3
(0.6)

80.3
(0.4)

82.8
(1.0)

63.8
(1.9)

65.8
(0.9)

65.3
(0.9)

66.8
(1.0)

Sparse Model3

L2LR 71.2
(1.0)

81.8
(0.6)

81.1
(0.6)

82.8
(0.9)

67.1
(1.5)

67.7
(0.3)

67.3
(0.3)

69.4
(0.9)

L1LR 70.5
(1.7)

81.6
(0.7)

81.7
(0.8)

84.2
(1.0)

66.6
(1.3)

67.1
(0.7)

67.3
(1.0)

68.6
(1.4)

L1SVM 70.7
(1.7)

82.4
(1.2)

81.7
(0.3)

83.7
(1.9)

66.5
(1.2)

67.0
(0.7)

66.7
(0.8)

68.2
(0.9)

L2SVM 71.2
(1.4)

81.5
(0.6)

81.5
(0.4)

83.5
(1.3)

66.8
(1.4)

67.3
(0.5)

66.8
(0.9)

68.4
(0.8)

MLP 70.8
(2.6)

82.5
(1.0)

81.5
(1.2)

84.5
(0.7)

65.3
(0.6)

67.1
(0.6)

66.6
(0.9)

67.7
(1.3)

LightGBM 69.3
(1.3)

80.8
(0.5)

79.9
(0.4)

82.2
(1.2)

65.0
(2.1)

66.3
(1.6)

65.9
(1.5)

66.9
(1.8)

1 L2LR, ℓ2-penalized logistic regression; L1LR, ℓ1-penalized logistic regression; L1SVM,
Support Vector Machine (SVM) with an ℓ1-norm regularizer; L2SVM, SVM with an
ℓ2-norm regularizer; MLP, Feed Forward Multilayer Perceptron Neural Networks; Light-
GBM, Light Gradient Boosting Machine.

2 The full models contain all variables selected after statistical feature selection.
3 The sparse models contain variables selected after both statistical feature selection and

recursive feature elimination.

Note: Model I predicts pregnancy in <12 menstrual cycles (N = 3,195 participants). Model
II predicts pregnancy in <7 menstrual cycles (N = 3,476 participants).
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gravidity (total number of pregnancies) (Table 3.7). The variables that were inversely

associated with pregnancy were female age, having a history of infertility, having

completed one menstrual cycle of pregnancy attempt time at study entry (versus

zero), female BMI, and stress. The distributions of these variables overall, and by

pregnancy status, are presented in Table 3.7. Results for parsimonious Models II and

III are presented in Tables 3.8 and 3.9, respectively. The variables selected into the

parsimonious Model II that were positively associated with pregnancy were daily use

of multivitamins or folic acid, having previously breastfed an infant, HEI-2010 score,

having a previous unplanned pregnancy, trying to improve one’s chances of pregnancy

(e.g., charting cycles, ovulation or cervical mucus testing, timing intercourse to the

fertile window), and time since the participant’s last pregnancy (<1 year). The

variables that were inversely associated with pregnancy were female BMI, having a

history of infertility, male age, non-use of a fertility app, male BMI, having completed

one menstrual cycle of pregnancy attempt time at study entry (versus zero), male

partner smoking, female age, and having a history of subfertility or infertility. Results

were generally similar for Model III. Variables selected into Model III but neither

Models I nor II included intercourse frequency, and menstrual cycle regularity.

Among 1,957 nulligravid women without a history of infertility, we developed

models predicting pregnancy in fewer than 12 menstrual cycles (Model IV), predict-

ing pregnancy within six menstrual cycles (Model V), and predicting fecundability

(Model VI). We analyzed data from 1,571, 1,722, and 1,957 participants for Mod-

els IV, V, and VI, respectively. The performance of these models was slightly lower

than the analogous models in the full cohort. The performance statistics for the full

and sparse Models IV and V are presented in Table 3.10. Using statistical feature

selection, 16 and 12 variables were selected into the full models for Model IV and

V, respectively. After recursive feature elimination, 5 and 9 variables were selected
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Table 3.7: Variables selected by the parsimonious Model I (predicting pregnancy in
12 cycles) using the L2LR algorithm, PRESTO 2013-2019, n=3,195 participants.

Variable Coef1 Overall Pregnant Not pregnant
Freq.
or

Mean

Std. Freq.
or

Mean

Std. Freq.
or

Mean

Std.

Menstrual cycle length (days) 0.27 29.6 4.0 29.7 4.1 28.7 3.0

Female age at baseline (years) -0.26 29.8 3.8 29.7 3.6 30.6 4.5

Urbanization of residential
area: rural (ref = urbanized
area)

0.25 4% 20% 5% 21% 1% 12%

Previously tried to conceive for
≥ 12 months: “yes” (ref = “no,
tried for < 12 months”)

-0.24 5% 21% 4% 19% 10% 30%

One menstrual cycle of attempt
time at study entry (ref = 0)

-0.23 58% 49% 56% 50% 68% 47%

Daily use of multivita-
mins/folic acid (yes/no)

0.22 84% 37% 85% 35% 73% 44%

Last method of contraception:
hormonal IUD (yes/no)

0.19 12% 32% 12% 33% 7% 25%

Female BMI (kg/m2) -0.19 26.6 6.5 26.3 6.2 28.4 7.8

Ever breastfed an infant
(yes/no)

0.18 31% 46% 32% 47% 22% 41%

Ever been pregnant (yes/no) 0.15 50% 50% 52% 50% 42% 49%

Female education (years) 0.14 16.0 1.2 16.1 1.2 15.8 1.4

Received influenza vaccine in
the past year (yes/no)

0.13 53% 50% 54% 50% 44% 50%

Stress (Perceived Stress Scale
score)

-0.12 15.5 5.8 15.3 5.8 16.3 5.6

Total number of pregnancies 0.12 1.0 1.4 1.0 1.4 0.8 1.4

Urbanization of residential
area: Canada (ref = urbanized
area)2

0.01 18% 39% 18% 39% 19% 39%

Urbanization of residential
area: urban cluster (ref =
urbanized area)2

-0.01 8% 27% 8% 27% 8% 27%

Previously tried to conceive for
≥ 12 months: “no, never tried
before” (ref = “no, tried for <
12 months”)2

-0.01 42% 49% 41% 49% 48% 50%

1 Standardized Regression Coefficient
2 Variables forced into the model
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Table 3.8: Variables selected by the parsimonious Model II (predicting pregnancy
within 6 cycles) using the L2LR algorithm, PRESTO 2013-2019, n=3,476 partici-
pants.

Variable Coef Overall Pregnant Not Pregnant

Freq.
or

Mean

Std. Freq.
or

Mean

Std. Freq.
or

Mean

Std.

Female BMI (kg/m2) -0.11 26.8 6.7 26.1 6.1 28.3 7.7
Daily use of multivitamins/folic
acid (yes/no)

0.08 84% 37% 86% 35% 78% 42%

Ever breastfed an infant (yes/no) 0.08 30% 46% 33% 47% 24% 43%
Previously tried to conceive for ≥
12 months: “yes” (ref = “no, tried
for < 12 months”)

-0.08 5% 22% 4% 18% 8% 28%

Healthy Eating Index-2010 score
(HEI-2010 score)

0.07 66.0 11.2 66.8 10.9 64.3 11.6

Male age (years) -0.07 31.8 5.0 31.5 4.6 32.4 5.8
Use of fertility app: “no, but I plan
to” (ref = “yes”)

-0.07 8% 27% 6% 24% 11% 31%

History of unplanned pregnancy
(yes/no)

0.07 34% 47% 37% 48% 27% 44%

Male BMI (kg/m2) -0.07 27.7 5.3 27.3 5.1 28.5 5.6
One menstrual cycle of attempt
time at study entry (ref = 0)

-0.06 58% 49% 55% 50% 65% 48%

Male cigarette smoking: “yes, on a
regular basis” (ref = “no”)

-0.06 8% 27% 6% 24% 12% 32%

Female age at baseline (years) -0.06 29.8 3.8 29.6 3.6 30.3 4.2
Trying to improve chances of preg-
nancy (yes/no)

0.05 70% 46% 72% 45% 64% 48%

Time since last pregnancy: <1
year (ref = nulliparous)

0.05 22% 41% 24% 42% 18% 38%

History of subfertility or infertility
(yes/no)

-0.05 10% 30% 9% 28% 13% 34%

Previously tried to conceive for ≥
12 months: “no, never tried be-
fore” (ref = “no, tried for < 12
months”)1

-0.05 42% 49% 40% 49% 46% 50%

Time since last pregnancy: 1-2
years (ref = nulliparous)1

0.04 17% 38% 19% 39% 14% 35%

Male cigarette smoking: “yes, oc-
casionally” (ref = “no”)1

-0.02 4% 20% 4% 19% 5% 22%

Time since last pregnancy: ≥ 5
years (ref = nulliparous)1

-0.02 6% 24% 5% 22% 8% 27%

Use of fertility app: “no” (ref =
“yes”)1

-0.02 23% 42% 22% 41% 26% 44%

Time since last pregnancy: 3-4
years (ref = nulliparous)1

0.02 4% 21% 5% 21% 4% 19%

1 Variables forced into the model
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Figure 3·2: Visualization of the Model I coefficients and their 95% confidence inter-
vals. Note: Figures 3·2, 3·3 and 3·4 present the model coefficients with error bands
equivalent to 95% confidence intervals. The variables are ordered according to their
mean coefficient. All plots are associated with the parsimonious L2LR version of
models, consistent with the rest of the Manuscript. Model I predicts pregnancy in
< 12 menstrual cycles. Model II predicts pregnancy in > 7 menstrual cycles. Model
III predicts the probability of pregnancy within each menstrual cycle for up to 12
cycles of follow-up.
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Figure 3·3: Visualization of the Model II coefficients and their 95% confidence
intervals.

Figure 3·4: Visualization of the Model III coefficients and their 95% confidence
intervals.
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for the sparse Models IV and V, respectively. Because fewer than 15 features were

selected by each of the sparse models, the sparse models were equivalent to the parsi-

monious models. Consistent with the main analysis, the L2LR algorithm performed

best for the sparse models. The AUCs were 69.5% (std: 1.4) for Model IV and 65.6%

(std: 2.9) for Model V. The concordance index for Model VI was 60.2%. Variables

selected by these models that were positively associated with pregnancy included

menstrual cycle length, using a hormonal IUD as one’s most recent method of con-

traception, intercourse frequency, trying to improve one’s chances of pregnancy, use

of vitamin E supplements, and HEI-2010 score. Variables inversely associated with

the probability of pregnancy included having completed one menstrual cycle of preg-

nancy attempt time at study entry (versus zero), female age, male and female BMI,

menstrual cycle irregularity, non-use of a fertility app, stress, depressive symptoms,

history of vaginosis, male partner smoking, milk consumption, and sleep characteris-

tics. Occupational exposures including exposure to metal particulates or fumes and

exposure to high temperature environments were also selected to Model VI, but with

very small coefficients.

3.3.1 Numerical Experiments for Comparison of Original Cox Model and
DRO Cox Models

Equation 2.24 introduces O(N2) constraints, significantly hindering computational

efficiency. To address this, we impose constraints only for i ≤ k ≤ i + r, reducing

the total number of constraints to O(rN). For example, when we set r=2, only two

constraints are added instead of N constraints.

Due to computational complexity, we aim to reduce the dimentianality. For this

sake, we perform feature selection, we also randomly resample a portion of each

dataset for our experiments. This results in a dataset with 827 participants and 16

features.
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To assess the impact of outliers on model performance, we introduce varying

proportions of outliers, from 5% to 30%, into a random subsample of the datasets.

We evaluate the Original Cox model, the Sample-splitting DRO-Cox, and the Global

fixation DRO-Cox, training each with different radii ϵ. The concordance indices of

these models are then compared, as shown in Table 3.14.

Table 3.14 reveals that the Global fixation DRO-Cox model consistently outper-

forms both the Sample-splitting DRO-Cox and the Original Cox model. This com-

parison underscores the influence of outlier inclusion on the predictive accuracy and

robustness of survival analysis models, especially in the presence of outliers (Jin and

Paschalidis, 2024).

Table 3.14: Comparison of concordance indices for different ratios of outliers with
ϵ = 0.05 in a subset of the pregnancy dataset

Ratio of Outliers 0.1 0.15 0.2 0.25 0.3
Original Cox 0.5340 0.5522 0.5654 0.5491 0.5190

DRO-Cox Sample Splitting 0.4796 0.4827 0.5158 0.5108 0.5132
DRO-Cox Global Fixation 0.5344 0.5602 0.5699 0.5534 0.5207

3.4 Discussion

In this prospective cohort study of 4,133 North American pregnancy planners, we

applied several supervised learning methods to predict the probability of pregnancy

within three time periods: 12 menstrual cycles, 6 menstrual cycles, and on a per-

cycle basis. The L2LR and L2SVM algorithms generally yielded the highest AUC,

particularly for the parsimonious models. For all models, discrimination (AUC) was

close to 70%. The highest AUCs were 71.2% for Model I, 67.1% for Model II, 69.5%

for Model IV, and 65.6% for Model V. These findings demonstrate that it is possible

to develop predictive models with reasonable discrimination using self-reported data

in the absence of more detailed medical information such as laboratory or imaging

tests.
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The discrimination of our models is greater than previously published predictive

models for pregnancy independent of fertility treatment, which yielded AUC’s be-

tween 59% and 64% (Coppus et al., 2009). For example, Eimers et al. developed

a predictive model for pregnancy among 996 couples consulting for infertility care

in the Netherlands between 1974 and 1984 (Eimers et al., 1994). The investigators

collected data on patient medical history, laboratory tests including semen analysis

and postcoital tests (i.e., an examination of the interaction between sperm and the

cervical mucus after intercourse), and a gynecologic physical examination. They used

forward stepwise Cox regression to produce a model including female age, duration

of infertility, primary versus secondary infertility, history of infertility in the male

partner’s family, sperm motility, and the postcoital test results. Similar studies were

conducted by Collins et al., using data from 1,061 couples seeking infertility care

at eleven Canadian University hospitals (Collins et al., 1995), and Snick et al., us-

ing data from 402 couples seeking infertility care at a Dutch general hospital (Snick

et al., 1997). Hunault et al. pooled the data from the Eimers, Collins, and Snick

studies to evaluate the accuracy of these models and to develop two new synthesis

models (Hunault et al., 2004). The synthesis models included female age, duration of

subfertility, sperm motility, whether the couple had been referred for infertility care

by a general physician or a gynecologist, and the results of a postcoital test. These

models were externally validated and found to have AUCs of 59-63% (Hunault et al.,

2005) (Van der Steeg et al., 2007).

Although previous studies predicted the probability of pregnancy independent of

fertility treatment, they were exclusively conducted in populations with subfertil-

ity using little or no data on lifestyle, environmental, and sociodemographic factors

(Collins et al., 1995) (Coppus et al., 2009) (Eimers et al., 1994) (Hunault et al., 2004)

(Hunault et al., 2005) (Snick et al., 1997) (Van der Steeg et al., 2007). Our study may
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be more generalizable to couples across the fertility spectrum, because we included

couples with a wide range of reproductive potential. In addition, we considered a

range of potential predictors that may be more easily modified than clinical mark-

ers such as semen quality or hormone levels. For example, fertility app use, use of

multivitamins or folic acid supplements, and trying to improve one’s chances of preg-

nancy (e.g., charting cycles, ovulation or cervical mucus testing, timing intercourse

to the fertile window) are relatively modifiable behaviors. Lifestyle interventions can

also be undertaken to modify individual-level behaviors that may increase a couple’s

chance of conception, such as promoting a healthy BMI, improving diet, and reducing

stress. However, many of these behaviors are determined by broader environmental

and systemic drivers and thus may be best addressed through macro-level policy in-

terventions that address upstream determinants (e.g., regulation of food supply and

marketing). A causal analysis of each risk factor would be worthwhile for future

and more targeted work. In this study, there were some variables that appeared to

be particularly important predictors of pregnancy. These included female age and

BMI, history of infertility, the number of menstrual cycles of pregnancy attempt time

at study entry, having previously breastfed an infant, and use of multivitamins or

folic acid supplements. These findings are generally consistent with previous stud-

ies on individual risk factors for infertility that were conducted in other populations

(Cueto et al., 2016) (Homan et al., 2007) (Jensen et al., 1999) (Wise et al., 2011).

However, having previously breastfed an infant, which was associated with an in-

creased probability of pregnancy in this study, has not been previously studied as a

predictor of fecundability. This may reflect underlying fertility, prolonged effects of

hormonal changes during breastfeeding, or higher socioeconomic status among women

who breastfeed their infants (Jones et al., 2011) (Odar Stough et al., 2019).

In this study, we developed an additional set of predictive models among nul-
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ligravid women with no history of infertility who had been trying to conceive for no

more than one menstrual cycle of attempt time at enrollment. The performance of

these models was slightly decreased compared with the main analyses. This is likely

because having a history of infertility is a strong predictor of future fecundability, and

therefore restricting the analytic sample by this variable would limit the predictive

ability of the model. This was most obvious in Model V, which predicted pregnancy

within six menstrual cycles. In these restricted analyses, the most important predic-

tors of pregnancy across all models were the number of menstrual cycles of pregnancy

attempt time at study entry, and female age.

Study limitations include potential misclassification of the predictor variables,

given that all data were based on self-reporting. There is limited research on the im-

pact of measurement error on machine learning prediction models (Jiang et al., 2021)

(van Doorn et al., 2017), and it is unclear how misclassification of the predictors in-

fluenced our study results in terms of accuracy and variable selection. There was also

the potential for misspecification of the functional form of the predictor variables,

which could have influenced the variable selection process. In addition, there may

have been some misclassification of our estimate of time to pregnancy, which relied on

self-reported menstrual cycle length and date of the last menstrual period. Given the

prospective design of the study, such misclassification is likely to be non-differential

with respect to the outcome. Bias may also have been introduced if the length of

follow-up varied by the predictors under study, as Models I and II did not account for

varying lengths of follow-up. However, results were generally consistent with Model

III, which accounted for varying lengths of follow-up. Another potential limitation

is our lack of inclusion of important predictors of pregnancy, such as hormone levels,

which may have reduced the predictive ability of our models. Other potentially impor-

tant predictors that we did not measure include environmental exposures (Conforti
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et al., 2018) (Hipwell et al., 2019) (Kahn et al., 2021), early life adversity (Harville

and Boynton-Jarrett, 2013) (Jacobs et al., 2015), occupational stress (Barzilai-Pesach

et al., 2006) (Valsamakis et al., 2019), experiences of discrimination (Krieger, 2000),

social disadvantage, neighborhood characteristics (Williams and Collins, 2001), and

multigenerational exposures (Eskenazi et al., 2021) (Wesselink, 2021). In addition,

we lacked comprehensive data on male exposures, which contribute to up to 50% of

all subfertility among couples (Irvine, 1998). However, we collected data on several

important male characteristics on the female baseline questionnaire, including male

age, BMI, education, and smoking status. Overall, we considered a diverse range of

163 potential predictors, which is substantially greater than previous studies in this

area (Collins et al., 1995)(Coppus et al., 2009)(Eimers et al., 1994)(Hunault et al.,

2004)(Hunault et al., 2005)(Snick et al., 1997)(Van der Steeg et al., 2007). It should be

noted that the effect estimates in these models lack causal interpretation, as variables

were selected into the final models based on their predictive power, rather than the

hypothesized causal structures of the data. Identifying causes of infertility was beyond

the scope of this study. Also beyond the scope of this study was the development of

models within clinically-relevant subgroups (e.g., age >40 years or infertility-related

conditions). Finally, though we validated the models using split sample replication

techniques, we were unable to conduct an external validation study.

3.5 Conclusions

In this large prospective cohort, we used machine learning algorithms to develop

predictive models of pregnancy, using three distinct, clinically-relevant definitions of

infertility, subfertility, and fecundability. Comparing results across the three out-

comes facilitates robust triangulation of fertility potential; the relative utility of each

outcome may depend on a couple’s preferences and risk profile. Our methods can pre-
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dict pregnancy with discrimination as high as 71.2% by properly weighing a small set

of predictive variables that include lifestyle and reproductive characteristics. Over-

all, the most consistent predictors of the probability of conception were female age,

female BMI, male age, male BMI, history of infertility, history of breastfeeding, time

since the participant’s last pregnancy, daily use of multivitamins or folic acid, trying

to improve one’s chances of pregnancy (e.g., charting cycles, ovulation or cervical

mucus testing, timing intercourse to the fertile window), male partner smoking, and

female education. Among nulligravid women without a history of infertility, the most

important predictors were female age, female BMI, male BMI, use of a fertility app,

and perceived stress. These findings are particularly relevant for couples planning a

pregnancy and clinicians providing preconception care to women who are discontin-

uing contraception in order to conceive. If these models are successfully validated

in external populations, they could potentially be implemented as a counseling tool

(Yland et al., 2022).
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Table 3.9: Variables selected by the parsimonious Model III (fecundability),
PRESTO 2013-2019, n=4,133 participants.

Variable Hazard Ratio 95% Confidence
Interval

Previously tried to conceive for ≥ 12 months:
“yes” (ref = “no, tried for < 12 months”)

0.85 (0.80, 0.90)

Ever breastfed an infant (yes/no) 1.16 (1.09, 1.23)

Female BMI (kg/m2) 0.89 (0.84, 0.93)

Time since last pregnancy: 1-2 years (ref = nulli-
parous)

1.12 (1.04, 1.21)

Female age at baseline (years) 0.90 (0.85, 0.95)

Trying to improve chances of pregnancy (yes/no) 1.11 (1.06, 1.15)

Female education (years) 1.09 (1.03, 1.15)

Intercourse frequency (times/week) 1.08 (1.03, 1.12)

Male BMI (kg/m2) 0.93 (0.89, 0.98)

Male cigarette smoking: “yes, on a regular basis”
(ref = “no”)

0.93 (0.89, 0.98)

Has menstrual cycle been regular without hor-
monal contraception in past 2 years? “no, irregu-
lar” (ref = “yes, regular”)

0.94 (0.89, 0.99)

Daily use of multivitamins/folic acid (yes/no) 1.06 (1.01, 1.11)

Did your period become regular on its own? “no,
irregular” (ref = “yes, regular”)

0.96 (0.92, 1.01)

Male age (years) 0.96 (0.91, 1.01)

Tap water consumption (drinks/week) 1.04 (1.01, 1.07)

Time since last pregnancy: <1 year (ref =
nulliparous)1

1.37 (1.14, 1.64)

Time since last pregnancy: 3-4 years (ref =
nulliparous)1

1.32 (1.01, 1.71)

Male cigarette smoking: “yes, occasionally” (ref =
“no”)1

0.87 (0.70, 1.08)

Has menstrual cycle been regular without hor-
monal contraception in past 2 years? “unknown,
was using hormonal contraception” (ref = “yes,
regular”)1

1.03 (0.93, 1.14)

Did your period become regular on its own? “un-
known, was using hormonal contraception” (ref =
“yes, regular”)1

1.02 (0.89, 1.17)

Time since last pregnancy: ≥5 years (ref =
nulliparous)1

1.01 (0.79, 1.29)

1 Variables forced into model
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Table 3.10: Performance metrics for the full and sparse Models IV-V, restricting to
nulligravid women with no history of infertility, PRESTO 2013-2019.

