
Boston University

OpenBU http://open.bu.edu

Boston University Theses & Dissertations Boston University Theses & Dissertations

2024

Component design for

application-directed FPGA system

generation frameworks

https://hdl.handle.net/2144/49313

Downloaded from DSpace Repository, DSpace Institution's institutional repository

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

COMPONENT DESIGN FOR APPLICATION-DIRECTED

FPGA SYSTEM GENERATION FRAMEWORKS

by

SAHAN LAKSHITHA BANDARA

B.Sc., University of Moratuwa, 2015
M.S., Boston University, 2019

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2024

© 2024 by
SAHAN LAKSHITHA BANDARA
All rights reserved

Approved by

First Reader

Martin C. Herbordt, PhD
Professor of Electrical and Computer Engineering

Second Reader

Rabia Yazicigil, PhD
Assistant Professor of Electrical and Computer Engineering
Assistant Professor of Biomedical Engineering

Third Reader

Richard West, PhD
Professor of Computer Science

Fourth Reader

Ahmed Sanaullah, PhD
Principal Research Software Engineer
Red Hat Research

Acknowledgments

First, I would like to thank my advisor, Professor Martin C. Herbordt for his valuable

insights, guidance, and support throughout my PhD journey. I was always able to

reach out to Professor Herbordt for advice, not only after I joined the CAAD Lab,

but ever since I first moved here for my master’s program back in 2017. I’m especially

grateful that he was willing to accept me to the research group one year into my PhD

program.

Secondly, I thank my committee members, Prof. Richard West, Prof. Rabia

Yazicigil, and Dr. Ahmed Sanaullah for their valuable advice, feedback, and precious

time. A special thanks goes to Dr. Ahmed Sanaullah for leading the DISL project

on which this dissertation is based. I’d also like to thank my collaborators and co-

authors in different research efforts throughout my academic journey; Dr. Chunshu

Wu, Ulrich Drepper, Anthony Ducimo, Zaid Tahir, Dr. Anqi Guo, Dr. Pouya Haghi,

Prof. Tong Geng, Dr. Vipin Sachdeva, Dr. Woody Sherman, Noah Cherry, Dr. Chen

Yang, Dr. Rashmi Agrawal, Dr. Alan Ehret, Dr. Mihailo Isakov, Miguel Mark, and

Donato Kava for their contributions, expertise, and insights, which have significantly

enhanced the quality of my research. I would like to express my special appreciation

to my research advisor during the master’s program and the first year of my PhD,

Professor Michel A. Kinsy for encouraging me to pursue a PhD and continuing to be

available for me to reach out for advice any time.

Next, I would like to thank my wife, Hasini for all the support she has provided

since I started my academic journey all while completing her PhD and currently

working as a postdoctoral researcher. She has always encouraged me to aim higher

and do my best. I also like to thank my parents, brother, and other family members

for supporting me in various ways during the last seven years.

iv

Finally, I like to express my appreciation for my friends at Boston University

and elsewhere; Ranga, Binu, Nari, Rashmi, Alan, Donato, Mihailo, Miguel, Chun-

shu, Pouya, Anqi, Hafsah, Reza, Zaid, Xiteng, Shining, Chathura, Tony, Rushi,

Robert, Zahra, Penny, Efe, Cansu, Nadee, Nipuna, Maneesha, Tharanga, Maleen,

Sandamalee, Sachille, Namitha, Prashan, Dinelka, and numerous others I did not

mention by name, for their continued friendship even though I am not the most

responsive or available when it comes to being friends.

v

COMPONENT DESIGN FOR APPLICATION-DIRECTED

FPGA SYSTEM GENERATION FRAMEWORKS

SAHAN LAKSHITHA BANDARA

Boston University, College of Engineering, 2024

Major Professor: Martin C. Herbordt, PhD
Professor of Electrical and Computer Engineering

ABSTRACT

Field Programmable Gate Arrays (FPGAs) can fulfill many critical and contrast-

ing roles in modern computing due to their combination of powerful computing and

communication, inherent hardware flexibility, and energy efficiency. FPGAs are tradi-

tionally used in application areas such as emulation, prototyping, telecommunication,

network packet processing, Digital Signal Processing (DSP), and a myriad of embed-

ded and edge applications. Over the last decade, this use has expanded to include

various functions in data centers including supporting low-latency communication

and as a computing resource offered by cloud service providers.

There are, however, challenges in development and design portability in FPGAs

as the typical design flows involve rebuilding the entire hardware stack for each de-

ployment. To overcome these challenges and make FPGAs more accessible to devel-

opers, FPGA vendors and academic researchers have made attempts to add operating

system-like abstractions to the FPGA use model. One approach is providing infras-

tructure logic, typically referred to as an FPGA shell, that implements and manages

external interfaces and provides services necessary for application logic to function

properly. While they simplify the FPGA use model, fixed implementations of FPGA

vi

shells do not fully address the design portability limitations. They often use FPGA

resources unnecessarily as most applications do not require all the capabilities of the

FPGA shell, and there is no flexibility in terms of the features implemented by the

FPGA shell.

Automatic generation of FPGA system designs based on application requirements

can overcome the limitations of fixed FPGA shells. It allows the infrastructure logic

to be customized to match the application requirements and, therefore, to provide

better resource utilization. Automatic system generation also makes it easier to port

designs across devices. We refer to a system design that manages FPGA resources

and provides services to a user application as a “hardware operating system” (hOS);

and a framework that maps user requirements and available system components to

such system designs as an hOS generator.

Critical to automatic system generation for FPGAs are system components de-

signed to be integrated into an hOS generator. In this dissertation, we develop a

design strategy that maximizes component reuse and design portability while main-

taining the implementation effort at an acceptable level. We also present a component

design example that follows the proposed design strategy to implement a host-FPGA

PCIe communication subsystem. We demonstrate how the PCIe subsystem is inte-

grated into a system generator framework, used to enable different applications, and

ported to different devices.

Additionally, we establish a set of characteristics for a good hOS generator design.

We also discuss how and to what extent the system generation framework used in this

work, named DISL, displays these ideal characteristics. Finally, we attempt to address

the open question of how to evaluate a system generator. We discuss qualitative

metrics and how they relate to the previously identified ideal characteristics of an

hOS generator; and evaluate DISL based on these metrics.

vii

Contents

1 Introduction 1

1.1 Context . 1

1.2 The Problem Addressed . 4

1.3 Thesis Statement . 9

1.4 Terminology and Scope . 10

1.5 Contributions . 13

1.6 Organization . 14

2 Background and Related Work 16

2.1 OS-like Abstractions, FPGA shells, and System Generators 16

2.1.1 Integrating FPGAs into the host OS/Hypervisor 17

2.1.2 Implementing OS-like capabilities on the FPGA 19

2.1.3 System Generators . 22

2.1.4 Design Automation . 22

2.2 Dynamic Infrastructure Services Layer 23

2.2.1 Directory Structure . 24

2.2.2 DISL Terminology . 26

2.3 Host-FPGA Communication . 31

2.3.1 Background . 31

2.3.2 Related Work . 35

2.4 Applications . 36

2.4.1 Overview . 36

viii

2.4.2 Key-value Stores . 37

3 Hardware Operating System Generator and Component Design 41

3.1 What is an hOS Generator? . 41

3.2 hOS Generator Design Choices . 44

3.2.1 Minimum Set of Capabilities for the Generated hOS 44

3.2.2 Monolithic Vs Modular Design 48

3.2.3 Generating hOS Layers . 52

3.2.4 hOS Components . 53

3.2.5 System Specification . 55

3.2.6 hOS Generator Output . 57

3.3 Component Design and hOS Generator Attributes 58

3.3.1 DISL Component Design Steps 62

3.4 Component Design Strategy . 68

3.5 Summary . 72

4 PCIe Subsystem Design: Enabling Virtio Driver Support on FPGAs 74

4.1 Introduction . 75

4.2 Methodology . 78

4.2.1 Device Identification . 78

4.2.2 Device Initialization . 79

4.2.3 Virtio structures . 85

4.2.4 Data Movement . 89

4.3 Evaluation . 92

4.3.1 Results . 92

4.3.2 Resource Usage . 94

4.3.3 Implementation challenges . 95

4.4 Integrating into DISL . 95

ix

4.4.1 Updating Configuration Files 98

4.5 Conclusion . 102

5 Performance Evaluation and Porting the PCIe Subsystem Design 107

5.1 Introduction . 107

5.2 Background . 112

5.2.1 Virtio Device Drivers . 112

5.2.2 Legacy Device Drivers . 114

5.2.3 Using Virtio Drivers to Interact with Physical Devices 114

5.3 Methods . 115

5.3.1 Test case used: Virtio Network device 115

5.3.2 Experimental Setup . 117

5.4 Challenges, Workarounds, and Assumptions 118

5.4.1 Differences in Device Driver Design 119

5.4.2 Differences in Device/application semantics 120

5.4.3 FPGA design . 122

5.5 Evaluation . 122

5.6 Porting the PCIe Subsystem Design 126

5.6.1 Adding Board Support . 129

5.7 Conclusion . 130

6 Evaluating an hOS Generator 133

6.1 Example Application: Transparent Client-Side Caching for Key-Value

Store Applications Using FPGAs . 134

6.1.1 Introduction . 135

6.1.2 Method . 137

6.2 Building a System Using DISL . 143

6.2.1 Usability Evaluation . 151

x

6.2.2 Building the KVS Design Using DISL 153

6.3 Matching the Exact Application Requirements 155

6.4 Porting Designs to New Devices . 158

6.4.1 Scaling Designs . 159

6.5 Evaluation of the Key-Value Store Design 160

6.5.1 Experimental Setup . 160

6.5.2 Results . 161

6.6 Optimizing System Components . 162

6.7 Summary . 166

7 Summary and Future Work 169

7.1 Conclusion . 169

7.2 Future Research Directions . 170

7.2.1 Improvements to DISL . 170

7.2.2 Applications Enabled by the PCIe Component Design 172

A System Definition for the Key-value Store Design 174

References 185

Curriculum Vitae 198

xi

List of Tables

2.1 Virtio Device Types . 40

4.1 Resource usage (total LUTs) comparison between the PCIe IP core

and the Virtio controller . 94

4.2 Resource usage (total Flipflops) comparison between the PCIe IP core

and the Virtio controller . 94

5.1 Tail latencies for data movement with Virtio and XDMA. 125

5.2 Comparison of Artix 7 and Ultrascale+ FPGAs 128

6.1 Example Taxonomy of FPGA Use Cases 156

xii

List of Figures

1·1 Mapping application requirements to system configurations. 7

2·1 Simplified Overview of DISL. 24

2·2 Virtio para-virtualization. 34

2·3 New use models for a physical Virtio device. 35

3·1 Code Partitioning Scheme. 64

4·1 Virtio implementation. 87

4·2 Device enumeration and initialization sequence. 103

4·3 Virtio device regular operation . 104

4·4 Device enumeration for Xilinx example design. 105

4·5 Device enumeration for Virtio console device. 105

4·6 Paritioning the PCIe subsystem. 106

5·1 Virtio interface on the FPGA eliminates the need for back-end Virtio

devices and legacy device drivers. 113

5·2 Virtio device architecture . 116

5·3 Round-trip latency with Virtio and vendor-provided device drivers. . 123

5·4 Round-trip latency visualization. 124

5·5 Breakdown of data movement latency using the Virtio driver. 125

5·6 Data movement latency breakdown with the vendor-provided driver. . 126

5·7 Partitioned PCIe Subsystem . 127

xiii

5·8 Construction of the PCIe Subsystem Using Different Variants of the

XDMA IP Core . 132

6·1 Target deployment architecture (Adapted from [Choi et al., 2018]) . . 138

6·2 KVS Design Overview . 140

6·3 KVS Design with RISC-V Processor as the Controller 141

6·4 Example Multi-tenant Deployment 143

6·5 An example system configuration with a softcore processor 147

6·6 KVS Design Implemented with DISL 154

6·7 Differences Between System Descriptions Targeting Two Development

Boards . 167

6·8 Application Throughput versus Cache Hit Rate 168

6·9 Network Bandwidth versus Cache Hit Rat 168

xiv

List of Abbreviations

ARP Address Resolution Protocol
AXI Advanced eXtensible Interface
BAR Base Address Register
BIOS Basic Input/Output System
CAD Computer-Aided Design
COTS Commercial Off-The-Shelf
CPU Central Processing Unit
DPU Data Processing Unit
DSP Digital Signal Processing
FPGA Field Programmable Gate Array
FSM Finite State Machine
GUI Graphical User Interface
HDL Hardware Description Language
HLS High Level Synthesis
IPU Infrastructure Processing Unit
LUT Look Up Table
NIC Network Interface Card
NPU Neural Processing Unit
PCIe Peripheral Component Interconnect Express
SERDES Serializer/Deserializer
TCL Tool Command Language
TLP Transaction Layer Packet
UART Universal Asynchronous Receiver Transmitter

xv

1

Chapter 1

Introduction

1.1 Context

From the 1970s to the 2000s, CPU makers depended mainly on improvements in

single-core performance for increasing computing power. These improvements were

due to a number of factors: architectural advances, often as a function of newly

available chip area; architectural advances, such as deeper pipelines, that allowed for

increased operating frequency; and, most of all, process-driven increases in operating

frequency due to reductions in feature size. So important was the latter that, between

major nodes, there were often complete cycles that heavily relied on shrinking of

the process technology for performance improvement with minimal microarchitecture

changes [Intel, 2011,Wikipedia, 2024c]. In the early 2000s, when frequency scaling

became more challenging, architectural advances continued with increased parallelism

on instruction, data, and task levels, with deeper pipelines, superscalar processors,

and multi-core architectures. Today Moore’s Law [Moore, 1965,Wikipedia, 2024b]

and Dennard scaling [Dennard et al., 1974,Wikipedia, 2024a] are close to the end

of being able to extract more computing power only from single-core performance

improvements. High energy density and resulting dark silicon are putting a damper on

multi-core performance as well. CPU makers are forced to focus on energy efficiency

with architectures such as ARM big.LITTLE [ARM, 2024] and Intel Performance

Hybrid Architecture [Intel, 2023b]. The demand for more computing power from

modern workloads such as machine learning is becoming increasingly more difficult

2

for traditional processors to handle and is currently addressed, e.g., with general-

purpose accelerators such as GPGPUs. However, there are challenges in scaling across

multiple devices efficiently as some of these workloads cannot be supported by a single

device type.

More recently there is a movement towards specialization with domain-specific

architectures rather than general-purpose processors and accelerators. Some current

examples of domain-specific architectures are for machine learning [Google Cloud,

2024b,Abts et al., 2022,Prabhakar et al., 2022]. Even general-purpose accelerators,

such as GPUs and FPGAs, contain ever more specialized hardware to support specific

application domains [Nvidia, 2024,AMD, 2024a]. During their Turing Lecture [Hen-

nessy and Patterson, 2019], David Patterson and John Hennessy called this “A New

Golden Age of Architecture,” and, among other trends, described the movement back

to specialization and domain-specific architectures.

Specialization, however, has its limits. We cannot build custom chips and acceler-

ators, or allocate area on general-purpose chips (as we do for common operations such

as encryption), for every possible type of specialized operation/application. This is

where reconfigurability comes into play. There are domain-specific architectures with

a certain level of reconfigurability, enabling those to be configured to match different

applications from the same domain, e.g., data-flow architectures [Prabhakar et al.,

2022]. There is also interest in integrating these components with coarse-grained

reconfigurability to general-purpose processors [AMD, 2024c,AMD, 2024b].

While there is increased interest in coarse-grained reconfigurability, including

through Coarse Grained Reconfigurable Arrays (CGRAs), Field Programmable Gate

Arrays (FPGA) have been around since the 1980s providing fine-grained reconfigura-

bility. Originally developed to provide glue logic in a single package, their complexity

grew along Moore’s Law until their applicability had broadened to include a number of

3

stand-alone use cases. These have included emulation, prototyping, communication,

Digital Signal Processing (DSP), embedded applications, and, above all, applications

where tight coupling of communication and computation was paramount. With the

push for more reconfigurability and customization, they are becoming more common-

place from the data center to the edge, and are used in many different configurations.

With their fine-grained reconfigurability, FPGAs can act as accelerators for multiple

application domains.

Another recent trend, especially in the data center, is offloading certain tasks to

external devices to free up more CPU cycles for user workloads. These are referred

to (by different vendors) as DPUs [Burstein, 2021], IPUs [Sundar et al., 2023], or

smartNICs [Dastidar et al., 2023]. These devices provide a level of programmability

that allows their use to help applications scale well over multiple nodes. FPGAs are

a commercial off-the-shelf (COTS) solution that match all of these scenarios and are

becoming popular in data centers.

FPGAs can fulfill many contrasting roles in modern computing due to their combi-

nation of powerful computing and communication, especially when these are tightly

coupled; inherent hardware flexibility; and energy efficiency. However, while the

number of FPGAs deployed from the cloud to the edge is on the rise, FPGAs remain

challenging to program compared to CPUs and even other accelerators such as GPUs.

Despite immense advances in FPGA programming environments, including the High-

Level Synthesis (HLS) tools, the level of hardware knowledge required to program

an FPGA often still makes it prohibitive for most application developers to utilize

the FPGAs to accelerate their applications. FPGAs are becoming increasingly het-

erogeneous and coarse-grained with more hardened logic added alongside and within

the reconfigurable fabric. These can range from fine-grained components within the

FPGA fabric, such as block RAMs (BRAM) and Digital Signal Processing (DSP)

4

slices to larger ones such as Gigabit transceivers, and PHYs for external interfaces

such as PCIe and DRAM. These hardened logic blocks enable higher operating fre-

quencies, higher I/O bandwidth, and better resource utilization. However, effectively

incorporating these into designs takes additional effort and specialized knowledge

compared to implementing simple application logic.

HLS tools have taken significant leaps in recent years. These allow application

developers to use high-level languages such as C or Python to describe hardware in-

stead of hardware description languages (HDL). High-level languages together with

HLS tools are becoming increasingly good at implementing application logic, some-

times providing comparable performance to HDL designs.

1.2 The Problem Addressed

The problem addressed in this dissertation begins with the fact that a functioning

FPGA design usually requires infrastructure logic such as I/O to facilitate the func-

tionality of the application logic. Implementing I/O interfaces typically involves logic

blocks that are hard in the sense that they are not configurable. These hard blocks

vary significantly across devices, in functionality and the types of interfaces exposed.

Incorporating these blocks into designs requires specialized knowledge. Describing

the infrastructure logic in a high-level language and generating it using HLS is nei-

ther efficient nor straightforward. Therefore, rather than requiring a user to design

this infrastructure logic, FPGA vendors provide FPGA shells, which take up a fixed

region on the FPGA fabric to implement all the infrastructure logic to enable the

application logic designed by the user.

These vendor-provided shells, however, have several limitations.

• The fixed implementations take up a fixed amount of FPGA resources even if

some of the features/interfaces are not used by a given design.

5

• FPGA shells are not available for all devices, limiting users to a fixed set of

devices/development boards.

• FPGA shells require the user logic to implement specific interfaces to interact

with the shell. This inhibits flexibility to optimize and to alternative design

strategies: users are forced to follow the model/interface/connectivity the ven-

dor believes to be optimal.

• FPGA shells, including their interfaces, vary by device, even within a device

family. This often requires applications be updated, sometimes through sub-

stantial engineering effort, whenever an application is ported to a new device.

Expanding on this last point, even when an expert implements an FPGA design,

the design portability is low due to the device- and vendor-specific aspects of the

design. Application logic typically described in a hardware description language or

a high-level language targeting high-level synthesis is generally at least somewhat

portable across devices. However, additional design complexity and lack of portability

arise from using device- and vendor-specific components.

Moving beyond the FPGA chips themselves, commercially available FPGA devel-

opment boards each have different peripheral components – for instance, the type of

DRAM or the type of transceivers for network connectivity. A designer is required

to capture all the device/vendor-specific details in their design. Typical FPGA de-

sign flow involves redesigning most of the hardware stack whenever designing a new

application or porting an existing application to a different device. This is highly

inefficient and the level of effort and expertise required create high barriers to entry

and design reuse.

We posit in this thesis that the current state of FPGA development is analogous to

how the CPUs were programmed before portable operating systems: an application

developer might need to learn and integrate an entirely new API to port an application

6

to a new architecture, even from the same vendor. As FPGAs do not have operating

systems, each application design also entails implementing, or at least accounting for,

the entire hardware stack.

Prior work has attempted to enhance the usability of FPGAs by introducing op-

erating system-like abstractions to the FPGA use model. There are existing offerings

that behave like an operating system for FPGAs by implementing external interfaces

and providing services to user logic over fixed interfaces. We refer to such an im-

plementation as a hardware operating system (hOS) due to their similarity to

a software operating system in managing system resources and providing services to

applications. These include FPGA shells from FPGA vendors and third parties. This

terminology is elaborated further in Section 1.4.

Device support for current hOS offerings is extremely limited regardless of whether

they are provided by device vendors or third parties. The vendor- and device-specific

nature of FPGA shells, and the lack of clear separation between device-specific and

generic logic, makes it impossible to port an FPGA shell designed for a particular

device to another without incurring significant engineering effort to reimplement most

of the components. Since each FPGA shell offers a different set of interfaces and

services, porting a design from one FPGA shell to another is also challenging and

would possibly require parts of the design to be reworked. Another limitation of

existing offerings is the lack of flexibility in terms of features. A user has limited

control over which components are included in the FPGA shell regardless of the set

of requirements for a given user application.

Some of the issues described above can be mitigated if there is an intermediate

layer or framework that maps the various application requirements to different system

configurations. Figure 1·1 depicts this idea. Each of the applications has its own set

of requirements. The mapping framework maps each application to a different system

7

configuration that satisfies the application requirements.

Figure 1·1: Mapping application requirements to system configura-
tions.

For example, assume that App 1 is a SmartNIC application and App 2 is an

accelerator for some computationally intensive part of a host program. The system

configuration for App 1 must include PCIe and network interfaces. However, the con-

figuration for App 2 only needs the PCIe interface. Both configurations could include

other interfaces such as DRAM depending on additional application requirements.

If the same system configuration is used for both applications, FPGA resources are

wasted in the case of App 2 because the network interface is unnecessary. It is the

responsibility of the mapping framework to map each application to a system config-

uration tailored to that application.

8

The mapping framework in Figure 1·1 maps each of the applications to existing

system implementations. This way, we are ultimately going to run into a similar issue

as existing solutions where the mapping framework cannot find the ideal configura-

tions for certain applications because those were never implemented. Therefore, it is

forced to map these applications to sub-optimal configurations.

Rather than mapping applications to fixed implementations, making the mapping

framework also automatically generate the system allows us to map more applications

to tailored systems. In this case, instead of existing implementations, the system

components will be an input to the intermediate layer that generates the customized

system. Such a framework that maps application requirements to a system configu-

ration and generates the said system using components from a component library is

referred to as a hardware OS generator in this work.

OS-like implementations for FPGAs have severe limitations with regard to sup-

ported devices. All such offerings typically have a short list of supported devices.

In contrast to this, software operating systems support a larger variety of architec-

tures and devices without the necessity to rework the operating system or the user

applications. An hOS generator capable of generating hardware OSs for different

devices enables a user to keep the application logic constant and generate different

implementations of infrastructure logic to match different devices and deployment

scenarios. This reduces the effort necessary to port applications between devices. By

implementing a design strategy that clearly separates device-specific and -agnostic

logic for hOS components, parts of infrastructure logic can also be reused and ported

to different devices.

To enable an hOS generator to achieve the capabilities mentioned above, the com-

ponents themselves must be designed with those capabilities in mind. Applying the

abstract concepts discussed in relation to a system generator to the components is

9

not a straightforward exercise. For instance, consider the idea of clearly separating

the device-specific and generic logic when implementing an hOS. When applying this

concept to a component, there is a range of strategies that achieve this goal to differ-

ent extents. This is especially true for components that involve external interfaces.

Given the increasingly heterogeneous nature of the current FPGA architectures, a

component used by the hOS generator could include hardened ASIC blocks, IP cores

that include both device-specific and -agnostic logic, and generic logic implemented by

an FPGA designer. There is a multitude of ways all of these could be separated into

device-specific and generic partitions. However, the separation should be carried out

keeping the target outcome in mind. An unnecessarily strict partitioning scheme may

result in high implementation overhead while not providing any additional benefit in

terms of the target capabilities.

1.3 Thesis Statement

Before stating our thesis we summarize the discussion so far.

• Reconfigurable devices such as FPGAs have an essential place in a variety of

application domains.

• FPGAs require logic to interface between the internal application and external

devices, i.e., an hOS.

• This hOS currently is either general, e.g., supplied by the vendor, or built to

order. Both have problems: the first inhibits portability and efficiency, while

the second is too expensive for all but the largest applications.

• An hOS generator that creates a bespoke hOS for any given device/application

combination would solve this problem, but has not yet been successfully created.

10

A crucial factor in creating an hOS generator is the availability of components that

possess certain attributes so that the hOS generated using them achieves the goals

of a system generator such as: (i) reducing the expertise and effort required to build

FPGA applications, (ii) providing the exact services required by the application logic

without overusing resources, and (iii) improving design portability and reusability.

In particular, our thesis is that if the components used by the system gener-

ator have been created following a design strategy that applies the abstract

goals of the system generator to the components, then an application-

directed system generation framework for FPGAs can reduce the special-

ized knowledge and effort necessary to implement FPGA designs while

also improving resource utilization and design portability.

1.4 Terminology and Scope

The terms hardware operating system and FPGA operating system have been used in

prior work to refer to various attempts at introducing operating system-like abstrac-

tions to the FPGA use model. However, there is no consensus on what an operating

system for FPGAs is. The strategies employed in prior work range from modifica-

tions to host operating systems to FPGA shells providing services to user applications

implemented on FPGAs. The efforts focused on host operating systems/hypervisors

typically target FPGA-based accelerators and attempt to integrate them into the

thread/process abstractions of the host OS to simplify offloading compute tasks to

the accelerators. The modifications to the operating systems/hypervisors could be

accompanied by FPGA shells that implement external interfaces and provide the

connectivity between the host OS/hypervisor and application logic on the FPGA.

The set of works focused on FPGA shell implementations attempts to provide

advanced capabilities via the shell implementation rather than making modifications

11

to the host operating system. These are accompanied by software components such

as runtime libraries, and device drivers on the host side. FPGA shell implementa-

tions from FPGA vendors also fall under this category. The capabilities provided

by different FPGA shells from prior academic works and vendors range from basic

capabilities such as implementing external interfaces to more advanced capabilities

such as scheduling different application kernels using partial reconfiguration, to fully

software operating system-like capabilities such as virtual memory enabling hardware

kernels on the FPGA to share an address space with an application executing on a

host machine. There is no clear boundary between these two approaches. Rather,

the research focus of each work falls on a spectrum between software and hardware.

Most solutions include both hardware and software components.

In this dissertation, we define a hardware operating system as a layer of hardware

that implements and manages lower-level interfaces and provides services (such as

memory and network access) to the application logic on the FPGA. One or more user

applications can share the FPGA resources spatially or temporally. Beyond these

basic capabilities, any other advanced functionality such as scheduling FPGA kernels

using partial reconfiguration could be implemented as optional capabilities to be

selected by a user based on the specific requirements for the given application(s) and

deployment context. This approach enables streamlined implementations without the

unnecessary overhead incurred by unused features. Most FPGA shell implementations

from vendors and third parties match the above definition except for the fact that they

are fixed implementations without the flexibility to select the capabilities. Therefore,

throughout this dissertation, we use the term hOS to refer to portions of generated

systems or fixed implementations from prior works that match our definition of an

hOS. These include the part of the design referred to using terms such as FPGA shell,

and platform layer in prior works.

12

We do not consider the host software stack a part of the FPGA hardware OS

(hOS). However, the hOS should implement the interfaces and any additional logic

necessary to interact with the host software chosen by a user. One reason to separate

the host software from the hOS is to not limit an hOS to the accelerator use model as

many of the prior works have. An hOS should support any of the different deployment

scenarios for FPGAs and not all of these involve a host machine controlling the FPGA.

Therefore we focus our efforts on implementing the necessary infrastructure layer on

the FPGA without specifying the connectivity with a host. In Chapter 4, we present a

PCIe subsystem implementation that provides host-FPGA communication. However,

it is implemented as a discrete component that can be selected and configured by a

user instead of a tightly coupled part of an FPGA hOS.

Much of the prior works on introducing OS-like abstractions for FPGAs focus

extensively on application developers who are not hardware developers to the point

of trying to hide the hardware details completely from a user by creating deep ab-

straction layers (eg: virtual memory, memory management) that allow an FPGA to

behave very much like a general purpose processor and integrate FPGAs into the

host system’s software stack. While this results in a simple use model for a software

developer, it also lacks the flexibility for a hardware developer to choose capabilities

and optimize the infrastructure logic to match a particular application/deployment

context. In this work, we consider a hardware OS for FPGAs to be useful for a

wider range of users with different levels of expertise in hardware design. Generating

hardware OSs specific to a given use case is more suitable to realize the above goal

compared to providing fixed implementations that lack flexibility.