Algorithm1 Performance Measure (%) (Standard Deviation)

Model IV Model V
AUC Weighted

F1

Score

Weighted

Preci-

sion

Weighted

Recall

AUC Weighted

F1

Score

Weighted

Preci-

sion

Weighted

Recall

Full Model2

L2LR 68.3
(4.1)

79.2
(1.5)

78.7
(2.5)

81.1
(2.6)

65.1
(3.2)

64.5
(1.7)

65.2
(2.0)

67.5
(2.0)

L1LR 68.4
(4.1)

78.3
(1.7)

77.9
(2.5)

79.7
(2.5)

64.9
(2.7)

65.2
(2.4)

65.2
(2.6)

67.5
(2.0)

L1SVM 68.4
(3.9)

78.6
(1.7)

77.8
(2.4)

80.0
(2.0)

64.9
(2.7)

65.1
(2.3)

65.2
(2.5)

67.0
(2.0)

L2SVM 68.6
(3.7)

79.0
(1.1)

78.4
(2.4)

80.5
(1.9)

64.9
(2.8)

64.6
(2.4)

65.4
(2.7)

67.4
(2.8)

MLP 67.8
(2.4)

79.3
(1.6)

78.6
(1.7)

80.4
(1.9)

63.9
(3.3)

63.9
(2.2)

63.7
(2.2)

65.8
(2.2)

LightGBM 64.3
(3.2)

78.6
(1.4)

77.6
(1.7)

80.1
(1.3)

63.7
(3.0)

63.8
(2.1)

63.4
(2.1)

64.8
(2.0)

Sparse Model3

L2LR 69.5
(1.4)

80.5
(1.0)

79.8
(0.8)

81.8
(1.5)

65.6
(2.9)

66.2
(2.5)

65.9
(2.6)

66.8
(2.4)

L1LR 69.3
(1.3)

80.6
(0.9)

79.9
(0.8)

81.9
(1.5)

64.9
(2.8)

64.7
(2.6)

64.9
(2.9)

67.1
(2.3)

L1SVM 69.4
(1.3)

80.7
(1.1)

80.0
(0.9)

81.9
(1.6)

64.8
(2.8)

64.8
(2.6)

65.0
(3.0)

67.1
(2.3)

L2SVM 69.5
(1.5)

80.6
(1.3)

79.8
(1.1)

81.8
(1.6)

65.2
(2.8)

65.4
(2.2)

65.3
(2.2)

67.3
(2.0)

MLP 68.1
(1.7)

79.6
(1.4)

78.6
(1.9)

81.1
(1.3)

63.9
(2.8)

64.2
(2.8)

64.0
(3.0)

64.8
(2.3)

LightGBM 66.0
(2.4)

79.3
(0.5)

78.4
(0.3)

80.7
(1.2)

63.5
(3.3)

64.3
(2.2)

63.9
(2.2)

65.6
(1.8)

1 L2LR, ℓ2-penalized logistic regression; L1LR, ℓ1-penalized logistic regression; L1SVM,
Support Vector Machine (SVM) with an ℓ1-norm regularizer; L2SVM, SVM with an
ℓ2-norm regularizer; MLP, Feed Forward Multilayer Perceptron Neural Networks; Light-
GBM, Light Gradient Boosting Machine.

2 The full models contain all variables selected after statistical feature selection.
3 The sparse models contain variables selected after both statistical feature selection and

recursive feature elimination.

Note: Model IV predicts pregnancy in <12 menstrual cycles among nulligravid women
with no history of infertility (N = 1,571 participants). Model V predicts pregnancy in
<7 menstrual cycles among nulligravid women with no history of infertility (N = 1,722
participants).
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Table 3.11: Variables selected by the parsimonious Model IV (restricted to nul-
ligravid women with no history of infertility) predicting pregnancy within 12 cycles,
using the L2LR algorithm, PRESTO 2013-2019, n=1,571 participants.

Variable Coef1 Overall Pregnant Not pregnant
Freq.
or

Mean

Std. Freq.
or

Mean

Std. Freq.
or

Mean

Std.

Menstrual cycle length (days) 0.27 29.6 4.0 29.8 4.2 28.7 2.6

One menstrual cycle of attempt
time at study entry (ref=0)

-0.22 58% 49% 55% 50% 70% 46%

Last method of contraception:
hormonal IUD (yes/no)1

0.22 11% 31% 12% 32% 5% 22%

Stress (Perceived Stress Scale
score)

-0.20 15.0 5.5 14.7 5.5 16.1 5.3

Female age at baseline (years) -0.20 29.2 3.4 29.1 3.3 30.0 3.9
1 Last methods of contraception were not mutually exclusive and were coded as indicator variables

with no reference category.
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Table 3.12: Variables selected by the parsimonious Model V (restricted to nulligravid
women with no history of infertility) predicting pregnancy within 6 cycles, using the
L2LR algorithm, PRESTO 2013-2019, n=1,722 participants.

Variable Coef1 Overall Pregnant Not pregnant
Freq.
or

Mean

Std. Freq.
or

Mean

Std. Freq.
or

Mean

Std.

Female age at baseline (years) -0.06 29.2 3.4 28.9 3.2 29.8 3.8

Use of fertility app: “no” (ref =
“yes”)

-0.05 22% 42% 20% 40% 27% 44%

Male BMI (kg/m2) -0.04 27.4 5.3 27.0 5.1 28.2 5.5

One menstrual cycle of attempt
time at study entry (ref = 0)

-0.04 58% 49% 55% 50% 64% 48%

Did your period become regular
on its own? “no, irregular” (ref =
“yes, regular”)

-0.04 19% 39% 16% 37% 23% 42%

Healthy Eating Index-2010 score
(HEI-2010 score)

0.04 67.2 10.8 67.8 10.5 65.8 11.3

Female BMI (kg/m2) -0.04 26.3 6.5 25.8 6.0 27.4 7.2

Use of fertility app: “no, but I
plan to” (ref = “yes”)

-0.03 9% 28% 8% 26% 11% 31%

Stress (Perceived Stress Scale
score)

-0.02 15.1 5.6 14.8 5.5 15.6 5.6

Depressive Symptoms (Major
Depression Inventory score)

-0.02 9.0 7.0 8.7 6.9 9.6 7.0

Variables forced into the
model1

Did your period become regular
on its own? “unknown, was using
hormonal contraception” (ref =
“yes, regular”)

0.01 15% 35% 16% 37% 12% 33%

1 For all models, we selected a reference group for each categorical variable that was recoded as
indicator variables in the preprocessing phase and forced every non-reference level to be included
in the model if any level of the categorical variable was selected. These variables are listed in
addition to the variables selected by the parsimonious model.
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Table 3.13: Variables selected by the parsimonious Model VI (restricted to nul-
ligravid women with no history of infertility) predicting pregnancy within 6 cycles,
using the L2LR algorithm, PRESTO 2013-2019, n=1,957 participants.

Variable Hazard Ratio 95% Confidence
Interval

Female age at baseline (years) 0.90 (0.84, 0.96)

Has menstrual cycle been regular without hor-
monal contraception in past 2 years? “no, irregu-
lar” (ref = “yes, regular”)

0.90 (0.84, 0.97)

Use of fertility app: “no” (ref = “yes”) 0.90 (0.85, 0.97)

Ever diagnosed with vaginosis (yes/no) 0.91 (0.85, 0.97)

Intercourse frequency (times/week) 1.10 (1.03, 1.17)

Male cigarette smoking: “yes, on a regular basis”
(ref = “no”)

0.91 (0.85, 0.97)

Female BMI (kg/m2) 0.91 (0.85, 0.98)

Exposed regularly to metal particulates or fumes
(yes/no)

1.08 (1.02, 1.15)

Male BMI (kg/m2) 0.94 (0.88, 1.01)

Trying to improve chances of pregnancy (yes/no) 1.06 (0.99, 1.13)

2% milk consumption (drinks/week) 0.95 (0.89, 1.01)

Use of vitamin E supplements (yes/no) 1.05 (0.99, 1.12)

Nightly sleep duration (hours) 0.96 (0.90, 1.02)

Night shift work (number of shifts in past month) 0.96 (0.90, 1.03)

Has menstrual cycle been regular without hor-
monal contraception in past 2 years? “unknown,
was using hormonal contraception” (ref = “yes,
regular”)

0.98 (0.86, 1.12)

Exposed regularly to environments with high tem-
perature (yes/no)

1.02 (0.95, 1.08)

Use of fertility app: “no, but I plan to” (ref =
“yes”)1

0.76 (0.60, 0.96)

Male cigarette smoking: “yes, occasionally” (ref =
“no”)1

0.86 (0.62, 1.19)

Has menstrual cycle been regular without hor-
monal contraception in past 2 years? “unknown,
was using hormonal contraception” (ref = “yes,
regular”)1

0.98 (0.86, 1.12)

1 Variables forced into model
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Chapter 4

Predicting Polycystic Ovary Syndrome
(PCOS) with Machine Learning Algorithms
from Electronic Health Records

4.1 Introduction

Polycystic ovary syndrome (PCOS) is the most common type of ovulation disorder

and endocrinopathy among reproductive age women. PCOS is a diagnosis of exclusion

after other endocrinopathies known to affect ovulation have been evaluated including

thyroid, adrenal, and pituitary related disease. Based on the Rotterdam criteria,

PCOS is diagnosed when two of the three following criteria are exhibited: clinical or

biochemical hyperandrogenism, oligo-anovulation, and polycystic ovary morphology

(PCOM) on transvaginal or transabdominal ultrasound. PCOS has a population

prevalence of 5-15%, depending on the diagnostic criteria used (Azziz et al., 2009).

PCOS is associated with multiple health issues and increased morbidity and mor-

tality, including a high chronic disease burden that is also very costly for individuals

with PCOS and insurers (Riestenberg et al., 2022). PCOS is the leading cause of

anovulatory infertility in reproductive-aged women. In fact, over 90% of anovula-

tory women who present to infertility clinics have PCOS (Sirmans and Pate, 2013).

PCOS patients have an increased risk of endometrial hyperplasia and endometrial

cancer (Barry et al., 2014) due to anovulatory cycles leading to long periods of ex-

posure to the effects of unopposed estrogen. PCOS has been associated with the
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development of metabolic syndrome (Lim et al., 2019), diabetes (Anagnostis et al.,

2018), cerebrovascular disease and hypertension (Wekker et al., 2020), compared to

women without PCOS. Despite these serious health consequences, PCOS frequently

goes undiagnosed due to the wide range of symptom severity on presentation, lead-

ing to delayed treatment and potentially more severe clinical sequelae due to lack of

preventive care, health management, and counseling (Barry et al., 2014). Even when

PCOS is diagnosed, it is often very delayed. One study found that over one-third of

women with PCOS waited over two years and were seen by three or more providers

before finally receiving the diagnosis (Gibson-Helm et al., 2017).

Predictive models can play a significant role in aiding earlier diagnosis of PCOS,

though several include only those women presenting for fertility care. One model used

serum anti-Müllerian hormone (AMH) and androstenedione levels, menstrual cycle

length, and BMI to predict the development of PCOS in Chinese women (Xu et al.,

2022). Another model used only AMH and BMI to predict a diagnosis of PCOS

or other ovulatory dysfunction disorders (Vagios et al., 2021). Other studies have

created predictive models for certain outcomes among women with PCOS such as

pregnancy outcomes (Kuang et al., 2015) (Jiang et al., 2022) and insulin resistance

(Gennarelli et al., 2000). In this study, we use clinical and socioeconomic variables

among 30,601 women aged 18 to 45 years within the electronic health records (EHR)

to develop predictive model utilizing machine learning algorithms with the goal of

earlier detection and treatment of PCOS.

4.2 Materials and Methods

4.2.1 Data acquisition

The dataset was created by querying de-identified patient data from female patients

aged 18 to 45 years who had or were considered at risk for PCOS diagnosis by having
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had any one of the three diagnostic procedures for PCOS in their EHR. Included

within the initial sample were those patients who had any visit to Boston Medical

Center (BMC) for primary care, obstetrics and gynecology, endocrinology, family

medicine, or general internal medicine and received: 1) a pelvic/transvaginal ul-

trasound for any reason, 2) androgen lab assessment, or had clinical symptoms of

androgen excess, 3) an ICD-9 label for irregular periods, or 4) a PCOS diagnosis,

between October 2003 to December 2016 within the BMC Clinical Data Warehouse

(CDW). The start-date was selected to reflect the first day that ICD-9 codes were

used and recorded at BMC. The end date reflected cessation of use of the ICD-9 codes

and transition to ICD-10 codes within BMC. To avoid misidentifying an ovulation

disorder caused by another endocrinopathy, exclusion criteria included diagnosis of

concurrent endocrinopathy, such as thyroid disorders, hyperaldosteronism, Cushing’s

syndrome, other adrenal gland disorders, or malignancy based on ICD-9 codes as

listed in Table 4.1.

4.2.2 Ethical approval

The study was approved by the Institutional Review Board of Boston University

School of Medicine and the Harvard T.H. Chan School of Public Health (Protocol #

H35708) and is considered non-human subjects research.

4.2.3 Reference label definitions

4.2.3.1 Individual predictors

Time-varying predictor variables with a date stamp before that of the outcome of

interest were included in our models. We considered the following predictor vari-

ables: Socioeconomic and lifestyle demographic variables: age, race (White/ Cau-

casian, Black/ African American, Hispanic/ Latina, Asian, Native Hawaiian/ Pacific

Islander, Middle Eastern, Other/ Unknown), smoking status (yes/no), marital status
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Table 4.1: Exclusion ICD-9 Coding Associations.

Endocrinopathies ICD-9 Codes
Goiter, specified as simple 240
Goiter, unspecified 240.9
Nontoxic uninodular goiter 241
Nontoxic multinodular goiter 241.1
Thyrotoxicosis with or without goiter 242
Congenital hypothyroidism 243
Acquired hypothyroidism 244
Thyroiditis 245
Other disorders of thyroid 246
Cushing’s syndrome 255
Hyperaldosteronism 255.1
Adrenogenital disorders 255.2
Other corticoadrenal overactivity 255.3
Corticoadrenal insufficiency 255.4
Other adrenal hypofunction 255.5
Medulloadrenal hyperfunction 255.6
Other specified disorders of adrenal glands 255.8
Unspecified disorder of adrenal glands 255.9
Other ovarian dysfunction 256.8
Malignancy ICD-9 Codes
Malignant neoplasm of corpus uteri, except
isthmus

182

(single, married, separated, divorced, widowed, other), homelessness (yes/no), and

highest level of education (8th grade or less, some high school, high school gradu-

ate, some college/ technical/ vocational training, graduated college/technical school/

vocational training, declined to answer, other). Anthropometrics: Body mass index

(BMI, kg/m2) was either calculated from height and weight or abstracted as the listed

BMI variable associated with each visit. BMI was then categorized into three cat-

egories: normal (BMI < 25 kg/m2); overweight (BMI between 25-30 kg/m2); and

obese (BMI > 30 kg/m2). To further capture the obesity population in the absence

of height/weight/BMI data, the obese category also included any patient with an

ICD-9 code for unspecified obesity (278.00), morbid obesity (278.01), localized adi-

posity (278.1), and/or a history of gastric bypass. BMI < 18.5, typically considered

underweight, represented a small fraction of the total study population (1.5%) and

thus did not have sufficient participants to create a separate category. Furthermore,
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a model to predict PCOS created by Xu et al. based on age, menstrual cycle length,

BMI, AMH, testosterone, androstenedione, and follicle count did not find a signifi-

cant difference in predictive effect when comparing BMI 18.5-24 to <18.5 (Xu et al.,

2022). Cardiovascular health: To include blood pressure as a predictor variable,

we defined a categorical hypertension variable by using systolic (SBP) and diastolic

(DBP) blood pressure readings and ICD-9 diagnostic codes for unspecified essential

hypertension (401.9), benign essential hypertension (401.1), and essential primary

hypertension (401.0). Blood pressure was categorized into three groups: normal, de-

fined by no ICD-9 codes for hypertension recorded and SBP < 120 mmHg, and DBP

< 80 mmHg; elevated, defined by no ICD-9 codes for hypertension recorded and SBP

was 120-129 mmHg or DBP < 80 mmHg; hypertension, defined by any ICD-9 code

for hypertension recorded or SBP > 140 mmHg or DBP > 90 mmHg.

Reproductive endocrine predictive variables: beta human chorionic gonadotropin

(bHCG) level (negative bHCG < 5 mIU/mL, positive bHCG > 5 mIU/mL), HIV

status (negative/positive), age at menarche, pelvic inflammatory disease diagnosis

(614.9), history of hysterosalpingogram, and gravidity (history of present or prior

pregnancy within obstetric history). Endocrine and metabolic lab values included:

TSH, glycosylated hemoglobin (A1c) as a marker for diabetes, low-density lipopro-

tein (LDL), high density lipoprotein (HDL), and diagnosis of hypercholesterolemia

(272.0). Of note, our model did not include androgen precursors such as DHEA or

androstenedione as, according to Monash guidelines, these values provide limited ad-

ditional information in the diagnosis of PCOS (Villarroel et al., 2015) (Teede et al.,

2018).

4.2.3.2 Combined predictors

Expecting a nonlinear relationship between many reproductive hormones and a PCOS

diagnosis, we used a multilayer perceptron (MLP) neural network to map follicle-
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stimulating hormone (FSH), luteinizing hormone (LH), sex hormone binding globulin

(SHBG), and estradiol (E2) values to a composite metric we call MLP score. The

MLP score was repetitively trained and the hyperparameters were tuned to generate

a predictive probability associated with PCOS diagnosis for each predictive model,

as described with further detail below.

4.2.3.3 Outcomes

Defining PCOS: PCOS diagnosis was assigned for any patient who had an ICD-9

code for PCOS (256.4) or met the Rotterdam criteria (ESHRE et al., 2004), accord-

ing to which a positive diagnosis is made in the presence of two out of the following

three features: (i) irregular menses (IM) as defined by rare menses, oligo-ovulation, or

anovulation; (ii) hyperandrogenism (HA) as defined by clinical or biochemical andro-

gen excess; and (iii) polycystic ovarian morphology (PCOM) noted on transabdominal

or transvaginal ultrasound. Based on these three criteria, we defined three auxiliary

variables IM, HA, and PCOM to use in the definition of our labels. PCOM was

captured through diagnostic radiology text reports from ovarian ultrasound imaging

for the subset that had ultrasound imaging (Cheng and Mahalingaiah, 2019). Defin-

ing Irregular Menstruation (IM): IM was defined with the following ICD-9 codes:

absence of menstruation (626.0), scanty or infrequent menstruation (626.1), irregular

menstrual cycle (626.4), unspecified disorders of menstruation and abnormal bleeding

from female genital tract (626.9), and infertility, female associated with anovulation

(628.0) (Sirmans and Pate, 2013). Defining Hyperandrogenism (HA): HA was as-

signed to a patient if any of the androgen lab testing for bioavailable testosterone, free

testosterone, or total testosterone was greater than clinical thresholds of 11 ng/dL,

5 pg/mL, 45 ng/dL, respectively. In addition, HA was assigned if ICD-9 codes for

hirsutism (704.1) or acne (706.1 or 706.0) were recorded for a patient. Defining ul-

trasound characteristics for polycystic ovarian morphology (PCOM): Among those
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with an ultrasound in this dataset, PCOM was identified on ultrasound reports us-

ing natural language processing (NLP) with complete methods detailed by Cheng

and Mahalingaiah (Cheng and Mahalingaiah, 2019), to report PCOM as identified

(PCOM present), unidentified (PCOM absent), or indeterminate (PCOM unidentifi-

able based on source report data). We considered four models to predict the following:

Model I: patients with ICD-9 diagnosis of PCOS (256.4) within the EHR; Model II:

patients with IM and HA without a ICD-9 PCOS code; Model III: patients with at

least two out of the three conditions IM/HA/PCOM and without a ICD-9 PCOS

code; Model IV: all patients meeting inclusion criteria for Model I or Model III. ICD-

9 codes were abstracted from the billing code and diagnosis code associated with

each encounter within the EHR. Model I included all patients who were diagnosed

with PCOS. Model II and its superset Model III, which additionally includes PCOM

findings on ultrasound, was composed of patients who did not have a PCOS diagnosis

code but met diagnostic criteria of PCOS based on Rotterdam criteria, representing

the patient population with undiagnosed PCOS. Model IV essentially captures all

women who were diagnosed or met criteria for PCOS within our population. Table

4.2 details model definitions and includes the count and percent of patients in each

category. The date of diagnosis was assigned by the date of PCOS ICD-9 code (256.4)

for Model I, the date of the latest diagnostic criteria met for Model II and III, and

the earlier date associated with Model I and Model III, for Model IV.

4.2.4 Predictive models

4.2.4.1 Classification methods

We Utilized four supervised classification methods, LR, SVM, GBM, and RF, to

develop predictive models, explained in more detail in Section 2.1.1. We considered

both an L1-norm and an L2-norm regularizer, explained in more detail in Section

2.1.5.1. We tuned GBM’s hyperparameters through cross-validation. Explained in
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Table 4.2: Definitions for Predictive PCOS models generated from the Boston Med-
ical Center Clinical Data Warehouse.

PCOS IM HA PCOM Model I Model II Model III Model IV Count Percent
(ICD-9 256.4)

0 0 0 0 0 0 0 0 17,834 58.3
1 0 0 0 1 exc exc 1 313 1
0 1 0 0 0 0 0 0 5,012 16.4
0 1 1 0 0 0 0 0 5,035 16.5
0 0 1 0 0 0 0 0 275 0.8
1 1 0 0 1 exc exc 1 248 0.8
1 0 1 0 1 exc exc 1 376 1.2
1 1 1 0 1 exc exc 1 5 0
0 1 0 1 1 exc exc 1 1,037 3.4
0 1 1 1 1 exc exc 1 35 0.1
0 0 1 1 1 exc exc 1 25 0.1
1 1 0 1 1 exc exc 1 368 1.2
1 0 1 1 1 exc exc 1 4 0
1 1 1 1 1 exc exc 1 9 0
0 1 1 1 1 exc exc 1 19 0.1
1 0 1 1 1 exc exc 1 6 0

Positive Label 1,329 1,056 1,116 2,445
Total Patients 29,485 100

exc = exclude This table shows all possible combinations of presence/absence of variables and how
they were included in each model. 0 = absent, 1 = present, exclude = excluded from model. IM =
irregular menstruation; HA = hyperandrogenism; PCOM = polycystic ovary morphology.

more detail in Section 2.1.3.1.

4.2.4.2 Performance metrics

To assess model performance, we use AUC-ROC and weighted F1-score. Explained

in more detail in Section 2.1.4.

4.2.4.3 Pre-processing and Statistical feature selection (SFS)

We performed data pre-processing steps, explauned in more detail in Section 2.1.2

to prepare the dataset for developing predictive models. A summary of the missing

variables for each model is provided in Table 4.3. The threshold for correlation coeffi-

cient is considered 0.8. Furthermore, statistical feature selection (SFS), as explained

in more detail in Section 2.1.5.2, is done with 0.01 threshold for p-value. Represen-

tative aggregated patient-level statistics for each model are shown in Table 4.4 and

4.5. Highly correlated variables and the retained variable are provided in Table 4.6.
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Table 4.3: Summary of missingness in continuous variables.

Variable Model I Model II Model III Model IV
# of missing Imputed value # of missing Imputed value # of missing Imputed value # of missing Imputed value

Testosterone 27365 29.8 27201 29.0 27251 29.0 28115 32.0
Free Testosterone 26975 3.0 26843 3.0 26887 3.0 27682 3.3
Bioavailable Testosterone 26987 6.05 26857 6.2 26901 6.0 27698 6.7
Gravidity 11282 2.0 11141 2.0 11148 2.0 11537 2.0
Age at Menarche 13120 12.0 12984 12.0 12996 12.0 13430 12.0
Total Cholesterol 17905 172.0 17688 172.0 17710 172.0 18350 172.0
HDL 18104 51.0 17887 51.0 17909 51.0 18562 51.0
LDL 18955 101.0 18746 101.0 18772 101.0 19508 101.0
TSH 20604 1.22 20303 1.21 20339 1.21 21296 1.2
A1C 23139 5.4 22949 5.4 22995 5.4 23954 5.4
FSH 24338 5.0 24205 5.1 24236 5.1 24893 5.0
LH 25941 6.3 25823 6.1 25862 6.1 26641 6.5
SHBG 27181 39.0 27049 41.0 27094 41.0 27942 38.0
Estradiol 27331 58.0 27072 58.0 27120 58.0 28235 58.0

HDL = high-density lipoprotein; LDL = low-density lipoprotein; TSH = thyroid stimulating hormone; FSH = follicle stimulating hormone;
LH = luteinizing hormone; SHBG = sex hormone-binding globulin.
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Table 4.4: Variables before statistical feature selection (SFS) for each model. Part 1.
Variable Model I Model II Model III Model IV

Y1-mean Y0-mean p-value Y1-mean Y0-mean p-value Y1-mean Y0-mean p-value Y1-mean Y0-mean p-value
Gravidity 1.28 2.08 4.55E-78 1.42 2.08 2.35E-63 1.46 2.08 2.47E-63 1.36 2.08 2.17E-135
LH 8.03 6.53 3.65E-69 7.72 6.35 5.07E-35 7.69 6.35 2.81E-36 8.04 6.70 4.47E-94
SHBG 38.48 39.90 1.87E-58 40.03 41.75 4.89E-32 40.01 41.75 1.87E-32 37.84 38.94 8.51E-78
FSH 4.94 5.24 9.46E-44 5.28 5.35 3.04E-30 5.26 5.34 1.42E-32 5.04 5.22 1.55E-68
Obesity 0.51 0.27 1.38E-81 0.34 0.27 9.60E-06 0.34 0.27 2.73E-06 0.43 0.27 2.86E-66
Positive bHCG 0.05 0.23 1.50E-48 0.10 0.23 4.14E-21 0.11 0.23 3.59E-20 0.08 0.23 2.23E-65
Age 31.34 33.79 1.70E-25 31.01 33.79 2.26E-31 31.16 33.79 5.91E-30 31.26 33.79 1.91E-52
Obese BMI 0.45 0.25 7.99E-57 0.30 0.25 1.08E-03 0.30 0.25 7.69E-04 0.38 0.25 1.03E-44
HDL 50.21 51.58 1.15E-14 52.13 51.59 1.03E-05 52.04 51.59 4.06E-12 51.04 51.58 3.65E-25
Negative bHCG 0.26 0.23 1.99E-22 0.37 0.23 1.44E-22 0.37 0.23 2.20E-25 0.31 0.23 2.29E-65
Total Cholesterol 174.77 173.12 1.70E-12 173.37 173.14 2.82E-10 173.13 173.12 7.72E-11 174.14 173.11 1.48E-22
Hypertension 0.31 0.21 6.02E-14 0.25 0.21 7.25E-06 0.21 0.21 8.32E-02 0.31 0.21 3.63E-12
LDL 102.51 101.51 2.10E-03 101.28 101.01 1.66E-06 101.15 101.01 6.31E-07 101.91 101.51 4.06E-27
Hispanic/Latina Race 0.07 0.10 1.82E-01 0.06 0.10 2.69E-06 0.06 0.10 2.00E-03 0.07 0.10 2.34E-05
Estradiol 60.70 59.37 7.32E-03 61.40 59.39 9.91E-04 61.58 59.39 3.78E-04 61.11 59.38 8.21E-05
Education – Some College 0.18 0.15 3.44E-02 0.19 0.15 3.32E-03 0.19 0.15 4.65E-03 0.18 0.15 1.55E-04
Smoker 0.09 0.14 6.62E-05 0.12 0.14 4.11E-01 0.12 0.14 5.73E-01 0.11 0.14 3.00E-04
TSH 1.31 1.26 5.24E-02 1.28 1.26 8.51E-03 1.28 1.26 3.51E-03 1.30 1.26 8.49E-03
Elevated BP 0.12 0.10 2.85E-02 0.11 0.10 4.29E-01 0.11 0.10 3.35E-01 0.12 0.10 9.50E-03
Marital Status: Single 0.77 0.76 6.82E-01 0.81 0.76 1.31E-03 0.81 0.76 2.78E-03 0.79 0.76 9.87E-03
Gastric Bypass History 0.00 0.01 6.50E-02 0.00 0.01 3.31E-01 0.00 0.01 2.68E-01 0.00 0.01 1.25E-02
Age at Menarche 12.10 12.23 8.95E-02 12.18 12.23 3.10E-01 12.18 12.23 1.88E-01 12.13 12.23 1.46E-02
Overweight ICD-9 278.02 0.04 0.03 2.58E-01 0.04 0.03 2.96E-01 0.04 0.03 1.50E-01 0.04 0.03 3.30E-02
Normal BMI 0.15 0.26 3.57E-16 0.34 0.26 8.57E-07 0.33 0.26 6.76E-06 0.23 0.26 4.80E-02
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Table 4.5: Variables before statistical feature selection (SFS) for each model. Part 2.
Variable Model I Model II Model III Model IV

Y1-mean Y0-mean p-value Y1-mean Y0-mean p-value Y1-mean Y0-mean p-value Y1-mean Y0-mean p-value
A1C 5.43 5.42 1.19E-01 5.42 5.42 2.45E-01 5.42 5.42 3.19E-01 5.43 5.42 5.26E-01
Education: Declined 0.03 0.04 6.85E-01 0.02 0.04 5.52E-01 0.02 0.04 5.69E-02 0.03 0.04 6.20E-02
Marital Status: Separated 0.01 0.01 8.11E-01 0.01 0.01 4.24E-01 0.01 0.01 4.77E-01 0.01 0.01 7.94E-01
Black/African American Race 0.40 0.40 1.00E+00 0.45 0.40 1.84E-02 0.46 0.40 2.03E-03 0.43 0.40 1.05E-01
Marital Status: Married 0.19 0.20 8.72E-01 0.16 0.20 3.69E-02 0.17 0.20 6.70E-02 0.18 0.20 1.30E-01
Race: Other 0.04 0.03 2.54E-01 0.04 0.03 4.69E-01 0.04 0.03 6.82E-01 0.04 0.03 1.64E-01
Marital Status: Widowed 0.00 0.00 6.47E-01 0.00 0.00 7.26E-01 0.00 0.00 7.08E-01 0.00 0.00 3.85E-01
Normal BP 0.46 0.51 1.74E-02 0.60 0.51 1.37E-07 0.60 0.51 3.94E-08 0.53 0.51 3.92E-01
White/Caucasian Race 0.26 0.27 9.77E-01 0.25 0.27 8.19E-01 0.25 0.27 5.44E-01 0.25 0.27 6.43E-01
Education: high school graduate 0.25 0.24 9.12E-01 0.25 0.24 8.19E-01 0.26 0.24 7.47E-01 0.25 0.24 6.63E-01
Human immuno virus ICD-9 042 0.00 0.01 2.42E-01 0.01 0.01 9.97E-01 0.00 0.01 9.80E-01 0.00 0.01 7.04E-01
Education: Some high school 0.17 0.20 2.40E-01 0.20 0.20 9.97E-01 0.20 0.20 9.75E-01 0.19 0.20 7.09E-01
Education: I did not attend school 0.03 0.04 6.51E-01 0.04 0.04 9.65E-01 0.04 0.04 9.95E-01 0.04 0.04 7.48E-01
Marital Status: Divorced 0.01 0.01 1.00E+00 0.01 0.01 4.77E-01 0.01 0.01 5.34E-01 0.01 0.01 7.68E-01
Education: Pre-registration 0.01 0.01 2.33E-01 0.01 0.01 9.16E-01 0.01 0.01 8.72E-01 0.01 0.01 8.21E-01
Education: 8th grade or less 0.01 0.01 9.70E-01 0.01 0.01 8.63E-01 0.01 0.01 8.46E-01 0.01 0.01 8.23E-01
Education: other 0.01 0.01 9.97E-01 0.01 0.01 8.14E-01 0.01 0.01 7.51E-01 0.01 0.01 8.50E-01
FemPelv.Inflamm.DisNOS ICD-9 614.9 0.00 0.01 1.60E-01 0.01 0.01 9.84E-01 0.01 0.01 6.27E-01 0.01 0.01 1.00E+00
American Indian/Native American 0.00 0.01 9.67E-01 0.00 0.01 9.88E-01 0.00 0.01 9.72E-01 0.00 0.01 9.24E-01
Homeless Indicator No 0.99 0.98 9.17E-01 0.98 0.98 1.00E+00 0.98 0.98 9.97E-01 0.99 0.98 9.33E-01
Homeless Indicator Yes 0.01 0.02 9.23E-01 0.02 0.02 1.00E+00 0.02 0.02 9.98E-01 0.01 0.02 9.40E-01
Middle Eastern Race 0.01 0.01 1.00E+00 0.01 0.01 7.67E-01 0.01 0.01 8.45E-01 0.01 0.01 9.42E-01
Education: graduated college 0.20 0.21 9.08E-01 0.21 0.21 1.00E+00 0.21 0.21 1.00E+00 0.20 0.21 9.59E-01
Asian Race 0.04 0.05 7.03E-01 0.05 0.05 7.76E-01 0.05 0.05 9.39E-01 0.04 0.05 9.79E-01
Native Hawaiian/Pacific Islander Race 0.00 0.00 8.49E-01 0.00 0.00 9.78E-01 0.00 0.00 9.85E-01 0.00 0.00 9.86E-01
Pure Hypercholesterolemia ICD-9 272.0 0.01 0.01 1.00E+00 0.01 0.01 9.94E-01 0.01 0.01 9.74E-01 0.01 0.01 9.86E-01
Overweight BMI 0.18 0.19 4.58E-01 0.22 0.19 3.32E-01 0.19 0.19 1.62E-01 0.19 0.19 9.90E-01
History of Hysterosalpingogram 0.05 0.06 1.00E+00 0.06 0.06 9.86E-01 0.06 0.06 9.93E-01 0.05 0.06 1.00E+00
Marital Status: Other 0.02 0.02 8.25E-01 0.02 0.02 8.48E-01 0.02 0.02 7.48E-01 0.02 0.02 1.00E+00
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Table 4.6: Highly correlated variables and the retained variable.

Highly correlated pairs The variable we kept among highly cor-
related pairs

Marital Status – Married Marital Status – Married
Marital Status – Single
Homeless indicator – No Homeless Indicator – Yes
Homeless indicator – Yes
Obesity Obesity
Obese BMI
Total Cholesterol Total Cholesterol kept in Model I and Model

IV
LDL LDL kept in Model II and Model III

BMI = body mass index (kg/m2); LDL = low-density lipoprotein.

4.2.4.4 Training-test splitting

We split the dataset into five random parts, where four parts were used as the training

set, and the remaining part was used for testing. We used the training set to tune the

model hyperparameters via 5-fold cross-validation, and we evaluated the performance

metrics on the testing set. We repeated training and testing five times, each time with

a different random split into training/test sets. The mean and standard deviation of

the metrics on the test sets over the five repetitions are reported. Explained in more

detail in Section 2.1.3.

4.2.5 Development of the MLP score

For every model, there was a considerable difference between the AUC of linear mod-

els and non-linear models. To improve the performance of our linear models, we

utilized nonlinear models to capture intricate relationships between features. We uti-

lized Gradient Boosted Trees (GBT) to find which features most commonly appeared

together among decision trees. We found FSH, LH, SHBG, and estradiol levels to be

a meaningful group of features which are all reproductive hormones and continuous

variables that appeared together among trees for all our models. We subsequently
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used these four features as input features into a multilayer perceptron (MLP) neu-

ral network model with three hidden layers, each employing the rectified linear unit

(ReLU) activation function. The neural network was trained using the training set to

classify PCOS. We used the output probability of the MLP model, which we called

“MLP score,” as a new feature into our original predictive models.

4.2.6 Recursive feature elimination (RFE)

We also used a recursive feature elimination approach with L1-penalized logistic re-

gression (L1-regularized RFE) to extract the most informative features and develop

parsimonious models. Explained in more detail in Section 2.1.5.3.

4.2.7 Final predictive models

We computed the performance of the following models: L1-penalized logistic regres-

sion (LR-L1), support vector machine (SVM-L1), random forest (RF), and gradient

boosted machine. We calculated each variable’s LR coefficient with a 95% confidence

interval (β [95%CI]), the correlation of the variable with the outcome (Y-correlation),

the p-value of each variable (p-value), the mean of the variable (Y1-mean) in the

PCOS labeled patients, the mean of the variable (Y0-mean) in the patients without

the PCOS label, and the mean and standard deviation of the variable over all pa-

tients (All-mean and All-SD). Ranking predictor variables by the absolute value of

their coefficients in the logistic regression model amounts to ranking these variables

by how much they affect the predicted probability of the outcome. A positive coef-

ficient implies that the larger the value of the variable within the range specified by

the data, the higher the chance of having a PCOS diagnosis as defined by the model

outcome.
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4.3 Results

4.3.1 Results of data acquisition and data pre-processing

After inclusion and exclusion criteria were applied to all 65,431 women within the

initial data pool, 30,601 patient records were available for this analysis and defined

populations are included in Figure 4·1. There were 1,329 patients (4.5%) with a PCOS

ICD-9 diagnosis code (Model I). 1,465 patients had records with PCOM results as

present, absent, or unidentifiable. There were 1,056 patients (3.6%) with no ICD 256.4

indication and presence of IM and HA (Model II). There were 1,116 (3.8%) patients

with no ICD 256.4 indication and presence of at least two out of three criteria of

IM, HA, or PCOM (Model III). Finally, there were 2,445 PCOS patients (8.0%) in

the combined analysis of Model I and III (Model IV). A tabulation of which subjects

were included in each model based on all possible combinations of the presence or

absence of each variable is shown in Table 2. In the total cohort, the patients were

predominantly Black/African American (40.3%) and White (26.5%), with an average

age of 33.6 years (SD = 6.6). Complete demographic characteristics are described in

Table 4.7.

There were 43 categorical variables and 12 continuous variables retained as pre-

dictors after the data pre-processing procedures. There were four pairs of highly

correlated variables and one variable from each correlated pair included in the final

model as noted in Table 4.6. Table 4.4 and 4.5 describes all 51 variables used by the

predictive models.

4.4 Model Performance

Tables 4.7, 4.8, 4.9 and4.10 display the parsimonious models that use the MLP score

(LR-L2-MLP score) and show the most significant variables in the prediction of the

outcome for Models I, II, III, and IV, respectively. All p-values were less than 0.05,
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which was set as the significance level. Feature importance graphs based on logistic

regression coefficients (± 95% confidence interval) are visualized in Figure 4·2.

For Model I, the parsimonious predictive model achieved an AUC (SD) of 82.3%

(1.7). The MLP score (β = 0.71) and obesity (β = 0.45) were positively correlated

with PCOS diagnosis. Pregnancy (gravidity β = -0.53; positive pregnancy test β =

-0.50), normal BMI (β = -0.24), smoking (β = -0.18), age (β = -0.16), and Hispanic

race (β = -0.10) were inversely correlated with PCOS diagnosis as shown in Table

4.8.

For Model II, the parsimonious predictive model achieved an AUC (SD) of 77.6%

(1.3). The MLP score (β = 0.61), obesity (β = 0.21), normal BMI (β = 0.15), normal

blood pressure (β = 0.16), negative pregnancy test (β = 0.12), and normal HDL (β =

0.08) were positively correlated with undiagnosed PCOS. Age (β = -0.27), pregnancy

(gravidity β = -0.26; positive pregnancy test β = -0.19), and Hispanic race (β =

-0.18) were inversely correlated with undiagnosed PCOS as show in Table 4.9.

For Model III, the parsimonious predictive model achieved an AUC (SD) of 77.4%

(1.6). The MLP score (β = 0.60), obesity (β = 0.19), normal blood pressure (β =

0.17), normal BMI (β = 0.14), Black race (0.13), negative pregnancy test (β = 0.12),

and normal HDL (β = 0.09) were positively correlated with undiagnosed PCOS. Age

(β = -0.25), pregnancy (gravidity β = -0.24; positive pregnancy test β = -0.20),

and Hispanic race (β = -0.15) were inversely correlated with undiagnosed PCOS as

show in Table 4.10. For Model IV, the parsimonious predictive model achieved an

AUC (SD) of 79.1% (1.1). The MLP score (β = 0.7), obesity (β = 0.31), normal

BMI (β = 0.15), hypertension (β = 0.07) and some higher degree of education, such

as college or vocational/technical school (β = 0.06) were positively correlated with

PCOS diagnosis. Age (β = -0.21), pregnancy (gravidity β = -0.37; positive pregnancy

test β = -0.34; negative pregnancy test β = -0.05), Hispanic race (β = -0.12), and
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smoking (β = -0.08) were inversely correlated with PCOS diagnosis as shown in Table

4.11.

GBT models had the highest performance. Predictions of PCOS in a test set

of patients not used during algorithm training achieved 85%, 81%, 80%, and 82%

AUC for Models I, II, III, and IV, respectively. We also report the performance with

the logistic regression model (LR-L1) after SFS and the performance when using our

developed MLP score alongside variables selected via recursive feature elimination

(LR-L2-MLP score). Table 4.12 and Table 4.13 displays features for each model,

associated with LR-L1 algorithm after SFS. As we hypothesized, developing models

using the MLP score (LR-L2-MLP score) leads to improvement of the performance of

linear models (LR-L1) for Models I, II, III, and IV, respectively from 79%, 72%, 73%,

and 75% AUC to 82%, 78%, 77%, and 79% AUC. Table 4.14 details the models with

the best performance (highest AUC) using all 51 features before and after statistical

feature selection (SFS). In Table 4.14, the means and standard deviations of AUC

and weighted-F1 scores on the test set over the five repetitions are listed. One of

these repetitions in shown in Figure 4·3, which shows the ROC curves pertaining to

the parsimonious models utilizing the MLP score (LR-L2-MLP score). Table 4.15

displays the performance of all models and all algorithms, before and after statistical

feature selection (SFS). The feature importance in GBT models after SFS is visualized

in Figure 4·4. Of note, it quantifies the extent to which a feature is used for making

decisions within the ensemble of decision trees but does not show directionality.
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Figure 4·1: Flow of patients from the BMC CDW into the dataset used by the
study.
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Table 4.7: Demographic characteristics of the study population and by model.

Variable Model I Model II Model III Model IV
Age, Mean years
(SD)

33.6 (6.6) 33.7 (6.6) 33.7 (6.6) 33.6 (6.6)

Race, n (%)
Black/African
American

11881 (40.3) 11824 (40.5) 11861 (40.5) 12395 (40.5)

White/Caucasian 7812 (26.5) 7733 (26.5) 7741 (26.4) 8086 (26.4)
Hispanic/Latina 2858 (9.7) 2837 (9.7) 2841 (9.7) 2929 (9.6)
Asian 1350 (4.6) 1354 (4.6) 1354 (4.6) 1406 (4.6)
Middle Eastern 175 (0.6) 176 (0.6) 176 (0.6) 184 (0.6)
American In-
dian/Native Amer-
ican

163 (0.6) 162 (0.6) 162 (0.6) 168 (0.5)

Native Hawai-
ian/Pacific Islander

17 (0.1) 18 (0.1) 18 (0.1) 18 (0.1)

Other 979 (3.3) 966 (3.3) 966 (3.3) 1023 (3.3)
Unknown 4250 (14.41) 4146 (14.19) 4153 (14.19) 4392 (14.4)
Marital Status
Single 22325 (75.7) 22155 (75.8) 22199 (75.8) 23224 (75.9)
Married 5833 (19.8) 5753 (19.7) 5767 (19.7) 6018 (19.7)
Separated 392 (1.3) 391 (1.3) 392 (1.3) 401 (1.3)
Divorced 388 (1.3) 379 (1.3) 380 (1.3) 397 (1.3)
Widowed 35 (0.1) 35 (0.1) 35 (0.1) 35 (0.1)
Other 502 (1.7) 489 (1.7) 489 (1.7) 516 (1.7)
Unknown 10 (0.03) 10 (0.03) 10 (0.03) 10 (0.03)
Body Mass Index (BMI), kg/m2

Normal (BMI < 25) 7534 (25.6) 7685 (26.3) 7697 (26.3) 7902 (25.8)
Overweight (BMI
between 25-30)

5694 (19.3) 5689 (19.5) 5707 (19.5) 5941 (19.4)

Obese (BMI ≥ 30) 7645 (25.9) 7369 (25.2) 7387 (25.2) 7985 (26.1)
Unknown 8612 (29.2) 8469 (29.0) 8481 (29.0) 8773 (28.7)

Model I, PCOS ICD-9 diagnosis within the EHR; Model II, irregular menstruation and hyperan-
drogenism without ICD-9 PCOS code; Model III, at least two out of the three conditions (irregular
menstruation, hyperandrogenism, or polycystic ovary morphology on ultrasound) and without ICD-
9 PCOS code; Model IV, meets inclusion criteria for Model I or Model III.
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Table 4.8: Most significant variables for PCOS diagnosis prediction in Model I.

Variables β β - %95 CI Y-correlation p-value Y1-mean Y0-mean All-mean All-std
MLP Score 0.71 0.028 0.33 6.80E-197 0.17 0.04 0.05 0.08
Intercept -0.68 – – – – – – –
Gravidity -0.53 0.018 -0.12 4.55E-78 1.28 2.08 2.04 1.39

Positive bHCG -0.50 0.019 -0.09 1.50E-48 0.05 0.23 0.22 0.42
Obesity 0.45 0.017 0.11 1.38E-81 0.51 0.27 0.28 0.45

Normal BMI -0.24 0.017 -0.05 3.57E-16 0.15 0.26 0.26 0.44
Smoker -0.18 0.017 -0.03 6.62E-05 0.09 0.14 0.14 0.34

Age -0.16 0.016 -0.08 1.70E-25 31.34 33.79 33.68 6.61
Hispanic/Latina Race -0.10 0.016 -0.02 1.82E-03 0.07 0.10 0.10 0.30

bHCG, beta-human chorionic gonadotropin.

Table 4.9: Most significant variables for PCOS diagnosis prediction in Model II.

Variables β β - %95 CI Y-correlation p-value Y1-mean Y0-mean All-mean All-std
MLP Score 0.61 0.023 0.26 2.13E-142 0.12 0.04 0.04 0.06
Intercept -0.44 – – – – – – –

Age -0.27 0.015 -0.08 2.26E-31 31.01 33.79 33.69 6.61
Gravidity -0.26 0.016 -0.09 2.35E-63 1.42 2.08 2.06 1.39
Obesity 0.21 0.016 0.03 9.60E-06 0.34 0.27 0.27 0.44

Positive bHCG -0.19 0.017 -0.06 4.14E-21 0.10 0.23 0.23 0.42
Hispanic/Latina Race -0.18 0.016 -0.02 2.69E-03 0.06 0.10 0.10 0.30

Normal BP 0.16 0.015 0.03 1.37E-07 0.60 0.51 0.51 0.50
Normal BMI 0.15 0.016 0.03 8.57E-07 0.34 0.26 0.26 0.44

Negative bHCG 0.12 0.015 0.06 1.44E-22 0.37 0.23 0.23 0.42
HDL 0.08 0.015 0.01 1.03E-10 52.13 51.59 51.61 7.86

BP, blood pressure; BMI, body mass index (kg/m2); HDL, high-density lipoprotein; bHCG, beta-
human chorionic gonadotropin.