We use an existing FPGA system generator named Dynamic Infrastructure

Services Layer (DISL) as the basis for the component and system implementations

presented in this work. Therefore, this dissertation shares some of the terminology

13

from DISL. DISL is covered in detail as part of related work in Chapter 2.

1.5 Contributions

There are two major high-level contributions in this dissertation.

The first is the exploration of how the abstract design concepts for a hardware

operating system generator are applied to the component designs and the development

of a design strategy for hOS components that achieves the overall design targets of

an hOS generator framework, such as reuse and portability.

The second is a PCIe subsystem that provides host-FPGA communication services

to user applications and enables the repurposing of in-kernel Virtio device drivers as

generic device drivers for FPGAs. We design and implement the PCIe subsystem

following the design strategy identified above. We also integrate the PCIe subsystem

into the DISL FPGA system generator framework and demonstrate how the PCIe

subsystem enables different applications and how the component design guidelines

enable component reuse and design portability.

Some additional contributions are as follows.

We conduct a discussion on hardware operating systems and hOS generators to

establish a set of ideal characteristics for each. Next, we explore the relationship

between these attributes and the design decisions regarding the hOS design and the

components used to generate the hardware operating systems. We also analyze the

implementation of DISL and related works to identify how they achieve some of the

desirable characteristics.

Also, we address the open question of how to evaluate an hOS generator for FP-

GAs. Prior work has established different metrics such as resource and performance

overhead to evaluate the OS-like abstractions for FPGAs. However, evaluating a

system generator is not addressed in prior work. We discuss several qualitative met-

14

rics and how they relate to the previously discussed ideal characteristics of an hOS

generator. We also evaluate DISL using the proposed metrics and propose potential

improvements.

These contributions have the potential for the following significance.

1. We develop a set of design guidelines the FPGA community could use when

implementing components for system generators. These guidelines are meant

to improve the reusability and portability of the components as well as the

systems generated using the components.

2. We address a limitation in existing solutions for host-FPGA communication

with a PCIe subsystem design that allows the FPGA community to replace

vendor-provided and custom device drivers with generic Virtio drivers.

3. By establishing a set of ideal attributes for system generators and exploring

their relationship with some of the design decisions, this work assists future

researchers in evaluating their design choices for system generators.

1.6 Organization

The remainder of this dissertation is organized as follows.

• We discuss prior work on introducing operating system-like abstractions to FP-

GAs in Chapter 2.

• In Chapter 3, we establish a set of ideal characteristics for a general-purpose

hardware OS generator for FPGAs and assess how well the existing FPGA sys-

tem generators incorporate these characteristics. Next, we explore the relation-

ship between the hOS generator attributes and the design decisions regarding

the hOS components. Finally, we present a set of design guidelines for hOS

components.

15

• A PCIe subsystem design that allows using in-kernel Virtio device drivers as

generic device drivers for FPGAs is presented in Chapter 4.

• We evaluate the performance of Virtio drivers against vendor-provided device

drivers in Chapter 5. We also port the PCIe subsystem to a new device.

• In Chapter 6, we discuss qualitative metrics to evaluate an hOS generator and

evaluate the system generator used in this work using a design example. We

demonstrate how a hardware OS generator can be used to implement different

applications and easily port them across devices while scaling the application

to better utilize the different resource availability of the different devices. Fur-

thermore, we demonstrate how application-specific generation of the hardware

OS results in lower overhead compared to a fixed implementation.

• Finally, in Chapter 7, we present future research directions and conclude this

dissertation.

16

Chapter 2

Background and Related Work

In this chapter, we provide background and present the prior work related to the

topics discussed in this dissertation. The main sections of this chapter cover the

following.

1. Prior work on introducing operating system like abstractions to FPGAs, system

generators for FPGAs, and FPGA shells.

2. Description of DISL, which is the system generator used for all the implemen-

tations in this work.

3. Prior work on improving host-FPGA communication, related to the component

design example in Chapter 4.

4. Prior work related to different applications discussed in this dissertation, in-

cluding Key-value stores and distributed caching in the network implemented

in the example design in Chapter 6.

2.1 OS-like Abstractions, FPGA shells, and System Gener-

ators

In this section, we cover prior work on FPGA virtualization and OS-like abstractions

for FPGAs. FPGAs do not have operating systems. Therefore, a typical FPGA

design cycle involves implementing the complete hardware stack. While this allows

17

application-specific optimizations, this is not necessary in a lot of use cases. There-

fore, many prior works have explored the idea of introducing operating system like

abstractions to the FPGA use model. These works attempt to achieve a combination

of objectives such as:

• Providing an abstraction that hides the hardware specifics from application

developers and provides applications with simple, consistent, and familiar in-

terfaces to access the FPGA resources

• Enabling efficient sharing of FPGA resources among multiple users and appli-

cations

• Transparent provisioning and management of FPGA resources

• Data security and system resilience by means of performance and data isolation

among different users and applications

• Flexibility and scalability when deploying different applications on FPGAs

These works can be broadly categorized into two groups. The first set of works

attempts to integrate FPGA-based accelerators into the thread/process model of

the host operating system. These usually involve modifications to the host operating

system or the hypervisor. The second set of prior works focuses on providing advanced

capabilities such as scheduling within the FPGA itself.

2.1.1 Integrating FPGAs into the host OS/Hypervisor

Berkeley Operating system for ReProgrammable Hardware (BORPH) [So and Broder-

sen, 2006, So, 2007, So and Brodersen, 2008] is an operating system designed for

FPGA-based reconfigurable computers. The authors extend the Linux kernel to pro-

vide kernel support for FPGA applications. BORPH establishes the notion of “hard-

ware process” to represent an FPGA application and treat them as regular Linux

18

processes. Although BORPH targets FPGAs deployed as tightly or loosely coupled

coprocessors, it doesn’t treat the FPGA as a coprocessor that is part of the hardware

platform. Instead, BORPH represents the reconfigurable fabric as a general-purpose

computing resource that a user can schedule processes on (similar to a logical core

of the CPU). BORPH uses regions of FPGA fabric as a computation unit to spawn

hardware processes, similar to the way software processes are spawned to a processor.

Each reconfigurable region is defined as a hardware region(hwr). A hardware process

is spawned using a BORPH object file which is a binary file format that includes

the bitstreams and methods necessary to configure an FPGA region. Communication

with the FPGA region is implemented using standard UNIX file pipes.

The authors of [Peck et al., 2006, Anderson et al., 2006], and [Anderson et al.,

2007] present the ‘Hybridthreads Computational Model’ (hthreads) and the ‘Hard-

ware Thread Interface’ (HWTI) as a unifying programming model for application

threads running within a hybrid CPU/FPGA system. The HWTI supports the gen-

eralized pthreads API semantics. Threads within an hthreads design are either com-

piled to run as software binaries on general-purpose CPUs or are translated and

synthesized as application-specific hardware threads to run as hardware cores within

the FPGA fabric. The HWTI provides a hardware thread with a global distributed

memory, support for pointers, a generalized function call model including recursion,

local variable declaration, dynamic memory allocation, and a remote procedural call

model that enables hardware thread access to library functions.

ReconOS [Lübbers and Platzner, 2009, Agne et al., 2013] is another attempt at

semantically integrating hardware accelerators into the host OS environment. It

extends the multithreading programming model with hardware thread support. A

hardware thread represents an accelerator implemented on the FPGA. An ‘OS syn-

chronization FSM’ is also implemented alongside each accelerator to enable OS calls

19

from within the hardware thread. These hardware and software modifications let the

hardware threads interact with software threads using standard OS mechanisms such

as semaphores, mutexes, condition variables, and message queues.

OPTIMUS [Ma et al., 2020] is a hypervisor that supports a shared memory model

for FPGA-based accelerators instead of the typical host-centric model. In a shared

memory model, the accelerator design implemented on the FPGA shares a memory

space with a process running on the host CPU. It can also issue DMA requests without

the involvement of the host CPU. OPTIMUS targets use cases where a service provider

programs the FPGA with multiple accelerators and the hypervisor uses spatial and

temporal multiplexing to map the user processes to the accelerators. OPTIMUS does

not handle the reconfiguration of the FPGA. Authors of [Liu et al., 2021] present

‘MEGATRON’ an extension to [Ma et al., 2020] aimed at improving the DMA

performance of a shared memory FPGA platform. MEGATRON is a hybrid address

translation service consisting of a hardware TLB and a software page table walker.

2.1.2 Implementing OS-like capabilities on the FPGA

There are hOS-like solutions provided by FPGA vendors, typically referred to as

FPGA shells. An FPGA shell takes up a fixed portion of the FPGA fabric to imple-

ment the communication infrastructure such as PCIe and Ethernet controllers, DMA

engines, memory interfaces, and any other peripherals. These are typically coupled

with runtime libraries such as Xilinx runtime library (XRT) [Xilinx Inc., 2022] and

Open Programmable Acceleration Engine (OPAE) [Intel, 2017], which provide the

user with simple APIs for programming, data movement, and controlling the FPGA.

These typically provide a user-space library, and kernel space device drivers that work

with the FPGA shell. However, these FPGA shells are designed to target specific de-

vices and do not differentiate between device-specific and generic logic. Therefore,

porting a shell from one design to another is not a trivial task as it involves redesign-

20

ing the whole shell. Since the device support is very limited, the same design may

not be reusable on a different device from the same vendor even when it is a device

of the same family with comparable hardware resources.

The cloud service providers such as Amazon [Amazon Web Services, 2024], and

Microsoft [Putnam et al., 2016] who offer FPGAs as a service also use FPGA shells

in their deployments. They provide custom toolchains that allow a user to compile a

user design and ensure that the design is compatible with the FPGA shell. Similar

to vendor-provided FPGA shells, the user design is loaded into the dynamic region

of the FPGA using partial reconfiguration (PR). The FPGA can be shared among

multiple users by loading different bit streams. The toolchains and the FPGA shells

are specific to the FPGA boards used by the different cloud service providers. There is

no way to deploy the same design on FPGAs from different service providers without

significant engineering effort.

The Latency-insensitive Environment for Application Programming (LEAP)

[Fleming and Adler, 2016] is built around latency-insensitive communications chan-

nels. The authors argue that an FPGA operating system should use a different

abstraction from an OS for general-purpose CPUs to represent the fundamentally

different computing model of an FPGA. LEAP provides device abstractions for FP-

GAs and a collection of I/O and memory management services for the applications.

The authors of [Oliver et al., 2011] describes coupling CPUs and FPGAs using

Intel QuickPath Interconnect (QPI), which is a cache-coherent fabric used in Intel

CPUs. In the platform described in this work, one of the CPU sockets is populated

with an FPGA module capable of implementing a QPI link. The application-specific

hardware elements instantiated on the FPGA are called ‘Accelerator Functional Units’

(AFU). The static region implements the QPI physical, link, and protocol layers. The

use of a cache-coherent fabric enables many new capabilities such as shared virtual

21

memory and low-latency message transfers.

The authors of [Vogel et al., 2018] also present a hardware/software framework for

enabling shared virtual memory for FPGA accelerators. They target platform FPGAs

that are heterogeneous SoCs that includes a hard processor system alongside the

FPGA fabric. The main hardware component introduced is a configurable IOMMU

design that can be instantiated on the FPGA and interfaced with the accelerator to

enable shared virtual memory. The software components running on the host include

a kernel-level driver to manage the IOMMU hardware and a user space runtime

library.

The Feniks FPGA operating system [Zhang et al., 2017] targets large-scale FPGA

deployments in datacenters. It provides abstracted interfaces to FPGA accelerators

including host, off-chip memory, and network interface. Feniks uses partial reconfigu-

ration (PR) to separate the operating system and the application accelerators. It also

provides a resource allocation framework for FPGAs throughout a datacenter with

the assistance of a resource allocation agent running on host CPUs. Application de-

velopers are provided with a set of templates with different PR region configurations.

The authors of [Vaishnav et al., 2020] attempt to develop a modular FPGA op-

erating system with FOS. They envision each component in FOS both hardware and

software being modular and replaceable. The aim is to allow hardware, software,

accelerator, and application developers to innovate independently and still being able

to combine their implementation together to build functioning designs.

The most feature-rich hOS implementation we are aware of is Coyote [Korolija

et al., 2020]. It is a suite of OS abstractions working with the host OS to provide ca-

pabilities such as shared virtual memory, communication, and memory management

to the hardware accelerators. Nested dynamic reconfiguration is used to support in-

dependently reconfigurable hOS layers. The application layer is divided into multiple

22

‘virtual FPGAs’ (vFPGA). Accelerators share these PR regions spatially and tempo-

rally. The service layer implements external interfaces such as memory and network,

and additional services such as TCP/IP, and RDMA. Finally, the static layer manages

the other two layers and implements host-FPGA connectivity.

2.1.3 System Generators

The Task Parallel System Composer (TaPaSCo) [Heinz et al., 2021] is an open-source

toolflow to generate complete FPGA systems by integrating FPGA-based accelerators

into a heterogeneous system. It also provides a simple programming interface. The

application developers are required to implement the individual accelerators (referred

to as PEs) following a strict interface specification. The PEs are grouped together into

a strict clustered architecture. The external interfaces are implemented using a fixed

layer referred to as the Platform. The ThreadPoolComposer presented in [Korinth

et al., 2015] is a predecessor of TaPaSCo.

The ARTICo3 framework presented in [Rodŕıguez et al., 2018] can generate

FPGA-based embedded systems targeting edge computing in Cyber-Physical Sys-

tems. The framework includes a hardware-based processing architecture, an auto-

mated toolchain to generate systems from high-level descriptions, and a runtime to

deploy and manage the generated systems on the FPGA. Dynamic partial reconfigu-

ration is used to schedule the accelerators onto the FPGA fabric. RapidSoC [Wenzel

and Hochberger, 2016] is a framework to generate softcore processor based SoCs tar-

geting FPGAs.

2.1.4 Design Automation

Essential to any FPGA design project is the use of design automation tools such as

High Level Synthesis (HLS) [Hauck and DeHon, 2008,Gokhale et al., 2004]. There

is therefore an analogy between HLS and DISL (for hardware) with respect to com-

23

pilers and operating systems (for software), respectively. Some recent work applying

Machine Learning to HLS includes [Shahzad et al., 2022,Munafo et al., 2023,Shahzad

et al., 2024b,Sajjadinasab et al., 2024a,Shahzad et al., 2024a].

2.2 Dynamic Infrastructure Services Layer

In this section, we describe the Dynamic Infrastructure Services Layer (DISL). A

detailed description is provided because it is the overarching project that includes

the work presented in this dissertation. We use DISL for all the implementations in

this work and the discussions in later chapters use the terminology of DISL.

DISL is a framework to automatically generate hardware operating systems for

FPGAs using component libraries and user requirements as inputs. More accurately,

DISL can be described as a system generator because it generates full systems com-

posed of application logic, device-independent infrastructure logic referred to as the

hardware OS, and device-specific logic referred to as the BIOS layer. The infrastruc-

ture logic is customized to match application requirements and instantiated along-

side the application logic in the source file for the top module of the design hier-

archy. This is somewhat similar to the unikernel approach in software, where an

application is statically linked with a specialized kernel that implements only the

functionality necessary for that application. This approach allows DISL to generate

application-specific systems and provide portability without generating the different

layers independently. Apart from the system to be implemented, DISL also generates

the compilation and runtime environments including scripts, Makefiles, and binaries

among other supplementary files.

Figure 2·1 presents a simplified overview of the DISL framework. The inputs can

be broadly categorized as user requirements and component libraries. User inputs

could include descriptions of target applications, including source files for the user

24

applications, information regarding the deployment context (the components to be

included and the connectivity among them), and any system constraints such as

Baud rates for serial interfaces, and the target operating frequency. The component

libraries could include descriptions of device PHYs, vendor-provided IP cores, and

third-party IP cores. DISL combines the user requirements and the components to

generate FPGA designs.

Figure 2·1: Simplified Overview of DISL.

DISL does not depend on any APIs specific to a particular vendor or tool flow.

Any device/vendor/tool-specific aspects are part of the components. It is possible for

a user to use a component without a full understanding of the device/vendor/tool-

specific details. It is the responsibility of the component designer to properly abstract

these when adding components to DISL. DISL uses configuration files written in

TOML [Preston-Werner, Tom and Gedam, Pradyun et al., 2023] syntax. TOML is a

minimal configuration file format with simple semantics. There is existing support in

many popular programming languages for parsing TOML files. DISL is implemented

using the Python programming language.

2.2.1 Directory Structure

The directory structure of DISL is shown here. The files in this directory structure

are referenced in discussions throughout this dissertation.

25

.

configure.py

examples

<project category 1>

<project 1>

src

<custom module implementations.v>

<softcore code.c>

<custom softcore routines.S>

<Makefile>

<host.py>

system.tml

<project 2>

<project category 2>

fpga

boards

<board name>

config

board.tml

defaults.tml

src

hdl

ip

common

config

deafults.tml

definitions.tml

modules.tml

hdl

system builder

build.py

26

2.2.2 DISL Terminology

Next, we go over parts of DISL terminology and provide examples for some. Since we

use DISL to implement all the designs used in this dissertation, our later discussions

use similar terminology to DISL.

System Definitions

DISL uses a set of system definitions to establish the common nomencla-

ture used in all the configuration files. DISL system definitions are given in

fpga/common/config/definitions.tml. The system definitions include:

Namespaces: DISL uses namespaces similar to software. They help resolve any

conflicts between signals and interfaces from different parts of the design but with

the same name. Eg: ‘MODULE:ddr’, and ‘BOARD:ddr’. Here, MODULE and BOARD are

namespaces.

Interconnects: Defines the types of interconnects DISL can generate. Eg:

‘ONE TO ONE’, ‘ONE TO MANY’.

Intrinsics: These are templates to generate simple hardware constructs as part of

the top module. Listing 2.1 shows definitions of two intrinsics for signal assignment

and concatenation.

[INTRINSICS]

ASSIGNMENT = "wire [%{ CUSTOM_SIGNAL_WIDTH} - 1 :0] %{ CUSTOM_SIGNAL_NAME };

assign %{ CUSTOM_SIGNAL_NAME} = %{ INPUT_SIGNAL }%{ SIGNAL_BITS };"

CONCAT2 = "wire [%{ CUSTOM_SIGNAL_WIDTH} - 1 :0] %{ CUSTOM_SIGNAL_NAME };

assign %{ CUSTOM_SIGNAL_NAME} = {%{ SIGNAL_1}, %{ SIGNAL_2 }};"

Listing 2.1: Intrinsic definitions

Handshakes: DISL defines communication protocols in terms of the handshakes

the protocol is using to communicate. DISL does not specify a fixed set of supported

27

communication protocols. Instead, a user can add interface definitions to the system

definitions. DISL uses handshake based protocol definitions to describe communi-

cation protocols and the interfaces involved in communication. A single handshake

comprises a ‘READY’ part, a ‘VALID’ part, and an arbitrarily sized ‘FRAME’ part that

is created by concatenating zero or more signals. Listing 2.2 shows the handshakes

portion of the system definitions.

[HANDSHAKES]

TYPES = [" READ_ADDRESS", "READ_DATA", "READ_RESPONSE", "WRITE_ADDRESS",

"WRITE_DATA", "WRITE_RESPONSE", "READ_RESPONSE_ADDRESS ","NONE"]

DIRECTIONS = [" REQUEST", "RESPONSE", "BIDIR "]

Listing 2.2: Handshake definitions

Protocol Interfaces: Protocol interface definitions are added to the ‘PROTOCOL’

dictionary in ‘definitions.tml’. Listing 2.3 shows an example protocol definition

of an AXI-lite interface. (Not all the handshakes are shown here. The rest of the

handshakes follow the same format). Similarly, Listing 2.4 shows the definition for a

custom protocol that only uses one handshake.

[PROTOCOLS.AXIL]

[PROTOCOLS.AXIL.WIDTHS]

"wdata" = "DATA_WIDTH"

"wstrb" = "MASK_WIDTH"

"wvalid" = 1

"ready" = 1

"data" = "DATA_WIDTH"

"rvalid" = 1

"ready" = 1

"..." = "... "

[PROTOCOLS.AXIL.HANDSHAKES]

[PROTOCOLS.AXIL.HANDSHAKES.WRITE_DATA]

DIRECTION = "REQUEST"

READY = "ready"

VALID = "wvalid"

FRAME = [" wdata", "wstrb"]

[PROTOCOLS.AXIL.HANDSHAKES.READ_DATA]

DIRECTION = "RESPONSE"

READY = "ready"

VALID = "rvalid"

FRAME = [" rdata"]

[PROTOCOLS.AXIL.HANDSHAKES. ...]

Listing 2.3: Example protocol definition (AXI-lite)

28

[PROTOCOLS.DESC_BYPASS]

[PROTOCOLS.DESC_BYPASS.WIDTHS]

"ready_0" = 1

"src_addr_0" = "DATA_WIDTH"

"dst_addr_0" = "DATA_WIDTH"

"len_0" = 28

"ctl_0" = 16

"load_0" = 1

[PROTOCOLS.DESC_BYPASS.HANDSHAKES]

[PROTOCOLS.DESC_BYPASS.HANDSHAKES.WRITE_DATA]

DIRECTION = "REQUEST"

READY = "ready_0"

VALID = "load_0"

FRAME = [" src_addr_0", "dst_addr_0", "len_0", "ctl_0"]

Listing 2.4: Protocol definition (Custom protocol)

Component Library

The component library includes discrete components used by the DISL framework

to generate systems consisting of application logic and infrastructure logic to provide

services to the application logic. The components range from device-specific blocks

(including definitions for PHYs), to completely generic IP blocks. Users can create

component libraries that are customized to their specific domain. The steps to add

new components to the component library are described in Section 3.3.1.

System Configuration

The minimum requirements for a DISL project directory include the project-specific

dependencies folder ‘src’ and a TOML file named ‘system.tml’ that contains the

system configuration. The system configuration file is the primary interface to DISL

for generating systems. It contains all the information required by DISL to instantiate,

parameterize, and connect the necessary modules.

Naming Conventions: DISL uses namespaces to reference signals and parameter

values in the configuration file. References are made using a set of substrings joined

by the colon character. The first substring is always a namespace as defined in

29

‘fpga/common/config/definitions.tml’.

MODULE:<instance name> refers to an instantiation of a module.

MODULE:<instance name>:<interface name> refers to an interface of this in-

stantiation. To refer to a signal in this interface, :<signal name> is appended to the

previous string. BOARD:<io name> is used when referring to board I/O. Similarly,

when referring to a custom signal generated using intrinsics, CUSTOM:<signal name>

is used.

External I/O: A list of required I/O should be provided as the PORTS parameter

in the EXTERNAL IO dictionary.

Instantiations: The INSTANTIATIONS dictionary is used to specify: the modules

to be instantiated, parameter overrides, and any additional parameters that can be

used to guide the system builder. Listing 2.5 an excerpt from a system configuration

file including the INSTANTIATIONS dictionary.

[INSTANTIATIONS]

[INSTANTIATIONS.cache]

MODULE = "bram"

PARAMETERS.MEMORY_SIZE = 256

[INSTANTIATIONS.timer]

MODULE = "timer_axi"

PARAMETERS.CLOCK_FREQ_MHZ = 12

[INSTANTIATIONS.debug]

MODULE = "uart_axi"

PARAMETERS.CLOCK_FREQ_MHZ = 12

PARAMETERS.UART_BAUD_RATE_BPS = 921600

PARAMETERS.DATA_WIDTH = 32

Listing 2.5: Example INSTANTIATIONS

Intrinsics: Intrinsics are specified in the INTRINSICS dictionary as part of the sys-

tem configuration. Listing 2.6 shows an example of intrinsics in the system configura-

tion file. The first intrinsic is generating a signal named jtag reset and assigning bit

zero of the chip manager module’s signal named control. The second entry assigns

30

the value (custom reprogram XOR 1’b1) to the custom signal cpu resetn.

[INTRINSICS]

[[INTRINSICS.ASSIGNMENT]]

CUSTOM_SIGNAL_WIDTH = 1

CUSTOM_SIGNAL_NAME = "CUSTOM:jtag_reset"

INPUT_SIGNAL = "MODULE:chip_manager:control"

SIGNAL_BITS = "[0]"

[[INTRINSICS.COMBINATIONAL]]

CUSTOM_SIGNAL_WIDTH = 1

CUSTOM_SIGNAL_NAME = "CUSTOM:cpu_resetn"

INPUT_SIGNAL_1 = "1’d1"

OPERATION = "^"

INPUT_SIGNAL_2 = "CUSTOM:reprogram"

Listing 2.6: Example Intrinsics Usage

Interconnect: The system interconnect is specified using three separate data struc-

tures in the ‘INTERCONNECT’ dictionary. Two out of the three structures (Static and

Dynamic) can only connect interfaces while the last one (Override) can only con-

nect individual signals of interfaces (or connect single signal interfaces). Listing 2.7

presents the template for the INTERCONNECT dictionary.

[INTERCONNECT]

OVERRIDES = [["..."] , ["..."] , []]

STATIC = [["..."] , ["..."] , []]

[INTERCONNECT.DYNAMIC.<module_name_1 >]

[INTERCONNECT.DYNAMIC.<module_name_2 >]

Listing 2.7: INTERCONNECT Dictionary Template

OVERRIDES: Overrides are used to assign values to individual signals ignoring all

other assignments in case the target signal is part of an interface for which the connec-

tivity is specified in one of the other two components of the interconnect dictionary.

STATIC: This list within the INTERCONNECT dictionary specifies the connections

that do not change over time, and are between interfaces of the same type.

DYNAMIC: Any connection that does not fall in the previous two lists is added to

the DYNAMIC list. These represent complex connectivity among modules that require

some form of arbitration/selection logic, or scenarios where protocol conversion is

necessary.

31

System Builder

The DISL system builder translates the information from the configuration files

described previously into a valid system build. The system builder is defined in the

‘BUILD’ class in fpga/system builder/build.py. A BUILD object is instantiated

with three arguments:

1. System specification – Location of the system.tml file,

2. Name of the target board, and

3. build directory

All other configuration files are loaded automatically.

The system builder generates the RTL for the top module and the Verilog header

file containing the parameter values using the system specification in system.tml,

definitions of modules and interfaces in modules.tml and definitions.tml, and

the information regarding board I/O ports provided in board.tml. The design con-

straints are copied from board.tml to a constraints file (eg: constraints.xdc).

Commands to generate/modify IP cores are similarly copied to ip.tcl. Finally, the

system builder copies all the necessary source files to the build directory based on the

dependencies specified in modules.tml and board.tml.

2.3 Host-FPGA Communication

2.3.1 Background

Typical Use Model for PCIe FPGAs

Most high-end FPGAs, and even some low-cost FPGAs such as [Xilinx, 2022a],

currently support PCIe connectivity. This makes PCIe a popular host-device commu-

nication mechanism for FPGAs mainly because of high data transfer speeds making

it ideal for high-performance computing tasks that require lots of bandwidth. The

32

host-FPGA communication is typically carried out with the assistance of a device

driver either provided by the FPGA vendor or written by the user. In either case, the

driver is specific to the given device. This is unavoidable because of different capabil-

ities and PCIe IP core availability across different FPGA families. This results in the

user having to maintain different drivers for different device families, and even for the

same device, depending on the PCIe IPs used. There are open-source PCIe IPs and

drivers provided by third parties such as [XILLYBUS, 2022], and [Richmond et al.,

2022]. These have similar limitations such as being specific to a device or possibly a

particular board, and the user having to rely on a third party to maintain the drivers.

More recently, FPGA vendors have been providing runtime libraries, such as Xil-

inx runtime library (XRT) [Xilinx Inc., 2022] and Open Programmable Acceleration

Engine (OPAE) [Intel, 2017], which provide the user with simple APIs for program-

ming, data movement, and controlling the FPGA. These typically provide a user-space

library, kernel space device drivers, and an FPGA shell that takes up a fixed portion

of the FPGA fabric to implement the communication infrastructure such as PCIe and

Ethernet controllers, DMA engines, memory interfaces, and other peripherals. The

kernel drivers are designed to match the IP blocks used to build this shell. The user

application kernel is typically instantiated inside the shell by using partial reconfig-

uration. Some of these runtime libraries are even made open source. However, the

drivers themselves are still device-specific and these frameworks do not support all

the FPGA devices, even from the same vendor.

There exists a requirement for a more general use model for communication with

FPGAs over PCIe. Ideally, the drivers should be agnostic of the device being used, and

the user should not have to maintain the device drivers by updating them whenever

the kernel is updated. A possible solution that satisfies these requirements is the use

of the Virtio drivers that are part of the standard Linux distributions.

33

Virtio

Virtio devices are virtual devices found in virtual environments, yet, by design,

they look like physical devices to a guest within a virtual machine [Tsirkin and Huck,

2022]. Virtio devices use normal bus mechanisms for device discovery, interrupts, and

DMA. Virtio drivers follow suit. This allows using Virtio drivers to communicate

with physical devices as well. The device in question only needs to present a Virtio-

compliant interface to the driver and the driver is agnostic to the fact that it is

communicating with a physical device. The device types currently supported in the

Virtio specification are shown in Table 2.1.