Table 4.10: Most significant variables for PCOS diagnosis prediction in Model III.

Variables β β - %95 CI Y-correlation p-value Y1-mean Y0-mean All-mean All-std
MLP Score 0.60 0.023 0.26 7.41E-142 0.10 0.04 0.04 0.05
Intercept – – – – – – – –

Age -0.25 0.015 -0.08 5.91E-30 31.16 33.79 33.69 6.61
Gravidity -0.24 0.016 -0.09 2.47E-63 1.46 2.08 2.06 1.39

Positive bHCG -0.20 0.017 -0.06 3.59E-20 0.11 0.23 0.23 0.42
Obesity 0.19 0.016 0.03 2.73E-06 0.34 0.27 0.27 0.44

Normal BP 0.17 0.015 0.04 3.94E-08 0.60 0.51 0.51 0.50
Hispanic/Latina Race -0.15 0.016 -0.02 2.00E-03 0.06 0.10 0.10 0.30

Normal BMI 0.14 0.016 0.03 6.76E-06 0.33 0.26 0.26 0.44
Black/African American Race 0.13 0.015 0.02 2.03E-03 0.46 0.40 0.41 0.49

Negative bHCG 0.12 0.015 0.06 2.20E-25 0.37 0.23 0.23 0.42
HDL 0.09 0.015 0.01 4.06E-12 52.04 51.59 51.61 7.86

BP, blood pressure; BMI, body mass index (kg/m2); HDL, high-density lipoprotein; bHCG, beta-
human chorionic gonadotropin.
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(a) Model I (b) Model II

(c) Model III (d) Model IV

Figure 4·2: Feature importance graphs based on logistic regression coefficients (±
95% confidence interval), associated with parsimonious models utilizing the MLP
score (LR-L2-MLP score). The absolute value of the logistic regression coefficients
shows how much the variable affects the predicted probability of the outcome. A
positive/negative coefficient implies that the larger the absolute value of the variable,
the higher/lower the chance of having a PCOS diagnosis as defined by the model
outcome.
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Table 4.11: Most significant variables for PCOS diagnosis prediction in Model IV.

Variables β β - %95 CI Y-correlation p-value Y1-mean Y0-mean All-mean All-std
MLP Score 0.70 0.024 0.36 0.00E-01 0.20 0.07 0.08 0.10
Intercept -0.44 – – – – – – –
Gravidity -0.37 0.017 -0.14 2.17E-135 1.36 2.08 2.02 1.39
Positive
bHCG

-0.34 0.017 -0.10 2.23E-65 0.08 0.23 0.22 0.41

Obesity 0.31 0.015 0.10 2.86E-66 0.43 0.27 0.28 0.45
Age -0.21 0.015 -0.10 1.91E-52 31.26 33.79 33.59 6.62

Hispanic/Latina
Race

-0.12 0.015 -0.03 2.34E-06 0.07 0.10 0.10 0.29

Smoker -0.08 0.015 -0.02 3.00E-04 0.11 0.14 0.14 0.34
Hypertension 0.07 0.015 0.04 3.63E-12 0.28 0.21 0.22 0.41
Education –
Some Col-

lege/Technical
/Vocational

School

0.06 0.014 0.03 1.55E-04 0.18 0.15 0.15 0.36

Negative
bHCG

-0.05 0.015 0.05 2.29E-16 0.31 0.23 0.24 0.42

bHCG, beta-human chorionic gonadotropin.
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Table 4.12: Features for each model, associated with LR-L1 algorithm after SFS.

Model I
Variables β Y-correlation p-value Y1-mean Y0-mean All-mean All-std
Intercept -0.62 - - - - - -

FSH -0.6 -0.03 9.46E-44 4.94 5.24 5.23 2.30
LH 0.54 0.12 3.65E-69 8.03 6.53 6.40 2.70

Positive bHCG -0.54 -0.09 1.50E-48 0.05 0.23 0.22 0.42
Gravidity -0.53 -0.12 4.55E-78 1.28 2.08 2.04 1.39
Obesity 0.49 0.11 1.38E-81 0.51 0.27 0.28 0.45

Age -0.25 -0.08 1.70E-25 31.34 33.79 33.68 6.61
Normal BMI -0.22 -0.05 3.57E-16 0.15 0.26 0.26 0.44

Smoker -0.18 -0.03 6.62E-05 0.09 0.14 0.14 0.34
Total Cholesterol 0.11 0.02 1.70E-06 174.77 173.12 173.19 20.85

Hispanic/Latina Race -0.11 -0.02 1.82E-03 0.07 0.10 0.10 0.30
Estradiol 0.08 0.02 7.32E-03 60.70 59.37 59.43 16.54

HDL -0.08 -0.04 1.15E-14 50.21 51.58 51.52 7.78
Hypertension 0.08 0.05 6.02E-14 0.31 0.21 0.22 0.41

SHBG 0.01 -0.03 1.87E-58 38.48 39.90 39.83 9.94
Model II

Variables β Y-correlation p-value Y1-mean Y0-mean All-mean All-std
Age -0.31 -0.08 2.26E-31 31.01 33.79 33.69 6.61

Intercept -0.31 - - - - - -
LH 0.29 0.09 5.07E-35 7.72 6.35 6.40 2.73

Gravidity -0.29 -0.09 2.35E-63 1.42 2.08 2.06 1.39
Obesity 0.29 0.03 9.60E-06 0.34 0.27 0.27 0.44

Positive bHCG -0.2 -0.06 4.14E-21 0.10 0.23 0.23 0.42
Negative bHCG 0.19 0.06 1.44E-22 0.37 0.23 0.23 0.42

FSH -0.16 0.00 3.04E-30 5.28 5.35 5.34 2.51
Normal BMI 0.15 0.03 8.57E-07 0.34 0.26 0.26 0.44

Hispanic/Latina Race -0.13 -0.02 2.69E-03 0.06 0.10 0.10 0.30
Normal BP 0.13 0.03 1.37E-07 0.60 0.51 0.51 0.50

SHBG -0.08 -0.03 4.89E-32 40.03 41.75 41.68 9.23
HDL 0.06 0.01 1.03E-10 52.13 51.59 51.61 7.86

Education – Some College 0.06 0.02 3.32E-03 0.19 0.15 0.15 0.36
Estradiol 0.04 0.02 9.91E-04 61.40 59.39 59.46 16.82

LDL 0.01 0.00 1.66E-06 101.28 101.51 101.50 15.34
TSH 0.01 0.01 8.51E-03 1.28 1.26 1.26 0.41

Education – Some College = Education – Some College/Technical/Vocational School
HDL = high-density lipoprotein; LDL = low-density lipoprotein; TSH = thyroid stimulating hor-
mone; FSH = follicle stimulating hormone; LH = luteinizing hormone; SHBG = sex hormone binding
globulin; BMI = body mass index; b-HCG = beta-human chorionic gonadotropin; BP = blood pres-
sure.
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Table 4.13: Features for each model, associated with LR-L1 algorithm after SFS.

Model III
Variables β Y-correlation p-value Y1-mean Y0-mean All-mean All-std
Intercept -0.29 - - - - - -

LH 0.29 0.09 2.81E-36 7.69 6.35 6.40 2.73
Age -0.28 -0.08 5.91E-30 31.16 33.79 33.69 6.61

Gravidity -0.27 -0.086 4.00E+00 1.46E+00 2.08 2.06 1.39
Obesity 0.27 0.03 2.73E-06 0.34 0.27 0.27 0.44

Negative HCG 0.22 0.06 2.20E-25 0.37 0.23 0.23 0.42
Positive HCG -0.2 -0.06 3.59E-20 0.11 0.23 0.23 0.42

FSH -0.17 -0.01 1.42E-32 5.26 5.34 5.34 2.49
Normal BP 0.15 0.04 3.94E-08 0.60 0.51 0.51 0.50
Normal BMI 0.13 0.03 6.76E-06 0.33 0.26 0.26 0.44

Black/African American Race 0.12 0.02 2.03E-03 0.46 0.40 0.41 0.49
Hispanic/Latina Race -0.1 -0.02 2.00E-03 0.06 0.10 0.10 0.30

SHBG -0.07 -0.04 1.87E-32 40.01 41.75 41.68 9.23
HDL 0.06 0.01 4.06E-12 52.04 51.59 51.61 7.86

Education – Some College 0.06 0.02 4.65E-03 0.19 0.15 0.15 0.36
Estradiol 0.05 0.02 3.78E-04 61.58 59.39 59.47 16.88

TSH 0.04 0.01 3.51E-03 1.28 1.26 1.26 0.41
LDL 0.01 0.00 6.31E-07 101.37 101.51 101.50 15.34

Model IV
Variables β Y-correlation p-value Y1-mean Y0-mean All-mean All-std

LH 0.39 0.13 4.47E-94 8.04 6.70 6.81 2.78
Gravidity -0.39 -0.14 2.17E-135 1.36 2.08 2.02 1.39
Obesity 0.38 0.10 2.86E-66 0.43 0.27 0.28 0.45
Intercept -0.35 - - - - - -

Positive HCG -0.35 -0.10 2.23E-65 0.08 0.23 0.22 0.41
FSH -0.3 -0.02 1.55E-68 5.04 5.22 5.20 2.09
Age -0.28 -0.10 1.91E-52 31.26 33.79 33.59 6.62

Hispanic/Latina Race -0.11 -0.03 2.34E-06 0.07 0.10 0.10 0.29
Hypertension 0.1 0.04 3.63E-12 0.28 0.21 0.22 0.41

Smoker -0.09 -0.02 3.00E-04 0.11 0.14 0.14 0.34
Estradiol 0.06 0.03 3.49E-06 61.11 59.38 59.52 17.10

Education – Some College 0.06 0.03 1.55E-04 0.18 0.15 0.15 0.36
Total Cholesterol 0.06 0.01 1.48E-15 174.10 173.12 173.19 21.00

Elevated BP 0.06 0.02 9.50E-03 0.12 0.10 0.10 0.30
Negative HCG 0.05 0.05 2.29E-16 0.31 0.23 0.24 0.42

HDL -0.01 -0.02 3.65E-25 51.04 51.58 51.54 7.88
SHBG -0.01 -0.03 8.51E-78 37.84 38.94 38.85 10.03
TSH 0.01 0.02 8.49E-03 1.30 1.26 1.27 0.42

Education – Some College = Education – Some College/Technical/Vocational School
HDL = high-density lipoprotein; LDL = low-density lipoprotein; TSH = thyroid stimulating hor-
mone; FSH = follicle stimulating hormone; LH = luteinizing hormone; SHBG = sex hormone binding
globulin; BMI = body mass index; b-HCG = beta-human chorionic gonadotropin; BP = blood pres-
sure.
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Table 4.14: Model performance over the test set, in the format of mean percentage (SD percentage) over 5 repetitions.

Model I Model II Model III Model IV
AUC F1-weighted AUC F1-weighted AUC F1-weighted AUC F1-weighted

Best full models
before SFS

GBM (51 features) GBM (51 features) GBM (51 features) GBM (51 features)
85.2 (1.8) 94.5 (0.2) 80.6 (0.5) 95.1 (0.2) 80.4 (0.7) 94.8 (0.1) 81.8 (1.4) 91.1 (0.4)

Best full models
after SFS

GBM (14 features) GBM (16 features) GBM (17 features) GBM (17 features)
83.6 (1.7) 94.5 (0.2) 80.5 (0.7) 95.1 (0.2) 79.8 (1.1) 94.8 (0.1) 81.1 (1.3) 90.9 (0.3)

LR-L1 (14 features) LR-L1 (16 features) LR-L1 (17 features) LR-L1 (17 features)
79.2 (1.9) 93.9 (0.2) 71.7 (0.9) 94.7 (0.1) 72.9 (2.1) 94.4 (0.1) 74.8 (1.1) 89.7 (0.3)
LR-L2-MLP(8 features) LR-L2-MLP(10 features) LR-L2-MLP(11 features) LR-L2-MLP(10 features)
82.3 (1.7) 94.5 (0.1) 77.6 (1.3) 95.1 (0.1) 77.4 (1.6) 94.9 (0.1) 79.1 (1.1) 90.8 (0.3)

AUC, area under the receiver operator characteristic curve; GBM, gradient boosted machine; LR-L1, L1-penalized logistic regression; LR-L2-
MLP score, parsimonious models logistic regression with MLP score.
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Table 4.15: Performance of all models and all algorithms, before and after SFS. The means and standard deviations
of AUC and weighted-F1 scores on the test set over the five repetitions are listed in the format of mean percentage (SD
percentage).

Model I Model II Model III Model IV
AUC F1-weighted AUC F1-weighted AUC F1-weighted AUC F1-weighted

Models before SFS (51 features)
LR-L1 79.4 (2.0) 93.9 (0.1) 72.9 (0.9) 94.8 (0.1) 73.9 (1.9) 94.5 (0.2) 75.3 (1.1) 89.8 (0.5)

SVM-L1 79.3 (2.0) 93.9 (0.1) 73.1 (0.7) 94.7 (0.1) 74.1 (1.9) 94.4 (0.2) 75.3 (1.1) 89.7 (0.3)
GBM 85.2 (1.8) 94.5 (0.2) 80.6 (0.5) 95.1 (0.2) 80.4 (0.7) 94.8 (0.1) 81.8 (1.4) 91.1 (0.4)
RF 84.3 (1.7) 94.5 (0.2) 79.6 (0.4) 95.1 (0.2) 80.3 (0.7) 94.8 (0.1) 81.3 (1.6) 90.9 (0.3)

Models after SFS (14, 16, 17, 17 features respectively for Model I, II, III, IV)
LR-L1 79.2 (1.9) 93.9 (0.2) 71.7 (0.9) 94.7 (0.1) 72.9 (2.1) 94.4 (0.1) 74.8 (1.1) 89.7 (0.3)

SVM-L1 79.1 (1.9) 93.8 (0.2) 71.7 (0.9) 94.7 (0.1) 72.8 (2.0) 94.4 (0.1) 74.7 (1.0) 89.6 (0.3)
GBM 83.6 (1.7) 94.5 (0.2) 80.5 (0.7) 95.1 (0.2) 79.8 (1.1) 94.8 (0.1) 81.1 (1.3) 90.9 (0.3)
RF 82.8 (2.0) 94.5 (0.1) 79.5 (0.5) 95.0 (0.3) 79.7 (0.8) 94.9 (0.2) 80.4 (1.3) 90.8 (0.3)

Parsimonious models (LR-L2-MLP score (8, 10, 11, 10 features respectively for Model I, II, III, IV))
LR-L2-MLP 82.3 (1.7) 94.5 (0.1) 77.6 (1.3) 95.1 (0.1) 77.4 (1.6) 94.9 (0.1) 79.1 (1.1) 90.8 (0.3)

AUC = area under the receiver operator characteristic curve; LR-L1 = L1-penalized logistic regression; SVM-L1 = support vector machine;
GBM = gradient boosted machine; RF = random forest; LR-L2-MLP = parsimonious models logistic regression with MLP score.
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4.5 Discussion

Evaluating an at-risk population for PCOS is essential for early diagnosis and initiat-

ing multi-disciplinary care with the goal of reducing health risks (endometrial hyper-

plasia/cancer), infertility and pregnancy complications, and chronic disease burden

including cardiometabolic disorders associated with PCOS. Retrospective analysis of

the at-risk population within an urban health center allows for assessment of factors

predictive of diagnosis. Of note, the study sample represents a population of patients

who had any visit to BMC for primary care, obstetrics and gynecology, endocrinol-

ogy, family medicine, or general internal medicine and does not represent a random

sample. While this is not a population level assessment, our model is applicable to

patients with high suspicion for PCOS who interact with the healthcare system.

The ranked list of variables, from the most predictive to the least predictive of the

PCOS outcome, informed the main drivers of the predictive models. For example,

non-gravidity, high levels of LH, low levels of FSH, obesity, and higher BMI increase

the likelihood of PCOS. These variables are consistent with key variables from other

models and in the pathophysiology of PCOS. The overall predictive accuracy was

high for all models, suggesting that a predictive model may assist in early detection of

PCOS within those at risk in an electronically interfaced medical record. Furthermore,

we found that non-linear models had superior predictive capacity compared to linear

models for all four model outcomes, potentially allowing for inclusion of non-linear

reproductive hormone relationships.

When assessing patients who received a diagnosis of PCOS (Model I), the most

predictive factors related to diagnosis were hormone levels (as captured by the MLP

score) and obesity, a clinical factor in supporting a PCOS diagnosis. Specifically,

there is a non-linear relationship between reproductive hormones such as FSH, LH,

and estradiol. Often these hormonal lab tests are obtained randomly in those with
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(a) Model I (b) Model II

(c) Model III (d) Model IV

Figure 4·3: Example of receiver operator characteristic (ROC) curves associated
with parsimonious logistic regression models utilizing the MLP score (LR-L2-MLP
score).
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(a) Model I (b) Model II

(c) Model III (d) Model IV

Figure 4·4: Example of receiver operator characteristic (ROC) curves associated
with parsimonious logistic regression models utilizing the MLP score (LR-L2-MLP
score).
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oligomenorrhea, and it is also common to find an elevated FSH to LH ratio. A concern

may also be the misclassification of hypothalamic amenorrhea into the group classified

as PCOS where the FSH and LH levels would be low or suppressed, or in the setting

of premature ovarian insufficiency, notable by an elevated FSH and low estradiol.

The MLP score allows for the diversity of relationships of these hormone levels and

was trained using a neural network to appropriately classify PCOS. Additionally,

prior pregnancy (gravidity) and a positive pregnancy test were negatively associated

with a diagnosis of PCOS, consistent with the underlying increased risk of infertility

due to oligo-ovulation. Normal BMI and smoking, a known ovarian toxicant, were

negatively associated with the presence of a PCOS diagnosis, which may indicate

patient characteristics that increase risk of a delayed PCOS diagnosis. These identified

variables demonstrate the robustness of the model towards predicting phenotypic

traits of patients with PCOS, which is aligned with the performance accuracy. While

the significant factors such as hormone levels, gravidity, bHCG, and obesity identified

in the model are already known to be associated with PCOS, the true impact of our

model lies within the implementation of such a tool within the EHR. For example, a

real-world application of this model in the clinical setting would entail integration of

our model into the electronic health record system that would provide the probability

of PCOS diagnosis or set a threshold for suspicion for each patient to aid a provider’s

evaluation. Though substantial system modifications may be required, integration of

our model into the EHR system would lead to more timely diagnosis and optimize

referrals for downstream follow-up for known clinical sequelae associated with PCOS.

When assessing patients who met diagnostic criteria without the ICD-9 label of

PCOS (Models II and III), predictive factors both supported the underlying PCOS

diagnosis and alluded towards factors that may contribute to missing the diagnosis

despite meeting Rotterdam criteria. Similar to Model I, gravidity and a positive preg-
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nancy test were negatively associated with Models II and III diagnosis, while obesity

was positively associated with Models II and III diagnosis, consistent with Model I.

Interestingly, distinct positive predictors among Models II and III were normal BMI,

normal blood pressure, and normal HDL. These patients may present as the “lean”

phenotype of PCOS or those with mild features, leading to underdiagnosis of PCOS.

Diagnosing “lean” PCOS can be more nuanced, potentially delaying diagnosis or re-

quiring more specialized consultation (Toosy et al., 2018). Within our cohort, 1,116

individuals were identified by the model without the ICD-9 code that met Rotterdam

PCOS diagnostic criteria (Model III), suggesting the predictive value of our models

to identify at risk groups within a large health system and reduce delays in diagnosis.

Given that women often wait over two years and see numerous health professionals

before receiving a diagnosis of PCOS, the integration of high-quality AI-based di-

agnostic tools with the EHR could significantly contribute to more timely diagnosis

(Gibson-Helm et al., 2017).

Consistent with Models I, II, and III, positive pregnancy test and gravidity were

both negatively associated with PCOS diagnosis in Model IV while obesity and

presence of hypertension were both positively associated with the Model IV com-

bined PCOS outcome. Some higher degree of education, such as college or voca-

tional/technical school, was also positively associated with the outcomes of undiag-

nosed PCOS and combined PCOS (Models II, III, and IV), which may suggest that

education status and patient’s self-advocacy for seeking care within a medical system

may be implicated specifically in under-diagnosed individuals. Of note, we dropped

insurance status after finding that the null was a strong predictor of PCOS, though

it is interesting to note that 83% of 331 patients in this dataset with missing insur-

ance have PCOS. Insurance status alludes to socioeconomic barriers such as access

to care, which can result in a delay in timely diagnosis through either inability to
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seek evaluation or follow through with testing. While the implications of insurance

status and social determinants of health are beyond the scope of this paper, it is

important to note that persistence in seeking treatment within a fractionated health

care system can be challenging financially and psychologically, as patients may need

multiple evaluation or specialist’s consultation to reach the right diagnosis.

A recent systematic review investigated the utility of artificial intelligence and

machine learning in the diagnosis or classification of PCOS (Barrera et al., 2023).

Their search ultimately included 31 studies with sample sizes ranging from 9 to 2,000

patients with PCOS. Methods employed by these models included support vector

machine, K-nearest neighbor, regression models, random forest, and neural networks.

Only 19% of included studies performed all major steps of training, testing, and

validating their model. Furthermore, only 32% of included studies used standardized

diagnostic criteria such as the Rotterdam criteria or NIH criteria. The authors found

that the ROC of included studies ranged from 73-100%. While it is difficult to

directly compare our models’ performance to those included in the review due to

possible differences in model training and diagnostic criteria, our models’ AUCs fell

within the range reported in the systematic review of 73 to 100%. Only one study

sourced their data from electronic health records to build their model (Castro et al.,

2015). Despite the lack of standardized model training and diagnostic criteria used in

these studies, the review concluded that artificial intelligence and machine learning

provide promise in detecting PCOS, allowing for an avenue for early diagnosis.

Outside of the machine learning models included in the systematic review, other

predictive models have been created for earlier detection of PCOS as well as for pre-

dicting long-term health outcomes among women with a diagnosis of PCOS. One such

model was created from 11,720 ovarian stimulation cycles at Peking University Third

Hospital. The model used serum antimullerian hormone (AMH) and androstenedione
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levels, BMI, and menstrual cycle length to predict a diagnosis of PCOS and achieved

an AUC of 85%. The algorithm was then developed into an online platform that is

able to calculate one’s risk of PCOS given certain indicators that are inputted into

the model, allowing for better screening abilities in the clinic (Xu et al., 2022). An-

other study created a similar model, taking into account AMH and BMI to predict

a diagnosis of PCOS or other ovulatory dysfunction disorders among 2,322 women

(Vagios et al., 2021). They found that in women with higher BMIs and lower AMH

levels could be used to predict PCOS compared to normal-weight or underweight

women. Deshmukh et al. created a simple four-variable model which included free

androgen index (FAI), 17-hydroxyprogesterone, AMH, and waist circumference for

predicting risk of PCOS in a cross-sectional study involving 111 women with PCOS

and 67 women without PCOS (Deshmukh et al., 2019). Lastly, Joo et al. used poly-

genic and phenotypic risk scores to develop a PCOS risk prediction algorithm (Joo

et al., 2020). They found high degrees of association between PCOS and various

metabolic and endocrine disorders including obesity, type 2 diabetes, hypercholes-

terolemia, disorders of lipid metabolism, hypertension, and sleep apnea (Joo et al.,

2020).

In addition to the goal of improved screening for PCOS, models have been created

to predict long-term clinical outcomes in women with PCOS, such as ovulation, con-

ception, and live birth (Kuang et al., 2015) (Jiang et al., 2021). Given the increased

risk of insulin resistance in women with PCOS, Gennarelli et al. created a math-

ematical model to predict insulin sensitivity based on variables such as BMI, waist

and hip circumferences, truncal-abdominal skin folds, and serum concentrations of

androgens, SHBG, triglycerides, and cholesterol (Gennarelli et al., 2000). Models to

predict non-alcoholic fatty liver disease risk among young adults with PCOS have

also been generated (Carreau et al., 2019). Combining earlier detection with more
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accurate risk stratification of clinical sequalae through predictive modeling can sig-

nificantly improve the long-term health outcomes of women with PCOS. Application

of our models to predict other downstream health risks after the diagnosis of PCOS

is a future area of research.

Beyond the long-term health impacts of PCOS, the condition also carries a signifi-

cant economic cost for our healthcare system. A study by Riestenberg et al (2022) re-

cently estimated the total economic burden of PCOS, as well as the cost specifically for

pregnancy-related complications and long-term health morbidities (Riestenberg et al.,

2022). The authors estimated the annual economic burden of PCOS to be $8 billion

as of 2020 in the United States. Furthermore, the excess cost of pregnancy-related co-

morbidities such as gestational hypertension, gestational diabetes, and preeclampsia

attributable to PCOS totals $375 million USD annually. Outside of pregnancy, the

cost of long-term comorbidities associated with PCOS including stroke and type 2 di-

abetes mellitus was estimated at $3.9 billion USD. Meanwhile, the cost for diagnostic

evaluation of PCOS was less than 2% of the total economic burden. This estimated

financial burden suggests that predictive models aiding earlier diagnosis could not

only reduce long-term health consequences of PCOS but also alleviate significant

healthcare costs associated with the condition.

Given the high prevalence, significant healthcare burden, and heterogeneity in

clinical presentation of PCOS, AI-based tools are well suited for earlier diagnosis of

PCOS. Our study had many strengths. First, our machine learning models, which

were highly accurate and robust in PCOS diagnosis prediction, were created using the

largest sample size to date (Barrera et al., 2023). Second, our model was tested and

trained on a diverse Safety-Net hospital-sourced population not restricted to the con-

text of fertility care. Third, it is the only model that incorporated three data streams

(ICD-9 codes, clinical laboratory findings, and radiologic findings) and an MLP score.
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Fourth, the parsimonious and interpretable models were very close in achieving full

model predictive accuracy, performing relatively closely to the best-performing non-

linear models. Essentially, our parsimonious models “isolate” nonlinearities in hor-

mone levels (captured by the MLP score) and linearly combine that score with other

variables. Most models evaluate reproductive hormones (FSH, estradiol, LH, and

SHBG) as individual variables within linear models, which does not account for the

high inter- and intra-patient variability. By using non-linear mapping of the hormone

values, we were able to generate a composite variable allowing for a linear function

that correlates with the likelihood of an accurate prediction. Last, our variables are

easily accessible in an electronic health dataset, rendering the models helpful for clin-

ical prediction. Our study did not evaluate AMH as a predictive variable because it

was not widely utilized during the time window of this data extraction corresponding

with ICD-9 codes.

Despite these strengths, our model is not without limitations. First, it is only

directly applicable to those who interact with the medical system and those deemed

“at-risk” for a PCOS diagnosis, which would not facilitate population-based predic-

tion. More specifically, the models’ data are sourced from an urban, hospital-based

population which may limit the generalizability of these findings to other patient pop-

ulations such as those living in rural areas. Additional studies need to be conducted

in other patient populations or unselected community-based populations to externally

validate the use of these models, especially expanding to the entire population within

a health system to evaluate the accuracy of our models (Azziz et al., 2004). Second, we

must interpret our data within the limitations of informative presence in EHR data.

Informative presence is defined as data that is present and informed with respect to

the health outcome, in this case PCOS, as well as behavioral patterns of interaction

with healthcare institutions which may be additionally impacted by marginalization
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(Harton et al., 2022). This is an important consideration as a potential source of bias

for interpreting predictive models using EHR data (Harton et al., 2022) (Sisk et al.,

2021). Nevertheless, we were able to extract over 1000 patients who were undiagnosed

with PCOS among the population, suggesting the predictive value of the modelling

in identifying diagnosis gaps among specific populations within a large health system.

Third, it is possible that additional examination of the medical record beyond ICD-

9 diagnosis may allow for more clarification of risk in the presumed PCOS group.

Fourth, while our model considers numerous important variables, other potentially

relevant predictors such as diet, genetic factors, and lifestyle factors, were not incor-

porated and represents as an area of growth for future predictive models. Last, our

exclusion of concurrent endocrinopathies was chosen to avoid incorrectly including

ovulation disorders caused by other endocrinopathies, but it is possible that this was

an overly strict exclusion criterion.

In conclusion, this novel machine learning algorithm incorporates three data streams

from a large EHR dataset to assess PCOS risk. This model can be integrated into

the EHR to aid clinicians in earlier diagnosis of PCOS and connect patients to inter-

ventions and healthcare providers across their reproductive lifespan with the goal of

health optimization and risk reduction (Zad et al., 2024b).
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Chapter 5

Predictive Models of Miscarriage Based on
Data From a Preconception Cohort Study

5.1 Introduction

Miscarriage, or pregnancy loss before 20 completed weeks of gestation, affects approx-

imately 20% of recognized pregnancies (Rossen et al., 2018). The strongest identified

predictors of miscarriage are older parental age and history of miscarriage (Wilcox

et al., 1988). Other confirmed risk factors include low and high body mass index (Arck

et al., 2008)(Hahn et al., 2014), caffeine consumption (Savitz et al., 2008)(Weng et al.,

2008)(Hahn et al., 2014), alcohol intake (Klonoff-Cohen et al., 2003)(Henriksen et al.,

2004)(Andersen et al., 2012)(Feodor Nilsson et al., 2014), and smoking (Venners et al.,

2004)(George et al., 2006)(Nielsen et al., 2006), though the etiology of miscarriage

remains poorly understood.

Several studies have developed predictive models of pregnancy loss among indi-

viduals receiving treatment with assisted reproduction technology (ART) (Choong

et al., 2003)(Yi et al., 2016)(Liu et al., 2020), individuals with recurrent miscarriage

(Quenby and Farquharson, 1993)(Caetano et al., 2006)(Dai et al., 2022)(du Fossé

et al., 2022), and individuals with threatened miscarriage (Huang et al., 2022). Most

of these studies have relied on clinical assessments such as early pregnancy ultrasound

measurements and laboratory values. Other studies have attempted to predict mis-

carriage based on early pregnancy characteristics (e.g., parental age, ultrasound mea-
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surements, and laboratory values) in general populations (DeVilbiss et al., 2020)(Li

et al., 2022). However, no study has derived a predictive model of miscarriage using

prospectively collected data on the couple during the preconception period. Pre-

dicting primary (i.e., first-time) miscarriage is of great importance, given the high

rate of miscarriage and the impact of miscarriage on mental health and fertility out-

comes. Moreover, primary miscarriage likely shares many risk factors with recurrent

miscarriage (Cramer and Wise, 2000).

In this North American prospective preconception cohort study, we predicted risk

of miscarriage using 189 self-reported variables describing a variety of preconception

sociodemographic, lifestyle, dietary, and anthropometric factors. We used supervised

machine learning methods with several classification algorithms and variable selection

procedures.

5.2 Materials and Methods

5.2.1 Study population

Pregnancy Study Online (PRESTO) is an ongoing web-based preconception cohort

study that collects data on a variety of environmental and behavioral factors in addi-

tion to pregnancy outcomes (Wise et al., 2015). At enrollment, eligible participants

were female, aged 21-45 years, residents of the United States (US) or Canada, and

trying to conceive without the use of fertility treatment. Participants were followed

for up to 12 months of pregnancy attempts, during which time they could have initi-

ated fertility treatment. Participants who conceived were followed through pregnancy

and postpartum.

During 2013 through 2022, 16,631 female participants enrolled in PRESTO and

completed a baseline questionnaire. We excluded 37 participants who were not from

the US or Canada, 120 who were already pregnant at study entry, 203 who completed
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the baseline questionnaire <11 weeks before analysis (and therefore had no opportu-

nity for follow-up), and 41 who completed the baseline questionnaire >2 months after

the screening questionnaire. Approximately 36% of participants were lost to follow-

up. Among those who were lost to follow-up, we successfully collected information

on pregnancy for 25% of participants via email or phone contact, or by searching for

baby registries and birth announcements online; for 5% by linking to birth registries

in selected states (CA, FL, MA, MI, NY, OH, PA, TX); and for 5% by linking to

FertilityFriend.com data (a mobile computing fertility-tracking app).

In total, 8,739 participants became pregnant during follow-up (we included only

the first observed pregnancy per participant in these analyses). We excluded 19

participants with missing data on categorical variables (handling of missing data is

described in the Supplementary Material), retaining a total of 8,720 participants in

the dataset used for our analysis. The institutional review board at Boston University

Medical Campus approved the study protocol.

5.2.2 Data collection

Female participants completed a baseline questionnaire and follow-up questionnaires

every eight weeks until pregnancy. Those who conceived completed an early preg-

nancy questionnaire at a median of 9 weeks’ gestation and a late pregnancy question-

naire at approximately 32 weeks’ gestation. On baseline, follow-up, and pregnancy

questionnaires, we collected data on pregnancy status, sociodemographic factors,

lifestyle and behavioral factors, anthropometrics, medical and reproductive history,

and selected male partner characteristics. Reproductive history included gravidity,

parity, and history of miscarriage (i.e., miscarriages that occurred prior to enrolling

in PRESTO), among other variables. Participants were also invited to complete the

web-based Diet History Questionnaire (DHQ II: 2013-2019; DHQ III: 2020-2022) ten

days after enrollment. The DHQ was designed by the National Cancer Institute and
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the first version of the DHQ was validated against 24-hour dietary recalls in a US

population (Subar et al., 2001) (Millen et al., 2006). We used DHQ data to calculate

the Healthy Eating Index-2010 (HEI-2010) score, a measure of diet quality (Guen-

ther et al., 2013). For time-varying characteristics, we prioritized data collected most

recently before conception to avoid bias due to conditioning on future information

(Suissa and Dell’Aniello, 2020). Table 5.1 and 5.2 provide a complete list of the 160

variables included in this analysis and when they were ascertained. Ninety variables

were binary, 58 were continuous, and 12 were categorical. Table 5.3 describes the

percentage of missingness for each predictor variable and the Methods Supplement

provides an overview of how missing data were handled.

5.2.3 Assessment of miscarriage

We defined miscarriage as pregnancy loss before 20 completed weeks of gestation

(including blighted ovum and chemical pregnancy but excluding ectopic pregnancy

and induced abortion). On follow-up questionnaires, participants reported the date

of their last menstrual period, whether they were currently pregnant, and whether

they had experienced a miscarriage since completing their previous questionnaire.

Participants who reported a miscarriage were asked how many weeks the pregnancy

lasted and on what date the pregnancy ended. Pregnant participants reported the

due date of their current pregnancy and the date of their first positive pregnancy

test. Pregnant participants were asked to report the method(s) used to confirm

their pregnancy (e.g., home pregnancy test, urine or blood test in doctor’s office,

ultrasound). More than 95% of participants reported using a home pregnancy test to

identify their pregnancy.

For participants who reported a miscarriage, we used the participant’s reported

gestational weeks at loss when available (defined as weeks since the last menstrual

period). Among participants who did not report their gestational week at loss but



104

Table 5.1: Complete list of variables included in analysis to generate predictive
models of miscarriage in PRESTO, 2013-2022. Part 1.

Category Variables Included in Preliminary Analysis
Demographic and
socioeconomic
characteristics

Age*, marital status, region of residence, urbanization of res-
idential area, highest level of education, parents’ education
level, household income, employment status, hours/week of
work, shift work, night shift frequency in the past month.

Lifestyle, behav-
ioral, and wellness
factors

Years in a steady relationship, cigarette smoking (if so, num-
ber per day)*, total duration of smoking; history of smoking
during pregnancy; use of e-cigarettes (if so, ml/day)*; fre-
quency of marijuana use*; exposure to second-hand smoke*;
alcohol intake*; caffeine consumption*; moderate physical
activity; vigorous physical activity; sedentary activity; sleep
duration*; trouble sleeping*; perceived stress scale score*;
major depression inventory score*.

Dietary factors
and use of supple-
ments

Healthy Eating Index-2010 score; supplemental intake of vi-
tamins A, B1, B2, B3, B5, B6, B7, B12, C, E, K; beta-
carotene; folic acid; iron; zinc; calcium; magnesium; sele-
nium; omega-3 fatty acids; consumption of whole milk, 2%
milk, 1% milk, skim milk, soy milk, other milk, fruit juice,
sugar-sweetened soda*, diet soda*, sugar-sweetened energy
drinks*, diet energy drinks*; use of multivitamins or folic
acid supplements*.

Early life expo-
sures and family
history

Adopted; number of siblings; multiple gestation; born
preterm; born with low birthweight; breastfed; delivered via
cesarean section; mother’s cigarette smoking during preg-
nancy; mother’s age at participant’s birth; mother’s history
of pregnancy complications; mother’s history of miscarriage.
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Table 5.2: Complete list of variables included in analysis to generate predictive
models of miscarriage in PRESTO, 2013-2022. Part 2.

Category Variables Included in Preliminary Analysis
Reproductive
characteristics
and disorders

Use of fertility treatment to conceive the study pregnancy (if
yes, type of treatment); history of miscarriage; age at menar-
che; menstrual regularity; menstrual period characteristics
(typical length, number of flow days, flow amount, pain)*; re-
ceived human papillomavirus vaccine; abnormal pap smear;
ever diagnosed with a thyroid condition*; fibroids, polycys-
tic ovarian syndrome, endometriosis, a urinary tract infec-
tion, pelvic inflammatory disease, chlamydia, herpes, vagi-
nosis, genital warts; Ferriman-Gallwey Hirsutism Score; re-
cent use of medications for polycystic ovarian syndrome*;
gravidity; parity; history of cesarean section; years since last
pregnancy; history of unplanned pregnancy; history of sub-
fertility or infertility; history of infertility treatment*; his-
tory of breastfeeding; number of lifetime sexual partners;
last method of contraception; number of menstrual cycles to
conceive the study pregnancy.

Physical char-
acteristics, non-
reproductive
medical history,
and medication
use

Body mass index; waist circumference; handedness; number
of primary care visits last year; high blood pressure; received
influenza vaccine last year*; ever diagnosed with migraines
(if so, recent migraine frequency), asthma, hay fever, depres-
sion*, anxiety*, gastroesophageal reflux disease, diabetes;
use of the following medications in the 4 weeks before base-
line: pain medications*, antibiotics*, asthma medications*,
diabetes medications*; use of psychotropic medications*.

Environmental
exposures (oc-
cupational and
personal care
product use)

Exposed regularly to agricultural pesticides; metal particu-
lates or fumes; solvents, oil-based paints, or cleaning com-
pounds; high temperature environments; chemotherapeutic
drugs; engine exhaust; chemicals for hair dyeing, straight-
ening, or curing; chemicals for manicure/pedicure; use of
chemical hair relaxer.

Male partner
characteristics

Age*, body mass index, education, cigarette smoking (if so,
number per day), circumcision status.

*These variables were considered time-varying characteristics and were updated on
follow-up questionnaires completed after the baseline questionnaire but before con-
ception.
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Table 5.3: Missing data among predictor variables in PRESTO.

Variable Name Participants
with missing

data

% (out of
8,739)

Categorical Variables
Handedness 14 <1%
Female smoking status 9 <1%
Male smoking status 9 <1%
Menstrual cycle regularity (initial) 7 <1%
Tried to get pregnant for 12 months or more 5 <1%
Menstrual cycle regularity (recent) 5 <1%

Binary variables
Mother’s history of miscarriage 1998 22.9%
Mother’s history of pregnancy problems 1394 16.0%
Male partner circumcision status 1055 12.1%
Secondhand smoking status (current, at home) 820 9.4%
Last method of contraception, barrier methods 819 9.4%
Last method of contraception, natural methods 819 9.4%
Participant was born preterm 803 9.2%
Secondhand smoking status (current, at work) 742 8.5%
Conceived through fertility treatment 729 8.3%
Participant was born with low birth weight 680 7.8%
History of an abnormal Pap smear 566 6.5%
Secondhand smoking status (age 0-10, at home) 550 6.3%
Ever visited a physician for difficulty getting pregnant 527 6.0%
Mother’s history of C-section for participant’s birth 341 3.9%
Participant was a twin/triplet 161 1.8%
Working rotating shifts 157 1.8%

Continuous
Ferriman-Gallwey score 4334 49.6%
Waist measure 3304 37.8%
Current e-cigarettes (ml/day) 3107 35.6%
Duration participant was breastfed 2926 33.5%
Number of lifetime sexual partners 2376 27.2%
Mother’s smoking history while pregnant (num. of cigs) 1331 15.2%
Male BMI 1012 11.6%
Father’s education 439 5.0%
Household income 230 2.6%
Mother’s education 205 2.3%
Night shift frequency in past month 198 2.3%
Male education 170 1.9%
Job hours/week 126 1.4%

Note: All categorical variables are presented in this table; however, we only present continuous
and binary variables with >1% missingness here.

who reported a due date (11%), we estimated gestational age as: (pregnancy end date

– (pregnancy due date – 280 days))/7 (on Obstetric Practice et al., 2013). Among
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participants who reported neither their gestational week at loss nor their due date

(21%), we estimated week at loss as: (pregnancy end date – last menstrual period

date)/7. Approximately 97% of miscarriages were identified via study questionnaires;

the remaining 3% were identified via the study withdrawal form, via email or phone

contact, by linking to birth registries, or by linking to FertilityFriend.com data.

5.2.4 Statistical analysis

We used supervised machine learning methods to generate predictive models of mis-

carriage. We generated both static and survival models. For all analyses, we first per-

formed several pre-processing steps including statistical feature selection, explained

in more detail in Section 2.1.2 and Section 2.1.5.2. For static models, we used a

variety of supervised classification methods including linear (e.g., logistic regression)

and non-linear (e.g., Gradient Boosted Trees) algorithms, explained in more detail

in Section 2.1.1. For survival models, we fit Cox proportional hazards models. For

both static and survival models, we generated full and sparse models. The full models

contain all variables selected by statistical feature selection, whereas the sparse mod-

els contain all variables selected by both statistical feature selection and univariate

feature selection for survival models or recursive feature elimination for static models.

We evaluated model performance via the area under the receiver operating character-

istic curve (AUC), precision and recall metrics, and the weighted-F1 score for static

models, and via the concordance index for survival models. Metrics are explained in

more detail in Section 2.1.4.

5.2.5 Sensitivity analysis

We repeated all analyses among primigravid participants to generate models predic-

tive of primary miscarriage, which may have different predictors from secondary or

recurrent miscarriage. We also restricted the dataset to ≥8 gestational weeks to as-
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sess the extent to which predictors differed for later losses, which are less likely to be

attributable to random chromosomal aberrations (Savitz et al., 2002). All analyses

were performed with Python packages. Relevant programs can be accessed in github

repository1.

5.3 Results

We analyzed data from 8,720 pregnant participants, among whom 1,775 (20.4%) ex-

perienced miscarriage during the 12-month study period. Miscarriages were reported

as early as 3 gestational weeks (median=6; interquartile range: 5-8 gestational weeks).

We observed 567 late miscarriages (32% occurring ≥8 gestational weeks). The distri-

bution of gestational weeks at miscarriage is presented in Table 5.4. Mean age was

30 years for female participants and 32 years for male partners. Mean BMI of female

participants was 27 kg/m2 and 28 kg/m2 for male partners. Approximately one quar-

ter of couples resided in the Northeast US, while 22% resided in the South, 22% in

the Midwest, 16% in the West, and 16% in Canada. Approximately one quarter of

participants had a previous miscarriage, 35% had had an unplanned pregnancy before

enrolling in PRESTO, and about half were parous. Almost 14% of female partici-

pants reported any history of subfertility or infertility, and 7% of study pregnancies

were conceived via fertility treatment.

5.3.1 Survival models

After statistical feature selection, 17 variables remained in the dataset. The variables

selected into the full survival model are presented in Table 5.5. The variables selected

into the sparse survival model are presented in Table 5.6. The strongest two predictors

in the sparse survival model were female age at conception (HR=1.19; 95% CI: 1.11,

1.27) and history of miscarriage (HR=1.10; 95% CI: 1.03, 1.17), which were both
1https://github.com/noc-lab/Predictive-models-of-miscarriage/
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Table 5.4: Distribution of gestational age at miscarriage in PRESTO, 2013-2022.

Gestational week at miscarriage N(%)
Total N=1,775

3 53 (3.0)
4 358 (20.2)
5 346 (19.5)
6 305 (17.2)
7 146 (8.2)
8 143 (8.1)
9 137 (7.7)
10 123 (6.9)
11 67 (3.8)
12 49 (2.8)
13 15 (0.8)
14 9 (0.5)
15 8 (0.5)
16 5 (0.3)
17 6 (0.3)
18 3 (0.2)
19 2 (0.1)

positively associated with miscarriage (Table 2). All other variables selected into

the sparse model had very small or null associations with miscarriage. Variables

that were very slightly positively associated with miscarriage were use of omega-3

or fish oil supplements (HR=1.04; 95% CI: 0.99, 1.10), number of prior pregnancies

(HR=1.04; 95% CI: 0.99, 1.10), history of subfertility or infertility (HR=1.04; 95%

CI: 0.97, 1.11), male partner age at conception (HR=1.03; 95% CI: 0.97, 1.10), and

having a history of unplanned pregnancy (HR=1.01; 95% CI: 0.94, 1.09). Variables

that were very slightly inversely associated with miscarriage included having been

pregnant before (HR=0.95; 95% CI: 0.87, 1.05) and being vaccinated against human

papillomavirus (HPV) (HR=0.98; 95% CI: 0.93, 1.04). The concordance index of

the final sparse survival model, applied to the testing dataset, was 55.4%, indicating

poor-to-moderate discrimination (i.e., ability of the model to discriminate between

individuals with and without miscarriage).

When we restricted the incident period to ≥8 gestational weeks (n=6,993; 32% of

all miscarriages), 4 variables remained after statistical feature selection. The strongest
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Table 5.5: Variables selected by the full survival model predicting miscarriage in
PRESTO, 2013-2022.