The Virtio architecture consists of three key components; front-end drivers, back-

end devices, and the queues used for all communication between the front- and back-

end components called ‘virtqueues’. Virtio drivers are the front-end component used

by guest applications running in a virtual machine. These communicate with the

back-end Virtio devices that are emulated by the host machine. There is a multitude

of different combinations for the placement of these components in guest and host

user versus kernel space. A detailed description is available in [Pérez Mart́ın, 2020].

An interesting use case is para-virtualization in which there is a physical device

attached to the host machine and access to it is virtualized by the Virtio layer.

Figure 2·2 depicts an abstract view of this use model. The requests from the Virtio

back-end device are sent to the physical device via the legacy device driver running

in the host kernel space, and possibly a bridge device which converts the transactions

to a format understood by the legacy device driver.

If the physical device exposes a Virtio-compliant interface, the intermediate layers

can be bypassed to improve performance. In this scenario, a Virtio driver running

on the guest kernel space and one running in the host kernel space see the same

interface presented by the physical device. Figure 2·3 illustrates two use models that

34

VirtIO
DriverUsedAvail

Descs

Guest
User Space

Guest
Kernel

Host
User Space

KVM
Host

Kernel
 Space

Physical Device

VirtIO
DeviceUsedAvail

Descs
QEMU

Process

Legacy
Device Driver

Figure 2·2: Virtio para-virtualization.

such a Virtio-compliant physical device will enable. In Figure 2·3(A), the user space

application interacts with the Virtio driver running in the guest kernel space. The

physical PCIe device is exposed to the guest VM with PCIe passthrough, which allows

the Virtio driver to directly communicate with the physical device. In Figure 2·3(B),

the Virtio driver is running in the host kernel space and communicating with the

physical device. The guest application directly accesses the host Virtio driver when

it needs to use the physical device.

35

VirtIO
DriverUsedAvail

Descs

Guest
User Space

Guest
Kernel
Space

Host
User

Space

KVM
VirtIO
DriverUsedAvail

Descs

Guest
User Space

Guest
Kernel Space

Host
User

Space

KVM

Host
Kernel
 Space

Host
Kernel
 Space

UsedAvail

Descs

UsedAvail

Descs

Application Application

(A) (B)
Physical Device Physical Device

Figure 2·3: New use models for a physical Virtio device.

2.3.2 Related Work

The authors of [Mbongue et al., 2021] use Virtio as the front-end driver to decrease

communication latency between software and hardware when deploying multi-tenant

FPGAs in Linux-based cloud infrastructure. An FPGA virtualization framework

where Virtio drivers are used as the front-end drivers is presented in [Mbongue et al.,

2018]. In both studies, the Virtio drivers are not communicating directly with the

FPGAs; rather, a legacy device driver in the host kernel space is used to communicate

with the FPGA over PCIe.

The only vendor-provided PCIe IP core with Virtio support of which we are aware

is the P-Tile Avalon Streaming Intel FPGA IP for PCIe [Intel, 2023a]. This IP allows

each of the PCIe physical functions (PF) and virtual functions (VF) implemented on

the FPGA to have its own Virtio configuration structures. A soft IP implementing the

Virtio capability for PFs and VFs is instantiated as a sub-IP when Virtio is enabled;

it also adds the required Virtio capabilities to the device capability list.

36

The Silicom C5010X Data Center FPGA IPU NIC [Silicom, 2021] is based on

an Intel Stratix 10 DX FPGA. It can be deployed as a Virtio network or storage

accelerator. Details regarding the IP cores used are not available. However, the Intel

P-Tile Avalon Streaming PCIe IP core discussed previously only supports Stratix

10 DX and Intel Agilex FPGAs. Therefore, the same PCIe IP may be used in this

product.

A custom PCIe IP is used in [RSPwFPGAs, 2020] to implement Virtio support

on an FPGA PCIe endpoint. In contrast, the vendor-provided PCIe IP is modified

in [Bandara et al., 2022] to implement a Virtio-compliant interface on the FPGA and

allow unmodified Virtio drivers to directly communicate with an FPGA. However,

only a Virtio console device is implemented, and the performance of Virtio drivers is

not explored.

There is a collection of prior work [Korolija et al., 2020,Heinz et al., 2021,Vaish-

nav et al., 2020,Agne et al., 2013,Anderson et al., 2006,Zhang et al., 2017,Ma et al.,

2020,Fleming and Adler, 2016] focused on enhancing the usability of FPGAs through

techniques such as FPGA shells, implementing operating system-like abstractions on

FPGAs, automated composition of systems from custom processing elements, FPGA

virtualization, and integrating FPGAs into the host operating systems’ thread/pro-

cess abstraction. However, these works do not focus on the portability aspects of

host-FPGA communication and depend on vendor-provided or custom device drivers

for PCIe communication.

2.4 Applications

2.4.1 Overview

While FPGAs are often considered to be specialized processors, they are notable in

their numerous and varied application domains [Gokhale and Graham, 2005,Hauck

37

and DeHon, 2008, Koeher et al., 2008]. An area where FPGAs have long been

prominent is in supporting high performance communication, especially when com-

bined with computation as with SmartNICs [Guo et al., 2022b, Guo et al., 2023]

and SmartSwitches [Sheng et al., 2015, Sheng et al., 2017, Sheng et al., 2018,Haghi

et al., 2023, Haghi et al., 2024]. HPC applications that are communication bound

can sometimes take advantage of this capability directly. One example is Molecular

Dynamics [VanCourt and Herbordt, 2006,Chiu, 2011,Wu et al., 2021,Bandara et al.,

2024b], which has well-known problems with strong scaling [Wu et al., 2022,Wu et al.,

2024]. Another is Molecular Docking [VanCourt et al., 2004,Sukhwani and Herbordt,

2008,Sukhwani and Herbordt, 2010], which often combines Molecular Dynamics with

operations familiar from signal processing, also an FPGA domain. FPGA’s ability to

support flexible data types has led to their use in Bioinformatics [Sajjadinasab et al.,

2024b] and Machine Learning [Li et al., 2019, Geng et al., 2021]. A final example

given here is Multiparty Computation. When Secret Sharing is used, it has been

shown that the FPGA’s tight coupling of computation and communication can be

beneficial [Wolfe et al., 2020,Patel et al., 2020,Patel et al., 2022].

2.4.2 Key-value Stores

Key-value stores (KVS) are non-relational databases that provide the functionality of

an associative array by storing data as key-value pairs. KVS are suitable for storing

a large variety of structured and unstructured data types. They can handle large

amounts of data at high throughput and support quick read and write operations,

often in constant time O(1). With the ever-increasing demand on data centers for

high bandwidth access to large quantities of data, distributed in-memory key-value

stores such as Memcached [Memcached, 2024] and Redis [Redis, 2024] have become

integral middleware applications in the current datacenter infrastructure. Many web

service providers use KVS [DeCandia et al., 2007,Chang et al., 2008,Xu et al., 2013,

38

Nishtala et al., 2013] and offer them to the users as a service [Amazon, 2024,Microsoft,

2024a,Alibaba, 2024,Google Cloud, 2024a].

Due to the importance of key-value databases, a large number of prior works

have made various attempts at improving their performance. Firstly, there are the

software-oriented approaches focused on speeding up in-memory key-value stores on

CPUs. There are algorithmic and data structure optimizations [Fan et al., 2013], par-

allel data access based methods [Lim et al., 2014], and novel methods for managing

storage [Ousterhout et al., 2015]. Kernel-bypass to overcome the limitations intro-

duced by the network stack is also a common strategy [Lim et al., 2014,Ousterhout

et al., 2015,Ghigoff et al., 2021]. Another set of work is focused on using RDMA to

avoid the limitations introduced by the TCP/IP protocol stack [Tang et al., 2017,Jose

et al., 2011,Dragojević et al., 2014]. Apart from academic work, research efforts have

been made by large cloud operators as well [Nishtala et al., 2013].

A significant number of research efforts have been made to improve KVS per-

formance using FPGAs. Many of these prior efforts offload the KVS completely or

partially to FPGAs to achieve higher bandwidth and lower latencies [Choi et al.,

2018,Chalamalasetti et al., 2013,Liang et al., 2016,Lavasani et al., 2013,Blott et al.,

2013]. Some FPGA-based work also focuses on caching KVS entries using FP-

GAs [Fukuda et al., 2014]. There are also implementations that are geared towards

specific applications such as Blockchains [Sakakibara et al., 2017,Sanka et al., 2021].

However, all of these works above focus on the KVS node instead of the client nodes.

The authors of [István et al., 2018] discuss providing multi-tenant services with FP-

GAs where all the tenants are using the same service.

Memcached

Memcached [Memcached, 2024] is a free and open-source, high-performance, in-

memory key-value store. It is typically used as a distributed caching system for

39

“small chunks of arbitrary data”. Memcached provides a number of operators such

as Get, Set, and Delete to manipulate the data objects.

40

Device ID Virtio Device
0 reserved (invalid)
1 network device
2 block device
3 console
4 entropy source
5 memory ballooning (traditional)
6 ioMemory
7 rpmsg
8 SCSI host
9 9P transport
10 mac80211 wlan
11 rproc serial
12 virtio CAIF
13 memory balloon
16 GPU device
17 Timer/Clock device
18 Input device
19 Socket device
20 Crypto device
21 Signal Distribution Module
22 pstore device
23 IOMMU device
24 Memory device
25 Sound device
26 file system device
27 PMEM device
28 RPMB device
29 mac80211 hwsim wireless simulation device
30 Video encoder device
31 Video decoder device
32 SCMI device
33 NitroSecureModule
34 I2C adapter
35 Watchdog
36 CAN device
38 Parameter Server
39 Audio policy device
40 Bluetooth device
41 GPIO device
42 RDMA device
43 Camera device
44 ISM device
45 SPI master

Table 2.1: Virtio Device Types

41

Chapter 3

Hardware Operating System Generator

and Component Design

In this chapter, we first present our vision for a hardware operating system generator

in terms of a formal definition and ideal characteristics/capabilities. It is important to

establish these attributes because they guide the component design strategy discussed

later. Next, we examine how well DISL, the system generator used in this work, and

other related works demonstrate these ideal characteristics. If they do, we also discuss

the different strategies used by different system generators to achieve these desired

attributes. In Section 3.3, we discuss how the component design strategy impacts the

attributes of the hOS generator and the generated designs. Finally, in Section 3.4,

we present a set of design guidelines for hOS components.

3.1 What is an hOS Generator?

Before discussing hardware OS generators, let us revisit our definition of a hardware

OS for FPGAs. A hardware operating system is a layer of hardware that

implements and manages lower-level interfaces, and provides services to

the application logic on the FPGA. Capabilities beyond the basic functionality

specified above are optional and are included in the hOS generation only if necessary

for a given use case as specified by a user.

While they make FPGAs more accessible to a larger user base – especially for users

who lack expertise in hardware design – fixed FPGA shell implementations restrict

42

application portability. The shell itself is not portable across devices. Hardware OS

generation according to the application requirements can improve application porta-

bility and resource usage. We define a hardware OS generator as a tool/framework

capable of mapping application requirements to a system design and gen-

erating the said design using a set of components.

A general-purpose hOS generator capable of targeting different devices and tool

flows from different vendors, and generating systems for any one of the various FPGA

deployment scenarios can fundamentally change the current FPGA use model where

an FPGA developer (re)designs the entire hardware stack when implementing a new

application or porting an existing application to a new device. Instead, a developer

can focus on designing the application logic, and use an hOS generator to generate the

infrastructure required for the application logic to function. With the flexibility to use

non-HDL languages to specify the application logic that is not specific to a device,

this opens up FPGAs to a much broader community of users while maintaining a

higher level of flexibility to allow expert users to perform deep customizations on the

generated infrastructure logic.

Apart from the basic functionality of generating an hOS according to a specifica-

tion, we can enumerate a number of desirable characteristics for an hOS generator

and the generated hOSs.

• The hOS generator can generate hOS designs with all the necessary capabilities

and only the necessary capabilities as specified by the user.

• The hOS generator is general-purpose. In this context, this means that the hOS

generator can

– generate a wide range of systems in terms of complexity and features

– generate systems for any application domain and deployment context.

43

• A user can specify a design without vendor-specific commands, constraints, or

constructs.

• Yet, the hOS generator can target different FPGA toolchains.

• A user can port an hOS design targeting one device to another with no or

minimal changes to the specification.

• A system can be specified without defining any device-specific details of the

lower-level interfaces except for specifying the target device.

• Advanced users can manipulate the lower-level parameters for the different com-

ponents of the generated hOS and add new components for new functionality

and device support.

• New device support can be added incrementally. This means that when port-

ing an application to a new device, adding the components required by the

application is sufficient to generate a valid system.

• The generated hOS presents consistent interfaces to the application logic to

facilitate application portability.

• Yet, the interfaces are flexible enough to use existing designs with the hOS

generator.

• No restrictions are imposed on how the user logic is implemented/optimized.

• The hOS generator can be easily extended to add new functionality.

Note that the above are ideal attributes for a hypothetical hOS generator. An

actual hOS generator may only possess a subset of these.

44

3.2 hOS Generator Design Choices

In this section, we discuss some alternative design choices for hardware operating

systems and an hOS generator. We analyze how these design choices may affect the

different attributes listed in the previous section. We also explore how practical im-

plementations of hOS generators handle these design choices. We use DISL [Red Hat,

2024] as the primary point of reference in this discussion. We also use other related

works such as [Korolija et al., 2020, Heinz et al., 2021, Xilinx, 2023] as comparison

points. Out of these, only DISL and TaPaSCo [Heinz et al., 2021] are system genera-

tors. The others are fixed hOS implementations. We include them in this discussion

because the attributes we discuss are related to both the hOS generator as well as

the generated hOS designs.

3.2.1 Minimum Set of Capabilities for the Generated hOS

The first design choice to be made regarding a hardware OS is its functionality. Prior

works on implementing similar abstractions on FPGA target a wide range of func-

tionality. These range from simple implementations that only implement the IP cores

necessary to access the external interfaces [Xilinx, 2023] to complex hOS designs that

provide advanced capabilities such as virtual memory and memory management [Ko-

rolija et al., 2020]. We believe that neither of these two extremes is suitable for an

hOS design.

The main argument for moving away from a complex implementation is that the

more advanced capabilities are rarely useful for typical FPGA designs. This goes

against the first ideal hOS generator attribute we have identified, which is generating

systems with only the necessary capabilities. Having capabilities rarely used in the

default implementation is undesirable as it unnecessarily increases the resource usage

for the hOS. Secondly, this approach also causes challenges when adding support for

45

new devices. With the minimum set of capabilities being complex and extensive,

adding new device support requires more time and effort compared to a design with

a minimal set of capabilities. Ideally, it should be possible to add device support

incrementally.

Prior works that have chosen a complex implementation typically target a specific

deployment context in which the advanced capabilities are useful. For instance, [Ko-

rolija et al., 2020] focuses primarily on an accelerator use model for the FPGA. The

OS-like abstractions are designed to provide capabilities such as sharing an address

space with a CPU process and allocating memory to the accelerators. While it is

possible to use the FPGA shell implementations targeting an accelerator use model

in other deployment contexts, many of the capabilities of the shell will be useless and

will waste FPGA resources. All the previous works that modify the host OS/hyper-

visor also limit themselves to the accelerator use model. While the focus of these

works is on the host software stack, they still rely on an FPGA shell implementation

to implement external interfaces and connectivity between the host software and the

accelerators. These shell implementations also include logic not necessary for any

other use case except for the accelerator use model. Referring to our list of ideal

attributes, an hOS generator should be general-purpose in the sense that it should

be able to generate hOS for any deployment context. Therefore, the hOS generator

should choose a more limited set of capabilities as the default configuration of the

generated hOS designs. Any advanced capabilities not useful for a majority of designs

can be optionally included in an hOS by a user when necessary for a particular use

case.

Our argument against a bare minimum implementation that simply connects a

set of IP cores together is that this requires the user to have a more detailed under-

standing of the IP cores and their interfaces. Therefore, apart from implementing the

46

IP cores to access the external interfaces, an hOS design should include extra logic

that abstracts away some of the intricate details of IP cores and external interfaces,

and presents simpler interfaces to the user logic. Additionally, it could also include

arbitration logic that allows the interfaces to be shared among multiple user applica-

tions. Defining the minimum set of capabilities in this fashion can achieve a balance

between ease of use for an application developer and resource overhead.

One benefit of automatically generating hardware operating systems rather than

providing a fixed implementation is that it is not necessary to specify a fixed min-

imum set of capabilities. The capabilities of the hOS can be customized to match

a particular application. A user is not forced to use the set of capabilities the hOS

developer believes to be optimal. Depending on the application requirements and

deployment context, a user can use a set of components/capabilities closer to a bare

minimum implementation that minimizes the resource overhead, or a set of more

advanced capabilities at a higher resource cost.

DISL, the system generator used in this work generates FPGA designs based

on system specifications provided by a user. It selects discrete components from

a component library and connects those together to match the user requirements.

Therefore, DISL does not formally specify a minimum set of capabilities/components

for the generated hOS designs. DISL demonstrates the previously identified ideal

characteristics of an hOS generator by generating systems exactly as specified by a

user without unnecessary components being included. This means that DISL can be

considered a general-purpose hOS generator because it can tailor the hOS designs to

any target deployment. For instance, consider an application like network-attached

storage, or an IoT application where there is no host machine to control and com-

municate with the FPGA. DISL can generate an hOS design that includes interfaces

such as network, DDR, NVMe, and GPIO but no host-FPGA interface. The other

47

FPGA shell implementations lack this flexibility. While TaPaSCo [Heinz et al., 2021]

is also a system generator, it still uses a fixed implementation for the device-specific

(‘platform’) layer. Therefore, a system generated using TaPaSCo will include IP cores

and associated logic unnecessary for some applications.

The lack of a fixed minimum set of capabilities also means that adding support for

new devices can be done incrementally. An application can be ported to a new device

as long as all the system components used by the application are ported to the new

device. In Chapter 6, we demonstrate this by porting an application implemented

on a Xilinx Artix 7 FPGA to a Xilinx Ultrascale+ device while the only components

available in the DISL component library for the Ultrascale+ device are the interfaces

used by the application even though the development board with the Ultrasacle+

device includes peripherals not available on the low-end development board using the

Artix 7 FPGA.

The set of features provided by an OS-like abstraction also gives us an understand-

ing of the target audience. For instance, the vendor-provided FPGA shells are mainly

focused on users with less experience in hardware design. This becomes evident when

looking at the default use model for these shells. Usually, the vendor-provided shells

are part of a tool flow and not available in unencrypted form for a user to modify.

While it is possible to use RTL designs with the FPGA shell, the default use mode

for the tool flow is HLS which is geared towards application developers who prefer

using software programming languages over HDL. As opposed to this, an FPGA shell

like [Xilinx, 2023] is targeting users more experienced with hardware design.

Generating hardware operating systems based on user requirements allows an hOS

generator to be useful for users with a wide range of experience in hardware design.

Provided the necessary components are available, DISL can generate hardware OS

designs ranging from bare-minimum designs such as [Xilinx, 2023] to complex, feature-

48

rich designs such as [Korolija et al., 2020]. We can infer that DISL has more flexibility

in terms of the systems it can generate compared to related work. The use model for

DISL can differ based on the user’s level of expertise in hardware design. For instance,

a user with less experience might rely heavily on example designs and components

added by other users, that are part of the DISL repository. Users with an intermediate

level of experience could add new components to DISL. Expert users may modify the

hOS generator itself. We discuss these different use models further with respect to

ease of use in Chapter 6.

3.2.2 Monolithic Vs Modular Design

Software operating systems typically follow a modular design philosophy. They divide

functionality specific to a given CPU architecture and generic into separate modules.

This allows software operating systems to work on different CPU architectures with-

out the user having to make any modifications to the OS. However, most of the

operating system-like offerings for FPGAs do not follow the same design philosophy.

While there is a separation between the FPGA shell and application logic, the FPGA

shell is typically implemented as a single unit. While one could identify the sub-

components of the design, there is no clear separation between device-specific and

generic logic. This severely reduces the portability of the FPGA shell across devices.

Both FPGA vendors and third parties provide FPGA shells specific to different de-

vices. Porting a shell to target another device takes significant engineering effort.

Even porting application logic between two shells requires non-trivial effort unless

the two shells provide the same interfaces.

Our hOS design philosophy is motivated by and aims to replicate, the decoupling

of hardware, OS, and application space in CPUs. This alleviates the current need

for developers to build the entire hardware stack for each chip or development board.

Any non-trivial FPGA design contains both device-specific and device-agnostic logic.

49

The device-agnostic logic can be further subdivided into application logic and non-

application logic that implements the infrastructure necessary for the application

to function. By clearly separating these three categories of logic and implementing

consistent interfaces between each layer, we can decouple these layers similar to a

software OS. The non-application logic (device-specific and agnostic) is similar to

the architecture-specific and generic code in the Linux kernel. This layered approach

allows different layers to be implemented independently and all device-agnostic logic

to be easily ported between devices.

When we look at prior work on introducing OS-like abstractions to FPGAs, many

do not provide a clear separation between device-specific and agnostic logic in the

FPGA shell. While the shell implementations for different devices may reuse com-

ponents, there is no formal separation that results in independent layers within the

hOS. TaPaSCo [Heinz et al., 2021] is an exception to this where the generated sys-

tems consist of three independent layers. The hOS portion of a generated design

consists of two layers. The ‘platform’ layer contains all the IP cores to implement the

external interfaces. The ‘architecture’ layer connects clusters of processing elements

(application logic) and implements aggregation logic for data and control signals. The

aggregated signals are connected to the ‘platform’ layer. Due to this layered design,

both the application logic and the ‘architecture’ layer (device-agnostic part of the

hOS) can be ported to different devices by only implementing a new platform layer.

Previous publications on Coyote [Korolija et al., 2020] do not describe a layered

hOS design. However, the current version of Coyote [Coyote, 2024] uses a layered ap-

proach where a design has three independent layers. The only static layer is called the

“Shell Management” layer. The two dynamic layers are the “Services” and “Appli-

cation” layers. These two layers implement a nested dynamic reconfiguration model

where both layers can be reconfigured at runtime. The services layer implements the

50

external interfaces such as DRAM, HBM, and network and accelerators that pro-

vide services to the application logic (eg: TCP/IP service, RDMA RoCEv2). The

application layer contains multiple regions applications can be scheduled onto.

The authors of [Vaishnav et al., 2020] also discuss a layered approach to designing

an FPGA operating system. However, to the best of our knowledge, the FPGA shell

used is implemented as a single layer. DISL takes a different approach to creating

a separation between device-specific and agnostic components of the hOS which is

discussed in detail in Section 3.2.3.

Interfaces Among hOS Layers

An important consideration when using a layered hOS design is the interfaces

between different layers. According to our list of ideal attributes for an hOS/hOS

generator, each layer of the hOS should present consistent interfaces to the next

layer. Consistent interfaces simplify porting device-agnostic infrastructure logic and

application logic between devices. This is analogous to software APIs. A software

application can the kernel APIs to access different services from the kernel. The same

application can be recompiled without modifications to target different architectures

that support the same operating system and hence the same kernel APIs.

All fixed FPGA shell implementations from prior works specify fixed interfaces

between the FPGA shell and application logic. Since most FPGA shells use partial

reconfiguration to configure the dynamic regions with user applications, the fixed

interfaces become even more important. Routing between the shell and FPGA regions

cannot change when scheduling different applications. All applications to be scheduled

to a particular dynamic region are precompiled along with the FPGA shell and the

routing is fixed. Therefore, every application uses the same interfaces down to the

placement of individual wires within an interface.

FPGA vendor toolchains that work with FPGA shells typically use HLS as the

51

default flow. The hardware generated by the HLS tool using the high-level language

description can easily follow the interfaces available in the FPGA shell. If a user

is to use RTL implementations with FPGA shells, the RTL implementations must

implement the correct interfaces to be compatible with the FPGA shell. Academic

works such as [Korolija et al., 2020] and [Heinz et al., 2021] also specify fixed interfaces

that follow popular communication protocols such as AXI [ARM, 2023] between the

hOS and application logic.

One limitation caused by the fixed interface specifications is that existing hard-

ware modules cannot be used as they are with these hOS implementations. An FPGA

developer has to rework the interfaces of any existing modules before integrating them

with an hOS. DISL handles this issue in a unique way. Because DISL does not use

fixed implementations of layers and generates the whole design based on a system

specification, it does not define any fixed interfaces between components. Connectiv-

ity between the components is also specified by the user and generated by the system

generation framework. Additionally, DISL also supports protocol conversions. (De-

tails on how DISL achieves this are available in Chapter 2.) This allows existing

hardware modules to be used with DISL without reworking their interfaces. At the

component level, each component still presents consistent interfaces to the rest of

the system. However, the system generation framework provides sufficient flexibil-

ity to the interfaces for DISL to demonstrate both the desired attributes related to

interfaces from our list of attributes.

At the moment, DISL does not support dynamic reconfiguration. Depending

on how dynamic reconfiguration is added to the DISL model, the relaxed approach

to interfaces may have to be modified. However, figuring out how to add dynamic

reconfiguration to DISL while maintaining highly flexible interfaces is an interesting

future research direction.

52

3.2.3 Generating hOS Layers

Once the design decision is made to follow a layered design that divides the hOS

into device-specific and generic logic layers, we face another decision as to how the

different layers are generated and presented to a user. The first choice is to generate

different layers as independent components and allow the user to integrate those with

the application logic. However, because an hOS generator allows hardware operating

systems to be generated per application, there is an opportunity to further reduce the

effort by the user by generating a full system design instead of just the hOS layers.

Out of the related previous works, TaPaSCo [Heinz et al., 2021] has two layers in

the hOS portion of the design. Out of the two layers, the ‘platform’ layer that includes

the device-specific components is not generated per design. A fixed implementation

for each supported device is provided. The ‘architecture’ layer is generated. Differ-

ent application-specific implementations of the ‘architecture’ layer are used with the

‘platform’ layer.

The most recent version of Coyote [Coyote, 2024] also has two layers in the hOS

portion of the system. However, the division of tasks between the layers and how

the layers are generated is different from TaPaSCo. The “Shell Management” layer

is a static region that manages the two other layers, implements host-FPGA com-

munication, and interacts with the host software stack. The “Services” layer is a

dynamic region that implements other external interfaces and hence includes IP cores

and other device-specific logic. Both these layers are specific to a given device and

therefore, must be implemented per supported device. The application layer is also

device-specific to a certain extent because it contains one or more dynamic regions.

Depending on the resources within the dynamic regions, the number of regions, and

their placement, a given implementation of the application layer may be reusable with

some other devices. But the more likely scenario is the application layer also being

53

generated specifically for each supported device.

DISL is a full system generator. It generates system designs that include appli-

cation logic, device-specific hOS logic, and device-agnostic hOS logic. A user can

add user modules also to the DISL component library and use them alongside the

components already available in DISL. A system specification is used to describe the

components in the system and the connectivity among them. DISL does not gen-

erate hOS layers individually. Instead, the system is composed of components from

each of the layers selected to match the application requirements. This approach is

somewhat similar to Unikernel designs in the software domain where an application

is statically linked with selected OS code to achieve better performance and minimize

attack surfaces among other benefits. Essentially DISL generates the device-specific

and -agnostic infrastructure layers and the application layer for every design out of

the components that match the application requirements. However, there is no for-

mal separation between the layers. As the generated hOS is tailored to a particular

application, and a user can easily generate an hOS, there is no necessity to reuse the

hOS with different designs manually instantiating hOS and application logic to build

systems. If another design needs the same or similar hOS design, a user should reuse

the system specification for the hOS and not the generated hOS itself.

3.2.4 hOS Components

Generating hardware operating systems out of discrete components allows the gener-

ated hOS to be tailored to the application requirements. The components themselves

affect many of the hOS attributes we have discussed previously. Firstly, the avail-

ability of components determines the types of systems that can be generated. A wide

range of components allows hOSs of varying complexity to be generated for differ-

ent application domains and deployment contexts. This makes the hOS generator

general-purpose according to our definition.

54

When adding an hOS component to the system generator, creating a clear separa-

tion between device-specific and generic logic allows the generic portion to be reused

with other implementations of the device-specific logic for the same device or dif-

ferent devices. Therefore, this improves both component reuse and portability. A

good component design strategy can shield the user from device- and vendor-specific

details that are not directly relevant to the user application. This allows a user to

specify a system without fully understanding some of the hardware details and makes

the hOS generator a useful tool for a wide range of users with varying degrees of

hardware design experience. Abstracting the vendor-specific details might allow the

hOS generator to target devices and toolchains from different vendors.

None of the previous works we are aware of have the concept of component li-

braries that consist of modules a generator uses to build systems. DISL uses a

component library that can include device-specific components such as definitions

of PHYs, vendor-provided or open-source IP cores which include both device-specific

and agnostic logic, and completely generic components such as soft processor cores.

A user can also add user-defined modules to the component library. Components

that match the user specification are used to generate a system. Because the gener-

ated systems are customized to match application requirements and DISL does not

specify a minimum set of required components, adding support for a new device can

be done incrementally. A user who wishes to port an application to a new device

can only implement the hOS components necessary for their application. With more

such users contributing more components, the component libraries can grow to cover

more capabilities. Designing and implementing hOS components is discussed further

in Sections 3.3, and 3.4.