Variable Hazard Ratio1 (95% CI)

Female age at conception (years) 1.20 (1.12, 1.29)

Female smoking: current regular smoker (ref = never smoker) 0.90 (0.84, 0.96)

History of miscarriage (yes/no) 1.11 (1.04, 1.18)

Geographic region of residence: Northeast US (ref = South US) 0.93 (0.87, 0.99)

Use of vitamin B7 (yes/no) 1.07 (0.99, 1.14)

Healthy Eating Index-2010 score (HEI-2010 score) 0.94 (0.89, 0.99)

Use of vitamin B6 (yes/no) 1.04 (0.99, 1.10)

Ever pregnant before (yes/no) 0.96 (0.87, 1.05)

Number of prior pregnancies 1.04 (0.98, 1.10)

Use of vitamin B1 (yes/no) 0.96 (0.89, 1.04)

Use of omega-3 or fish oil supplements (yes/no) 1.04 (0.99, 1.09)

Male age at conception (years) 1.04 (0.97, 1.10)

History of subfertility or infertility (yes/no) 1.03 (0.97, 1.11)

Ever received HPV vaccine 0.99 (0.94, 1.04)

Use of vitamin C (yes/no) 1.01 (0.96, 1.06)

History of unplanned pregnancy (yes/no) 0.99 (0.92, 1.07)

Previously tried to conceive for ≥ 12 months: “no, never tried
before” (ref = “no”)

1.00 (0.92, 1.08)

Variables forced into the model2

Female smoking: former smoker (ref = never smoker) 0.98 (0.93, 1.03)

Geographic region of residence: Canada (ref = South US) 0.98 (0.93, 1.04)

Geographic region of residence: West US (ref = South US) 1.01 (0.95, 1.07)

Female smoking: current occasional smoker (ref = never
smoker)

0.99 (0.94, 1.05)

Geographic region of residence: Midwest US (ref = South US) 1.00 (0.94, 1.07)

Previously tried to conceive for ≥ 12 months: “yes” (ref = “no”) 1.00 (0.94, 1.07)

Abbreviations: CI, confidence interval; HPV, human papillomavirus; US, United States.
1 Continuous variables were standardized; the effect estimate is the hazard ratio for a one-unit

increase in the z-score for that variable.
2 For all models, we selected a reference group for each categorical variable that was recoded as an

indicator variable in the preprocessing phase and forced every non-reference level to be included
in the model if any level of the categorical variable was selected. These variables are listed in
addition to the variables selected by the sparse model.

predictors of miscarriage were female age at conception, male partner age at concep-

tion, and history of unplanned pregnancy, each of which was positively associated
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Table 5.6: Variables selected by sparse survival model to predict miscarriage in
PRESTO, 2013-2022.

Variable Hazard Ratio1 (95% CI)

Female age at conception (years) 1.19 (1.11, 1.27)

History of miscarriage (yes/no) 1.10 (1.03, 1.17)

Ever pregnant before (yes/no) 0.95 (0.87, 1.05)

Use of omega-3 or fish oil supplements (yes/no) 1.04 (0.99, 1.10)

Number of prior pregnancies 1.04 (0.99, 1.10)

History of subfertility or infertility2 (yes/no) 1.04 (0.97, 1.11)

Male age at conception (years) 1.03 (0.97, 1.10)

Ever received HPV vaccine 0.98 (0.93, 1.04)

History of unplanned pregnancy (yes/no) 1.01 (0.94, 1.09)

Previously tried to conceive for ≥ 12 months2: “no, never tried
before” (ref = “no”)

1.00 (0.93, 1.08)

Variables forced into the model3

Previously tried to conceive for ≥ 12 months: “yes” (ref = “no”) 0.99 (0.77, 1.26)
1 Continuous variables were standardized; the effect estimate is the hazard ratio for a one-unit

increase in the z-score for that variable.
2 History of subfertility or infertility is derived from participants’ responses to questions about

their reproductive history and was defined as having previously tried to conceive for ≥ 6 months
for any prior pregnancy; previously tried to conceive for ≥ 12 months was participants’ response
to the question, “have you ever tried for ≥ 12 months without conceiving?”

3 For all models, we selected a reference group for each categorical variable that was recoded as an
indicator variable in the preprocessing phase and forced every non-reference level to be included
in the model if any level of the categorical variable was selected. These variables are listed in
addition to the variables selected by the sparse model.
Abbreviations: CI, confidence interval; HPV, human papillomavirus.

with miscarriage (Table 5.7). The Healthy Eating Index-2010 score was also selected

into this model and was inversely associated with miscarriage. The concordance index

for this model was 55.6%.

When we restricted to primigravid participants (n=4,267), 9 variables remained

after statistical feature selection. In this model, variables that were positively asso-

ciated with miscarriage included female age at conception, male age at conception,

use of omega-3 or fish oil supplements, recent use of psychotropic medications, and

female BMI; variables that were inversely associated with miscarriage included being
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Table 5.7: Variables selected by the sparse survival model predicting miscarriage
after restricting to ≥8 gestational weeks in PRESTO, 2013-2022.

Variable Hazard Ratio1 (95% CI)

Female age at conception (years) 1.17 (1.05, 1.30)

Male age at conception (years) 1.09 (0.98, 1.20)

History of unplanned pregnancy (yes/no) 1.07 (0.98, 1.16)

Healthy Eating Index-2010 score (HEI-2010 score) 0.96 (0.88, 1.04)

Note: The Sparse and Full models were equivalent.
1 Continuous variables were standardized; the effect estimate is the hazard ratio for a one-unit

increase in the z-score for that variable.

married, use of oral contraceptives as the most recent contraceptive method, resi-

dence in the Northeast US, and the Healthy Eating Index-2010 score (Table 5.8).

The concordance index for this model was 57.4%. Among primigravid participants

who contributed ≥8 gestational weeks to the analysis (n=3,488), only female and

male partner age remained after statistical feature selection, and the concordance

index was 53.3% (Table 5.9).

5.3.2 Static models

Variables selected into the full static models are presented in Table S3. After re-

cursive feature elimination, there were 9 variables in the sparse model (Table 5.10).

Performance metrics for all static models are presented in Table 5.11). The weighted-

F1 score ranged from 72.6% for the LR-L1 model to 73.5% for the RF model. The

two most important variables selected into the sparse static model were female age

at conception and history of miscarriage, which were both positively associated with

miscarriage.

When we restricted the incident period to ≥8 gestational weeks (6,993 pregnan-

cies), 4 features remained after statistical feature selection, and 2 remained after

recursive feature elimination (Table 5.12)). Female and male age at conception were

the final two variables selected into the sparse model, with a weighted-F1 score of
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Table 5.8: Variables selected by the sparse survival model predicting miscarriage
among primigravid participants in PRESTO, 2013-2022.

Variable Hazard Ratio1 (95% CI)

Married (yes/no) 0.94 (0.88, 0.99)

Female age at conception (years) 1.07 (1.00, 1.14)

Last method of contraception was oral contraceptives (yes/no) 0.94 (0.88, 1.00)

Geographic region of residence: Northeast US (ref = South US) 0.94 (0.88, 1.01)

Male age at conception (years) 1.05 (0.98, 1.13)

Use of omega-3 or fish oil supplements (yes/no) 1.05 (0.99, 1.11)

Recent use of psychotropic medications (yes/no) 1.04 (0.98, 1.10)

Female BMI (kg/m2) 1.04 (0.97, 1.10)

Healthy Eating Index-2010 score (HEI-2010 score) 0.97 (0.91, 1.03)

Variables forced into the model2

Geographic region of residence: West US (ref = South US) 1.05 (0.99, 1.12)

Geographic region of residence: Canada (ref = South US) 0.99 (0.92, 1.05)

Geographic region of residence: Midwest US (ref = South US) 1.01 (0.95, 1.08)

Abbreviations: BMI, body mass index; CI, confidence interval; US, United States.
1 Continuous variables were standardized; the effect estimate is the hazard ratio for a one-unit

increase in the z-score for that variable.
2 For all models, we selected a reference group for each categorical variable that was recoded as an

indicator variable in the preprocessing phase and forced every non-reference level to be included
in the model if any level of the categorical variable was selected. These variables are listed in
addition to the variables selected by the sparse model.

Table 5.9: Variables selected by the sparse survival model predicting miscarriage
after restricting to ≥8 gestational weeks among primigravid participants in PRESTO,
2013-2022.

Variable Hazard Ratio1 (95% CI)

Female age at conception (years) 1.07 (0.98, 1.18)

Male age at conception (years) 1.06 (0.96, 1.16)
1 Continuous variables were standardized; the effect estimate is the hazard ratio for a one-unit

increase in the z-score for that variable.

88.0%. Among primigravid participants (n=4,267), 9 features remained after statis-

tical feature selection, and all of these remained after recursive feature elimination.

The weighted-F1 score of the sparse model was 73.8%, and the two most important

variables selected into the model were residing in the Northeast US (negatively as-
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sociated with miscarriage) and female age at conception (positively associated with

miscarriage) (Table 5.13). Among primigravid participants with pregnancies lasting

≥8 gestational weeks (n=3,488), 2 features remained after statistical feature selection

and only 1 remained in the final sparse model: male age at conception (Table 5.14).

The weighted-F1 score for this model was 88.5%.

5.3.3 Numerical Experiments for Comparison of Original Cox Model and
DRO Cox Models

Equation 2.24 introduces O(N2) constraints, significantly hindering computational

efficiency. To address this, we impose constraints only for i ≤ k ≤ i + r, reducing

the total number of constraints to O(rN). For example, when we set r=2, only two

constraints are added instead of N constraints.

Due to computational complexity, we aim to reduce the dimentianality. For this

sake, we perform feature selection, we also randomly resample a portion of each

dataset for our experiments. This results in a dataset with 872 participants and 20

features.

To assess the impact of outliers on model performance, we introduce varying

proportions of outliers, from 5% to 30%, into a random subsample of the datasets.

We evaluate the Original Cox model, the Sample-splitting DRO-Cox, and the Global

fixation DRO-Cox, training each with different radii ϵ. The concordance indices of

these models are then compared, as shown in Table 5.15.

Table 5.15 reveals that the Global fixation DRO-Cox model consistently outper-

forms both the Sample-splitting DRO-Cox and the Original Cox model. This com-

parison underscores the influence of outlier inclusion on the predictive accuracy and

robustness of survival analysis models, especially in the presence of outliers.
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5.4 Discussion

In this prospective cohort study of North American pregnancy planners, we developed

predictive models for miscarriage based on self-reported preconception data. Previous

studies have identified few confirmed causes of miscarriage, and the strongest identi-

fied risk factors in these studies were age and history of miscarriage (Wilcox et al.,

1988). In the present study, we generated models with moderate predictive power:

the weighted-F1 score ranged from 73-89% for static models and the concordance

index ranged from 53-56% for survival models. However, the AUC was <60% for all

static models. Consistent with previous studies, our findings indicate that advancing

female and male partner age are the most important predictors of miscarriage, and

that female age is generally more predictive than male age. After age, history of

miscarriage appeared to be the strongest predictor of miscarriage. These factors were

consistently predictive of miscarriage across a variety of models and settings.

Our study identified several preconception dietary factors as predictors of miscar-

riage, albeit most associations were very small and consistent with the null. Specif-

ically, a healthier diet as measured by the Healthy Eating Index-2010 score (e.g.,

greater intake of fruits and vegetables, whole grains, dairy, seafood & plant proteins,

and unsaturated fats) was associated with a slightly lower rate of miscarriage. In

addition, use of omega-3 or fish oil supplements was associated with a slightly in-

creased rate of miscarriage and several B-vitamins were selected with inconsistent

associations. Several studies have investigated the relation between dietary factors

and miscarriage (Hsiao et al., 2019)(Gaskins et al., 2014)(Laursen et al., 2022)(Gask-

ins et al., 2019)(Karayiannis et al., 2018)(Twigt et al., 2012)(Wesselink et al., 2022).

One study – with a similar design to PRESTO – reported an inverse association

between adherence to Nordic dietary guidelines (which emphasize fish consumption)

and risk of miscarriage (Laursen et al., 2022). Another study evaluated the associa-
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tion between pre-pregnancy adherence to three dietary patterns – the Healthy Eating

Index 2010, the Alternative Mediterranean Diet, and the Fertility Diet (FD) – and

risk of miscarriage among 15,950 pregnancies in the Nurses’ Health Study II (Gaskins

et al., 2014). The authors reported no association between these dietary patterns and

miscarriage. The role of dietary factors remains debated, and the predictive ability

of these variables in our study was small.

An unexpected finding in our study was the selection of smoking status into the

sparse static model and the full survival model in the full study population (i.e.,

not restricted by gravidity or gestational week). However, the overall prevalence of

smoking was quite low in this study population (4%), and this variable was not con-

sistently selected into all models. Moreover, the detrimental health effects of smoking

tobacco are well documented, and several studies have identified a positive association

between current smoking and miscarriage risk (George et al., 2006) (Nielsen et al.,

2006).

The following variables were selected into models developed among primigravid

participants but not among those who were previously pregnant: marital status, pre-

gravid use of oral contraceptives, recent use of psychotropic medications, and female

BMI. Being married was associated with a lower rate of miscarriage, which could be

related to higher socioeconomic position, greater social and emotional support, and

lower stress levels. However, factors such as perceived stress scores and household

income were not selected as important predictors of miscarriage during the statistical

feature selection process.

Some (Hahn et al., 2015)(Sackoff et al., 1994)(Rothman, 1977) but not all (Risch

et al., 1988)(Jellesen et al., 2008) studies reported that pregravid use of oral contra-

ceptives was associated with a lower risk of miscarriage compared with non-use, in

agreement with the present study. However, a recently published paper conducted in
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PRESTO reported that pregravid use of oral contraceptives was not associated with

miscarriage (Yland et al., 2020). This contrast may be due to differences in model

selection, as the previous publication aimed to estimate potential causal effects of

contraceptive use. The potential association between use of psychotropic medications

and miscarriage has been debated. However, a recent study reported that use of

antidepressants was not associated with miscarriage after controlling for depression

diagnosis (Kjaersgaard et al., 2013). High BMI has previously been associated with

an increased risk of miscarriage (Arck et al., 2008)(Savitz et al., 2008). Among 5,132

couples who conceived in a Danish preconception cohort study, the adjusted HR for

miscarriage among women with BMI ≥30 kg/m2 relative to those with BMI 20-24

kg/m2 was 1.23 (95% CI: 0.98, 1.54) (Savitz et al., 2008).

We attempted to isolate predictors of later miscarriage, as earlier miscarriages (<8

weeks’ gestation) are more likely to be due to chromosomal abnormalities than later

losses (Pflueger, 2005). However, the predictive ability of models restricted to ≥8

gestational weeks was no better than those generated in the entire dataset, and the

list of variables selected for these models was similar to those based on full spectrum

of gestational ages (all miscarriages).

Previous studies have developed models to predict miscarriage in special popu-

lations, such as couples with recurrent miscarriage (Quenby and Farquharson, 1993)

(Caetano et al., 2006) (Dai et al., 2022) (du Fossé et al., 2022) or those using ART

(Choong et al., 2003) (Yi et al., 2016) (Liu et al., 2020). These studies largely relied

upon ultrasound measurements (e.g., gestational sac size, crown-rump length, fetal

heart rate) or laboratory values (e.g., beta-human chorionic gonadotropin, proges-

terone levels) during early pregnancy. One study in the Netherlands attempted to

predict pregnancy outcome among 526 couples with unexplained recurrent miscar-

riage (du Fossé et al., 2022). Data on previous miscarriages and fertility treatment;
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and male and female age, BMI, and smoking status were included, and all were iden-

tified as potential predictors of miscarriage, with an AUC of 0.66. The present study

greatly expands on the breadth of potential predictors assessed. Moreover, our find-

ings might be useful for couples who wish to understand their risk for miscarriage

before trying to conceive spontaneously.

Study limitations include bias due to missingness or misclassification of predictor

variables. All data were self-reported, and certain variables such as dietary factors or

medication use may be more vulnerable to misclassification than others. The impact

of misclassification on our findings is challenging to quantify, as there is little research

on the impact of measurement error on machine learning prediction models (Jiang

et al., 2021) (van Doorn et al., 2017). Outcome misclassification is also possible but

unlikely: more than 95% of participants reported using at-home-pregnancy tests and

we ascertained miscarriages as early as 3 weeks’ gestation. In addition, although we

evaluated a wide range of variables, we were unable to include environmental expo-

sures (e.g., phthalates, phenols, pesticides, etc.) as potential predictors. Moreover,

we did not evaluate interactions between the independent variables, such as depres-

sive symptoms and use of psychotropic medications. Finally, though we validated

the models using split-sample replication techniques, we were unable to conduct an

external validation study. Given that more than 93 of PRESTO participants had

spontaneous conceptions, our results may not generalize to ART-conceived concep-

tions.

5.5 Conclusions

In this study, we used a variety of supervised machine learning methods to generate

predictive models of miscarriage based on self-reported preconception data. We con-

sidered 160 potential predictors of miscarriage and analyzed data from nearly 9,000
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pregnancies. Female age, male age, and history of miscarriage were the most im-

portant predictors of miscarriage, consistent with existing knowledge. The overall

performance of our models was moderate. Our findings suggest that predictability

of miscarriage is limited based on preconception lifestyle characteristics, including

reproductive and medical factors (Yland et al., 2024).
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Table 5.10: Variables selected by sparse static model (L2LR)

Variable OR (95%
CI)

β Correlation
with

outcome

Overall fre-
quency/mean

(std.)

Mean of
Miscar-
riage

Mean of
No miscar-

riage

Female age at conception
(years)

1.23
(1.20,
1.27)

0.21 0.09 30.2 (3.9) 30.9 30.0

History of miscarriage
(yes/no)

1.16
(1.13,
1.20)

0.15 0.07 26%
(44%)

32% 24%

Female smoking: current
regular smoker (ref = never
smoker)

0.89
(0.86,
0.91)

-0.12 -0.04 4% (19%) 3% 4%

Geographic region of resi-
dence: Northeast US (ref =
South US)

0.90
(0.87,
0.92)

-0.11 -0.04 24%
(43%)

21% 25%

Healthy Eating Index-2010
score (HEI-2010 score)

0.92
(0.90,
0.95)

-0.08 -0.02 66.8 (9.2) 66.4 66.8

Use of omega-3 or fish oil
supplements (yes/no)

1.06
(1.04,
1.09)

0.06 0.04 19%
(39%)

22% 18%

Use of vitamin B6 (yes/no) 1.05
(1.02,
1.08)

0.05 0.04 5% (21%) 6% 4%

Ever pregnant before
(yes/no)

0.96
(0.93,
0.99)

-0.04 -0.04 51%
(50%)

55% 50%

Use of vitamin C (yes/no) 1.04
(1.01,
1.07)

0.04 0.03 7% (25%) 8% 6%

Geographic region of res-
idence: Canada (ref =
South US)1

0.97
(0.94,
1.00)

-0.03 0.00 16%
(37%)

15% 16%

Female smoking: for-
mer smoker (ref = never
smoker)1

0.97
(0.95,
0.99)

-0.03 0.00 12%
(33%)

13% 12%

Geographic region of resi-
dence: Midwest US (ref =
South US)1

0.99
(0.96,
1.02)

-0.01 0.01 22%
(41%)

22% 22%

Female smoking: current
occasional smoker (ref =
never smoker)1

0.99
(0.97,
1.01)

-0.01 0.00 3% (16%) 3% 3%

Geographic region of res-
idence: West US (ref =
South US)1

1.00
(0.97,
1.03)

0.00 0.02 16%
(37%)

18% 16%

1 Variables forced into models
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Table 5.11: Performance metrics for the static models predicting miscarriage in
PRESTO, 2013-2022.

Algorithm Performance Measure (%) (Standard Deviation)

AUC Accuracy Weighted-F1

Score

Weighted

Precision

Score

Weighted

Recall Score

Full population
LR-L1 56.8 (1.0) 75.8 (0.6) 72.6 (0.3) 70.9 (0.3) 75.8 (0.6)

SVM-L1 56.9 (1.0) 76.3 (0.9) 72.8 (0.2) 71.2 (0.4) 76.3 (0.9)
GBT 60.5 (0.7) 77.1 (0.9) 73.0 (0.5) 72.0 (0.5) 77.1 (0.9)
RF 59.3 (1.1) 77.5 (1.0) 73.5 (0.7) 72.2 (1.2) 77.5 (1.0)

LR-L2 RFE 57.6 (0.6) 76.3 (0.9) 72.7 (0.5) 71.0 (0.6) 76.3 (0.9)
Subset: ≥8 Gestational Weeks

LR-L1 55.6 (2.8) 91.4 (0.2) 88.2 (0.2) 86.4 (0.6) 91.4 (0.2)
SVM-L1 55.6 (2.8) 91.4 (0.2) 88.2 (0.2) 86.4 (0.6) 91.4 (0.2)

GBT 58.5 (2.8) 91.3 (0.4) 88.2 (0.2) 86.7 (0.7) 91.4 (0.2)
RF 57.0 (3.0) 90.4 (0.6) 87.8 (0.4) 86.3 (0.9) 90.4 (0.4)

LR-L2 RFE 56.4 (2.5) 91.2 (0.6) 88.0 (0.2) 85.9 (0.8) 91.2 (0.6)
Subset: Primigravid

LR-L1 57.3 (1.1) 78.6 (0.6) 73.8 (0.7) 71.7 (1.2) 78.6 (0.6)
SVM-L1 57.2 (1.1) 78.5 (0.7) 73.8 (0.7) 71.7 (1.2) 78.5 (0.7)

GBT 57.6 (1.9) 77.7 (1.7) 74.0 (1.3) 71.6 (1.2) 77.7 (1.7)
RF 56.0 (2.1) 75.2 (2.0) 71.7 (1.3) 70.1 (1.3) 75.2 (2.0)

LR-L2 RFE 57.3 (1.1) 78.6 (0.6) 73.8 (0.7) 71.7 (1.0) 78.6 (0.6)
Subset: Primigravid ≥8 Gestational Weeks

LR-L1 53.4 (4.1) 92.0 (0.2) 88.7 (0.3) 86.0 (1.5) 92.0 (0.2)
SVM-L1 53.4 (4.1) 92.0 (0.2) 88.7 (0.3) 86.0 (1.5) 92.0 (0.2)

GBT 51.2 (4.8) 90.9 (0.4) 88.5 (0.3) 85.6 (0.5) 90.9 (0.4)
RF 55.1 (4.5) 91.6 (0.6) 88.5 (0.7) 85.0 (0.7) 91.6 (0.4)

LR-L2 RFE 55.5 (3.5) 91.7 (0.5) 88.2 (0.6) 85.5 (0.4) 91.7 (0.5)

Abbreviations: LR-L1=logistic regression with an ℓ1-norm regularization term; SVM-
L1=support vector machines with an ℓ1-norm regularization term; GBT=Gradient Boosted
Trees; RF=Random Forest; LR-L2 RFE=logistic regression with an ℓ2-norm regularization term.
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Table 5.12: Variables selected by the sparse static model (logistic regression with an
ℓ2-norm regularization term) predicting miscarriage after restricting to ≥8 gestational
weeks in PRESTO, 2013-2022.

Variable OR (95%
CI)

β Correlation
with

outcome

Overall
mean
(std.)

Mean, by outcome status1

Miscarriage No mis-
carriage

Female age
at conception
(years)

1.19
(1.14,
1.23)

0.17 0.07 30.1 (3.8) 30.9 30.0

Male age at con-
ception (years)

1.09
(1.06,
1.13)

0.09 0.06 31.9 (4.9) 32.9 31.9

Abbreviations: β, regression coefficient; CI, confidence interval; LR-L2, logistic regression model
with an L2 penalty; OR, odds ratio (exp[β]); RFE, recursive feature elimination; std, standard
deviation.