55

3.2.5 System Specification

How a system is specified relates to many of the desired traits of an hOS generator

listed previously. While the component libraries provide the components to be used

in a design, a description of the design that describes the components used and the

connectivity among them is required by the hOS generator. Such a system description

is essentially equivalent to the top module of a hardware design. Therefore, one

approach to describe the system is to provide an HDL file for the top module of the

design. This approach was used in the earlier versions of DISL where the user provides

the system specification with an HDL file. However, this approach requires the user

to have a good understanding of the interfaces exposed by the hOS components at

the level of individual signals. Another drawback is that any parameter changes for

any of the components require updating the HDL file which also requires the user

to understand different parameters for system components. Finally, this approach

necessitates that there is another configuration file to specify any details such as the

target device that cannot be captured in an HDL file.

Another approach is to provide the complete system specification in a configu-

ration file and generate the top-level module using the information provided in the

system specification. DISL requires a user to describe a system in terms of the compo-

nents and the connectivity between them in a configuration file. Similar configuration

files are used to specify the library components, basic system definitions such as in-

terfaces and interconnects, and information regarding the platform (i.e. the FPGA

development board).

According to our list of ideal hOS generator characteristics, the notation/language

used in the configuration files should be flexible enough to allow different levels of

detail depending on the user’s level of expertise. A beginner should be able to provide

a minimum level of detail and get an application up and running while an advanced

56

user should be able to access lower-level parameters of the individual components

using some extended notation in the configuration file. DISL uses configuration files

writing in TOML [Preston-Werner, Tom and Gedam, Pradyun et al., 2023] syntax.

DISL configuration files are very detailed when describing components and specify-

ing systems. A user with a good understanding of the hardware level parameters of

different components can manipulate the parameter values directly from the config-

uration files. Also, after any parameter changes a user can run DISL again to easily

regenerate the design with the updated parameter values. A user without a deep

understanding of the different components can rely on example designs to get started

with DISL and generate a system that matches their requirements.

TaPaSCo [Heinz et al., 2021] also uses configuration scripts to in generating the

different layers of the system. These use the Xilinx Vivado Tcl APIs. Therefore,

the system generator is tied to a specific vendor’s toolflow. TaPaSCo uses different

scripts to generate the three levels of abstractions in the generated systems. The first

handles generation of processing elements (PE) using HLS tools. The scripts configure

the HLS tools to generate hardware modules that implement the correct interfaces

used in TaPaSCo. The next set of scripts combines multiple PEs into clusters to

generate the ‘Architecture’ abstraction layer. Finally another set of scripts generate

the ‘Platform’ layer which includes all the device-specific components and connects

the architecture layer to the platform layer. Out of these, the platform layer has a

fixed set of components depending on the target device. The PE level scripts impose

a strict interface definition on the application logic. The architecture abstraction

layer maps the PEs into a strict (and somewhat unnecessary) hierarchical cluster

architecture.

DISL also only supports Xilinx tools currently. However, there is the possibility

of extending it to support other tools. Because the configuration scripts do not

57

depend on any vendor-specific APIs, they provide an additional layer of abstraction

between the FPGA tools and the system description. This allows the hOS generator

to potentially generate hOSs and matching compilation scripts, Makefiles, and other

tool/vendor-specific sources to target different devices and toolchains using the same

system specification.

In the case of DISL, because the component library provides all the components

of the system, the major task for the hOS generator in terms of RTL generation is to

generate the interconnect to connect all the elements of the system. The interconnect

is generated based on the system connectivity described in the configuration file.

The user is allowed to specify the connectivity at the interface level or the level of

individual signals. There is also the ability to override the connectivity for individual

signals of an interface. DISL specifies interfaces in terms of the handshakes involved

in communication. As long as the interfaces of the application logic can be described

in terms of the same handshakes, connectivity between the application and the hOS

can be described at the interface level and generated automatically. In the case of

interfaces that do not match the supported handshakes, the connectivity has to be

described at the level of individual signals. Because DISL does not specify a fixed

set of supported interfaces and instead, allows a user to add new interfaces to the

system definitions (in definitions.tml file), existing application logic can be used

with DISL without overhauling their interfaces to match the interfaces presented by

the hOS, which is the predicament a designer faces when using other FPGA shells.

3.2.6 hOS Generator Output

The final design decision we discuss here is the output of the hOS generator. A

straightforward and simple approach is for an hOS generator to only generate the

hardware design for the hOS and the generator output to be a set of HDL files.

However, this leaves the user with the tasks of adding design constraints and setting

58

up the FPGA tools. By including system constraints such as the target device and

target operating frequency in the system specification, the hOS generator can also

create a full compilation environment by generating constraint files, project files for

FPGA tools, and Makefiles.

Fixed hOS implementations such as [Korolija et al., 2020] can simply include the

necessary system constraints and other tool-specific scripts alongside the hOS design

itself. While [Heinz et al., 2021] is a system generator, it uses a fixed ‘Platform’ layer

and therefore, most of the system constraints are fixed for a given device. In contrast

to these, DISL generates the full system out of discrete components. Therefore, it

requires the component designers to include any device and vendor-specific constraints

and commands in the configuration files that describe the target development board

(board.tml). If the chosen device is not already included in DISL, a user has to

create a directory for the target development board and create the board.tml file

with the necessary details. When adding new components to DISL, any device-specific

information is added to the same configuration file.

3.3 Component Design and hOS Generator Attributes

The capabilities of a hardware OS generator depend heavily on the components it uses

to generate systems. What we refer to as a component here is a hardware module

that implements a particular capability within an hOS design. (Ex: PCIe, Network,

UART) A component can internally instantiate any number of sub-modules which

could be user-defined or IP cores. A component provides a service to either the user

application or the other components of the hOS. For example, a PCIe subsystem

provides the host-FPGA communication to the user application. A soft processor

core within an hOS can be used to execute user code as well as to initialize and

manage other hOS components.

59

Some of the attributes of an hOS generator affected by the components are;

1. Ability to generate systems with all the necessary capabilities and only the

necessary capabilities.

2. Generate systems of varying complexity for any application domain/deployment

context

3. Shield the inexperienced users from device-/vendor-specific details of compo-

nents

4. Giving experienced users access to the low-level hardware parameters

5. Target different toolchains

6. Consistent interfaces between hOS layers and application logic

7. Easily porting designs across devices

The component design strategy should focus on supporting as many of these attributes

as possible.

For the hOS generator to possess the first attribute, the components should be

discrete units that are independent of other components. This allows the hOS gener-

ator to add components to a design without having to add other components that are

unnecessary to meet the user requirements, but because the first component depends

on the second. Even if a component depends on another in certain configurations,

there should be an alternative to that in other configurations, For example, FPGA

designs with PCIe connectivity can use the clock signal from the PCI slot to generate

internal clock signals and drive the rest of the design. Typically, the PCIe IP core

has a clock output that matches the frequency of data and control interfaces of the

IP. Using this signal to drive the rest of the design simplifies the design as the whole

60

design is in a single clock domain. Now consider a UART module that uses its input

clock signal to ensure that it maintains the correct Baud rate. If the UART module

was designed with only the clock signal from the PCIe IP in mind, it may not function

properly when a different clock signal with a different frequency is used in a design

without a PCIe module. Even if the design included a PCIe module, depending on

the number of lanes in the target device and the target data rate, the interfaces of

the PCIe IP may operate at different frequencies which means the output clock fre-

quency also could change between different implementations. Therefore, a properly

designed UART module will parameterize both the target Baud rate and the input

clock frequency. This allows the module to function correctly in different designs

under different configurations.

The second attribute is mostly determined by the availability of different compo-

nents. A wide range of components allows hOSs of varying complexity to be generated

for different application domains and deployment contexts. However, an argument

could be made for highly parameterized components with versatile interfaces that

could be used in a variety of system configurations. For example, the PCIe subsys-

tem described in Chapters 4 and 5 can present one of three different interfaces to

the user logic on the FPGA. It can be configured to present AXI memory mapped

or AXI streaming interfaces which most hardware designers are familiar with. Addi-

tionally, it can also present a Virtqueue interface. (Virtqueues are part of the Virtio

specification.) This is useful in a configuration targeting a user more familiar with

software development where user code is executed on a soft processor core on the

FPGA. The user could write software to interact with the queue data structures in

FPGA memory to communicate with the host machine.

Attributes 3 and 4 are related to how a component is represented in an hOS

generation framework and the use model for a user to add components to a design.

61

Additionally, the component design strategy could also have an impact. For example,

a component could instantiate one or more IP cores or user modules with many

hardware parameters a user may not be familiar with. The component designer can

use simpler user-facing parameters for the top module of the hierarchy which the

user adds to a design and internally calculate the values for the actual hardware

parameters. Going one step further, DISL allows the component designer to add a

Python function to the system generator to perform such parameter conversions. If

the designer wishes to allow advanced users access to the hardware parameters, those

still can be exposed in the top module alongside an additional parameter to decide

whether the user-provided or internally calculated versions of the parameters are used

when instantiating the sub-modules/IP cores.

The ability to target different toolchains and the ability to easily port components

across devices depend on whether the generic and device-/vendor-specific portions of

a component are clearly separated. When they are, the generic portion can be reused

while the rest is replaced with modules that match a different device/toolchain. When

adding the device-specific units to the hOS generator, the component designer could

also include scripts with the commands to generate and integrate the IP cores into the

rest of the component. Listing 4.1 provides a good example of this. The tool-specific

commands to generate and modify the PCIe IP core are added to the component

library as part of the component description. This allows the system generator to

automatically generate the IP core with no user intervention. When porting the

component to a different device (different toolchain as well if the new device is from

a different vendor) the device-specific portion can be replaced without changing the

functionality or the interfaces of the user applications.

Apart from enabling and enhancing the desired characteristics of hOS generators,

a good component design strategy can compensate for certain limitations of hOS gen-

62

erators. For example, consider conditional module instantiation. This is a standard

feature in hardware description languages such as Verilog and VHDL. In Verilog,

this can be achieved either with ‘generate if’ statements or compiler directives

which are similar to C language preprocessor directives. The method/syntax used

by a system generator to describe a system may lack the capability to describe this

behavior. However, the component design can compensate for this limitation. A

wrapper module can be provided to include the different components that need to be

instantiated conditionally and provide a parameter to the hOS generator to set when

generating the top module of the design and select which submodule is instantiated.

The two versions of the PCIe subsystem shown in Figure 5·8 is an example of such

a scenario. The top module for the PCIe subsystem can provide a parameter for the

hOS generator to specify the target device. Depending on the value of the parameter,

either the ‘xdma xc7’ or the ‘xdma cvp13’ modules can be instantiated internally.

This parameter can even be hidden from the user because the hOS generator can set

the parameter based on the information already provided by the user in specifying

the target device for the design.

Another example is specifying multiple instances of the same module with a loop

construct. In Verilog, this can be achieved with ‘generate for’ statements. If the

hOS generator does not allow specifying module instances in this fashion, the com-

ponent design can again provide a workaround. A wrapper module can be provided

with a parameter to specify the number of instances to be created. The input and

output ports of the wrapper will have the concatenated I/O of the internal module

instances.

3.3.1 DISL Component Design Steps

In the next chapter, we implement a PCIe subsystem and add it the the DISL com-

ponent library. As a precursor to that, we revisit the steps a user should follow

63

when adding a new component to DISL. The four main steps involved in adding a

component to the DISL component library are;

1. Pre-Processing

2. Adding board support

3. Adding the generic logic to the library

4. Adding parameter mapping function

Pre-processing

During this step, a component is divided into device-specific and generic blocks.

This involves making two code partitions ‘Board’ and ‘Generic’. Generic contains

all the logic that is agnostic of the exact device used and hence can be ported to

different devices without any modifications. Meanwhile, Board includes all the device-

specific elements, parameters, and functionality specific to a target device/board (e.g.

PHYs, external I/O bus widths). Whenever a component needs to be ported to a

different device, this portion needs to be reimplemented to match the new device.

Each of the code partitions can be further split into two logical partitions ‘HDL’ and

‘Parameter’. Figure 3·1 provides a visual representation of the code partitioning

scheme.

The HDL partition refers to the file(s) that contain(s) the hardware block’s source

code. Although the logical partition is named ‘HDL’, the source files are not limited

to hardware description languages. It could also include scripts to generate (and

modify if necessary) IP cores. This is common in the Board partition because many

external interfaces require using vendor-provided IP cores and/or PHYs. When the

HDL logical partition includes a script to generate the source instead of the actual

source, a dummy file that acts as the top-level source file is also added alongside the

64

Figure 3·1: Code Partitioning Scheme.

script. When the actual source is generated at build time, this file is replaced. This

is necessary because DISL handles dependencies per source file. In the configuration

files, a user should specify dependencies with this dummy top-level file. When DISL

generates an hOS design, all dependencies are copied over to the build directory.

The Parameter partition refers to the top-level parameters of a block and the

default values of these parameters. For each hardware block (i.e. per code partition),

it is also possible to create an abstraction function in Python that can map a user-

facing set of parameters to the actual block parameters. This can simplify the process

of customizing the block since it can be non-trivial to correctly identify and change

hardware parameters to achieve a high-level goal. Moreover, the Python function can

also be used to generate non-parameter data such as initialization files and scripts.

Finally, it should be noted that a given component doesn’t need to have all the code

and logical partitions. A component with no device-specific elements can omit the

Board partition while a fully device-specific block can omit the Generic partition.

The motivation behind dividing a component into Board and Generic partitions

65

is improving portability across devices. Here DISL is leveraging the fact that most

FPGA designs include both device-specific and agnostic logic and the device-agnostic

logic can be used on different devices with no or minimal changes. Deciding the

boundary between device-specific and generic logic, however, is not straightforward

and is discussed further in Section 3.4.

Board Support

When adding a new component to the DISL component library, if the target device

is not already supported, a user is required to add a description of the device to DISL

in the form of a configuration file. Here, we briefly cover the steps to add board

support for a new target development board.

DISL depends on the information provided in

‘fpga/boards/<board name>/config/board.tml’ to implement the device-

specific portion of the hOS. The contents of board.tml include descriptions of the

FPGA board and board-specific hardware block partitions. The description of a

board could consist of information such as the FPGA vendor details, FPGA part

number, external pins, their direction (source/sink), and pin location constraints

for the external pins. Additionally, commands to generate/modify IP cores, that

are part of the Board partition are also added to the same file. Listing 3.1 shows

excerpts from the board.tml file describing an FPGA development board based on

a Xilinx Artix-7 xc7a200tfbg484-2 device. This is the target device for our initial

implementation of the PCIe subsystem.

1 [DESCRIPTION]

2 NAME = "Alinx_AX7A200T"

3 DIRECTORY = "alinx_ax7a200t"

4 CHIP_VENDOR = "Xilinx"

5 BOARD_VENDOR = "Alinx"

6 VENDOR.DDR = "Micron"

7 FAMILY.SHORT = "xc7"

8 FAMILY.LONG = "7 series"

9 PART.SHORT = "xc7a200t_0"

10 PART.LONG = "xc7a200tfbg484 -2"

66

11 ...

12 [REQUIREMENTS]

13 [REQUIREMENTS.FILES]

14 [REQUIREMENTS.FILES ." ddr_phy.v"]

15 HDL =[]

16 IP = [" ip_mig_params_0.prj"]

17 [REQUIREMENTS.FILES ." xdma_xc7.sv"]

18 HDL = [" xdma_0_axi_stream_intf.sv", "xdma_0_pcie2_ip_core_top.v", "

xdma_0_rx_demux.sv", "xdma_0_tgt_cpl.sv", "xdma_0_tgt_req.sv"]

19 IP = []

20 ...

21 [REQUIREMENTS.IP]

22 [REQUIREMENTS.IP." xdma_xc7.sv"]

23 xdma_0 = """

24 config_ip_cache -disable_cache

25 create_ip -name xdma -vendor xilinx.com -library ip -version 4.1 -

module_name xdma_0

26 ...

27 <TCL commands >

28 ...

29 """

30 ...

31 [IO]

32 [IO.sys_clk_p]

33 DIRECTION = "SOURCE"

34 WIDTH = 1

35 INTERFACE_TYPE = "CLOCK"

36 [IO.sys_clk_n]

37 DIRECTION = "SOURCE"

38 WIDTH = 1

39 INTERFACE_TYPE = "CLOCK"

40 [IO.sys_rst_n]

41 DIRECTION = "SOURCE"

42 WIDTH = 1

43 INTERFACE_TYPE = "GENERAL"

44 [IO.pci_exp_txp]

45 DIRECTION = "SINK"

46 WIDTH = 4

47 INTERFACE_TYPE = "GENERAL"

48 ...

49 [CONSTRAINTS]

50 sys_clk_p = """

51 set_property LOC IBUFDS_GTE2_X0Y3 [get_cells refclk_ibuf]

52 create_clock -period 10.000 -name sys_clk [get_ports {sys_clk_p }]

53 """

54 ...

55 set_property CONFIG_MODE SPIx4 [current_design]

56 set_property BITSTREAM.CONFIG.CONFIGRATE 50 [current_design]

57 set_property BITSTREAM.CONFIG.SPI_BUSWIDTH 4 [current_design]

58 set_property CONFIG_VOLTAGE 3.3 [current_design]

59 ...

Listing 3.1: Board description example

67

In Listing 3.1, lines 1 through 10 describe the FPGA development board including

part numbers and device vendors. The requirements section (line 13) specifies the files

and IP cores required. Notice that the dependencies are specified in relation to source

files ‘ddr phy.v’ (line 15), and ‘xdma xc7.sv’ (line 24). These are the source files

for the top-level modules of the Board partitions for the DDR and PCIe subsystems.

The dependencies themselves can be IP cores or other source files. Line 17 specifies a

script with the TCL commands to generate an IP core required by ddr phy.v. Line

19 specifies multiple HDL files required by ‘xdma xc7.sv’. From line 25 onwards,

there are several TCL commands used to generate the vendor-provided PCIe IP core

(xdma 0). The [IO] dictionary specifies all the input/output interfaces, their direc-

tions, and widths (lines 34-50). Finally, the [CONSTRAINTS] dictionary specifies the

different constraints including ones related to the development board, I/O pins, and

clocks.

Adding support for a particular device is a one-off task. Therefore, once a devel-

oper with the necessary expertise creates a board specification, any user can use it

without possessing the expertise to create such a specification. Notice that some of the

commands for generating IP cores, specifying constraints, and placing device-specific

primitives (eg: IBUFDS GTE2 X0Y3 on line 55) could be vendor- and tool-specific.

The board specification file acts as an abstraction layer between the device-agnostic

logic and such vendor- and tool-specific elements. This simplifies the process of port-

ing a hardware OS design to different devices.

Generic Logic

After adding the device-specific elements to DISL as described in the previous

section, a user is left with source files containing device-agnostic logic only. These are

added to the ‘/fpga/common/hdl’ directory and the topmost module in the hierarchy

is described in the ‘/fpga/common/config/modules.tml’ file. The rest of the source

68

files are specified as ‘[REQUIREMENTS]’ for the top module using a syntax similar to

what is used in ‘board.tml’.

Parameter Mapping Function

As the final step in adding a component to DISL, an optional Python function can

be defined to map user-facing abstracted parameters to actual HDL parameters. This

is done by adding the function to ‘fpga/system builder/build.py’. In addition to

mapping parameters, this function can also be used to generate component-specific

files. For example, if using a softcore processor, this function can be used to generate

the linker scripts and reset handlers using the memory maps and the memory sizes

in the system specification.

This is an optional step that may not be necessary for every component added

to the DISL component library. This step is useful when the component added has

complex configuration parameters that are too complex to be exposed to a user with

little hardware design experience. A component designer can create an abstraction

layer between the user and the actual hardware parameters by specifying simpler user-

facing parameters and using a parameter mapping function to derive the component

parameters from the user-facing parameters.

3.4 Component Design Strategy

In this section, we combine our discussion from previous sections and the insights

gained from implementing a PCIe subsystem for DISL (described in Chapters 4,

and 5) to develop a set of design guidelines to follow when designing components for

hOS generators.

Our design guidelines are as follows.

• Implement components as discrete units independent of other components in

69

the hOS. If it is necessary to depend on inputs from other components, include

extra logic and parameters that account for different variants of the connected

components (including the case where some components are not included in the

design).

• Include different variants of the interfaces that may be useful when using the

component in different system configurations. Add a configuration method for

the hOS generator to select the correct interface variant based on the user

requirements.

• If the component has complex hardware parameters, abstract them with simpli-

fied user-facing parameters. Add parameter mapping functions either as a part

of the component or as external functions depending on the support available

in the hOS generator.

• Expose the complex hardware parameters alongside the simplified ones. Provide

additional parameters to control which set of parameters are used.

• Clearly separate the device-specific and generic logic within the component.

• Implement consistent interfaces within the component (between the device-

specific and generic sub-components) and also between the component and the

rest of the system regardless of the exact implementation details of individual

sub-components.

• If necessary, implement additional wrapper modules and parameters to account

for limitations of the method/syntax used by the hOS generator to describe

systems.

Factors Deciding the Boundary Between Generic and Board Partitions

When implementing an hOS component and porting it to a different device in the

70

previous sections, we have observed that the separation between generic and device-

specific logic is the most important and impactful out of our set of design guidelines.

This is also the guideline that will result in the highest variance in terms of the

implementation effort and the resultant benefit because there is a multitude of ways

a component can be partitioned.

When adding a component to the DISL component library, the user is responsible

for partitioning the different elements as discussed above. The user has to decide

where the boundary between device-specific and generic logic lies. The effort necessary

to create the code partitions relies heavily on this decision. The partitioning should

not be done just for the sake of following the recommended steps. The effort to

partition the component should not outweigh the benefit of partitioning. Therefore,

there are several factors that decide where the boundary is drawn.

• What is the component/interface? Does it have device-specific/-agnostic logic?

The degenerate case is where a component is fully device-specific or agnostic.

In this case, there is no decision to be made as the whole component should go

in either the Board or Generic partition.

• Is the component likely to be reused?

If a component is unlikely to be reused for other designs, it is difficult to jus-

tify the overhead of creating code partitions. In such a scenario adding the

component as a single unit without creating code partitions is acceptable.

• Will the component be ported to different devices?

If a component is not intended to be ported to different devices or if the porting

can be done by replacing a subcomponent that includes both device-specific and

generic logic, it may not be necessary to perform strict code partitioning. For

instance, the PCIe subsystem discussed in the previous sections uses a vendor-

provided PCIe IP core as a subcomponent. The IP core itself includes both

71

device-specific and agnostic logic. However, because the complete IP core will

be replaced when porting to a different device family, the source code of the

IP core is not partitioned. Instead the whole IP core is added to the Board

partition.

• Access to IP source files.

There could be cases where a user does not have access to the source files in

unencrypted form for some IP cores provided by either the FPGA vendor or a

third party. In this case, the user is forced to include the IP core as a single

unit without partitioning.

• What are the interfaces that need to be implemented between the partitions?

Code partitioning also involves implementing the necessary interfaces between

the Board and Generic partitions. The complexity of the resulting interfaces

and the effort necessary to implement the interfaces should also be considered

when performing code partitioning.

• Additional constraints.

A user may have additional constraints such as not using any vendor-provided

IPs, performance targets that cannot be achieved using those, or functionality

not provided by the vendor-provided IP cores. In such situations, a user might

replace all or most parts of IP cores except for hardened ASIC blocks. Then

the ASIC blocks will be the only device-specific elements in the design.

• How much time and effort the user is willing to spend?

Ultimately, the code partitioning decision depends on the amount of time and

effort a user is willing to spend. If the initial overhead of code partitioning

cannot be amortized by reusing the component, a user may decide to avoid this

step and add the component as a single unit. In the case of DISL, the system

72

generation functionality does not change based on whether the code partitioning

is performed or not. Therefore, a user can trade off reusability in favor of faster

implementation.

Based on these factors, the partitioning scheme that fits a majority of use cases

is what we followed in implementing the PCIe subsystem. There we included the

following in the Board partition.

1. The IP core

2. Any modules connected to the IP core to extend its functionality (such as the

‘xdma ext cfg space’ module in the Ultrascale+ variant of the PCIe subsys-

tem)

3. Wrapper modules that ensure consistency of interfaces between the Board and

Generic partitions

Therefore, we recommend this to be the default partitioning scheme. However,

as mentioned above, there are specific situations where different partitioning schemes

should be followed.

3.5 Summary

In this chapter, we identified a list of attributes we expect an ideal hOS generator

to possess. Then we discussed a set of important design decisions to make when

designing an hOS generator. We explored how the system generator used in this work

(DISL) and related previous works handle these design decisions and the impact of

these decisions on the attributes of the hOSs and the hOS generators. None of the

prior works or DISL possess all of the characteristics we have identified. The fixed

hOS designs provide the most features but lack the flexibility to select the features

73

to match the application requirements. System generators like DISL and TaPaSCo

provide different levels of flexibility but do not provide the more advanced features

available with hOS designs such as Coyote.

Out of the system generator designs, the strategy used by DISL, to generate

systems using user requirements and a component library, results in an hOS generator

and hOS designs that demonstrate most of the desired attributes we have identified.

Future research efforts should focus on adding advanced capabilities such as dynamic

reconfiguration to DISL while maintaining the level of flexibility it provides.

We also discussed how most of the ideal hOS generator attributes depend on the

components used by the hOS generator and presented a set of design guidelines for

hOS components.

74

Chapter 4

PCIe Subsystem Design: Enabling Virtio

Driver Support on FPGAs

In this chapter, we go over a concrete design example implementing a PCIe subsystem

for host-FPGA communication, adding it to the DISL component library, and using it

in a design. The implementation presented in this Chapter enables the repurposing of

Virtio device drivers that are part of standard Linux distributions as generic device

drivers for FPGAs. This allows a user to use unmodified Virtio device drivers to

communicate with the FPGA without writing their own device drivers or relying on

vendor-provided device drivers which are often poorly maintained.

Host-FPGA connectivity is critical for enabling a vast number of FPGA use cases

in data centers, edge, and IoT. This interface must be reliable, robust, and uniform,

whilst supporting necessary protocols and functionality. However, existing support

for host-FPGA connectivity has several drawbacks, both on the host and the device.

This includes a lack of portability and poor upstream support, both of which can make

it difficult for CPUs to easily and effectively leverage FPGAs. Native Virtio drivers

in the host operating system can help address some of these limitations, especially on

the host side. However, implementing device-side support for the Virtio specification

is a challenge due to the substantial hardware complexity involved.

The framework presented in this chapter enables FPGAs to interface with native

Virtio drivers in the host operating system. To reduce the implementation overhead

and improve portability, this framework uses both generic RTL blocks and modified

75

chip/device-specific PCIe IP blocks. Moreover, this approach implements all the

necessary data structures and functionality needed to meet the Virtio specification

requirements. We test the framework using the Xilinx DMA/Bridge Subsystem for

PCI Express (XDMA) IP [Xilinx, 2022b], implemented on an Alinx AX7A200 FPGA

board (with a Xilinx Artix7 [Xilinx, 2022a] XC7A200TFBG484-2 FPGA chip), and

a host machine running the Fedora 37 operating system. Our results show that the

FPGA can be successfully enumerated as a Virtio device, and interfaced using only

native Linux Virtio drivers.

4.1 Introduction

The flexibility of FPGAs enables them to be important complexity offload devices for

the CPU. They can be used to accelerate user and system applications, implement net-

working functions to process data at line rates, perform system administration, pro-

vide secure enclaves with hardware isolation, and a number of other tasks [Caulfield

et al., 2016,Xiong et al., 2019, Lant et al., 2020,Haghi et al., 2020,Krishnan et al.,

2021,Shahzad et al., 2021,Zink et al., 2021,Haghi et al., 2022,Guo et al., 2022a]. In

order to support this vast number of use cases, the host-FPGA connectivity must im-

plement a required set of features and protocols, as well as provide a reliable, robust,

and uniform interface.

Despite the critical nature of host-FPGA connectivity, there are a number of

limitations of existing PCIe [PCI SIG Org., 2010] interfaces that support this com-

munication. On the device side, the major limitation is portability. The IP blocks

used to implement host interfaces are typically vendor-specific, both in terms of chip

and board; and can have inconsistencies in the features they support and the APIs

they expose to the user logic. This is due to the implementation complexity of the

communication stack, differences in resource types/amounts across chips, and the vir-

76

tually impossible task of building a completely generic hardware stack due to the use

of essential ASIC blocks organized in chip-specific IO Bank structures, e.g., SERDES

units.

On the host side, the major limitations are portability and poor maintenance.

From a portability perspective, the differences in capabilities/functionality of the

device can lead to compatibility issues if the driver attempts to use nonexistent func-

tionality. This is especially important in FPGAs given their flexibility and that there

is no standard set of supported features. Moreover, similar to the hardware side, APIs

exposed to user applications by vendor-provided device drivers can also be inconsis-

tent. From a maintenance perspective, deprecated software dependencies, especially

as the host kernel is updated, and a changing set of features supported by IP blocks,

means that the device drivers need to be patched frequently. Unfortunately, there is

often poor upstream support: most of the work on drivers is done downstream, i.e.,

by developers modifying the drivers themselves.