1 These cells should be interpreted as the mean for each variable among individuals with or without
miscarriage. For example, the average age of female participants who experienced a miscarriage
was 30.9 years.
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Table 5.13: Variables selected by the sparse static model (logistic regression with an
ℓ2-norm regularization term) predicting miscarriage among primigravid participants
in PRESTO, 2013-2022.

Variable OR (95% CI) β Corr.
with
out-
come

Overall
mean
(std.)

Mean,by outcome status1

Miscarriage No
miscarriage

Geographic region of resi-
dence: Northeast US (ref
= South US)

0.88 (0.84,
0.92)

-
0.13

-0.05 26%
(44%)

22% 27%

Female age at conception
(years)

1.12 (1.07,
1.17)

0.11 0.05 29.5
(3.5)

29.9 29.4

Married (yes/no) 0.90 (0.87,
0.94)

-
0.10

-0.05 94%
(24%)

91% 95%

Last method of contracep-
tion was oral contracep-
tives (yes/no)

0.90 (0.87,
0.94)

-
0.10

-0.04 29%
(45%)

25% 30%

Use of omega-3 or fish oil
supplements (yes/no)

1.09 (1.06,
1.13)

0.09 0.04 18%
(39%)

22% 18%

Recent use of psychotropic
medications (yes/no)

1.09 (1.06,
1.13)

0.09 0.05 13%
(33%)

16% 12%

Female BMI (kg/m2) 1.05 (1.01,
1.09)

0.05 0.03 26.3
(6.2)

26.7 26.2

Male age at conception
(years)

1.04 (0.99,
1.09)

0.04 0.05 31.3
(4.6)

31.8 31.2

Healthy Eating Index-2010
score (HEI-2010 score)

0.96 (0.93,
1.00)

-
0.04

-0.02 67.5
(9.0)

67.2 67.5

Variables forced into the
model

Geographic region of res-
idence: West US (ref =
South US)

1.05 (1.01,
1.10)

0.05 0.04 15%
(36%)

19% 15%

Geographic region of res-
idence: Canada (ref =
South US)

0.95 (0.91,
0.99)

-
0.05

-0.01 17%
(38%)

16% 18%

Geographic region of resi-
dence: Midwest US (ref =
South US)

0.98 (0.94,
1.02)

-
0.02

0.01 20%
(40%)

21% 20%

1 These cells should be interpreted as the mean or percentage for each variable among individuals
with or without miscarriage. For example, the average age of female participants who experienced
a miscarriage was 29.9 years.
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Table 5.14: Variables selected by the sparse static model (logistic regression with an
ℓ2-norm regularization term) predicting miscarriage after restricting to ≥8 gestational
weeks among primigravid participants in PRESTO, 2013-2022.

Variable OR (95% CI) β Corr.
with
out-
come

Overall
mean
(std.)

Mean,by outcome status1

Miscarriage No
miscarriage

Male age at conception
(years)

1.25 (1.20,
1.30)

0.22 0.06 31.3
(4.6)

32.3 31.2

Abbreviations: β, regression coefficient; CI, confidence interval; LR-L2, logistic regression model
with an L2 penalty; OR, odds ratio (exp[β]); RFE, recursive feature elimination; std, standard
deviation.

1 These cells should be interpreted as the mean for each variable among individuals with or without
miscarriage. For example, the average age of male participants who experienced a miscarriage
was 32.3 years.

Ratio of Outliers 0.1 0.15 0.2 0.25 0.3
Original Cox 0.5828 0.5762 0.5608 0.5815 0.6035

DRO-Cox Sample Splitting 0.5147 0.5185 0.5196 0.5013 0.5167
DRO-Cox Global Fixation 0.5830 0.5776 0.5652 0.5924 0.6099

Table 5.15: Comparison of concordance indices for different ratios of outliers with
ϵ = 0.005 in a subset of the miscarriage dataset.
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Chapter 6

Predictive Models of Deep Molecular
Response to Imatinib Treatment in Chronic
Myeloid Leukemia patients

6.1 Introduction

Chronic Myeloid Leukemia (CML) is a myeloproliferative neoplasm characterized by

the accumulation of circulating leukemic cells with the Philadelphia chromosome (Ph),

resultant of translocation t(9;22) (Nowell and Hungerford, 1960). This translocation

gives rise to the fusion gene BCR::ABL1, which encodes a constitutively active tyro-

sine kinase protein (Shitvelman et al., 1985). The actionable gene fusion led to the

development of specific and effective tyrosine kinase inhibitors (TKI) and CML has

become one of the major cases of success in cancer history (Mughal et al., 2016).

Two decades following the introduction of imatinib (IM), the management of CML

has evolved significantly (Michel et al., 2019)(Michel et al., 2019). The focal point of

optimal CML patient care currently revolves around achieving and sustaining a pro-

longed Deep Molecular Response (DMR), which, when accomplished, renders patients

eligible for treatment-free remission (TFR) (Schiffer, 2019). Beyond enhancing pa-

tient well-being, this holds implications for both patient outcomes and pharmacoeco-

nomics, particularly relevant within the economic landscape of low or middle-income

countries such as Brazil.

Monitoring the response to TKI treatment is carried out by quantitative poly-
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merase chain reaction (qPCR) at determined timepoints, as recommended by the

European Leukemia Net (ELN) (Hochhaus et al., 2020). Despite the well-established

framework for molecular treatment surveillance in CML, existing predictive models

for critical factors such as resistance, risk of progression, and the enduring molecular

response post-therapy remain limited. This study aims to fill this gap by developing

predictive models for DMR achievement in CML patients undergoing IM therapy.

Leveraging comprehensive clinical data and early stages BCR::ABL1/ABL1IS quan-

tification, our goal is to predict the likelihood of DMR achievement in future phases.

6.2 Materials and methods

6.2.1 Data description

The proposed predictive models encompass both linear and non-linear classification

methodologies, meticulously crafted based on a dataset comprising 219 CML patients

from the Brazilian National Cancer Institute (INCA). Only patients who received ex-

clusively IM treatment were included in this cohort in Figure 6·1. We retrospectively

analyzed de-identified molecular, clinical and laboratory data from all recruited pa-

tients in Figure 6·2.

A detailed description of the dataset is provided in Section 6.2.1.1; and the in-

clusion/exclusion of features is described in Tables 6.1, 6.2, and 6.3. As mentioned,

in this study molecular response was defined by the BCR::ABL1/ABL1% ratio mea-

sured by qPCR in International Scale (IS) at three-month intervals, following ELN

recommendations (Hochhaus et al., 2020). Time 0 was defined at the start of IM; we

then simplified our model considering ELN monitoring milestones of 3, 6, 12, 18, 24

and 60 months.

Because missing values precluded accurate estimation, we imputed missing values

with the median for all variables, except for BCR::ABL1/ABL1% and cytogenetic
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Figure 6·1: The exclusion criteria of total CML patients, the number of patients in
each model, and the number/percentage of patients who achieve DMR (responders,
represented as [R]) and do not achieve DMR (non-responders, represented as [NR])
at the time of each model’s outcome.
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Figure 6·2: The baseline characteristics of patients.
1 The respondent and non-respondent definition is based on Model_long_12 where respondents are
the patients who reach DMR at 24 months after the start of the treatment and maintain this status
until 60 months after treatment initiation.
2 MR_0_3 indicates achieving Major Molecular Response (MMR, defined as ≥MR3.0) in the first
three-month interval after start of IM.
3 MR_3_6 indicates achieving Major Molecular Response (MMR, defined as ≥MR3.0) in the 3-
month interval from 3 to 6 months after the start of IM.
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response (CyR) ratios. For these two ratios, we computed summary statistics such

as the median, mean, min, max, and standard deviation (std) of the recorded values

for each patient, and we used these as features instead of the original recorded values

of BCR::ABL1/ABL1% and cytogenetic response (CyR) ratios. We call these new

features aggregated features.

Table 6.1: Description of features included in the Original Dataset. Part 1.

Record time Features Category Features
At diagnosis Demographic

Blood characteristics
Cytogenetics

’SEX’,
’AGE_AT_DIAGNOSIS’,
’CML_PHASE_AT_DIAGNOSIS’,
’SPLEEN_SIZE_AT_DIAGNOSIS_(CM)’,
’WHITE_BLOOD_CELL_COUNT_AT_DIAGNOSIS’,
’HEMOGLOBIN_AT_DIAGNOSIS’,
’PLATELET_AT_DIAGNOSIS’,
’BASOPHIL_LEVEL_AT_DIAGNOSIS’,
’EOSINOPHIL_COUNT_AT_DIAGNOSIS’,
’BLAST_COUNT_AT_DIAGNOSIS’,
’SOKAL_INDEX’,
’SOKAL_CLASSIFICATION’,
’TRANSCRIPTS_AT_DIAGNOSIS’,
’CYTOGENETICS_AT_DIAGNOSIS’

At start of
IM

Blood characteristics
Cytogenetics

’WHITE_BLOOD_CELL_COUNT_AT_START_IM’,
’PLATELET_COUNT_AT_START_IM’,
’HEMOGLOBIN_COUNT_AT_START_IM’,
’BLAST_COUNT_AT_START_IM’,
’EOSINOPHIL_COUNT_AT_START_IM’,
’BASOPHIL_COUNT_AT_START_IM’,
’CYTOGENETICS_START_IM(%)’

After start of
IM in
three-month
intervals and
so on

Treatment-related
Treatments:
Hydroxyurea (Hydrea)
Interferon (INF)
Hematopoietic stem
cell transplantation
(BMT)

Three-month interval from 0 (start of IM) to 3
’Hydrea_0_3’, ’INF_0_3’, ’BMT_0_3’, ’IM_0_3’,
’CHANGE_DOSAGE_0_3’

Three-month interval from 3 to 6
’Hydrea_3_6’, ’INF_3_6’, ’BMT_3_6’, ’IM_3_6’,
’CHANGE_DOSAGE_3_6’

Three-month interval from 6 to 9
’Hydrea_6_9’, ’INF_6_9’, ’BMT_6_9’, ’IM_6_9’,
’CHANGE_DOSAGE_6_9’

Three-month interval from 9 to 12
’Hydrea_9_12’, ’INF_9_12’, ’BMT_9_12’, ’IM_9_12’,
’CHANGE_DOSAGE_9_12’

Interval from 12 to 18
’Hydrea_12_18’, ’INF_12_18’, ’BMT_12_18’, ’IM_12_18’,
’CHANGE_DOSAGE_12_18’

After 18 months after start of IM
’Hydrea_after_18_mo’, ’INF_after_18_mo’,
’BMT_after_18_mo’, ’IM_after_18’,
’CHANGE_DOSAGE_after_18’
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Table 6.2: Description of features included in the Original Dataset. Part 2.

Record time Features Category Features

After start of
IM in
three-month
intervals and
so on

Responses:
Hematologic Response
(HR), Major
Molecular Response
(MR)

Three-month interval from 0 (start of IM) to 3
’HR_0_3’, ’HR_LOSS_0_3’, ’MR_0_3’, ’MR_LOSS_0_3’

Three-month interval from 3 to 6
’HR_3_6’, ’HR_LOSS_3_6’, ’MR_3_6’, ’MR_LOSS_3_6’

Three-month interval from 6 to 9
’HR_6_9’, ’HR_LOSS_6_9’, ’MR_6_9’, ’MR_LOSS_6_9’

Three-month interval from 9 to 12
’HR_9_12’, ’HR_LOSS_9_12’, ’MR_9_12’,
’MR_LOSS_9_12’

Aggregated features:
BCR-ABL1 ratios:
’Mol_median’, ’Mol_min’,
’Mol_max’, ’Mol_mean’,
’Mol_std’
Cytogenetic Response:
’CyR_median’, ’CyR_min’,
’CyR_max’, ’CyR_mean’

’Mol_3m_IM’, ’Mol_6m_IM’, ’Mol_9m_IM’,
’Mol_12m_IM’, ’Mol_15m_IM’, ’Mol_18m_IM’,
’Mol_21m_IM’, ’Mol_24m_IM’, ’Mol_30m_IM’,
’Mol_60m_IM’,

’CYTOGENETIC_RESPONSE_3mo_IM’,
’CYTOGENETIC_RESPONSE_6mo_IM’,
’CYTOGENETIC_RESPONSE_12mo_IM’,
’CYTOGENETIC_RESPONSE_18mo_IM’

Table 6.3: Description of features included in the new dataset (combination of
Original Dataset and Additional Dataset)

Record time Features Category Features

At diagnosis Demographic
Blood characteristics
Cytogenetics

’SEX’,
’AGE_AT_DIAGNOSIS’,
’WHITE_BLOOD_CELL_COUNT_AT_DIAGNOSIS’,
’HEMOGLOBIN_AT_DIAGNOSIS’,
’PLATELET_AT_DIAGNOSIS’,
’BASOPHIL_LEVEL_AT_DIAGNOSIS’,
’EOSINOPHIL_COUNT_AT_DIAGNOSIS’

Responses:
Major Molecular
Response
(MMR)

Three-month interval from 0 (start of IM) to 3
’MR_0_3’,
’MR_LOSS_0_3’

Three-month interval from 3 to 6
’MR_3_6’,
’MR_LOSS_3_6’

Aggregated features:
BCR-ABL1 ratios:
’Mol_median’,
’Mol_min’,
’Mol_max’,
’Mol_mean’,
’Mol_std’

’Mol_3m_IM’,
’Mol_6m_IM’,
’Mol_12m_IM’,
’Mol_18m_IM’,
’Mol_24m_IM’,
’Mol_60m_IM’
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6.2.1.1 Detailed dataset description

At the start of this study, we had a cohort of 144 patients, and we built our original

models based on this dataset (Original Dataset). The preliminary results showed

high standard deviation in evaluation metrics due to the small size of the dataset and

its imbalanced nature. We subsequently gained access to other patients’ information

(Additional Dataset), and we tried to increase the size of the dataset as well as to

decrease its imbalance by adding more respondent patients. However, their available

information was not as inclusive as our Original Dataset; hence, we extracted patients

who at least have the information required by our parsimonious models (models in-

cluding features selected by feature selection). In our results, we display two kinds of

tables: (i) Tables 6.1 and 6.2: associated with our Original Dataset of 144 patients for

whom we have a wide range of information, and the primary feature selection is done

based on this cohort. (ii) Table 6.3: associated with the new dataset (combination of

Original Dataset and Additional Dataset). Figure 6·3 shows an overview of the steps

in model development.

We considered two types of information: (i) variables evaluated only at diagnosis

and/or start of IM treatment; (ii) variables with values available at three-month inter-

vals after the start of IM. Qualitative data were defined as binary variables to indicate

use (1) or no use (0) of treatments with hydroxyurea, interferon, and hematopoietic

stem cell transplantation in each three-month time interval. Some of the earlier pa-

tients in our dataset were submitted to changes in IM dosage during treatment, so to

account for that in our models, we defined a continuous variable equal to the average

of imatinib dosages in each three-month interval. Because missing values precluded

accurate estimation, we imputed the missing values with the median for all variables,

except for BCR-ABL1 and cytogenetic response (CyR) ratios. For these two ratios,

we computed summary statistics such as the median, mean, min, max, and standard
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Figure 6·3: An overview of the steps in model development.

deviation (std) of the recorded values for each patient, and we used these as features

instead of the original recorded values of BCR::ABL1/ABL1% and cytogenetic re-

sponse (CyR) ratios. We call these new features aggregated features. In our final

models, some of the aggregated features are not used because they have high corre-

lation with each other, and we retain only one variable among each highly correlated

pair. Table 6.4 reports the percentage of missing values in the Original Dataset.

Table 6.5 reports the percentage of missing values in the new dataset (combination

of Original Dataset and Additional Dataset). Additionally, these tables present the

count of non-missing entries for each variable considered. It is pertinent to note that

within the scope of variables analyzed, "White Blood Cell count at diagnosis" is the

sole predictor employed in our proposed models, as shown in the third column of the



133

tables. Moreover, we utilize aggregated features rather than the raw values recorded

for BCR::ABL1/ABL1% ratios. The model’s reliance on selected variables suggests

that the impact of missing values is mitigated, especially for variables not directly

utilized as predictors. Hence, a variable’s absence does not significantly detract from

our analysis, provided that a decent number of non-missing data remains available

for model training and validation. This approach ensures the robustness of our find-

ings despite the inherent challenges posed by incomplete datasets. As an important

clarification, it’s essential to note that our models exclude patients lacking data for

variables critical to the models’ outcomes. For instance, in Model_3_18, patients are

omitted from analysis if they do not have recorded values for the BCR-ABL ratio at

18 months post-initiation of IM treatment. Consequently, the absence of this specific

data point does not impact the performance or integrity of Model_3_18. Further-

more, this particular value is not employed as a predictive variable in any of our other

models.

6.2.2 Predictive Models

We performed data pre-processing steps, explauned in more detail in Section 2.1.2 to

prepare the dataset for developing predictive models. The threshold for correlation

coefficient is considered 0.75. To reduce the less informative features and simplify

the models, we applied Statistical Feature Selection (SFS), explained in more detail

in Section 2.1.5.2, with 0.05 threshold for p-value. Variables with no variability

(std<0.0001) were removed

When predicting DMR at later months using patient characteristics at diagnosis

and early treatment information, we considered the following models: (a) prediction of

DMR at 18 months using information up to 3 months (Model_3_18), (b) prediction

of DMR at 18 months using information up to 6 months (Model_6_18), and (c)

prediction of DMR at 12 months using information up to 6 months (Model_6_12).
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Table 6.4: The percentage of missing values and the count of non-missing values in
the Original Dataset with 144 patients.

Feature Percentage of
missing values

(%)

Number of
non-missing

values

Used as a
Most

Important
Predictor

CYTOGENETIC RESPONSE 3mo IM 81 28 No
CYTOGENETIC RESPONSE 18mo IM 76 35 No
BCR-ABL ratio at 60 months after start
of IM

72 41 No

BCR-ABL ratio at 21 months after start
of IM

69 44 No

CYTOGENETIC RESPONSE 24mo IM 67 47 No
BCR-ABL ratio at 9 months after start of
IM

64 52 No

BCR-ABL ratio at 15 months after start
of IM

62 55 No

CYTOGENETIC RESPONSE 12mo IM 55 65 No1

CYTOGENETIC RESPONSE 6mo IM 50 72 No1

BCR-ABL ratio at 30 months after start
of IM

43 82 No

BCR-ABL ratio at 24 months after start
of IM

41 85 No

BCR-ABL ratio at 6 months after start of
IM

38 90 No

BCR-ABL ratio at 18 months after start
of IM

35 94 No

CYTOGENETICS START IM 28 103 No
BCR-ABL ratio at 3 months after start of
IM

24 110 No1

BCR-ABL ratio at 12 months after start
of IM

16 121 No

SPLEEN SIZE AT DIAGNOSIS 8 132 No
BLAST COUNT AT DIAGNOSIS 7 134 No
BASOPHIL LEVEL AT DIAGNOSIS 7 134 No
PLATELET_AT_DIAGNOSIS 7 134 No
WHITE BLOOD CELL COUNT AT
DIAGNOSIS

6 136 Yes

EOSINOPHIL COUNT AT DIAGNOSIS 6 135 No
HEMOGLOBIN AT DIAGNOSIS 6 135 No
HEMOGLOBIN COUNT AT START IM 4 138 No
SOKAL CLASSIFICATION 4 138 No
WHITE BLOOD CELL COUNT AT
START IM

4 138 No

TRANSCRIPTS_AT_DIAGNOSIS 4 138 No
BASOPHIL COUNT AT START IM 4 138 No
EOSINOPHIL COUNT AT START IM 4 138 No
SOKAL INDEX 4 138 No
BLAST COUNT AT START IM 4 138 No
PLATELET_COUNT_AT_START_IM 4 138 No

1 We utilize aggregated features rather than the raw values recorded for BCR::ABL1/ABL1% ratios.
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Table 6.5: The percentage of missing values and the count of non-missing values in
the new dataset (combination of Original Dataset and Additional Dataset)

Feature Percentage of
missing values

(%)

Number of
non-missing

values

Used as a
Most

Important
Predictor

BCR-ABL ratio at 60 months
after start of IM

46 118 No

BCR-ABL ratio at 24 months
after start of IM

27 160 No

BCR-ABL ratio at 6 months
after start of IM

25 165 No1

BCR-ABL ratio at 18 months
after start of IM

23 168 No

BCR-ABL ratio at 3 months
after start of IM

15 186 No1

BCR-ABL ratio at 12 months
after start of IM

11 196 No1

BASOPHIL LEVEL AT
DIAGNOSIS

5 209 No

PLATELET AT DIAGNOSIS 5 209 No
WHITE BLOOD CELL COUNT
AT DIAGNOSIS

4 211 Yes

EOSINOPHIL COUNT AT
DIAGNOSIS

4 210 No

HEMOGLOBIN AT DIAGNOSIS 4 210 No

1 We utilize aggregated features rather than the raw values recorded for BCR::ABL1/ABL1% ratios.
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Additionally, we attempted to optimize the decision-making process regarding TFR by

forecasting the probability of attaining a sustained DMR, specifically achieving DMR

at least 24 months post-treatment initiation and maintaining this status through

the 60-month mark. This led to another model that predicted the long-term DMR

using information up to 12 months after the start of IM (Model_long_12). Figure 6·1

provides the number of patients in each model, and the number/percentage of patients

who achieve DMR (responders) and those who do not achieve DMR (non-responders)

at the time of the model’s outcome. Tables 6.5 and 6.6 represent each model’s feature

statistics including p-value associated with the null hypothesis of each variable having

the same distribution in the two cohorts (responders and non-responders).
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Table 6.6: Cohort statistics of the new dataset (combination of Original Dataset and Additional Dataset).

Variable Model_3_18 Model_6_18 Model_6_12 Model_long_12
yes no p-

value
yes no p-

value
yes no p-

value
yes no p-

value

Age at
diagnosis

50.1 45.0 0.09 50.0 45.0 0.15 51.8 45.1 0.10 51 45.7 0.05

Sex (male) 47% 63% 0.40 47% 61% 0.44 48% 60% 0.58 44% 61% 0.30
Hemoglobin
count at
diagnosis

11.3 11.4 0.07 11.4 11.5 0.06 12.1 11.2 <0.001 11.4 11.5 <0.001

Platelet count
at diagnosis

534.5 418.6 0.02 527.8 415.0 0.01 547.5 425.7 0.12 552.1 422.7 0.04

Basophil level
at diagnosis

3.7 4.0 0.96 3.5 3.9 1.00 4.0 3.9 0.96 4.3 3.5 0.36

Eosinophil
count at
diagnosis

2.7 3.3 0.38 2.6 3.1 0.19 2.8 2.9 0.88 4.3 2.3 0.83

WBC count
at diagnosis

91580.4 133164.6 0.05 92386.7 127800.6 0.11 78037.3 139953.8 0.02 90788.0 132085.0 0.11

MR_0_31 14.9%2 3.8%3 0.17 13.7% 3.4% 0.16 2.3% 3.3% <0.001 17.1% 2.5% 0.01
MR_3_64 - - - 51.0% 19.3% <0.001 60.0% 22.8% <0.001 46.3 24.5 0.08
Median of
Bcr-Abl
ratios

2.1 16.6 <0.001 1.3 11.0 <0.001 1.1 9.6 <0.001 0.3 4.4 <0.001

Min of
Bcr-Abl
ratios

0.7 6.0 <0.001 0.6 1.3 0.03 0.0 1.1 <0.001 0.0 1.4 <0.001

Max of
Bcr-Abl
ratios

2.1 16.6 <0.001 1.9 16.0 <0.001 1.9 13.5 <0.001 2.6 12.5 <0.001

Mean of
Bcr-Abl
ratios

2.1 16.6 <0.001 1.3 11.0 <0.001 1.1 9.6 <0.001 0.9 6.1 <0.001

1 MR_0_3 indicates achieving Major Molecular Response (MMR, defined as ≥MR3.0) in the first three-month interval after start of IM.
2 This means that among responders in Model_3_18, 14.9% of them achieved MR_0_3.
3 This means that among non-responders in Model_3_18, 3.8% of them achieved MR_0_3.
4 MR_3_6 indicates achieving Major Molecular Response (MMR, defined as ≥MR3.0) in the 3-month interval from 3 to 6 months after the
start of IM.
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We explored supervised classification methods, LR, SVM, MLP, RF, and GBM ,

explained in more detail in Section 2.1.1. We considered both an L1-norm (L1LR,

L1SVM) and an L2-norm regularizer (L2LR, L2SVM) (Lee et al., 2006) to address

overfitting. Explained in more detail in Section 2.1.5.1.