Virtio [Tsirkin and Huck, 2022] is an industry standard for I/O virtualization and

is one possible solution to the challenges posed by the use of vendor-provided device

drivers. There is native support for Virtio in the host operating systems, such as the

Linux kernel, which means that no additional driver needs to be written/maintained,

and APIs are relatively consistent. Virtio also supports feature negotiation, i.e., the

device and driver can use feature bits to determine the subset of supported features to

ensure compatibility. Moreover, there are additional benefits to virtualized environ-

ments, such as faster guest-device communication. Exposing the FPGA to the host

as a Virtio device can reduce data copies and latency through direct communication

between the guest user space and the host device driver.

While Virtio can help address limitations of the host-device interfaces on the host

side, there are two major challenges involved with implementing native Virtio support

77

on the device. First, the FPGA hardware stack must meet the Virtio specification,

which means that appropriate data structures and state machines must be imple-

mented. This is in contrast to existing approaches to Virtio support, which build

a hardware stack that does not fully meet the Virtio specification and thus require

custom Virtio drivers to interface with it; these have disadvantages similar to the

typical FPGA drivers discussed above. The second challenge is that the hardware

side is still chip/device specific and existing IP blocks may not support all required

functionality. Building up the entire hardware stack from scratch is also not feasible

due to the complexity of implementing the required IP blocks.

In this work, we address the above challenges by developing a framework consis-

tent with the DISL component implementation steps, that allows Virtio support to be

added to the FPGA hardware stack by: i) building a subset of the required hardware

blocks from scratch using generic RTL, and ii) leveraging existing PCIe IP blocks for

chip/device-specific parts of the implementation. To achieve this, we first identify

the interface that an FPGA should expose to the host to meet the Virtio specifica-

tion. Next, we instantiate the vendor IP by specifying appropriate parameter values

based on the interface requirements. Then, we modify the IP RTL to add/modify

critical functionality that was either not available in the IP or was not exposed to the

developer when instantiating the IP. Finally, we add a Virtio controller block which

only includes generic RTL, as an abstraction layer between the PCIe IP and the user

logic. This controller is responsible for implementing additional requirements of the

Virtio specification, such as data structures, arbitration logic, queue support, and

other state machines. We test our methodology by implementing a Virtio console

device on the FPGA.

In our published work [Bandara et al., 2022], we demonstrated the following:

• Enabling FPGAs to leverage native Virtio drivers in the host operating system

78

for host-device communication;

• Identifying and implementing the device requirements for Virtio, such as data

structures, arbitration logic, queue support, and other state machines;

• Improving portability and reducing implementation complexity of the hardware

stack by building required hardware blocks using both generic RTL, and modi-

fying existing PCIe IP blocks to implement chip/device specific blocks; and

• Demonstrating the effectiveness of our approach by modifying the Xilinx XDMA

IP to enable enumeration and communication as a Virtio console device.

4.2 Methodology

To enable Virtio drivers to communicate with an FPGA over PCIe, the FPGA should

present an interface that meets the requirements of the Virtio specification [Tsirkin

and Huck, 2022]. These requirements can be divided into three different operating

phases: device identification, device initialization, and data movement. The methods

used to implement a Virtio-compliant interface are described below in relation to

the Xilinx FPGA and IP cores used in our implementation. The same methods are

applicable to most Xilinx IP cores. The same methods can be applied to IP cores from

different vendors as long as they provide the functionality necessary to implement the

Virtio interface.

4.2.1 Device Identification

A Virtio-enabled FPGA should announce the correct vendor and device IDs at the

time of PCI bus enumeration, at which the devices on the PCI bus get identified and

initialized by the host. The PCI vendor ID should be 0x1AF4. The PCI device ID

is determined depending on the type of Virtio device implemented on the FPGA.

79

For instance, an FPGA-based smartNIC can use the device ID 0x1041 which is the

device ID for a Virtio network device. This is perhaps the simplest requirement for

an FPGA implementation. The IP generation tool flow generally allows the user to

configure the PCI vendor and device IDs within the GUI when generating the PCIe

IP core. Some Xilinx IPs provide the ability to change the PCI IDs at runtime as

well. However, this is unnecessary as we only need the device to be recognized as a

Virtio device.

4.2.2 Device Initialization

The Virtio specification specifies five PCI capabilities that must be present in the

PCI capability list of a PCIe device for it to be initialized and operate as a Virtio

device. These are Common configuration, Notification, ISR status, Device specific

configuration, and PCI configuration access.

The first four of the above capabilities inform the Virtio driver where to find the

corresponding data structures used in initialization and regular operation of the de-

vice. The PCI configuration access capability provides the driver with an alternative

access method to the data structures located using the other capabilities. This is

used in cases where a legacy BIOS cannot directly access PCIe base address registers

(BAR) [PCI SIG Org., 2010]. For legacy Virtio devices, the driver expects the data

structures to be in the memory or I/O region corresponding to BAR0. However, for

modern Virtio devices, each data structure could be mapped to any of the BARs and

the Virtio capabilities in the PCI capability list are essential to locating those.

Adding new capabilities to the PCI capability list turned out to be more challeng-

ing compared to setting the correct PCI vendor and device IDs. We used a Xilinx

Artix-7 FPGA for our proof of concept implementation. This is one of the cheapest

FPGAs with PCI capability. The reasoning behind the selection is that, if the capa-

bilities provided by a cheaper FPGA family are sufficient to successfully implement

80

an interface compliant with the Virtio specification, the same should be true for more

expensive device families. Our assumption is that the integrated blocks and IP cores

for the more expensive device families will provide similar or better capabilities than

what is available for the device family we used.

At this point, it is worthwhile to provide a brief description of the PCIe integrated

block and the IP core used in this implementation. A Xilinx XC7A200TFBG484-2

device was used in this work. This device offers the 7-series integrated block for PCI

express found in Xilinx 7-series devices. The Artix FPGA uses the second generation

(Gen2) integrated block which has fewer capabilities than the more recent iteration

of the integrated block (Gen3) used in higher-end device families such as Virtex.

The PCIe IP cores internally instantiate the integrated block and use the transaction

(TRN) interface of the block to send and receive PCIe transaction layer packets [PCI

SIG Org., 2010] (TLP). We use the Xilinx DMA/Bridge Subsystem for PCIe Express

(XDMA) IP core [Xilinx, 2022b] for our experiments. In order to modify the PCI

configuration space with new capabilities, we first need to understand how the PCI

configuration space accesses by the host are handled by the IP core/integrated block,

and the interfaces exposed to change the contents of the PCI configuration space.

For the device used in this work, the PCI configuration space is implemented as

part of the integrated block itself. Under the default configuration, the integrated

block responds to configuration space accesses from the host. The configuration

space read and write access TLPs do not leave the integrated block via the TRN

interface. We have discovered that the integrated block/IP core combination used in

our implementation provides two different mechanisms to change the contents of the

PCI configuration space. Since we used a lower-end device, we can expect the higher-

end devices and corresponding IPs to provide similar or more flexible interfaces. For

instance, the 7-series Gen3 integrated block for PCIe provides a more feature-rich

81

configuration management interface compared to the interface available in the Gen2

block.

Adding new capabilities to the PCI capability list involves two tasks. The first is

to add the capability entries to the configuration space. The second task is forming

the capability list by correctly setting the next pointer fields of the capabilities.

Updating configuration space contents

Configuration Management Interface: The first mechanism to change the

contents of the PCI configuration space is the Configuration Management Interface.

Specifically, the signal group referred to as the “Management Interface Ports” allows

user logic to read and write to the PCI configuration space. This interface has two

shortcomings that make it unsuitable for our requirements. First, as we discovered

through our testing, the integrated block for PCIe does not implement the full PCI

configuration space as write-enabled registers. Only specific portions of the configu-

ration space are implemented as writable registers and the rest of the configuration

space is read-only. This makes it unsuitable for adding capabilities to the configura-

tion space. Even if the whole configuration space was writable by the user logic, this

method is still not suitable because the configuration space modifications have to be

done after the user logic has started operations. This means that the new capabilities

may not be visible to the host when enumerating the device. This is especially true

when using Tandem configuration [Xilinx, 2020]. PCI devices have a strict time limit

of around 100ms from reset, under which they should be ready for enumeration. If not

the device will not be enumerated. When it takes longer than the above time limit to

read a bitstream from flash memory and fully program an FPGA, Xilinx devices use

a technique called Tandem Configuration, where the bitstream is built in two parts

of which the first part contains only the bare necessities for PCI enumeration and

the second part contains user logic. We wish the Virtio-enabled FPGAs to behave as

82

any other PCIe device and to be enumerated at system boot up without requiring an

additional PCI bus rescan after boot up.

Configuration Space Access Forwarding: The second method is forwarding

the configuration space accesses to the user space over the ‘TRN’ interface. While

the 7-series integrated block for PCIe supports this feature, this is disabled in the

XDMA IP core because the IP is not designed to handle configuration space read and

write TLPs. Therefore, we have to make changes to the XDMA IP itself. There are

two distinct ways the same outcome can be achieved.

1. RTL modification: The first method is to modify the source files for the IP

core manually. We have to modify the source file which instantiates the PCIe

integrated block. The configuration space access forwarding can be enabled by

setting the attribute named EXT CFG CAP PTR to an appropriate double-

word address. All configuration space accesses for addresses above the speci-

fied address are forwarded to the user logic. Before modifying the RTL, the

IS LOCKED property for the IP should be set. Otherwise, Vivado compilation

flow resets any modifications made to the RTL when recompiling the IP core.

After setting the locked property, and modifying the source code, the IP is re-

compiled as an out-of-context module synthesis run. Out-of-context synthesis

is where the IP is compiled independently of the rest of the design.

The XDMA IP used in this work exposes an interface named Dynamic Reconfig-

uration Port (DRP) that allows the user logic to dynamically control attributes

of the PCIe hard block. The EXT CFG CAP PTR attribute can be set using

the DRP interface. However, it has the same limitation as the configuration

management interface described above as the user logic has to be operational

and finish a write operation over the DRP interface before the device enumer-

ation for this method to work correctly.

83

2. Modifying the XML file describing the IP components: The XDMA IP internally

instantiates the ‘PCIe integrated block’, which includes the transceiver PHY

and surrounding logic. We can separately generate this IP with configuration

space access forwarding enabled, and add it to the XDMA IP. Xilinx IPs use an

XML file to describe their sub-components. The second method is to update

this XML file of the XDMA IP core and to force the toolchain to use the sub-IP

we previously generated instead of the one generated by the Vivado tool flow

as part of the XDMA IP. Similar to the first method, we still have to lock the

IP and recompile it as an out-of-context synthesis run after updating the XML

file.

It should be noted that the PCIe IP for the FPGA we used in this work is

free and the source files are not encrypted. If the IP is provided by the vendor

in an encrypted format, a user may not be able to use the methods described

here to implement a Virtio-compliant interface. However, we believe that this

work still acts as a confirmation that it is possible to implement an interface

fully compliant with the Virtio specification and unmodified Virtio drivers can

be used to communicate with FPGAs. There is no limitation in hardware

preventing such an implementation except for artificial restrictions imposed by

the FPGA vendor through the toolchain and encrypted source files.

After configuring the integrated block to forward the configuration space ac-

cesses to the TRN interface, we need to implement the configuration space

registers with the new Virtio capabilities, and the control logic to respond to

configuration space read and write TLPs. The TLP header field is used to dif-

ferentiate the configuration space access TLPs from the other TLP types on

the TRN interface. Because the transaction interface is converted to an AXI

interface by the XDMA IP, the TLP header information is not accessible from

84

user logic. Therefore, the configuration space registers and the logic to build

correct response TLPs are implemented within the IP itself by modifying the

IP source files.

Forming the Capability List

The next challenge is correctly forming the PCI capability list with the new Virtio

capabilities. The capability list is traversed by following the “next” pointer of each

capability entry. Since the PCIe integrated block implements power management,

PCIe, Message Signaled Interrupts (MSI), and MSIx capabilities, the next pointer

of the last of those capabilities should be set to point to the first Virtio capability.

Surprisingly, the Vivado IP flow does not expose this option to the user even though

configuration space access forwarding is exposed. We noticed that there are poten-

tially multiple ways to set this pointer, but later discovered that not all methods

satisfy our requirements.

Using the DRP Interface: Depending on the capabilities chosen when gen-

erating the IP core, one of the attributes, MSIX CAP NEXTPTR, or PCIE CAP NEXTPTR

should be set to point to the first Virtio capability using the DRP interface. However,

this method is limited by the fact that user logic may not be operational in time to

make this change visible at the time of device enumeration.

RTL modification: It is also possible to modify the IP source code directly to

set the above attributes as parameters when instantiating the PCIe integrated block.

Since we expect the FPGA to be correctly enumerated at system boot up, this is our

preferred option to set the capability list next pointers.

85

4.2.3 Virtio structures

The Virtio structures pointed to by the newly added PCI capabilities are used in both

device initialization and regular operation. We briefly describe our implementation

here. As we have successfully added Virtio capabilities to the PCI capability list, we

are free to place the Virtio data structures on any of the BARs. since the XDMA

IP core provides an AXI lite master interface with the user logic that is mapped

to BAR0, we place all the Virtio structures on BAR0 at different offsets. Each

of the Virtio capabilities informs the driver of both the BAR and the offset the

corresponding data structure is located at. The Virtio driver will perform read and

write accesses to BAR0 to access the common configuration, notification, ISR status,

and device-specific configuration structures. The PCI configuration access capability

does not point to a different structure on a memory or I/O region. Instead, the driver

can access other Virtio structures by reading/writing configuration space addresses

corresponding to this capability.

Common Configuration Structure: Common configuration structure perhaps

is the most important of the Virtio structures. First, it informs the driver of device

attributes such as the features offered, the number of queues supported, and the

size of each queue. The driver writes information such as the addresses for different

virtqueue regions, and the MSIx vectors for each queue to the common configuration

structure. The device and driver feature fields are used in feature negotiation between

the device and the driver. The ‘device status’ field has bits indicating different

stages of device initialization. Some fields in the common configuration structure

represent a group of replicated fields. For instance, all fields referring to individual

queues are replicated to match the number of queues supported. The ‘queue select’

field determines which queue is being configured. The common configuration structure

86

implementation should include the necessary logic to support this behavior.

Notification Structure: The driver writes to the notification structure to notify

the device when there are new buffers added to the queues. Because the driver never

reads the notification structure, it is not implemented using registers. Instead only the

logic necessary to respond to write requests is implemented. The controller FSMs for

virtqueues monitor the writes to addresses corresponding to the notification structure

and initiate data movement between the host and the device as necessary. Depending

on the features negotiated, the driver may either write to the same address or write to

a different address within the notification structure that corresponds to each queue.

The data written includes which queue the notification is for. Therefore, the virtqueue

control logic can differentiate notifications for each queue.

ISR Status Structure: ISR status field is used by the driver to differentiate be-

tween queue and device configuration interrupts. This field is only useful when using

legacy INTx interrupts. This field is implemented as a register that gets cleared on

read.

Device-Specific Configuration Structure: Apart from data structures common

to all Virtio devices such as common configuration and notification, a device-specific

data structure is required to function as a particular device type. The device and the

driver share information specific to the given device type using this data structure.

For instance, the device-specific data structure for a network device includes details

such as the MAC address, Maximum Transmission Unit (MTU), and the types of

hashes the device can calculate if the hash calculation task for the incoming packets

is offloaded to the device.

87

PCI Configuration Access Capability: The driver is provided with an alter-

native access mechanism to the common configuration notification, ISR status, and

device-specific configuration structures through this capability. This functionality is

achieved through further modifications to the logic that implements the modified PCI

capability list. A new state machine is added to capture configuration space read-

/write TLPs intended for PCI Configuration Access Capability, and issue a read or

write request as necessary to the module that implements the Virtio structures. The

portion of the PCI configuration space that corresponds to the PCI Configuration

Access Capability is generally readable and writable by the host. Reads/writes to

the ‘pci cfg data’ field of the capability trigger this special behavior. The values of

the rest of the fields determine which of the structures is accessed via this alternative

mechanism.

FPGA
XDMA IP

User
Logic

PC
Ie

 In
te

gr
at

ed
 B

lo
ck

AXI-MM

U
D

M
A

virtio_controller

ext_cfg

virtqueue
controller

virtqueue
controller

virtqueue
controller

Ar
bi

te
r

AXI-lite VirtIO
structures

TRN

AXI-
S

Figure 4·1: Virtio implementation.

The connectivity between different modules is shown in Figure 4·1. Here, the

UDMA module is a sub-IP that implements the DMA functionality. The source code

88

for this module is not visible to the user. All the AXI interfaces going to user logic

originate from this module. Please note that the block named TRN↔AXI−S is

not an actual sub-module of the XDMA IP. Rather it represents the functionality of

multiple modules that sit between the PCIe integrated block and the UDMA module

and perform conversions between the ‘transaction interface’ of the integrated block

and the AXI stream interface connected to the UDMA module. Similarly, the block

named ‘ext cfg’ represents modifications made to multiple modules of the IP core

to implement a part of the PCI configuration space external to the PCIe integrated

block. We may refer to ‘ext cfg’ as a single module from now on for simplicity.

When a configuration space access is forwarded from the PCIe integrated block,

the ‘ext cfg’ logic intercepts the TLP and responds to the request. The modified PCI

configuration space registers with Virtio capabilities are part of ‘ext cfg.’ Memory

read and write TLPs are not intercepted and are sent directly to the UDMA mod-

ule. When a configuration space read/write TLP intended for the PCI Configuration

Access Capability is received, the ‘ext cfg’ logic still intercepts the TLP. Instead of

immediately responding, it converts the TLP to a memory read/write TLP and sends

it to the UDMA module as any other memory access TLP. The fields of PCI Config-

uration Access Capability are used to modify the fields of the TLP. It also indicates

to the UDMA module that BAR0 was accessed. This results in the UDMA module

sending a read/write request to the ‘virtio controller’ module which is connected to

the AXI-lite interface and includes the Virtio data structures. The response from the

‘virtio controller’ is sent to the host.

The sequence of transactions involved in PCIe device enumeration and Virtio

device initialization is shown in Figure 4·2. In the device enumeration phase, the host

OS kernel reads the configuration space of the PCIe device to identify the device. The

accesses below a predefined address (’hA8 for our implementation targeting the Artix

89

7 device) are handled by the PCIe integrated block. As part of the configuration space

is implemented externally to the PCIe integrated block, the ‘ext cfg’ logic services the

accesses above the configuration space address ’hA8. After allocating memory regions

corresponding to the BARs of the device, the addresses of the memory regions are

written to the BARs. Virtio device initialization begins when the kernel PCIe code

calls the probe function of the Virtio driver. The device driver first reads the Virtio

structures to gather information about the device such as the number of queues

supported, and the size of each queue. Next, the driver writes the addresses for

the different queue data structures in host memory to the common configuration

structure on the device. It also updates the device status register at each step of the

initialization.

4.2.4 Data Movement

Data movement between the host and a Virtio device is done using virtqueues. While

the Virtio specification describes two different virtqueue formats, we have imple-

mented the simpler split virtqueue definition. It should be noted that there are no

limitations from the FPGA for a packed virtqueue implementation. We have made

our selection purely based on the simplicity of the split virtqueue functionality.

A split virtqueue consists of three regions. These are the available ring, used

ring, and the descriptor table. All of these are data structures in the host memory.

The starting addresses for each of these regions, for each of the queues are written

to the common configuration structure at device initialization. Therefore, when a

notification is received for a given queue, the virtqueue controller modules can start

data movement without further interventions from the host. We have opted to im-

plement individual controllers for every queue supported by the device. The interface

to control the DMA engine is shared between all the virtqueue controllers as shown

in Figure 4·1.

90

When data is available to be moved from the host to the device, the Virtio driver

places data in a buffer, updates entries in the available ring and descriptor table of

the TX virtqueue, and notifies the device by writing to the notification structure.

The virtqueue controller takes over the data movement at this point. It first accesses

the header of the available ring to figure out how many ring entries were created by

the driver. The valid entries are traversed one by one while doing the following;

1. Read available ring entry to determine the corresponding descriptor table entry.

2. Read a descriptor from the descriptor table.

3. Use the descriptor to access the buffer and move data to the device.

4. Create an entry in the used ring to indicate that an entry from the available

ring was completed.

5. Update the header fields of the used ring to resemble the new number of entries

in the used ring.

6. Notify the driver via an interrupt.

Each of the first five steps corresponds to the virtqueue controller programming

the DMA engine to perform a data movement. The interrupt could be either a

legacy interrupt or an MSIx interrupt. We have opted to use MSIx interrupts in

our implementation. If sufficient MSIx vectors are enabled, the driver may choose

to assign different vectors for each queue and one vector for configuration changes.

The virtqueue controllers are responsible for selecting the correct MSIx vector. The

vector number corresponding to each queue is written to the ‘queue msix vector’

field of the common configuration structure at device initialization.

The Virtio driver allocates buffers for the RX queue as well and notifies the device

immediately after the device initialization. However, these are not used until the user

91

logic asserts an input signal to the virtqueue controller corresponding to an RX queue.

The virtqueue controller exposes an interface to the user logic to indicate the source

address to read data from and the length of the buffer. When the user logic indicates

that data is ready to be moved to the host, the virtqueue controller follows the same

steps as when it received a notification for the TX queue. The only difference is that

instead of moving data from host to device, it moves the data from device to host

into a buffer previously allocated by the Virtio driver.

Controlling the DMA engine

The use model for most DMA engines involves a device driver running on the

host providing the device with the address where the descriptors are stored, the

DMA engine fetching the descriptors, and then performing the data movement. The

descriptor layout is specific to the DMA engine. Since the Virtio drivers do not

target a specific device, the descriptors in the descriptor table do not match the

layout required by the DMA engine of the XDMA IP core. Furthermore, the Virtio

driver does not attempt to program the DMA engine at all. Instead, it provides the

device with the starting addresses of different regions of the virtqueues. The device

has to use these and the information on the size of the ring and descriptor table

entries available in the Virtio specification to control the DMA engine and perform

data movement.

The XDMA IP core provides an interface named the “Descriptor Bypass Interface”

to feed descriptors to the DMA engine from user logic. The virtqueue controllers use

this interface to program the DMA engine and move data to and from the FPGA.

The “DMA status ports” are used to monitor the completion of data movement and

advance the states of the virtqueue controller FSM. While we expect most PCI/DMA

IP cores for different FPGAs to have similar interfaces to control the DMA engine

from user logic, the user might have to implement their own DMA engine if such an

92

interface is not available.

Figure 4·3 depicts the transactions involved in the regular operation of a Virtio

device. The red-colored arrows represent the Virtio controller programming the DMA

engine. The directions of the DMA transfers are indicated within parentheses as C2H

and H2C for card-to-host and host-to-card respectively. Finally, the diagram is drawn

assuming that the interface between the Virtio controller and the user logic is the

AXI memory-mapped variant of the interface. If the Virtqueue variant is enabled,

more transactions are required to update the virtqueue rings and descriptor table in

the FPGA memory.

4.3 Evaluation

4.3.1 Results

Our implementation of the FPGA-based Virtio console device is implemented using

an Alinx AX7A200 development board. It has been tested on a host machine running

Fedora 37 operating system. We have shown that with the added hardware support

for Virtio, the device gets enumerated as a Virtio console device at system boot up

without requiring additional PCI bus rescans. Also, the Virtio driver loads completely

without any errors and is agnostic to the fact that it is communicating with a physical

device and not a virtual device. Figures 4·4, and 4·5 present the output of lspci

-v on the host machine with the FPGA programmed with bitstreams for a Xilinx

example PCIe DMA design and the Virtio console device respectively. The PCI

capability list in Figure 4·5 shows the Virtio capabilities added by modifying the

PCIe IP core.

We evaluate the performance of Virtio drivers further in Chapter 5. Our testing

shows that the data movement performance is similar to or marginally better than the

vendor-provided reference driver. Furthermore, we have observed a lower variance in

93

latency when using Virtio drivers. These observations can be explained by the steps

involved in data movement and the way the DMA engine is programmed when using

vendor-provided versus Virtio drivers.

Host to Card (H2C): To perform an H2C transfer, the legacy driver programs the

DMA engine through multiple memory read and write accesses over PCIe. When the

transfer is complete, the DMA engine interrupts the driver. In contrast, the Virtio

driver only performs one memory write to the Virtio notification structure of the

device. While the virtqueue controller has to perform multiple reads and writes to

host memory, these are DMA transfers and the DMA engine is programmed directly

from within the FPGA. The DMA engine can be programmed in a single clock cycle

via the descriptor bypass interface unless the engine is already busy moving data.

We expect this to have a lower latency compared to the multiple memory reads and

writes necessary for the legacy driver.

Card to Host (C2H): When data is ready to be sent back to the host and the

legacy driver is being used, the FPGA has to first raise an interrupt to indicate to

the driver that data is ready to be moved. Then the driver will program the DMA

engine similar to the H2C scenario. If the driver has to figure out the source address

on the FPGA by reading a CSR or a similar mechanism, that adds more memory

reads to the total. When the data movement is complete, the DMA engine interrupts

the driver.

As opposed to this, the operation of the virtqueue is much more streamlined.

When user logic indicates to the virtqueue controller that data is ready to be sent to

the host, the controller determines the buffer location in host memory by reading the

available ring and descriptor table of the virtqueue. These are DMA operations and

have lower latency compared to the memory accesses by the legacy driver. Then the

94

data is moved to the buffer in host memory, and finally, the Virtio driver is notified via

an interrupt. We expect this to have a lower latency than the legacy driver operation

because of faster DMA operations and one less interrupt. If legacy INTx interrupts

are used, the Virtio driver has to perform one more read operation to the ISR status

field. However, it is not necessary if MSIx interrupts are used because each virtqueue

can be assigned a unique interrupt vector.

4.3.2 Resource Usage

The virtio controller module is central to implementing a Virtio-compliant inter-

face on the FPGA. However, it uses additional FPGA resources compared to a design

that uses only the vendor-provided IP core and the device driver. Tables 4.1, and

4.2 show how the resource usage for the virtio controller module increases with

the number of queues supported. Resource usage is represented by the total LUT and

Flipflop (FF) usage. Because the virtio controller module does not use BRAMs,

we do not consider the BRAM usage of the XDMA IP core for this analysis. Neither

module uses DSP slices.

Queues XDMA virtio controller
2 14,250 (10.65%) 6,907 (5.16%)
4 Same 8,643 (6.46%)
8 Same 12,118 (9.06%)
16 Same 19528(14.59%)

Table 4.1: Resource usage (total LUTs) comparison between the PCIe
IP core and the Virtio controller

Queues XDMA virtio controller
2 15,721 (5.87%) 4,909 (1.83%)
4 Same 5,799 (2.17%)
8 Same 7,873 (2.94%)
16 Same 11,866 (4.43%)

Table 4.2: Resource usage (total Flipflops) comparison between the
PCIe IP core and the Virtio controller

95

Around 8 queues, the virtio controller module’s LUT usage approaches the

resource usage of the XDMA IP core, essentially doubling the resources used to imple-

ment host-FPGA PCIe communication. The FF usage grows at a lower rate because

the Virtio structures which use most of the flipflops are common to all the queues

supported by the device.

4.3.3 Implementation challenges

In this section, we provide our assessment of the difficulty of implementing Virtio

support on an FPGA by modifying vendor IP blocks. According to our estimates,

over 80% of the implementation effort was put into figuring out the necessary features

of the vendor IP cores and using those features to add Virtio capabilities to the PCI

capability list. Implementing the Virtio data structures and virtqueue controller logic

according to the Virtio specification was straightforward and quick. If the PCIe IP

core in question is one used with more than one device family, the effort to figure out

the IP details is not necessary when implementing Virtio support on the other device

families. For instance, the Xilinx XDMA IP core used in this work can work with Ul-

traScale+, UltraScale, Virtex-7 XT Gen3 (Endpoint), and 7-series Gen 2 (Endpoint)

Integrated Blocks for PCIe [Xilinx, 2022b]. Therefore, implementing Virtio support

on those devices can be done with considerably less effort. Also, the FPGA vendors

can enable the necessary capabilities to make Virtio support easily achievable.

4.4 Integrating into DISL

When adding a component to the DISL component library, we should follow the steps

described in Section 3.3.1 to improve design reuse and portability across devices. The

main task to be performed is separating the device-specific and generic logic of the

new component. This helps improve design reuse and portability across devices.

As shown in Figure 4·1, the main components of the PCIe subsystem are the

96

vendor-provided PCIe IP and the Virtio controller module. Out of these, the latter

only consist of generic logic. Therefore, it belongs in the Generic code partition. The

PCIe IP core includes both device-specific and generic logic. The ‘PCIe Integrated

Block’ is a hardened ASIC block that implements the functionality of the PCIe in-

terface. This includes the physical and link layers and the PCI configuration space.

As this is specific to a given device, this belongs in the Board partition. In contrast,

the block named ‘UDMA’ is a sub-IP that acts as a DMA engine. It is possible for a

user to replace this with their own DMA engine. The interface logic blocks between

the PCIe integrated block and the DMA engine are implemented on the FPGA fabric

using RTL (Note that Figure 4·1 shows a simplified view of the logic between the

PCIe integrated block and the UDMA block). However, some of the blocks can be

categorized as device-specific since they implement interfaces that match the inte-

grated block. A strict partitioning scheme would categorize individual modules into

Generic and Board partitions.