We randomly split the dataset into three equal parts, where two parts were used

as the training set, and the third part as the test set. The training set is used

to tune the model hyperparameters via 3-fold cross-validation. We evaluated all

performance metrics on the test set. We repeated training and testing five times,

each time with a different random split between the training and test sets. The

mean and standard deviation of all metrics on the test sets over the five repetitions

are reported. Explained in more detail in Section 2.1.3. Since all molecular data

are internationally uniformed using the International Scale12, an external validation

cohort is less critical for our study.

To assess model performance, we use AUC-ROC and weighted F1-score. Ex-

plained in more detail in Section 2.1.4.

We also used a recursive feature elimination approach with L1-penalized logistic

regression (L1-regularized RFE) to extract the most informative features and develop

parsimonious models. Explained in more detail in Section 2.1.5.3. We will be referring

to the resulting model as the parsimonious model. Figure 6·3 presents an overview of

the steps taken in model development.

6.2.2.1 Feature statistics in Detail

Statistics of the new dataset (combination of Original Dataset and Additional

Dataset) of patients who achieved DMR and those who did not are represented in

Table 6.6 for each model. The columns “yes” and “no” show the mean of each vari-

able among patients who did and did not achieve DMR, respectively. The statistics

of the Original Dataset of patients who achieved DMR and those who did not are
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represented in Tables 6.7 and 6.8 for each model.
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Table 6.7: Cohort statistics of Original Dataset. Part 1.

Variable Model_3_18 Model_6_18 Model_6_12 Model_long_12
yes no p-

value
yes no p-

value
yes no p-

value
yes no p-

value
Sex (male) 48% 68% 0.41 45% 66% 0.40 38% 63% 0.40 38% 62% 0.46
Age at diagnosis 46.0 44.6 0.81 45.7 44.5 0.77 52.0 45.1 0.41 48.1 45.2 0.21
CML phase at diagnosis 0% 3% 0.87 0% 3% 0.87 0% 3% 0.93 0% 2% 0.96
Spleen size at diagnosis (CM) 1.0 4.2 0.08 1.1 4.0 0.07 0.5 1.0 0.14 1.4 3.2 0.40
WBC count at diagnosis 86850 131104 0.03 85938 128118 0.02 59113 134597 0.01 63507 124123 0.02
Hemoglobin count at diagnosis 11.6 11.5 0.70 11.6 11.5 0.52 12.3 11.4 0.27 12.0 11.6 0.40
Platelet count at diagnosis 509.0 433.1 0.13 519.3 436.1 0.13 439.2 440.0 0.93 473.8 447.8 0.33
Basophil level at diagnosis 3.2 4.4 0.19 3.3 4.4 0.28 3.4 4.3 0.88 4.2 4.0 1.00
Eosinophil count at diagnosis 2.1 3.4 0.38 2.0 3.3 0.27 1.9 3.1 0.72 4.4 2.5 0.89
Blast count at diagnosis 1.5 1.4 0.98 1.4 1.4 0.90 1.0 1.5 0.98 0.8 1.7 0.57
Sokal index 0.9 0.9 0.51 0.8 0.9 0.61 0.9 0.8 0.23 0.8 0.9 0.33
Sokal classification 2.5 2.4 0.91 2.6 2.4 0.91 2.5 2.4 1.00 2.8 2.3 0.51
Transcripts at diagnosis 1.8 1.8 1.00 1.8 1.8 1.00 1.9 1.8 0.83 1.5 1.8 0.78
WBC count at start of IM 12691 13997 0.92 12352 13589 0.80 11035 13176 0.78 8011 11896 0.25
Platelet count at start of IM 426.1 343.0 0.46 412.0 346.8 0.72 322.0 370.7 0.32 281.7 382.9 0.73
Hemoglobin count at start of
IM

11.5 11.8 0.88 11.5 11.9 0.87 12.1 11.6 0.93 11.5 11.8 0.92

Blast count at start of IM 0.1 0.3 1.00 0.1 0.3 1.00 0.1 0.3 1.00 0.2 0.2 1.00
Eosinophil count at start of
IM

6.5 5.4 0.54 6.2 5.0 0.65 9.2 5.7 0.59 9.7 4.7 0.49

Basophil count at start of IM 15.4 12.9 0.63 14.7 12.4 0.40 12.2 13.6 0.41 13.2 12.4 0.65
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Table 6.8: Cohort statistics of Original Dataset. Part 2.

Variable Model_3_18 Model_6_18 Model_6_12 Model_long_12
yes no p-

value
yes no p-

value
yes no p-

value
yes no p-

value
IM 0_31 400.0 416.7 1.00 400.0 415.4 1.00 400.0 415.4 1.00 400.0 412.2 1.00
HR 0_32 100% 92% 0.60 100% 93% 0.82 100% 98% 0.82 100% 98% 0.96
MR_0_33 14% 3% 0.36 14% 3% 0.34 23% 2% 0.01 8% 4% 0.93
IM 3_64 400.0 418.4 1.00 400.0 416.48 1.00 400.0 414.6 1.00 400.0 414.6 1.00
HR 3_65 100% 92% 0.60 100% 93% 0.82 100% 98% 0.82 100% 98% 0.96
MR_3_66 - - - 59% 25% 0.03 54% 29% 0.34 38% 32% 0.97
Median of Bcr-Abl ratios 2.9 19.2 <0.001 1.8 13.0 <0.001 2.6 11.4 <0.001 0.2 5.2 <0.001
Min of Bcr-Abl ratios 2.9 19.2 <0.001 0.8 7.3 <0.001 0.8 7.0 <0.001 0.0 1.7 <0.001
Max of Bcr-Abl ratios 2.9 19.2 <0.001 2.8 18.6 <0.001 4.5 15.9 0.02 4.8 15.9 0.02
Mean of Bcr-Abl ratios 2.9 19.2 <0.001 1.8 13.0 <0.001 2.6 11.4 <0.001 1.5 7.1 0.00
Std of Bcr-Abl ratios 2.9 19.2 <0.001 1.8 13.0 <0.001 2.6 11.4 <0.001 1.5 7.1 0.00
Median of CyR 92.4 93.4 1.00 83.6 90.4 0.79 92.3 89.4 1.00 74.4 77.0 0.88
Min of CyR 79.3 78.1 1.00 53.5 52.8 1.00 90.0 58.5 0.36 12.8 31.2 0.36
Max of CyR 100.0 98.3 1.00 100.0 98.5 1.00 100.0 98.9 1.00 100.0 97.6 1.00
Mean of CyR 90.6 89.9 1.00 71.4 80.7 0.04 76.2 79.3 0.83 63.2 68.7 0.48

1 IM_0_3 shows the imatinib dosage a patient receives in the first three-month interval after start of IM.
2 HR_0_3 indicates achieving hematologic response in the first three-month interval after start of IM.
3 MR_0_3 indicates achieving Major Molecular Response (MMR, defined as ≥MR3.0) in the first three-month interval after start of IM.
4 IM_3_6 shows the imatinib dosage a patient receives in the 3-month interval from 3 to 6 months after the start of IM.
5 HR_3_6 indicates achieving hematologic response in the 3-month interval from 3 to 6 months after the start of IM.
6 MR_3_6 indicates achieving Major Molecular Response (MMR, defined as ≥MR3.0) in the 3-month interval from 3 to 6 months after the start of IM.
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6.3 Results

The results associated with parsimonious versions of Model_3_18 and

Model_long_12 are reported in Figures 6·4, 6·5, and 6·6. Figure 6·4 shows

the feature importance based on Logistic Regression coefficients in the L2LR model.

The median of the patient’s recorded BCR::ABL1/ABL1% ratios, white blood cell

count at diagnosis, and the achievement of MMR are among the most important

predictive variables. Figure 6·5 shows ROC curves associated with the L2LR

parsimonious models. Figure 6·6 presents the mean and std of performance metrics

on the test set. The best AUCs achieved over all models are between 82% and

86%, while we use only two variables. Detailed results including results associated

with Model_6_12 and Model_6_18 are given in Tables 6.9 and 6.10, and Figures

6·7 and 6·8. Figure 6·9 displays the feature importance in parsimonious models

based on Random Forest feature importance. The results suggest moderate to

strong predictive power for DMR shorter term (Model_3_18, Model_6_18, and

Model_6_12) but also longer-term (Model_long_12), informing physicians on

how to optimize treatment but also recommending discontinuing treatment upon

achieving DMR.

6.4 Discussion

The median of BCR::ABL1/ABL1% ratio measurements is consistently included

among the most important predictive variables in all our models. Moreover, other

important predictive variables in our models are the white blood cell count at the time

of diagnosis and the achievement of MMR at 3 and 6 months marks (Table 6.10), in

agreement with clinical observations described in literature (Hochhaus et al., 2020)

(Wang et al., 2019) (Hehlmann et al., 2014) (Bonifacio et al., 2019) (Hasford et al.,

2011).
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Table 6.9: The most important predictors selected by feature selection (SFS and
RFE) in parsimonious format of all models. We list the LR coefficients of each variable
(Coef), the correlation of the variable with the outcome (Y_corr), the mean of the
variable (Y1_mean) in the patients achieving DMR at the time corresponding to
each model, and the mean of the variable (Y0_mean) in the remaining (non-DMR)
patients.

Coef Variable All_mean All_std Y1_mean Y1_std Y0_mean Y0_std p-value Y_corr

Model_3_18

-2.81 Mol_median 11.24 19.28 2.07 4.03 16.62 22.45 1.94E-
11

-0.37

-0.48 WBC count
at diagnosis

117775 101378 91580 77334 133164 110732 4.73E-
02

-0.20

Model_6_18

-3.59 Mol_median 7.47 14.01 1.3 2.8 11.04 16.48 5.97E-
13

-0.34

0.65 MR_3_61 0.31 0.46 0.51 0.5 0.19 0.4 1.69E-
03

0.33

Model_6_12

-1.42 Mol_median 7.54 14.14 1.1 3.99 9.64 15.57 6.33E-
15

-0.26

0.70 MR_3_61 0.32 0.47 0.6 0.5 0.23 0.42 2.41E-
04

0.34

Model_long_12

-2.24 Mol_median 3.37 8.95 0.33 0.90 4.42 10.17 1.19E-
08

-0.20

0.40 MR_0_32 0.06 0.24 0.17 0.38 0.03 0.16 1.23E-
02

0.26

1 MR_3_6 indicates achieving Major Molecular Response (MMR, defined as ≥MR3.0) in the
3-month interval from time 3 to 6 months after the start of IM.
2 MR_0_3 indicates achieving Major Molecular Response (MMR, defined as ≥MR3.0) in the
3-month interval from time 0 to 3 months after the start of IM.
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Table 6.10: All models’ evaluation metrics on the test set.

AUC Weighted F1 Weighted AUPRC Weighted Precision Weighted Recall

Mean
(%)

Std
(%)

Mean
(%)

Std
(%)

Mean
(%)

Std
(%)

Mean
(%)

Std
(%)

Mean
(%)

Std
(%)

Model_3_18
L2LR 83.7 3.0 70.8 4.2 74.6 7.2 73.3 2.4 72.3 3.8
L1LR 83.6 3.1 70.8 4.2 74.5 7.4 73.3 2.4 72.3 3.8
L1SVM 83.1 3.2 72.0 7.0 73.3 7.3 74.2 4.8 73.8 4.9
L2SVM 83.5 3.1 72.8 5.9 74.5 7.2 74.8 4.5 74.4 4.4
RF 80.8 5.2 75.3 6.0 73.8 6.9 77.0 6.1 76.4 4.9
NN 78.5 6.4 67.9 7.8 64.8 9.2 70.8 7.2 70.8 5.3
LGB 79.9 7.6 77.3 6.2 73.4 8.2 78.4 7.2 77.9 5.6
Model_6_18
L2LR 82.5 3.5 74.8 3.4 72.5 4.4 75.3 3.3 74.8 3.6
L1LR 83.0 3.1 76.1 1.7 73.1 4.7 76.4 2.1 76.2 1.7
L1SVM 82.7 2.8 75.7 2.6 72.8 4.4 76.0 2.8 75.7 2.6
L2SVM 82.2 3.2 74.8 3.1 72.2 4.1 75.3 3.3 74.8 3.2
RF 83.4 4.9 76.9 5.3 71.1 9.2 78.0 4.7 76.7 5.7
NN 81.4 2.8 71.9 1.5 70.5 4.6 74.6 2.6 72.4 4.3
LGB 84.0 4.8 78.8 4.3 71.2 6.7 79.1 4.2 79.0 4.3
Model_6_12
L2LR 86.0 2.2 82.3 3.3 68.2 3.7 83.2 1.9 83.7 2.0
L1LR 86.6 2.1 82.3 3.3 68.8 3.3 83.2 1.9 83.7 2.0
L1SVM 84.4 1.7 82.3 3.3 66.7 3.6 83.2 1.9 83.7 2.0
L2SVM 84.8 1.1 82.3 3.3 67.1 3.0 83.2 1.9 83.7 2.0
RF 85.9 5.9 86.2 1.6 64.5 5.8 86.4 2.0 86.4 1.2
NN 81.5 4.3 76.4 8.1 57.6 15.4 78.8 6.0 76.9 10.1
LGB 84.0 8.1 83.1 1.6 65.4 6.9 83.4 1.5 83.7 2.0
Model_long_12
L2LR 82.1 5.1 77.6 7.4 61.0 13.1 80.4 4.9 76.7 8.4
L1LR 80.3 6.1 77.1 7.8 59.9 13.3 79.7 5.7 76.3 8.8
L1SVM 80.2 4.8 77.0 7.0 59.5 10.9 79.5 4.7 76.3 7.9
L2SVM 80.2 4.8 77.0 7.0 59.5 10.9 79.5 4.7 76.3 7.9
RF 79.4 4.7 77.0 7.2 64.0 8.3 77.5 7.6 77.5 7.4
NN 82.1 5.1 77.6 7.4 61.0 13.1 80.4 4.9 76.7 8.4
LGB 81.2 5.1 81.7 5.5 66.3 8.5 82.7 4.7 81.7 6.3
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Figure 6·4: The feature importance in L2LR parsimonious models based on Logistic
Regression coefficients +- 95% CI. The median of the patient’s recorded BCR-ABL1
ratios, white blood cell count at diagnosis, and the achievement of Major Molecular
Response (MMR, defined as ≥MR3.0) are among the most important predictive vari-
ables. MR_0_3 indicates achieving MMR in the 3-month interval from time 0 to 3
months after the start of IM.

Figure 6·5: ROC curves associated with the L2LR parsimonious version of each
model. The Area Under the ROC Curve (AUC), is used to evaluate prediction per-
formance. A perfect predictor has an AUC of 1 and a predictor which makes random
guesses has an AUC of 0.5.
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Model_3_18 Model_long_12
AUC Weighted F1 score AUC Weighted F1 score

mean% (std%)
L2LR 83.7 (3.0) 70.8 (4.2) 82.1 (5.1) 77.6 (7.4)
L1LR 83.6 (3.1) 70.8 (4.2) 80.3 (6.1) 77.1 (7.8)
L1SVM 83.1 (3.2) 72.0 (7.0) 80.2 (4.8) 77.0 (7.0)
L2SVM 83.5 (3.1) 72.8 (5.9) 80.2 (4.8) 77.0 (7.0)
RF 80.8 (5.2) 75.3 (6.0) 79.4 (4.7) 77.0 (7.2)
NN 78.5 (6.4) 67.9 (7.8) 82.1 (5.1) 77.6 (7.4)
LGB 79.9 (7.6) 77.3 (6.2) 81.2 (5.1) 81.7 (5.5)

Figure 6·6: Test set performance of the parsimonious models using LR, SVM, RF,
MLP, and LightGBM.

In summary, our results are in agreement with recent data which indicates that

patients with an early molecular response have a higher probability of achieving and

maintaining DMR (Shanmuganathan et al., 2021), since those patients will have

smaller BCR::ABL1/ABL1%IS median values and will achieve MMR before 6 months

of treatment.

Table 6.11: Probabilities calculated by our models alongside different categories of
patients from Original Dataset.

Model Output Probability (Median)
Model_3_18 Model_6_18 Model_6_12 Model_long_12

High risk (Sokal Score) 0.24 0.13 0.20 0.23
Intermediate risk (Sokal Score) 0.39 0.38 0.41 0.44
Low risk (Sokal Score) 0.42 0.41 0.40 0.49
3-months BCR::ABL1 > 10% 0.01 0.03 0.07 0.19
3-months BCR::ABL1 <= 10% 0.59 0.54 0.48 0.52
12-months BCR::ABL1 > 0.01% 0.35 0.36 0.38 0.43
12-months BCR::ABL1 <= 0.01% 0.77 0.87 0.78 0.56

Stopping TKI treatment can be considered a safe option that especially benefits

patients with comorbidities and the young, providing a higher quality of life and

reducing costs. Results shown here reveal that the probability of reaching DMR can

be predicted with high accuracy. To our knowledge, this is the first study to model

DMR using real world data from a cohort of CML patients in Brazil. Our models

can help hematologists to inform decisions regarding TKI discontinuity to patients.
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(a) Model_6_12 (b) Model_6_18

Figure 6·7: The feature importance in L2LR parsimonious models based on Logistic
Regression coefficients +- 95% CI. MR_3_6 indicates achieving Major Molecular
Response (MMR, defined as≥MR3.0) in the 3-month interval from time 3 to 6 months
after the start of IM.

We currently implemented our models as on-line modules publicly available to the

medical and scientific community at github repository1(Zad et al., 2024a).

1https://github.com/noc-lab/Predictive-models-of-DMR-in-CML-patients
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(a) Model_6_12 (b) Model_6_18

Figure 6·8: ROC curves associated with the parsimonious version of each model.
The Area Under the ROC Curve (AUC) is used to evaluate prediction performance.
A perfect predictor has an AUC of 1 and a predictor which makes random guesses
has an AUC of 0.
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(a) Model_3_18 (b) Model_6_12

(c) Model_6_18 (d) Model_long_12

Figure 6·9: The feature importance in parsimonious models based on Random Forest
feature importance. MR_0_3 indicates achieving Major Molecular Response (MMR,
defined as ≥MR3.0) in the 3-month interval from time 0 to 3 months after the start
of IM. MR_3_6 indicates achieving Major Molecular Response (MMR, defined as
≥MR3.0) in the 3-month interval from time 3 to 6 months after the start of IM.
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Chapter 7

Conclusions

7.1 Summary

This dissertation has explored the development and application of explainable and

sparse predictive models in two critical areas of healthcare: reproductive health and

oncology. Through the use of advanced machine learning techniques and survival

analysis, we aimed to enhance predictive accuracy and provide actionable insights to

improve patient outcomes.

In reproductive health, we developed machine learning models to predict the prob-

ability of conception using self-reported health data from a North American precon-

ception cohort study. Factors such as sociodemographics, lifestyle, medical history,

diet quality, and specific male partner characteristics were analyzed, resulting in mod-

els that demonstrated improved discrimination and potential clinical utility.

We also applied machine learning algorithms to electronic health record data to

identify predictor variables associated with polycystic ovarian syndrome (PCOS) diag-

nosis. Gradient boosted trees and feed-forward multilayer perceptron classifiers were

employed to create a scoring system, enhancing model performance and providing a

valuable tool for early detection and intervention.

For miscarriage risk prediction, we utilized static and survival analysis, including

Cox proportional hazard models, to develop predictive models assessing miscarriage

risk among female participants who conceived during the study period. Our study

revealed that most miscarriages were due to random genetic errors during early preg-
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nancy, indicating limited predictability based on preconception sociodemographic and

lifestyle characteristics.

In managing Chronic Myeloid Leukemia (CML), we developed predictive models

to forecast whether patients would achieve deep molecular response (DMR) at later

treatment stages and maintain this status up to 60 months post-treatment initiation.

These models offer insights into treatment effectiveness and patient management,

supporting clinical decision-making and improving long-term patient outcomes.

The models developed in this dissertation emphasize explainability, ensuring that

the predictions are interpretable and actionable for healthcare professionals. The find-

ings underscore the potential of predictive modeling to improve outcomes in repro-

ductive health and oncology, demonstrating the value of machine learning algorithms

in healthcare research and the prediction of critical health events.

7.2 Future work

Future research should aim to integrate diverse data sources, including genetic, en-

vironmental, and real-time patient monitoring data, to enhance the robustness and

accuracy of predictive models. This integration will provide a more comprehensive

understanding of the factors influencing health outcomes.

External validation is essential to ensure the generalizability and reliability of

predictive models across different populations and settings. Confirming that models

perform well not only in the original study cohort but also in broader, more diverse

populations is crucial for increasing their applicability and trustworthiness.

While this dissertation emphasizes model explainability, there is always room for

improvement. Future work should explore advanced techniques for enhancing the

transparency and interpretability of machine learning models. This will ensure that

healthcare professionals can fully understand and trust the predictions.
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Leveraging deep learning techniques can improve the integration and analysis of

complex, high-dimensional data, enhancing the accuracy, robustness, and scalabil-

ity of predictive models in healthcare. Deep learning can handle vast and intricate

datasets, uncovering subtle patterns and interactions that traditional methods might

miss, leading to more precise and reliable predictions.

The methodologies developed in this dissertation can be extended to other health

conditions beyond reproductive health and oncology. Future research could apply

these techniques to areas such as cardiovascular diseases, mental health, and infectious

diseases, broadening the impact of predictive modeling in healthcare.

Implementing BERT models to handle and analyze large volumes of textual data

in electronic health records, clinical notes, and medical literature can improve feature

extraction and contextual understanding for better predictive performance. BERT’s

advanced natural language processing capabilities can extract nuanced insights from

unstructured text, contributing to more informed and accurate predictive models.

To transition from research to clinical practice, future work should focus on the

implementation and validation of predictive models in real-world clinical settings.

Collaborating with healthcare providers to test and refine these models can ensure

their practical utility and effectiveness in improving patient care. Longitudinal studies

are crucial for understanding the long-term impact of predictive models on patient

outcomes. Future research should also explore adaptive models that can update and

improve over time as new data becomes available, ensuring that predictions remain

accurate and relevant.

By addressing these areas, future work can continue to advance the field of predic-

tive modeling in healthcare, ultimately contributing to better patient outcomes and

more informed clinical decision-making.
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