However, such a partitioning scheme does not provide a significant benefit over

one that categorizes the complete IP core as belonging to the Board partition due to

a few reasons.

1. A partitioning scheme that separates individual modules of the IP core into

Board and Generic partitions would probably require some of the IP logic

including the interfaces between the modules now separated into partitions to

be reworked. This requires a deep understanding of the IP core’s architecture

and considerable effort.

2. When porting to a new device, we have to generate a new IP core that matches

the new device.

• It is straightforward to replace the whole IP.

97

• Since IP cores differ from one another significantly, most modifications

done to the sub-modules of the IP core need to be repeated.

3. The modifications we made to enable the features required to implement a

Virtio interface are not extensive to the point that we remove/replace complete

sub-modules of the IP core. We are only making minor modifications to the

modules.

4. Most users don’t have any restrictions regarding using vendor-provided IP cores.

Therefore, considering that a stricter partitioning scheme:

1. Does not improve portability or reuse more than a simpler partitioning scheme

2. Requires significantly higher effort

it generally does not make sense to use one. However, there could be situations where

even more extreme partitioning makes sense. For instance, consider a user who does

not wish to use any vendor-provided IP cores or a user who wishes to obtain higher

performance than what the vendor-provided IP core can provide. Even in such a use

case, the PCIe integrated block still has to be used because it is a hardened ASIC

block without which PCIe connectivity cannot be implemented. Every other piece of

logic in the IP core can be replaced by a designer with generic logic. There should be a

compelling reason such as the ones mentioned above to go for an extreme partitioning

scheme.

Figure 4·6 shows different partitioning schemes we could implement with the PCIe

subsystem. The new functionality added (Virtio) is mostly implemented as generic

logic and any changes to the IP core are contained within the board-specific RTL of

the IP core. Therefore, partitioning the IP core’s RTL into separate code partitions

does not improve the design portability. Hence, we have followed the partitioning

98

scheme (3). The ‘pcie controller’ module is added to the Generic code partition

while the modified PCIe IP core is added to the Board partition. Code in the Board

partition includes modified RTL source files for the IP core. When the IP core is

generated, some of the IP source files are replaced with the modified ones.

One minor drawback of partitioning scheme (3) is that the Board and Generic

partitions are connected over the interfaces presented by the IP core. Since different

IP cores can use different interfaces, it may be necessary to implement additional glue

logic to ensure compatibility between the reused Generic components and new Board

components when porting to a new device. The other partitioning schemes provide

more control over the interface between Board and Generic partitions. However, the

effort necessary to implement glue logic is most likely less than the effort to modify

the IP core in the other two schemes.

A potentially bigger issue is the interfaces of an IP core lacking the functionality

to support the Virtio functionality. In this case, the only viable options are to modify

the IP core or use a different IP core. If modifying the IP core, partitioning schemes

(1) or (2) could be used depending on the extent of the modifications.

4.4.1 Updating Configuration Files

DISL uses configuration files written in TOML syntax to describe components

and systems. After partitioning our design into device-specific and generic por-

tions, we have to add these to the corresponding configuration files before us-

ing the PCIe subsystem in DISL. Our initial implementation was using an Alinx

‘AX7A200T’ development board. This uses a Xilinx Artix 7 (XC7A200TFBG484-2)

FPGA. The parts of the design that belong to the Board partition are specified in

/fpga/boards/alinx ax7a200t/config/board.tml file.

1 ...

2 [REQUIREMENTS.FILES ." xdma_xc7.sv"]

3 HDL = [" xdma_0_axi_stream_intf.sv", "xdma_0_pcie2_ip_core_top.v", "

xdma_0_rx_demux.sv", "xdma_0_tgt_cpl.sv", "xdma_0_tgt_req.sv"]

99

4 IP = []

5 ...

6 [REQUIREMENTS.IP]

7 [REQUIREMENTS.IP." xdma_xc7.sv"]

8 xdma_0 = """

9 config_ip_cache -disable_cache

10 create_ip -name xdma -vendor xilinx.com -library ip -version 4.1 -

module_name xdma_0

11 set_property -dict [list ...

12 <A long list of configuration parameter values >

13 ...] [get_ips xdma_0]

14 generate_target all [get_files ./build/[lindex $argv 0]/[lindex $argv 0].

srcs/sources_1/ip/xdma_0/xdma_0.xci]

15 export_ip_user_files -of_objects [get_files ./build /[lindex $argv 0]/[lindex

$argv 0]. srcs/sources_1/ip/xdma_0/xdma_0.xci] -no_script -sync -force -

quiet

16 create_ip_run [get_files -of_objects [get_fileset sources_1] ./ $PROJECT/
$PROJECT.srcs/sources_1/ip/xdma_0/xdma_0.xci]

17 launch_runs xdma_0_synth_1 -jobs 24

18 wait_on_run xdma_0_synth_1

19 update_compile_order -fileset sources_1

20 set_property IS_LOCKED true [get_files xdma_0.xci]

21 exec cp ./ xdma_0_axi_stream_intf.sv ./ $PROJECT/$PROJECT.srcs/sources_1/ip/
xdma_0/xdma_v4_1/hdl/verilog/xdma_0_axi_stream_intf.sv

22 exec cp ./ xdma_0_pcie2_ip_core_top.v ./ $PROJECT/$PROJECT.srcs/sources_1/ip/
xdma_0/ip_0/source/xdma_0_pcie2_ip_core_top.v

23 <Copy more files >

24 reset_run xdma_0_synth_1

25 launch_run xdma_0_synth_1

26 wait_on_run xdma_0_synth_1

27 """

28 ...

29 [IO]

30 [IO.sys_clk_p]

31 DIRECTION = "SOURCE"

32 WIDTH = 1

33 INTERFACE_TYPE = "CLOCK"

34 [IO.sys_rst_n]

35 DIRECTION = "SOURCE"

36 WIDTH = 1

37 INTERFACE_TYPE = "GENERAL"

38 [IO.pci_exp_txp]

39 DIRECTION = "SINK"

40 WIDTH = 4

41 INTERFACE_TYPE = "GENERAL"

42 <More interface definitions >

43 ...

44 [CONSTRAINTS]

45 sys_clk_p = """

46 set_property LOC IBUFDS_GTE2_X0Y3 [get_cells refclk_ibuf]

47 create_clock -period 10.000 -name sys_clk [get_ports {sys_clk_p }]

48 """

49 sys_rst_n = """

100

50 set_property -dict {PACKAGE_PIN L16 IOSTANDARD LVCMOS18 PULLUP true} [

get_ports {sys_rst_n }]

51 set_false_path -from [get_ports sys_rst_n]

52 """

53 ...

Listing 4.1: Adding PCIe components to board.tml

Listing 4.1 shows the parts of the board.tml that are related to the main

PCIe design components. Line 4 specifies five HDL files as dependencies for the

xdma xc7.sv file. These are RTL sources of the PCIe IP core modified to add new

functionality that helps us implement the Virtio interface. These are placed in the

/fpga/boards/alinx ax7a200t/src/hdl directory. When a design that uses the

PCIe subsystem is generated, these are copied to the build directory. Lines 10-28

include commands to generate the PCIe IP core and modify it. Note that the IP is

compiled once and then some of the source files are replaced and recompiled. This is a

tool-specific sequence of operations necessary because of how Xilinx Vivado generates

and manages IP source files. These commands are added to the tool-specific scripts

when the design is generated. Therefore, a user does not have to interact with these

tool-specific details when using the PCIe subsystem.

Starting at line 32 in Listing 4.1, several new board I/O signals are added to the

[IO] dictionary. Starting on line 41 (and not shown completely) are the PCIe TX

and RX lanes. Note that these are four lanes. The sys clk p and sys rst n are

clock and reset signals from the PCIe slot. The constraints for the clock and reset

signals are added to the [CONSTRAINTS] dictionary.

1 ...

2 [xdma_xc7]

3 TYPES = [" PERIPHERAL "]

4

5 PARAMETERS = []

6

7 [xdma_xc7.REQUIREMENTS]

8 INTERFACES = [" sys_rst_n", "sys_clk", "pci_exp_txn", "pci_exp_txp", "

pci_exp_rxn", "pci_exp_rxp", "m_axi", "m_axi_bid", "m_axi_rid", "m_axil", "

s_axil", "s_axil_awprot", "s_axil_arprot", "c2h_dsc_byp", "h2c_dsc_byp", "

c2h_sts_0", "h2c_sts_0", "usr_irq_req", "usr_irq_ack", "axi_aclk", "

101

axi_aresetn "]

9 [xdma_xc7.REQUIREMENTS.INCLUDES]

10 COMMON = []

11 BOARD = [" xdma_xc7.sv"]

12 [xdma_xc7.ENCODINGS]

13 [xdma_xc7.INTERFACES.sys_rst_n]

14 TYPE = "GENERAL"

15 WIDTH = 1

16 DIRECTION = "SINK"

17 [xdma_xc7.INTERFACES.sys_clk]

18 TYPE = "CLOCK"

19 WIDTH = 1

20 DIRECTION = "SINK"

21 [xdma_xc7.INTERFACES.pci_exp_txn]

22 TYPE = "GENERAL"

23 WIDTH = 4

24 DIRECTION = "SOURCE"

25 [xdma_xc7.INTERFACES.pci_exp_txp]

26 TYPE = "GENERAL"

27 WIDTH = 4

28 DIRECTION = "SOURCE"

29 [xdma_xc7.INTERFACES.pci_exp_rxn]

30 TYPE = "GENERAL"

31 WIDTH = 4

32 DIRECTION = "SINK"

33 <A long list of interfaces >

34 ...

Listing 4.2: Adding PCIe IP’s top module to board.tml

Next, a description of the top module of the IP core is added to

‘/fpga/common/config/modules.tml’. A part of the module description in the

modules/.tml file is shown in Listing 4.2. All the interfaces of the module are de-

scribed here. Note that ‘xdma xc7’ is a wrapper module that encapsulates the actual

top module of the PCIe IP generated by the FPGA toolchain. This wrapper is imple-

mented to differentiate between different versions of the PCIe IP core. The XDMA

IP core has different variants designed for different devices. The top module for the

IP generated by the toolchain is always named ‘xdma 0’ regardless of which version

of the IP it is. The wrapper modules help distinguish between the different versions

of the IP core.

After adding the device-specific portion of the PCIe subsystem to DISL, we are

102

left with the Generic partition which includes the pcie controller module. The

next step is to add that to the modules.tml file. It is added to the configuration file

similarly to the ‘xdma xc7’ module in Listing 4.2.

4.5 Conclusion

In this chapter, we presented the requirements for enabling host-FPGA communi-

cation using native Virtio drivers. We have identified and implemented the data

structures, arbitration logic, queues, and DMA control logic required to create a

Virtio-compliant host interface on an FPGA. We have done so by using both generic

RTL modules and modifying the vendor-provided PCIe IP blocks. Finally, we have

demonstrated the effectiveness of our approach by implementing a Virtio console de-

vice on a Xilinx 7-series device and showing correct device enumeration and commu-

nication. We believe that this work will act as a proof-of-concept for using unmodified

Virtio drivers to communicate with FPGAs. It also demonstrates that even lower-end

FPGAs have the necessary capabilities to implement a host interface fully compliant

with the Virtio specification.

103

Figure 4·2: Device enumeration and initialization sequence.

104

Figure 4·3: Virtio device regular operation

105

Figure 4·4: Device enumeration for Xilinx example design.

Figure 4·5: Device enumeration for Virtio console device.

106

Figure 4·6: Paritioning the PCIe subsystem.

107

Chapter 5

Performance Evaluation and Porting the

PCIe Subsystem Design

5.1 Introduction

Unleashing the full potential of FPGAs as offload devices requires Host-FPGA connec-

tivity that is reliable, robust, and uniform; and that implements (at least) a required

set of features and protocols. PCIe is the most widely used host-FPGA interface for

high-performance applications. However, existing frameworks for host-FPGA PCIe

communication have several limitations, including lack of portability and poor up-

stream support. Native Virtio drivers in the host operating system can address many

of these limitations on the host side. A complete Virtio-based solution, however, also

requires new support on the device side. In the previous chapter, we proposed a

general framework that requires little additional programming effort per new device.

Although Virtio drivers could provide an attractive alternative to vendor-provided

device drivers, their performance when interacting directly with physical devices has

not been explored.

Given that Virtio drivers are designed targeting virtual devices, it is critical to

investigate whether they perform at an acceptable level when handling physical de-

vices. In this chapter, we compare the performance of Virtio device drivers to vendor-

provided device drivers in terms of communication latency and latency distribution

and show that Virtio drivers provide similar or slightly improved performance with

108

reduced variance. To facilitate our analysis, we also extend the implementation de-

scribed in the previous section by implementing support for Virtio network devices

on FPGAs. A general framework to implement a Virtio interface on FPGAs should

be applicable to different devices. To demonstrate the portability of our approach, in

this chapter, we port the implementation from Chapter 4 to a different device. The

overall significance of this work is that it demonstrates the feasibility of replacing the

vast space of legacy device drivers with the Virtio drivers already native to the host

OS.

FPGAs are used as complexity offload devices for CPUs. Their inherent flexibility,

combined with tight coupling of communication and computation, allows FPGAs to

be used in a vast number of use cases where they are preferred to other accelerators

such as GPUs. For instance, FPGAs are used to accelerate user and system applica-

tions, implement networking functions to process data at line rates, perform system

administration in clouds, and provide secure enclaves with hardware isolation, and a

myriad of other tasks [Caulfield et al., 2016,Xiong et al., 2019,Lant et al., 2020,Kr-

ishnan et al., 2021,Bobda et al., 2022,Haghi et al., 2022,Guo et al., 2022a,Wu et al.,

2023]. To unleash the full potential of FPGAs as complexity offload devices, however,

the host-FPGA connectivity must provide a reliable, robust, and uniform interface

and implement a required set of features and protocols.

Typically, high-end FPGA devices targeting high-performance applications use

PCIe [PCI SIG Org., 2010] for host-FPGA connectivity. There are several limitations

in existing frameworks: They are almost always vendor- and device-specific and lack

portability. On the device side, the lack of portability stems from the use of vendor-

provided IP cores and the underlying hardened ASIC blocks that implement the

PCIe physical and link layer functions. FPGA devices from different vendors, or even

different device families from the same vendor, may use different ASIC components;

109

as a consequence, there are often inconsistencies in the features supported and the

APIs exposed to user logic. What this means for the FPGA developer is that a design

targeting a particular device cannot be ported to a different device without incurring

significant engineering overhead.

On the host side, lack of portability and (invariably) poor maintenance are major

limitations. These difficulties in maintaining device drivers for FPGAs stem from

the lack of generic device drivers and the large space of drivers created by product

developers and end users. The variations in capabilities and functionality across

devices force the device drivers also to be device-specific. While this is an issue for all

device drivers, FPGAs differ from other accelerators due to their flexibility: this adds

another dimension to the already large space of FPGA device drivers. Since the same

device can be used to implement applications with drastically different semantics, and

deployed in different contexts, different device drivers are designed to accommodate

these variations. For instance, a GPU is always used as a GPU and the interlocutor

does not need to interact with the device as something other than a GPU. This allows

a GPU vendor to provide generic device drivers to support all of their products.

In contrast, the same FPGA could be used to implement a Cryptographic acceler-

ator, a storage accelerator, a SmartNIC, or a myriad of other applications, each with

its own semantics. This flexibility makes it impossible for FPGA vendors to provide

device drivers that can accommodate all potential use cases. Thus, FPGA vendors

typically provide reference drivers for use as is, or as the starting point for a custom

driver that satisfies the specific user requirements. The alternative to writing a new

driver is to lift the device semantics to the application level, which is more likely to

be sub-optimal.

With this vast space of device drivers and most of the work on device drivers

being done downstream, maintaining them becomes the responsibility of the FPGA

110

designers or end users. Device drivers need to be updated whenever the kernel APIs

used are updated. New mainline Linux kernels are released every 9-10 weeks [The

Linux Kernel Archives, 2024]. Red Hat Enterprise Linux OS follows a 6-month release

cycle [Red Hat Customer Portal, 2024]. Other popular Linux operating systems such

as Ubuntu and Fedora follow similar release cycles. While not every kernel update or

OS release may require driver updates, there is still that possibility.

As a concrete example, the XDMA device driver [Xilinx, 2024], used in the ex-

perimental setup of this work, has had 71 lines of code changed during the last year

to support kernel updates. These changes were made as a single commit to the

repository. However, we have updated the XDMA driver three times in our testing

during the last 1.5 years. This highlights how the updates to vendor-provided drivers

are lagging behind kernel updates. In the case of large OEMs and cloud service

providers with their own drivers, a dedicated team is typically deployed; for smaller

ones, maintenance and updates invariably lag. Both cases are extremely costly for

some combination of maintainers, developers, and end users.

The use of generic device drivers can significantly reduce the space of custom

FPGA device drivers for most use cases and so reduce the maintenance overhead.

Virtio [Tsirkin and Huck, 2022] is an industry standard for I/O virtualization and

is one possible solution to the challenges posed by the use of vendor-provided or

user-developed device drivers. Virtio is an abstraction layer over a host’s devices

for virtual machines running in a paravirtualized hypervisor. Virtio drivers access

the host’s devices via minimal virtual devices called Virtio devices. Virtio devices

only implement the bare necessities to enable sending and receiving data. They

represent generic device types such as block devices, network adaptors, and consoles,

which differ from fully emulated devices where the details of the physical device are

replicated in software. In this section, we investigate repurposing Virtio for actual

111

physical devices.

Since there is native support for Virtio in common host operating systems—such

as the Linux kernel—no additional drivers need to be written/maintained, and APIs

are mostly consistent. Virtio also supports feature negotiation, i.e., the device and

driver can use feature bits to determine the subset of supported features to ensure

compatibility. Moreover, there are additional benefits of exposing the FPGA to the

host as a Virtio device. For instance, it can reduce data copies and latency in a virtu-

alized environment through direct communication between the Virtio driver running

in guest kernel space and the physical device, bypassing the host OS. Another major

benefit of using Virtio device drivers with FPGAs is the ability to use different device

drivers, each with semantics matching the type of accelerator implemented on the

FPGA. This also allows leveraging the operating system’s software stack for certain

common tasks instead of using the device driver or the user-level application to do so.

This is crucial since FPGAs can be used to implement a large variety of functions,

each with its own semantics.

In Chapter 4 and our published work [Bandara et al., 2022], we demonstrated

that it is possible to use unmodified Virtio drivers to communicate with FPGAs, and

provided a description of how to implement a Virtio-compliant interface on FPGAs.

What is missing, however, is a performance comparison of Virtio drivers versus legacy

FPGA device drivers. In [Bandara et al., 2024c] we remedy that with the following

contributions:

• Adding support for more Virtio device types.

• Comparing the performance of Virtio and vendor-provided device drivers using

round-trip average and tail latencies.

• Highlighting the differences in device driver design, device/application seman-

tics, and work allocation between software and hardware that impact the driver

112

performance and our analysis.

• Demonstrating that replacing legacy drivers with Virtio in no case results in

reduced performance, but rather can even be beneficial, and often reduces vari-

ance.

5.2 Background

5.2.1 Virtio Device Drivers

Virtio devices are virtual devices found in virtual environments. However, they ap-

pear as physical devices to a guest within a virtual machine. This allows normal

bus mechanisms to be used for device discovery, interrupts, and DMA. Therefore,

Virtio device drivers for use with Virtio devices treat these devices as physical de-

vices. According to the Virtio specification, the purpose of Virtio is to “provide a

straightforward, efficient, standard, extensible mechanism for virtual devices, rather

than boutique per-environment or per-OS mechanisms” [Tsirkin and Huck, 2022].

Virtio devices therefore: (i) use normal bus mechanisms for tasks including inter-

rupts, DMA, and device discovery, which are familiar to device driver authors; (ii)

use rings of descriptors for input and output, which are carefully laid out to avoid

effects from both the device and the driver writing to the same cache lines; (iii) make

no assumptions regarding the environment they operate in, beyond the type of bus

to which a device is connected; and (iv) include feature bits that allow the device and

the operating system to negotiate features supported and used, enabling forward and

backward compatibility.

The most basic Virtio use model is where an application executing in the guest

userspace uses the Virtio front-end driver in the guest kernel space to interact with

a virtual device emulated by a host user-space application. The front-end driver and

the back-end device use queues named virtqueues to communicate with each other. In

113

paravirtualization, where a physical device is attached to the host machine, the guest

application can use Virtio drivers. Here, a device-specific legacy device driver runs in

the host kernel space to allow communication with the physical device. Additional

software is used to convert requests from the virtual back-end device to the semantics

of the legacy device driver. Figure 5·1 depicts the typical paravirtualization setup and

how a Virtio-compliant interface on the FPGA can eliminate the need for emulated

backend Virtio devices and vendor-provided (or user-developed) device drivers specific

to the given device.

Figure 5·1: Virtio interface on the FPGA eliminates the need for
back-end Virtio devices and legacy device drivers.

114

5.2.2 Legacy Device Drivers

Due to significant differences among different FPGAs, device drivers for FPGAs are

specific to vendors and device families. FPGA vendors provide reference device drivers

compatible with different device families using similar PCIe IPs. For example, Xil-

inx provides two DMA IP reference drivers [Xilinx, 2024] where the XDMA driver

supports Xilinx UltraScale+, UltraScale, Virtex-7 XT, and 7 Series Gen2 devices,

while the QDMA driver supports UltraScale+ devices. End users can modify these

reference drivers to match the specific requirements of their designs.

FPGA vendors also provide runtime libraries, such as Xilinx runtime library

(XRT) [Xilinx Inc., 2022] and Open Programmable Acceleration Engine (OPAE) [In-

tel, 2017]. These provide simple APIs for programming, data movement, and con-

trolling the FPGA. These runtime libraries are accompanied by FPGA shells and

kernel-space device drivers written to match the PCIe IPs used in the FPGA shells.

These typically support a very limited set of high-end FPGA devices and lack porta-

bility even across devices from the same vendor.

5.2.3 Using Virtio Drivers to Interact with Physical Devices

Virtio device drivers are designed with virtual devices in mind. However, they use

regular bus mechanisms to interact with Virtio devices. As a consequence, Virtio

device drivers cannot differentiate between a virtual device and a physical device as

long as the physical device presents a Virtio-compliant interface. To do so, there

are three main requirements: (i) Announce the correct device and vendor IDs at the

time of device discovery and PCIe bus enumeration; (ii) Implement Virtio configura-

tion structures used for device initialization and operation; and (iii) Add the Virtio

capabilities to the device capability list.

The Virtio configuration structures are implemented as part of the control logic on

115

the FPGA and are mapped to one of the base address registers (BAR) of the device.

The Virtio capabilities added to the device capability list help the device driver locate

the corresponding configuration structures. Achieving items (i) and (iii) may require

modifications to the vendor-provided PCIe IPs. Descriptions of the controller imple-

mentation, modifications to the PCIe IP, and alternative implementation choices are

provided in [Bandara et al., 2022].

5.3 Methods

5.3.1 Test case used: Virtio Network device

In this section, we extend the implementation described in [Bandara et al., 2022]

to implement a Virtio network device. This design uses the XDMA IP for PCIe

connectivity. A Virtio controller is placed between the XDMA IP and the user logic

(as shown in Figure 5·2). The Virtio controller implements the virtqueue functionality

and controls the DMA engine of the XDMA IP. The DMA engine moves data between

the host memory and the FPGA memory (BRAM or external DRAM). The Virtio

controller uses an interface that follows the same semantics as a virtqueue [Tsirkin

and Huck, 2022] to communicate with user logic. The user logic can interact with

RX and TX queues provided by the Virtio controller to send/receive data to/from

the host.

Apart from data structures common to all Virtio devices such as common config-

uration and notification, a device-specific data structure is required to function as a

particular device type. The device and the driver share information specific to the

given device type using this data structure. For instance, the device-specific data

structure for a network device includes details such as the MAC address, Maximum

Transmission Unit (MTU), and the types of hashes the device can calculate if the

hash calculations for the incoming packets are offloaded to the device. The main

116

Figure 5·2: Virtio device architecture

modification to the design presented in [Bandara et al., 2022] (to implement a Virtio

network device) is to implement the device-specific data structure. Depending on

the features negotiated with the device driver, the device may also require a control

queue apart from the RX and TX queues. However, no modifications are necessary

to the Virtio controller as the design already supports a variable number of queues.

When used as a network device, the FPGA receives Ethernet frames from the host.

Depending on the features negotiated with the host during device initialization, the

FPGA could either send out a received Ethernet frame as is or perform additional

tasks on behalf of the host, e.g., a checksum calculation. Apart from offloading

network functions, the FPGA can act as a SmartNIC onto which application-level

tasks such as [Tahir et al., 2024a, Tahir et al., 2024b] can be offloaded. To enable

application offloading to be done independently of the Virtio drivers, we have (here)

implemented an additional interface on the Virtio controller that allows the user logic

to request data transfers to/from host memory bypassing the Virtio driver.

117

5.3.2 Experimental Setup

A Xilinx Artix-7 based Alinx AX7A200 PCIe development board (FPGA device num-

ber XC7A200TFBG484-2) is used as the target device. This board supports two PCIe

Gen 2 lanes. The PCIe IP used on the FPGA is Xilinx DMA/Bridge Subsystem for

PCI Express (XDMA) [Xilinx, 2022b]. The host machine is running the Fedora 37

operating system.

Testing Virtio Drivers: We use the previously described Virtio network device

implementation to evaluate the performance of Virtio device drivers when directly

interacting with physical devices. This means that the host operating system rec-

ognizes and treats the FPGA as a NIC. The user space test application uses the C

socket programming API to send packets to the FPGA. Entries are added to the

operating system’s routing table and ARP cache to facilitate routing packets from

the test application to the FPGA.

Testing Vendor-Provided Device Drivers: An example design provided by Xil-

inx to demonstrate the XDMA IP core is used to test the reference device driver [Xil-

inx, 2024]. This design does not include any user logic; a BRAM is connected directly

to an AXI memory-mapped interface of the PCIe IP, which enables the DMA engine

to write/read to/from the BRAM. Minor modifications were made to change the

width of the memory to match that used in the Virtio design. This ensures the DMA

engine can move data to and from FPGA memory at the same rate.

Metrics and Applications: The primary metric used to compare the different

device drivers is the round-trip latency to move data to and from the FPGA. Since

each FPGA design uses the same PCIe IP, and hence the same DMA engine, we expect

the time taken by the DMA engine to move the same amount of data between the

118

host and FPGA to be similar regardless of the device driver used. However, the time

taken by the device driver to program the DMA engine and start the data movement

can vary depending on design decisions made by the author of the device driver.

We therefore infer that the device drivers themselves are largely responsible for any

differences in data movement latency between the host and the FPGA. However, noise

introduced by background processes executing on the host machine can also impact

both the actual latency and any measurements made on the host side. Therefore,

we have ensured that no other applications, except the test application, are running

during the experiments. Each test consists of 50,000 packets for each payload size.

For time measurements, the test applications use the clock gettime() function

with the CLOCK MONOTONIC option. For the system on which the tests were run, the

timer resolution is 1ns. The PCIe IP and the Virtio controller both include hardware

performance counters to measure latency between different events on the FPGA. The

FPGA designs used for testing are running at 125MHz. Therefore, the hardware

performance counters provide a resolution of 8ns.

5.4 Challenges, Workarounds, and Assumptions

Standalone latency measurements do not provide a complete picture of the perfor-

mance of a real application implemented on the FPGA. There are several challenges

in comparing the latencies of the two device drivers. Most of these arise from:

1. differences in design philosophies,

2. semantic differences in how the drivers are used, and

3. differences between the FPGA designs used for testing.

In the next three subsections, we first discuss these challenges and then describe the

workarounds used, and assumptions made, to ensure fair and accurate comparisons.

119

5.4.1 Differences in Device Driver Design

The XDMA driver is designed for a specific device and therefore includes many device-

specific details such as the register space of the DMA engine and the descriptor format

accepted by the particular DMA engine. It operates as a character device. At the

most basic level, a user application can use the I/O system calls read(), and write()

to move data between a buffer in the host memory and FPGA memory. The device

driver then configures the DMA engine and initiates the DMA transfer.

The Virtio drivers, however, are intended to target virtual devices, so their design

does not take into account the existence of, or the necessity to program, a DMA

engine. With Virtio drivers, the back-end device, usually emulated by the host, is

responsible for moving data between the buffers allocated by the front-end driver and

itself. When Virtio drivers are used to interact with physical devices, those devices

become responsible for data movement to/from host memory. The finite state machine

to control the DMA engine of the PCIe IP is part of the Virtio controller (as shown

in Figure 5·2).

The information required to program the DMA engine needs to be exchanged

between the device driver and the device before initiating a DMA transfer. A major

difference between the Virtio and typical FPGA device drivers is when this informa-

tion exchange takes place. When initiating a DMA transfer, the device driver creates

one or more descriptors to provide the DMA engine with the source and destination

addresses, buffer sizes, and any other control bits necessary. Depending on the ca-

pabilities of the DMA engine on the device, the driver can either provide a single

descriptor at a time or an address for a descriptor table in host memory whence the

DMA engine can fetch descriptors. Alternatively using the same descriptor table for

all transactions and sharing the table address only at device initialization reduces

overhead.

120

Virtio drivers follow a different design philosophy in sharing information with the

back-end devices. The driver shares the addresses of all the data structures necessary

for virtqueue operation during device initialization. Therefore, to start a host-to-card

(H2C) data transfer, only a notification using a single I/O write is needed at runtime.

The device then accesses the data structures in host memory to determine how many

new buffers were exposed by the driver and fetch buffer descriptors which it uses to

perform data movement.

The differences are more pronounced with card-to-host (C2H) transfers. With the

XDMA driver, the device interrupts the driver when it has data to be moved to the

host memory. The user application uses a system call such as poll() to monitor the

device file for interrupts and issues a read() call to initiate data movement. However,

since a Virtio device is aware of the location of all the necessary data structures in

host memory, it can identify an available buffer and perform data movement before

interrupting the driver.

These differences are inherent to the design of the two types of device drivers and

we do not need to make adjustments to the latency measurements to account for them.

5.4.2 Differences in Device/application semantics

The second major difference between the Virtio and vendor-provided device drivers

is the semantics involved. Virtio drivers come in different flavors to match different

devices such as network devices, block devices, and many others [Tsirkin and Huck,

2022].

The fundamentals of the Virtio interface on the FPGA do not change based on the

type of device implemented. Only the minimum number of queues and the device-

specific configuration structure change across device types. Therefore, the modifica-

tions required to the FPGA design to support different device types are minimal. The

main benefit of using semantics specific to different devices is the ability to leverage

121

the host software stack for tasks that otherwise would have to be implemented in the

user application.

For instance, assume that a user implements a SmartNIC using an FPGA. When

using the Virtio network device driver, the FPGA appears as a network interface

card for the host OS. This means that a user application can use the host OS’s

network stack to send packets to the FPGA SmartNIC. In contrast, the vendor-

provided XDMA device driver acts as a character device regardless of the application

implemented on the FPGA. Therefore, to implement the SmartNIC, a user must

either generate packets in the user application before using the device driver to move

the generated packets to the FPGA or write a new device driver that behaves like a

network device.

This study uses a Virtio network device to highlight the semantic differences de-

scribed above. When using the Virtio driver, the test program sends UDP packets to

the FPGA using the C socket API. The user logic on the FPGA responds with a UDP

packet of the same size. The test program measures the round-trip latency. Since

the XDMA driver is a character device, the test program for the vendor-provided

driver simply moves the same amount of data to the FPGA and back, and measures

the round-trip time. Alternatively, it is possible to make the XDMA test program

generate a packet before issuing a write() system call to move data to the FPGA.

However, we have opted not to as the latencies recorded are similar despite the ad-

ditional overheads associated with the Virtio test case, e.g., generating packets and

calculating checksums.

Hardware performance counters on the FPGA are used to measure the time taken

by the hardware to perform the DMA operation once a notification is received. These

times can be deducted from the latency measured by the test program to estimate the

latency introduced by the software stack. For the Virtio test, the time to generate

122

the response packet is also deducted from the latency measurement since it is not

relevant to the data movement latency. The buffer sizes for the Virtio test program

are set to ensure that the amount of data moved over the PCIe link to the FPGA is

the same in both Virtio and XDMA tests taking into account the protocol headers.

5.4.3 FPGA design

The FPGA designs used to test the two drivers differ in several ways. The difference

that impacts the comparison the most is that the XDMA example design does not

include user logic to generate interrupts for C2H data transfers. Therefore, the test

application performs back-to-back H2C and C2H transfers without waiting for an

interrupt from the device. This discounts the latency incurred by the XDMA driver

to receive and handle two interrupts and underestimates the latency introduced by

the XDMA driver in a real use case. While the vendor does provide another exam-

ple design which includes logic to generate user interrupts for C2H transfers, this

design generates the interrupts in response to an I/O write to the device. Since this

introduces additional latency unnecessary for a real use case, this design is not consid-

ered. The final alternative is to implement a new design that receives data, monitors

the DMA engine’s status signals, and generates an interrupt when the H2C transfer

is complete. This approach was not taken because that would increase the latency

for the XDMA driver and the latency measurements for the two device drivers are

comparable even with the favorable setup for the legacy driver.

5.5 Evaluation

This section presents and analyzes the results of the experiments described in Sec-

tion 5.3.2. Figure 5·3 summarizes the round trip latency distribution for different

payloads when using Virtio and vendor-provided XDMA device drivers. The payload

varies between 64 Bytes and 1 KB. The payload sizes are selected such that the total

123

latency is not dominated by the bus transactions and the effects of the drivers and

the rest of the software stack are observable. The results show that the Virtio driver

provides performance comparable to the vendor-provided device driver despite the

unfavorable experimental setup. Also, the Virtio results show a much lower variance.

Figure 5·3: Round-trip latency with Virtio and vendor-provided de-
vice drivers.

Figure 5·4 is a visual representation of the different paths the data takes between

the application and the FPGA memory when using the Virtio and vendor-provided

device drivers. When using the Virtio drivers, the application uses the C socket API

to send UDP packets to a set of IPs. Therefore, the operating system’s network stack

creates the packets using the data from the application and hands over the packets

to the device driver. In the case of vendor-provided XDMA driver, the application

calls the read() and write() functions of the driver to move data to and from the

FPGA memory. In contrast to the Virtio case, there is no network packet creation

in this scenario. Latency measurement captures the time taken to move data to the

124

FPGA and back to host memory. In both cases, the user application measures the

latency. Therefore, the Virtio measurement also includes the overhead for creating

network packets.

Figure 5·4: Round-trip latency visualization.

Figure 5·5 presents a breakdown of the average round-trip latency for the Vir-

tio driver. The error bars represent the standard deviation. This shows that the

time taken by the hardware to perform the DMA operations has minimal variance.

Therefore, we can infer that the software stack is responsible for the majority of the

variance in latency. It is also worth noting that the average latency for the software

stack remains virtually constant throughout the range of payloads considered.

Figure 5·6 presents the same latency breakdown for the XDMA driver. An in-

teresting distinction between the two latency breakdowns is that the time taken by

the hardware is higher than the time for software with the Virtio driver and vice

versa with the XDMA driver. In the Virtio use model, the back-end device performs

data movement and does most of the work. In this scenario, the FPGA is the back-

125

end Virtio device. Therefore, it makes sense that the hardware performs more work

when using the Virtio driver. This difference could also explain the lower variance in

the Virtio latencies. As the variance in hardware latency is minimal, the setup that

offloads more tasks to the hardware results in lower overall variance.

Figure 5·5: Breakdown of data movement latency using the Virtio
driver.

Table 5.1 presents tail latencies for data movement with the two device drivers at

different payloads. Virtio shows lower tail latencies at 95 and 99 percentiles. However,

there isn’t a significant difference when we approach 99.9% tail latency.

Payload
(Bytes)

95% (µs) 99% tail latency (µs) 99.9% (µs)
Virtio XDMA Virtio XDMA Virtio XDMA

64 35.1 51.3 44.8 70.1 66.5 85.8
128 33.6 51.4 48.1 60.0 88.4 88.2
256 39.6 51.5 53.8 57.5 75.1 70.6
512 44.1 59.1 57.4 64.5 82.1 87.5
1024 57.8 72.8 65.9 76.7 99.6 97.3

Table 5.1: Tail latencies for data movement with Virtio and XDMA.

Our overall recommendation is as follows. For highly optimized applications with

126

Figure 5·6: Data movement latency breakdown with the vendor-
provided driver.

highly optimized software where low variance and tail latencies are critical, it is better

to use a custom device driver. With such stringent requirements, the application is

likely sufficiently important to be worth the additional cost of maintaining the driver.

For all other everyday applications, however, Virtio is preferred to vendor-provided

reference drivers (including with possible minor changes).

5.6 Porting the PCIe Subsystem Design

We presented our PCIe subsystem implementation in Chapter 4 and evaluated the

performance of Virtio drivers in the previous sections. It was implemented targeting

an FPGA development board that uses a Xilinx Artix 7 device. When designing and

implementing the PCIe subsystem, we ensured that we created a clear separation

between the device-specific and generic parts of the design. In DISL parlance, the

two code partitions are referred to as Board and Generic. Figure 5·7 shows how the

127

different modules of the PCIe subsystem are partitioned.

Figure 5·7: Partitioned PCIe Subsystem

In this section, we demonstrate how our design strategy makes it straightforward

to port the PCIe subsystem to a different device. The new target device we have

selected is a “Bittware CVP13” development board that uses a Xilinx Ultrascale+

device. To provide an understanding of the differences between the two devices,

Table 5.2 compares some of the FPGA resources available on each of the devices.

Apart from the FPGA devices themselves, the FPGA development boards are also

significantly different as one is a low-end device while the other is a high-end device

targeting high-performance applications such as cryptocurrency mining. The main

difference relevant to the PCIe subsystem is that the Artix 7 development board only

supports two PCIe lanes while the Ultrascale+ development board supports a full

16-lane PCIe interface.

Apart from the differences in the FPGA device and the development board, the

PCIe IP cores compatible with each of the devices are also different. The IP core for

the Ultrascale+ device uses the ‘PCIE40E4’ integrated block that provides more fea-

128

Resource xc7a200tfbg484-2 xcvu13pfigd2104-2
LUTs 133,800 1,728,000
DSPs 740 12,288
BRAM tiles 365 2,688
Gigabit Transceivers 4 (GTPE2) 76 (GTYE4)
PCIe Integrated Block PCIE 2 1 PCIE40E4

Table 5.2: Comparison of Artix 7 and Ultrascale+ FPGAs

tures compared to the ‘PCIE 2 1’ integrated block of the 7-series device. Ultrascale+

version of the IP core also provides additional capabilities such as Single Root I/O

Virtualization (SR-IOV) support. The feature most relevant to our implementation is

the new interface named the ‘‘Configuration Extended Interface’’. This inter-

face allows logic on the FPGA to respond to PCIe configuration space read and write

requests from the host. This makes some of the RTL modifications we made for the

Artix-7 version of the PCIe IP unnecessary for the Ultrascale+ version. Therefore, in-

stead of those RTL modifications, we implement an external module that connects to

the ‘‘Configuration Extended Interface’’ and implements a part of the PCIe

configuration space external to the IP core. We still modify the IP core’s RTL to

correctly configure the ‘next’ pointers of the PCI capability list.

Similar to the wrapper module ‘xdma xc7’ used with the previous version of the

PCIe IP, we implement a different wrapper module named ‘xdma cvp13’ to instanti-

ate the XDMA IP core and the external module named ‘xdma ext cfg space’. Since

this wrapper module implements the same interfaces as the ‘xdma xc7’ module, the

Generic portion of the PCIe subsystem can be connected to ‘xdma cvp13’ module

without any changes. Our design strategy ensures that the Board portion of the PCIe

subsystem, regardless of its internal implementation details, presents consistent inter-

faces to the Generic portion. This allows the PCIe subsystem to be ported simply by

replacing the ‘xdma xc7’ module with the ‘xdma cvp13’ module. Figure 5·8 depicts

the differences between how the PCIe subsystem is constructed for the two FPGA

devices we have used.

129

5.6.1 Adding Board Support

Because both versions of the PCIe subsystem use the same ‘pcie controller’ mod-

ule and the interfaces between the Board and Generic partitions do not change, we

do not make any changes to the modules.tml or definitions.tml files. However,

the board.tml file is updated with new board I/O port definitions and the commands

to generate the XDMA IP core for the Ultrascale+ device. Listing 5.1 shows excerpts

from the board.tml file for the Bittware CVP13 development board to show the

modifications made to support the PCIe subsystem.

1 [DESCRIPTION]

2 NAME = "CVP13"

3 DIRECTORY = "cvp13"

4 CHIP_VENDOR = "xilinx"

5 BOARD_VENDOR = "Bittware"

6 FAMILY.SHORT = "xcu"

7 FAMILY.LONG = "Ultrascale +"

8 PART.SHORT = "xcvu13p_0"

9 PART.LONG = "xcvu13p -figd2104 -2-e"

10 ...

11 [REQUIREMENTS.FILES ." xdma_xcvu13p.sv"]

12 HDL = [" xdma_0_pcie4_ip.v", "xdma_ext_cfg_space.sv"]

13 IP = []

14

15 [REQUIREMENTS.IP]

16 [REQUIREMENTS.IP." xdma_xcvu13p.sv"]

17 xdma_0 = """

18 config_ip_cache -disable_cache

19 create_ip -name xdma -vendor xilinx.com -library ip -version 4.1 -

module_name xdma_0

20 <more TCL commands to specify attributes , generate , modify , and regenerate >

21 """

22 ...

23 [IO]

24 [IO.sys_clk_p]

25 DIRECTION = "SOURCE"

26 WIDTH = 1

27 INTERFACE_TYPE = "CLOCK"

28 [IO.sys_clk_n]

29 DIRECTION = "SOURCE"

30 WIDTH = 1

31 INTERFACE_TYPE = "CLOCK"

32 [IO.sys_rst_n]

33 DIRECTION = "SOURCE"

34 WIDTH = 1

35 INTERFACE_TYPE = "GENERAL"

36 [IO.pci_exp_txp]

130

37 DIRECTION = "SINK"

38 WIDTH = 16

39 INTERFACE_TYPE = "GENERAL"

40 ...

41 <PCIe TXn , RXp and RXn Lanes >

42 ...

43 [CONSTRAINTS]

44 sys_clk_p = """

45 create_clock -period 10.000 -name sys_clk [get_ports {sys_clk_p }]

46 set_property LOC AT11 [get_ports sys_clk_p]

47 """

48 sys_clk_n = "set_property LOC AT10 [get_ports sys_clk_n]"

49 pci_exp_txp = """

50 """

51 <More constraints >

Listing 5.1: board.tml File for the CVP13 FPGA Development Board

5.7 Conclusion

In this chapter, we have demonstrated that it is possible to replace vendor-provided

or user-developed device drivers for FPGAs with generic in-kernel Virtio drivers. The

potential consequence is to significantly reduce the vast space of device-specific and

custom FPGA device drivers. The performance analysis shows that in no case was

the performance affected and in most cases, it was marginally improved with reduced

variance in data movement latency. However, the comparison was performed against

a vendor-provided reference driver and a user could implement further optimized

drivers based on it.

We now summarize the benefits of the proposed approach:

1. Using Virtio drivers eliminates the requirement to write and maintain device

drivers for FPGAs;

2. Virtio drivers provide comparable performance to vendor-provided drivers;

3. Virtio drivers make it easier to implement different types of devices and leverage

the host OS’s software stack for different tasks that otherwise would have to be

131

implemented by the user application, probably with a loss of efficiency.

In conclusion, we recommend using custom drivers only for applications with

strict performance requirements that far surpass the capabilities of vendor-provided

reference drivers. For all other everyday applications, however, Virtio is preferred

to vendor-provided reference drivers to alleviate the overhead of maintaining device

drivers.

132

Figure 5·8: Construction of the PCIe Subsystem Using Different Vari-
ants of the XDMA IP Core

133

Chapter 6

Evaluating an hOS Generator

Operating system like abstractions can greatly reduce the expertise required to use

FPGAs. They can also fundamentally change the FPGA use model by allowing more

focused innovation where a designer can focus on perfecting the application logic

rather than building the entire hardware stack. This also results in faster turnaround

time and improves application portability. Using hardware operating system gener-

ators instead of fixed hOS implementations adds to these benefits. Firstly, an hOS

generator reduces the effort to build a system for a particular application and port

the design to different devices. A generator also allows an hOS to be customized to

a specific application reducing the resource overhead. It further increases application

portability to more devices.

How to evaluate a system generator such as DISL is an open question. Prior works

have evaluated hOS/FPGA shells by comparing an application implemented with an

hOS to a baseline design that implements the same application without using an hOS

in terms of resource overhead and performance impact. However, as we are proposing

an hOS generator instead of a fixed implementation, new metrics are necessary and

many of those are not easily quantifiable. In this chapter, we discuss some qualitative

metrics to evaluate a system generator and use those to evaluate the FPGA system

generator presented in previous chapters. The metrics we discuss in this chapter are:

1. The effort necessary to build a system using the hOS generator

2. Ability to build a system that exactly matches application requirements

134

3. Reduced resource overhead due to customizing the system to application re-

quirements

4. Ease of porting a design to a new device

5. Effort to modify the components and the hOS generator

We use a complete design example to aid our evaluation of the proposed hOS

generator. We interleave the discussion on the hOS evaluation metrics with the design

example where we implement a design using DISL and then port it to a different

FPGA development board. The application is implemented as a Verilog module.

All other system components used are part of the DISL component library. These

include the PCIe subsystem presented in Chapter 4. We begin by describing the

example design.

6.1 Example Application: Transparent Client-Side Caching

for Key-Value Store Applications Using FPGAs

Key-value stores (KVS) are a critical component of the current data center infrastruc-

ture. They help address the extreme demand on data centers for high bandwidth, low

latency access to large amounts of data. Due to their importance, many efforts have

been made in prior work to improve their performance, which includes using FPGAs

to offload some functionality. These efforts have always been focused on improving

the performance of the key-value store itself and reducing the load on the server

running the KVS. However, with more FPGAs being deployed in the data centers by

many cloud service providers, some use models that were not practical sometime back

are becoming more realistic. In this work, we explore one such use case where we

attempt to cache key-value entries at the network interface of the client server. We

propose an FPGA design that is capable of caching the KVS data transparently to

135

the KVS client application. The proposed solution is able to improve the application

throughput while also reducing the network traffic generated by the KVS client. We

also discuss the importance of and present our vision for an FPGA design support-

ing multiple tenants because the proposed solution targets the client servers that are

typically shared by multiple clients.

6.1.1 Introduction

The demand on data centers for high bandwidth access to large amounts of data

is growing due to various factors such as the rise of cloud services, the Internet of

Things (IoT), and the general evolution of the data center landscape. Large content

providers such as Facebook, Google, and Wikipedia. dedicate significant compute

resources to key-value databases. Key value databases cache frequently accessed

content, reducing the load on back-end databases while providing low-latency and

high-throughput access to content. Key-value stores (KVS) are used for tasks such

as storing user session data such as login information, storing configuration settings

that applications need to access quickly, and numerous others.

Key-value stores, especially the ones geared towards caching small keys and values,

pose challenges to data center servers due to the number of small network packets

that must be processed. KVS clients generate a large amount of requests requiring

the KVS server to process all the requests and generate the response packets at a high

rate to ensure high throughput. This makes KVS services susceptible to bottlenecks

introduced by the networking stack of the operating system. Due to this, many

prior works such as [Choi et al., 2018, Chalamalasetti et al., 2013, Lavasani et al.,

2013, Liang et al., 2016, Blott et al., 2013] have explored offloading key-value store

functionality, fully or partially to FPGAs using custom hardware designs. These

designs tightly couple the KVS functionality with the packet processing often with

streaming architectures to provide higher throughput and lower latency compared to

136

a standard server.

While many of the prior works have focused on using FPGAs to accelerate the

KVS implementation itself, this work focuses on the client interface. We propose

a lightweight FPGA design for caching the KVS entries on a network-facing FPGA

attached to the client server. The FPGA implements a smaller key-value store and

handles requests sent out to the remote KVS server/s. If an entry corresponding to

a request is already in the local KVS, the FPGA responds to the request without

sending out the packet to the network. If not, the FPGA behaves as a regular

NIC and sends the packet out. When a response packet is received, the value is

cached in the local KVS while forwarding the response packet to the host. This

allows the FPGA to service the next request for the same entry. In this design, the

FPGA acts as a secondary network interface on the client-server and the caching

happens fully transparent to the KVS client application. Our FPGA design presents

a Virtio [Tsirkin and Huck, 2022] network device interface to the host machine. Virtio

drivers are part of standard Linux distributions. Therefore, unlike most other FPGA-

based designs there is no overhead of additional device drivers to communicate with

the FPGA. From the point of view of the host operating system, the FPGA appears

as a regular network interface. The only configuration step necessary is creating

routing table entries to ensure that the packets intended for the remote KVS server

are directed to the FPGA network interface instead of the primary NIC of the server.

We envision cloud applications that frequently access content from backend

databases and use key-value stores as an intermediate caching layer benefiting from

the proposed solution. For instance, consider a front-end web server running on a

cloud server node. It needs to access the backend databases to fulfill requests from

the users. In such a scenario, it is typical to have a key-value database such as

Memcached [Memcached, 2024] running on a different set of nodes to cache the fre-

137

quently accessed content. The proposed solution can be deployed on the front-end

server if it is equipped with an FPGA. This is becoming a realistic requirement as

many major cloud service providers have started deploying FPGAs in their data

centers [Microsoft, 2024b,Caulfield et al., 2016, Firestone et al., 2018,Amazon Web

Services, 2024,Alibaba Cloud, 2018,Nimbix, 2024]. With caching at the network in-

terface of the front-end server, the application should experience higher throughput

due to a portion of requests being serviced without requesting data from the node

running the KVS. Additionally, this will also reduce the network traffic on the data

center network. In this work, we present our preliminary implementation with a single

network interface and a KVS on the FPGA. However, this work can be extended to

implement multiple PCIe functions that could be assigned to different guest VMs on

a server. The individual PCIe functions and the associated controllers on the FPGA

could serve different applications and provide performance isolation and quality of

service guarantees for different clients.

6.1.2 Method

Scope for the Proposed Solution

We propose an FPGA design to perform caching at the network interface for key-

value store applications. This solution targets servers running client applications

that need to access data from backend servers and rely on key-value databases that

run on dedicated nodes to cache frequently requested data and reduce the load on

the backend servers. The target server should be equipped with a network-facing

FPGA. The FPGA is able to act as a secondary network interface card for the server.

Figure 6·1 depicts the general deployment context targeted by the proposed solution.

Here the frontend server (server 1) is running some application that serves the

requests from the users. The data required to service the user requests are stored

in the database on server 2 . Server 3 runs a key-value store that caches the

138

frequently accessed data in order to reduce the load on the server 2 .

Figure 6·1: Target deployment architecture (Adapted from [Choi
et al., 2018])

With our proposed solution, all packets between servers 1 and 3 are sent

through the network-facing FPGA on server 1 . The FPGA implements a smaller

key-value store and the network interface functionality. The architecture of the FPGA

design is described later in this section. The proposed FPGA design includes a host

interface compliant with the Virtio specification [Tsirkin and Huck, 2022]. This allows

the host OS to use in-kernel Virtio device drivers to communicate with the FPGA.

Because our concrete implementation is a Virtio network device, the FPGA appears as

a regular network interface card for the host OS. Because our current implementation

does not implement any additional functionality such as checksum calculations or

TCP segmentation offload, it relies on the host operating system’s network stack and

the device driver to provide fully formed Ethernet frames to the FPGA. However,

because Virtio specification supports feature negotiation between the device and the

driver, future implementations can implement additional network stack functionality

and enable offloading more work from the CPU to the FPGA. Any such additions do

139

not require any changes to the current use model where the KVS client is oblivious

to the existence of the FPGA or the caching at the network interface.

After a packet is copied to the FPGA memory from the host memory using DMA,

the KVS module reads the relevant fields from the packet to identify the type of

request and the key. At present, our implementation only supports Get and Set

requests in the Memcached protocol. A Get request triggers a KVS lookup. If the

requested key is available in the local KVS, the FPGA generates a response ethernet

frame and moves it to the appropriate buffer in the host memory. If the key is not

found, the request packet is sent out into the network using the FPGA’s network

interface. When the response packet is received, the KVS module inserts the value

into its memory while the DMA controller moves the packet to the host memory. The

FPGA’s behavior for a Set request is configurable. The two modes supported are:

(i) Set requests trigger a KVS lookup; entry is updated for a hit; the request packet

is sent out to the KVS server (ii) Set requests are never cached; If the corresponding

entry is in the local cache, it is invalidated; Packet is sent to the remote KVS server.

The behavior should be selected based on the kind of data cached and the consistency

model enforced by the remote key-value store. For all other request types, the local

KVS is bypassed and the packet is sent to the network interface. Any local copies

of the entry targeted by the unsupported request are invalidated. Essentially, the

FPGA behaves as if there is no local cache in place for all unsupported requests.

Architecture

Figure 6·2 provides an overview of the FPGA design. The main components of

the design are the Key-value store, PCIe subsystem, and the network subsystem.

Additionally, there are packet buffers to store RX and TX packets, and a central

controller is responsible for managing the other components.

140

Figure 6·2: KVS Design Overview

Key-value Store: The key-value store implementation complies with the Mem-

cached binary protocol [Memcached, 2017]. A simple CRC16 hash is used as the hash

function for the KVS. This allows us to implement a KVS with up to 216 entries.

Keys and values are stored in FPGA block RAMs (BRAM) to simplify the design.

However, the design could be modified to use off-chip DRAM to store the values and

BRAMs to store keys and pointers to the values in DRAM. The KVS is implemented

as a direct mapped cache. Therefore, no replacement policy is implemented. A single

FSM handles the orchestration of all computations, moving data to and from packet

buffers, reading/writing keys and values from/to BRAMs, and communication with

the controller.

PCIe Subsystem: This design uses the PCIe subsystem presented in Chapter 4

to implement a host-FPGA communication interface where the host OS views the

FPGA as a Virtio network device. This removes the overhead of designing and im-

plementing custom device drivers for the FPGA developer and the overhead of setting

up and maintaining the drivers for a system administrator. Since the FPGA appears

141

as a regular network interface card, no changes are necessary for the KVS client ap-

plication. Packets generated by the KVS client application can be directed to the

FPGA by setting up the proper routing table entries.

We can use a soft-core processor as the controller to reduce the number of custom

modules that need to be implemented. Figure 6·3 depicts the KVS design with a

RISC-V core as the controller. In this architecture, the ‘Memory’ module acts as a

shared memory for all the components. The PCIe, network, and KVS modules have

direct access to the memory. The configuration registers of all three modules are

memory-mapped to the address space of the RISC-V processor allowing the processor

to control the other modules. At initialization, the program executing on the processor

allocates packet buffers in the memory and provides the pointers to the buffers to the

other modules.

Figure 6·3: KVS Design with RISC-V Processor as the Controller

Extension to Multiple client Applications/VMs

Since Virtio drivers are intended for guest operating systems and the drivers do

not make any distinction between virtual and physical devices as long as the correct

142

interface is implemented, it is possible for guest VMs to also access the FPGA without

additional device drivers. We have tested our current implementation with a single

PCIe function and a single VM by using PCIe passthrough to assign the FPGA to

the VM. We expect to extend this approach to multiple VMs using multiple PCIe

functions and the Single Root I/O Virtualization (SR-IOV) technique. This suits

the target deployments we have considered for this solution, which are cloud nodes

running applications that are key-value store clients. Typically such applications run

inside virtual machines and share the server resources with other applications.

If there are multiple KVS client programs executing inside different VMs on the

same host machine, it is important to provide each of them with a simple but secure

mechanism to access the FPGA. If the different clients are accessing different key-

value databases, the corresponding PCIe functions implemented on the FPGA could

have their own KVS controllers and memory. Even if the different clients are accessing

the same database, each could be assigned their own cache on the FPGA in order to

provide additional security, performance isolation, and quality of service guarantees.

Figure 6·4 depicts our vision for a multi-tenant deployment where multiple KVS

client programs are running inside individual VMs on the same server. The PCIe

interface of the FPGA presents multiple PCIe functions (physical or virtual) to the

host OS, which are assigned to individual VMs. VMs 2, 3, and 4 are running KVS

clients and therefore are connected to the FPGA. VM 1 could be running a non-KVS

program and therefore is not connected. Within the FPGA, functions 3, and 4 share

the same KVS controller. However, function 2, which is connected to VM 2 uses its

own KVS controller. This could be due to VM 2 accessing a different KVS from the

other two VMs or due to security or performance guarantees required by the program

running in VM 2. The KVS controllers implemented on the FPGA share the external

interfaces such as PCIe and Ethernet.

143

Figure 6·4: Example Multi-tenant Deployment

6.2 Building a System Using DISL

One of the main motivations behind using a system generator such as DISL is to

simplify and speed up the implementation process. An hOS generator allows a user

to focus on application logic by automatically generating the infrastructure logic based

on the application requirements specified by a user. Therefore, a good hOS generator

design should result in a straightforward process for defining and implementing a

system. This idea can be broken down into the characteristics of the hOS generator

such as listed below.

• The methods, and syntax used to describe a system.

• The amount of information a user is expected to provide to the system generator.

144

• The level of hardware design expertise required.

• The level of understanding the user should have of the inner workings of the

system generator to effectively use it.

A good system generator design should use easy to understand methods, syntax,

and constructs to define a system. A user should not have to spend a lot of time and

effort specifying and generating a system such that the overhead of specifying a system

outweighs the time saved by using the system generator instead of implementing the

system manually. There should also be a balance between the simplicity and expres-

siveness of the system specification methods. For instance, a graphical user interface

(GUI) may be far easier to familiarize with compared to a text-based system speci-

fication. However, the GUI may lack the expressiveness necessary to specify certain

aspects of a design. It is possible for a system generator to use different method-

s/syntax/use models to achieve simpler versus complex tasks. For example, consider

our previous example of GUI vs text-based system specification. The two methods

can be combined to provide a simpler use model for straightforward implementations

and a more expressive use model to implement complex designs.

A system generator uses a system specification provided by the user. A good

system generator design should be able to build a working system with the minimum

amount of information from the user. This benefits both the users with a lower

level of hardware design expertise and users who wish to quickly generate a working

design and then optimize it if necessary. While a user should be allowed to provide

additional information to fine-tune the design, it should not be the baseline use model.

It should be possible to generate a working design without understanding the intricate

details of the components used in the design. A system generator can achieve this

by using default configurations and parameter values for the system components.

The maximum amount of information a system generator can expect from a user

145

is the same as if the user provides HDL source files, configuration information and

parameter values for the system components not included in the source files and all

the design constraints. A good system generator design should never require more

information than this from the user regarding the system to be generated and ideally

require a lot less to generate a design.

A good system generator design should be usable by users with different levels

of hardware design experience. The use model could be different for different users.

For users who lack hardware design expertise, the hOS generator can decide most of

the configuration parameters for the system components. Default values and example

designs can be useful in such a use model. However, an experienced hardware designer

should have access to the hardware parameters of the components to optimize them

to match the application requirements better.

From a usability standpoint, a user should be able to use a system generator with

zero knowledge of how the generator is implemented and how it functions. However,

an ideal design should also allow an expert user to easily change the behavior of the

tool to either change the current system generation mechanics or add new capabilities.

By examining the points discussed above, it is clear that the ease of implementing a

system with a system generator cannot be easily quantified. Therefore, we provide a

qualitative evaluation of DISL.

DISL uses configuration files written in TOML [Preston-Werner, Tom and Gedam,

Pradyun et al., 2023] which is a minimal configuration file format; to describe systems,

library components, and board specifications. TOML syntax is designed to map

information to hash tables. Much of the DISL use model and the level of difficulty

in using DISL revolves around how a user interacts with the configuration files. We

envision DISL being used by users with a wide range of experience in hardware design.

The use model changes with the level of expertise and therefore, the effort to use DISL

146

is discussed relative to different levels of expertise.

User has no experience in hardware design: This is an extreme scenario where

the user has no experience in hardware design and does not have an understanding

of the system components necessary to implement a functioning FPGA design. For

such a user, the motivation behind using an FPGA could be something other than

performance. For example, security could be one such motivating factor where the

user needs to run a security-critical application on an external device protected from

the host OS and other programs executing on the host.

As the user is not proficient in implementing a hardware design, they could use a

soft processor implemented on the FPGA to execute a program the user has written.

In this scenario, the user can use an example design available in the DISL repository

to generate a system and implement their application in software to be executed

on a soft processor core. An example system configuration for such a use case is

shown in figure 6·5. The example system implements PCIe, network, DRAM, and

UART interfaces alongside a RISC-V core. The different interfaces are memory-

mapped. Note that the ‘Interconnect’ block represents the automatically generated

interconnect logic which is part of the top module and not a separate module.

One drawback of this use model is that the user might have to use a system

configuration with components unnecessary to their application. While the use model

is simple, the resulting system design may not be optimal. However, we are assuming

a scenario where the user has no expertise in hardware design and does not understand

the system components necessary to make the FPGA design work. The user cannot

provide system requirements without understanding them. Yet, the user is no worse

off than using a fixed FPGA shell implementation as those also use a fixed amount

of FPGA resources regardless of the specific application requirements.

147

Figure 6·5: An example system configuration with a softcore processor

User understands the system components required by the application: If

a user has an understanding of the different components required by their application

can select an example design that only includes the required components. If such an

example is not available, the user can start with an example such as the one shown in

Figure 6·5 and remove the unnecessary components from the system definition such

that the resulting system only includes the required components. For instance, let us

consider an application that does not require off-chip DRAM. The application only

uses on-chip BRAM for memory. In this case, the DRAM controller can be removed

from the system configuration by removing the entry corresponding to the DRAM

controller from the [INSTANTIATIONS] dictionary in the system.tml file. Next, the

connections between the DRAM controller and the rest of the components should be

removed. This is done by removing the entries corresponding to the DRAM controller

from the [INTERCONNET] dictionary. Because the connectivity is defined on a per-

interface basis, unnecessary connections can be removed without affecting the rest of

148

the connectivity. However, the amount of changes to the system specification depends

on the exact component to be removed. Removing the DRAM controller from the

system shown in Figure 6·5 is trivial because it is only connected to the ‘cache’

module. However, removing a module directly connected to the RISC-V core and

memory mapped may also require updating the address map of the processor instance.

The text-based detailed system specifications of DISL have some drawbacks in this

scenario. While this scheme provides greater control over the implemented system to

an experienced user, it may not be ideal for a less experienced user who wishes to

make minor modifications to a system. This can be improved with another abstraction

layer used to generate the text-based system descriptions. In Chapter 7, we discuss

this idea further as part of future research directions.

User implements application logic: There could be users with sufficient hard-

ware design experience to implement their application logic as a hardware module but

lack the experience to implement external interfaces such as PCIe. It could also be

the case that the user wants to implement a working design quickly without spend-

ing time implementing the infrastructure logic required for the application logic to

function.

A user can start with an example design similar to the last two use models,

but add their hardware module to DISL to generate a system with application

and infrastructure logic. The first step is adding a description of the user mod-

ule to modules.tml file. Next, the instances of the new module are added to the

[INSTANTIATIONS] dictionary and the connectivity is specified in the [INTERCONNET]

dictionary in system.tml. This use model requires the user to understand the system

components and the connectivity between those and the application logic. If the new

hardware module uses interface types not already specified in definitions.tml the

interface definitions also need to be added to DISL.

149

In addition to the steps above, a user can optionally add parameter mapping

functions to the system generator script if the user module has complex hardware

parameters that are better abstracted away with simpler user-facing parameters. This

is important if the user is expecting to reuse the module or the user is implementing

components to be used by others.

Good system component designs are important for this use model because the user

is required to specify the connectivity between system components and their hardware

modules. The system components should be designed to present consistent and easy

to understand interfaces to the rest of the system. Ideally, the interface should be

designed such that the user does not have to understand the inner workings of the

component. For example, the PCIe subsystem discussed in Chapter 4 can present

one of two interfaces to the rest of the system. The first is an AXI memory-mapped

interface which is a straightforward handshake-based interface widely used in IP cores

and most hardware designers are familiar with. The second is a Virtqueue-based

interface which software developers may find easier to understand and use. Neither

of these interfaces requires the user to understand the internal details of the PCIe

subsystem, such as the PCIe IP core used, how the DMA engine is programmed, or

how the Virtio device drivers on the host machine recognize the FPGA as a Virtio

device. From the point of view of the user logic on the FPGA, communicating with

the host machine takes the form of either sending and receiving data over an AXI

interface or using a Virtqueue abstraction which involves buffers and data structures

in FPGA memory.

Porting a design to a new device: When using DISL, porting a design is a

straightforward process if the support for the new device is already implemented.

This means the device-specific components for the new device are implemented by

a previous user and are added to the DISL repository. In this case, a user can take

150

one of two approaches. The first is to start with the example design for the new

device and add the user logic to the system specification. The second is to start with

the current system specification (for the old device) and replace the device-specific

components in system.tml with the components for the new device. Which approach

works best depends on how complex the connectivity between the application logic

and the rest of the system is. If the application logic is mostly isolated and has few

interfaces connected to the rest of the system, the first approach works best and vice

versa.

User implements new system components: In all the use models discussed so

far, the user is using system components implemented by someone else and added to

DISL. A user can also add new system components to DISL if not already available or

if the current version needs to be improved. If the new component is device-agnostic

the process is no different from adding application logic to DISL. However, if it con-

tains device-specific elements, board.tml file should be updated with any information

and methods necessary to generate and compile the device-specific elements. These

could include design constraints, and commands to generate IP cores. A description

of the highest-level module of the new element is added to modules.tml.

Adding support for a new device: The next level of the different use models

for DISL is adding support for new development boards. Adding a new device to

DISL requires creating a directory for the new device in /fpga/boards/ directory

and adding a board specification (board.tml) and any device-specific sources such as

source files, and scripts related to the device-specific components to the new directory.

The steps are described further in Section 3.3.1.

At this level, the user is expected to have a solid understanding of the device-

specific components and how to implement them. However, because DISL does not

151

have a minimum set of capabilities specified, adding support for a new device can

be done incrementally. One user could add only the components necessary for their

application and a later user can reuse these components and add any missing com-

ponents to improve device support.

Modify DISL: At this level, the user is not simply using DISL to generate de-

signs, but modifies how DISL generates a system and adds more functionality to

DISL. The system generator (/fpga/system builder/build.py) and configuration

(configure.py) scripts are updated to add new functionality to DISL. For instance,

the configure script could be updated to add support for more FPGA toolflows.

Changing how the RTL is generated requires modifying the system generator script.

An example of a new feature is including some form of memory protection logic in the

generated RTL. This could be used in a use case where multiple application kernels

from mutually untrusting users are sharing the FPGA.

6.2.1 Usability Evaluation

There is a range of use models for DISL that can be used by users with different levels

of hardware design experience as described previously. At the lower end, DISL offers

simple use models that mostly depend on example designs. The user interactions

with the configuration files are minimal. Therefore, the effort to generate a design

using DISL is less. DISL allows a less experienced user to quickly generate a working

design without a deep understanding of the system components or the inner workings

of DISL.

At the higher end, DISL still allows more experienced users to implement complex

functionality, improve available components, add new system components, and add

support for new devices. These require increasingly higher levels of understanding

of hardware design, using IP cores, implementing external I/O interfaces, and how

152

DISL functions. These also require higher effort from the user. However, we believe

the increased difficulty in using DISL is proportional to the nature of the outcome the

user aims to achieve. Simply using DISL to generate a system with already available

components for a board that is already supported by DISL requires minimum effort.

At the other end of the spectrum, changing the behavior of DISL itself requires

significantly higher effort.

The scripting and programming languages used in implementing and using DISL

increase its usability. DISL is implemented in Python which is simple and widely

used. Adding parameter mapping functions or adding new functionality to DISL

only requires the user to be familiar with Python. Most of DISL functionality revolves

around the configuration files. They use TOML [Preston-Werner, Tom and Gedam,

Pradyun et al., 2023] which is a minimal configuration file format with obvious syntax.

The syntax is easy to read, understand, and modify.

Something a new user might find challenging is keeping track of exactly which

configuration files need to be modified for different tasks. Using DISL to generate

a system with existing components only requires a new system.tml file. However,

adding new components to DISL may require the user to modify other configuration

files such as modules.tml and definitions.tml. Adding support for new devices

involves yet another configuration file, board.tml.

Another aspect of DISL that might be challenging to a new user is understanding

the reasoning behind certain system definition rules. For instance, the interconnect is

specified using three different dictionaries [STATIC], [DYNAMIC], and [OVERRIDES].

This is done due to two main reasons. DISL generates the RTL source for the in-

terconnect that connects the system components. Only some connections require

arbitration logic. Therefore, the [STATIC] and [DYNAMIC] dictionaries separate the

connections that do and do not require arbitration logic. The [OVERRIDES] dictio-

153

nary provides more flexibility in specifying the interconnect by allowing the user to

override the connectivity of individual signals that are part of an interface regardless

of the connectivity specified for the full interface. Another example of a DISL sys-

tem specification rule that may confuse a user is how the interfaces are broken down

into individual handshakes. This is done to support conversions between different

protocols.

DISL configuration files use a highly detailed approach to describing components

and systems. While this is necessary to gather enough information to generate the

‘top’ module of the design and this provides greater control over the design, it could be

a drawback for some users. However, the amount of details a user needs to provide

can be further reduced by using another abstraction to generate the configuration

files. At present a user is required to specify the application requirements in terms of

system components and their connectivity. Another layer of abstraction could allow

a user to specify requirements at a higher level with fewer details.

6.2.2 Building the KVS Design Using DISL

At the time of implementing this example design, we did not have a fully functioning

network subsystem. Therefore, we have implemented a design without the network

connectivity as shown in Figure 6·6. This design still allows us to evaluate the per-

formance of the key-value store in conjunction with the Virtio PCIe interface. The

results we present later in this section are based on performance models where the

latency for communication over the network is modeled based on the communication

latency over the default NIC on the host machine. We have also included a UART

module in the implemented design to make it easier to debug the design. The RISC-V

core can print messages over the UART interface that we can use to debug the design.

The first step of generating the design is adding the key-value store module to

the DISL component library. This is done by adding the module description to

154

Figure 6·6: KVS Design Implemented with DISL

‘/fpga/common/config/modules.tml’. It is not necessary to update the other con-

figuration files because the KVS module only contains generic logic and only uses

interfaces already defined in DISL. Listing 6.1 shows the entry in modules.tml de-

scribing the KVS module. The next step is specifying the system to be generated.

The full system description for the key-value store design is provided in Appendix A.

1 ...

2 [kvs]

3 TYPES = [" SIMPLE "]

4

5 PARAMETERS = [" LISTEN_PORT", "HASH_WIDTH", "KEY_WIDTH", "VALUE_WIDTH", "

VALUE_SIZE "]

6

7 [kvs.REQUIREMENTS]

8 INTERFACES = ["clk", "rst", "s_axil", "m_axil "]

9 [kvs.REQUIREMENTS.INCLUDES]

10 COMMON = ["kvs.sv", "bram_simple.v", "crc16.v"]

11 BOARD = []

12

13 [kvs.ENCODINGS]

14

15 [kvs.INTERFACES.clk]

16 TYPE = "CLOCK"

17 DIRECTION = "SINK"

18 [kvs.INTERFACES.rst]

19 TYPE = "GENERAL"

155

20 WIDTH = 1

21 DIRECTION = "SINK"

22 [kvs.INTERFACES.s_axil]

23 TYPE = "AXIL"

24 DIRECTION = "SINK"

25 CLOCK = "clk"

26 DATA_WIDTH = 32

27 ADDRESS_WIDTH = 32

28 MASK_WIDTH = 4

29 [kvs.INTERFACES.m_axil]

30 TYPE = "AXIL"

31 DIRECTION = "SOURCE"

32 CLOCK = "clk"

33 DATA_WIDTH = 32

34 ADDRESS_WIDTH = 32

35 MASK_WIDTH = 4

36 ...

Listing 6.1: Adding the Key-value Store Module to modules.tml

6.3 Matching the Exact Application Requirements

One of the main drawbacks of fixed FPGA shells is the fixed resource usage regardless

of the capabilities required by a given application. An hOS generator can remedy

this by tailoring the generator system to the exact application requirements. In

this section, we explore how much the system requirements differ among different

applications and how DISL can generate system designs consisting only of the features

requested by a user via a system specification.

Table 6.1 presents a taxonomy of different application classes and deployment

contexts for FPGAs and the components likely to be included in system designs for

each of the use cases. Note that this is not a complete taxonomy of all possible use

cases for FPGAs. Instead, this covers a select few use cases to highlight how the set of

required system components differ significantly across different deployment contexts

and applications.

A good system generator design should allow the user to individually select the

system components to match the application requirements. This improves the overall

156

C
op

ro
ce
ss
or

C
lu
st
er

S
m
ar
tN

IC

N
et
w
or
k
S
to
ra
ge

Io
T

(D
at
a
lo
gg
in
g)

Io
T

(C
on

tr
ol
)

PCIe ✓ ✓ ✓
Wired Network ✓ ✓ ✓
Wireless Network ✓ ✓
DRAM ✓ ✓ ✓ ✓
NVMe ✓ ✓
GPIO ✓
Sensors ✓
UART ✓ ✓ ✓
Soft cores ✓ ✓ ✓ ✓ ✓ ✓

Table 6.1: Example Taxonomy of FPGA Use Cases

resource usage compared to a fixed FPGA shell as there are no unnecessary compo-

nents in the design. This indirectly results in energy efficiency as well because the

FPGA resources can be used to implement more compute units that perform useful

computations instead of implementing unnecessary infrastructure logic.

DISL generates systems using a component library. A user is required to specify

each component to be included in a system design through a system specification.

Therefore, assuming the user provided an accurate system specification, only the

components necessary for a given application are going to be included in the gener-

ated system. Depending on the resource availability of the target device, selecting

the correct system components can have a significant effect on how much resources

are available to implement the application logic after implementing the system com-

ponents. Going one step beyond this, by applying the design strategy discussed in

Chapter 3, the system components themselves can be built out of discrete subcompo-

nents that can be individually selected/de-selected as necessary. So far, this strategy

was presented with a focus on the design portability aspect. However, an additional

benefit of the modular approach to component design is that it allows an advanced

157

user to add/remove/replace sub-components to implement highly optimized designs

targeting strict resource constraints or performance targets.

For example, consider the PCIe subsystem presented in Chapter 4. The PCIe

subsystem design includes a modified version of the vendor-provided PCIe IP core

in the device-specific (Board) partition and a controller module in the Generic code

partition. The controller implements multiple RX and TX queues and arbitrates the

requests from different queues to access the single interface exposed by the PCIe IP

core. The controller also presents different interfaces to the user logic based on user

specifications. However, these added capabilities require additional resources on the

FPGA. There are scenarios a user may opt to get rid of the Generic portion of the

PCIe subsystem and directly connect user logic to the PCIe IP core. One reason

could be strict resource constraints. Another could be that the user requires a highly

optimized host-FPGA interface for a single accelerator that does not benefit from

having multiple communication queues and the added latency from the controller is

unacceptable. Due to the layered component design strategy, DISL can support such

use cases where a user opts to remove/replace sub-components of a subsystem in the

hOS.

At present, DISL does not support hierarchical system specifications. This means

the user can only specify the components and connectivity in the top module of

the design hierarchy. Therefore, the components that include sub-components that

can be selected/deselected cannot be described using configuration files. Instead,

the top module of the component has to be parameterized to only instantiate cer-

tain components depending on values of configuration parameters. If not, the sub-

components can be instantiated individually by adding them individually to the

[INSTANTIATIONS] dictionary in system.tml.

Based on the discussion above, we can conclude that DISL provides a high de-

158

gree of freedom in terms of tailoring the generated system to the exact application

requirements resulting in lower resource overhead. At this point, we shift our focus

back to the example design discussed previously. In the next section, we discuss how

the previously discussed design is ported to a new device.

6.4 Porting Designs to New Devices

DISL enables a design to be ported to different devices by implementing only the

device-specific components used by the generated system design. In this section, we

port the design shown in Figure 6·6 from the smaller Artix 7 device to the larger

Ultrascale+ device. Among the components used in the design in Figure 6·6, the

PCIe subsystem is the only component that includes device-specific submodules. (The

UART module requires the proper pin placement constraints which are part of the

board description in the board.tml file. However, the module is completely generic).

Because we ported the PCIe subsystem to the Ultrascale+ device and added board

support for the CVP13 development board, we can port the design by only creating

a new system description that uses the correct components.

In this implementation, we did not use a wrapper module for the PCIe subsystem.

Instead, the XDMA IP core, pcie controller module, and the other modules that

are part of the PCIe subsystem were instantiated directly in the top module. This

results in many signal and instance name changes between the two system descriptions

for the two target devices. However, if we ignore the signal and instance name changes,

the difference between the two system descriptions is only 10 lines. Considering that

the full system.tml file is 470 lines long, the changes required to port the design to

a new device (board support already added to DISL) are negligible.

159

6.4.1 Scaling Designs

Apart from easily porting designs across devices, DISL also simplifies scaling de-

signs to match the resource availability of different devices given the components are

properly parameterized. Listing 6.2 shows the entry in the system.tml file corre-

sponding to the KVS module instance. The parameters ‘HASH WIDTH’, ‘KEY WIDTH’,

and ‘VALUE WIDTH’ determine the amount of memory (BRAM) used by the key-value

store module. The depth of the memory is determined by ‘HASH WIDTH’. The other

two parameters determine the size of a memory line for the memory blocks storing

the keys and the values respectively.

We have kept the ‘KEY WIDTH’ fixed at 32 bits. The configuration shown in

Listing 6.2 is the configuration that uses the largest amount of BRAM that would

still fit in the Artix 7 device. However, the Ultrascale+ device has more than 7 times

the number of BRAM tiles as the Artix device. Therefore when porting the design, we

could also utilize the additional resource by making the key-value store larger. This

could mean either supporting larger values or more entries in the key-value store.

These alternative configurations can be generated by changing the values assigned to

‘HASH WIDTH’ and ‘VALUE WIDTH’ parameters in system.tml and rerunning DISL to

regenerate the design with the updated parameter values.

Scaling a design with more processing elements (PE) is also not significantly more

difficult to achieve. This requires the user to add the new processing element instances

to the system.tml file and regenerate the design. However, one limitation of the

current system definition syntax used by DISL is the inability to instantiate modules

conditionally or inside a loop. Therefore, scaling the number of PEs requires adding

new instances one by one to the [INSTANTIATIONS] directory in system.tml. The

component design can provide a workaround by implementing a wrapper module with

a ‘generate for’ loop to instantiate the PEs and a parameter to set the number of

160

instances.

1 [INSTANTIATIONS.kvs_inst]

2 MODULE = "kvs"

3 PARAMETERS.LISTEN_PORT = 44000

4 PARAMETERS.HASH_WIDTH = 16

5 PARAMETERS.KEY_WIDTH = 32

6 PARAMETERS.VALUE_WIDTH = 128

Listing 6.2: KVS module instance in system.tml

Overall, DISL provides simple and easy to use methods to port designs across

devices and scale the designs to match the resources available on the new device. The

component design strategy is the driving force behind the improved design portability.

6.5 Evaluation of the Key-Value Store Design

In this section, we evaluate our key-value store design [Bandara et al., 2024a]. We

model the application throughput and the network bandwidth using the timing mea-

surements for data movement between the host and the FPGA and the network

latency to reach the server running the remote key-value store.

The purpose of allocating compute resources to run key-value stores is to provide

fast access to data frequently accessed and reduce the load on backend databases.

However, since traditional servers a prone to performance bottlenecks when run-

ning key-value stores, many FPGA-based solutions have been proposed to improve

the throughput and latency of the key-value stores. These approaches are typically

evaluated based on the improvement in application throughput. Therefore, we also

evaluate our proposed solution based on application throughput.

6.5.1 Experimental Setup

We use our implementation on the Bittware CVP13 [Bittware, 2024] development

board that uses a Xilinx Ultrascale+ FPGA (part number: xcvu13p-figd2104-2-e)

for this evaluation. The machine hosting the FPGA and running the KVS client

161

program and the server running the key-value store program are both connected to

the same 1 Gbps local network. We consider the KVS client performance without

the FPGA-based solution as the baseline for our analysis. For time measurements,

the test applications use the clock gettime() function with the CLOCK MONOTONIC

option.

Since the real KVS workloads are dominated by read requests [Atikoglu et al.,

2012], we focus our analysis on the performance improvement for Memcached Get

requests. Higher hit rates on the local KVS cache correspond to better client ap-

plication performance since fetching a value from the FPGA takes considerably less

time compared to fetching the same value from a remote server running the KVS. We

assume that the KVS client application’s performance is only limited by accessing

the key-value store on a remote node.

6.5.2 Results

In this section, we model the performance improvement achieved by the proposed

solution. The model is based on two types of latency measurements made using the

setup described in Section 6.5.1.

1. Time taken for the client program to issue a Get request to the key-value store

running on a different machine on the same network, and receive the response

with the value. This is considered to be the baseline performance when there is

no FPGA KVS cache implementation in place.

2. Time for the client program to receive the response when the KVS entry re-

quested is cached in the FPGA.

Figure 6·8 shows the effective read throughput for the client program for different

sizes for the value field ranging from 16 Bytes to 512 Bytes versus different cache

hit rates for the KVS cache in the FPGA. Performance for the 0% hit rate is the

162

same as the performance without the FPGA cache in place. The highest performance

improvement is seen for the smallest values. This can be explained by the higher

overhead of network packets for smaller values. For the smallest sizes, the overhead of

the protocol headers alone is closer to the size of the actual payload. The performance

benefits decrease with the size of the value. However, the negative slope of the (light

blue) line representing 512 Byte values cannot be explained only by the decreasing

overhead of the network packets compared to smaller value sizes. The other factor

contributing to the poor performance is that our FPGA design is still not optimized

to handle larger values efficiently. With an optimized design that can handle larger

values better, the proposed solution should result in improved performance for a wider

range of payload sizes.

Figure 6·9 shows the network bandwidth versus the cache hit rates. Please note

that this is the network bandwidth perceived by the client application and not the

actual bandwidth utilized. Because the application is unaware of the caching at

the network interface, from the point of view of the application, it is experiencing

higher network bandwidth utilization. For the no-cache scenario (0% hit rate), the

application only reaches around 7% of the available network bandwidth of 1 Gbps

when fetching 16 Byte values from the KVS. However, with a 100% hit rate, it could

go up to around 13% which is almost double the bandwidth for the no-cache case.

The hidden benefit of this is that the actual number of packets transmitted over

the network is reduced lowering the actual network traffic. The reason for the poor

performance of the 512 Byte value scenario is the same as explained above.

6.6 Optimizing System Components

Our evaluation of the key-value store design showed that it does not perform well for

larger values. In this section, we investigate the reason behind poor performance and

163

attempt to modify the design to obtain better performance. In doing so, we evaluate

the steps involved in modifying the system components used in DISL.

The performance of our design suffers when handling larger values. Therefore, we

can infer that the added overhead is related to the larger payload. Remember that

we have built our performance model based on two timing measurements. Cache hits

are modeled using the latency measured using our FPGA design. This measurement

represents the latency for the KVS client application to send a packet, the packet to

be moved to the FPGA over the Virtio interface, and the KVS module on the FPGA

to look up the key and respond with the value if it is cached. Because we did not

have a functioning network subsystem at the time, the cache misses were modeled

using a different measurement. That is the latency for the KVS client application to

send a request to the server running the key-value store over the default NIC of the

machine and to get a response from the remote server.

The performance for the 512-byte values in Figures 6·8 and 6·9 does not make

sense because the graph suggests that the performance decreases with higher hit rates.

This means that fetching a value from the FPGA is more expensive than fetching one

over the network. In Chapter 5, we have demonstrated that Virtio drivers provide

comparable or better performance to regular device drivers. Therefore, it is most

likely that the added latency when moving larger payloads between the host and

the FPGA is related to the actual PCIe transactions rather than the software stack.

Considering all the factors above, we can conclude that the poor performance for

larger values is at least partially due to the design not fully utilizing the available

PCIe bandwidth when moving data between the host and the FPGA.

This is in fact true because we did not account for some of the improved capabilities

of the new device when porting the design from the Artix 7 device to the Ultrascale+

device. In Section 6.4, we only focused on porting the design to a new device with

164

minimal changes to the components and the system specification. However, it may

be necessary to further optimize a design to achieve the highest performance. We

do not consider this to be a drawback of DISL. Rather it is part of the DISL use

model which allows a user to quickly port a working design to a new device and

optimize it incrementally if necessary. In this case, a user can port the design to a

different FPGA with minimal changes to the system specification. If the performance

of the resultant implementation is satisfactory, the user can use that. However, if the

implementation cannot meet the performance targets, the user can then optimize the

design incrementally.

Remember the differences between the two FPGA development boards we listed

in Section 5.6. The development board that uses an Artix 7 device only supports two

PCIe 2.0 lanes. On the FPGA side, the XDMA IP is implemented with a 128-bit data

bus operating at 125MHz. In contrast, the CVP13 development board which uses an

Ultrascale+ FPGA supports a 16-lane PCIe 3.0 interface. To use the full bandwidth

available for this interface (8GT/s per lane), the XDMA IP should be configured with

a 512-bit interface operating at 250MHz. While our design for the CVP13 board is

operating at 250MHz, the XDMA IP is still configured with a 128-bit data bus to

match the rest of the design. Therefore, this design cannot utilize the full bandwidth

of the PCIe bus. The other inefficiency of the design is in the memory module which

uses a 32-bit interface. Therefore, any data movement between the memory and the

PCIe IP incurs a serialization/deserialization overhead. This gets worse with the size

of the payload.

Fixing these issues involves modifying the components in the DISL component li-

brary or adding new components and updating the system specification for the design.

The components can be modified independently of the rest of the modules. After the

modules are updated the the configuration files that describe the components are

165

updated as necessary. Because the configuration files decouple the actual component

implementations from the system generation, the changes to the components do not

affect the system generation functionality of DISL as long as the modifications are

correctly reflected in the configuration files.

The key-value store design can be optimized for better performance as follows.

• Configure the XDMA IP with the proper data bus width.

This requires updating the TCL commands to generate the XDMA IP in the

board.tml file for the CVP13 development board.

• If the data width of the memory module is not already parameterized, either

add the parameter to the module or add a new properly parameterized memory

module.

This requires updating the modules.tml file.

• If the data width of the memory module is parameterized, update the parameter

value in the system.tml file for the design.

• Changing the memory width parameter may cause the other modules that access

the memory to not function properly. It might be necessary to update the

parameters of other modules and add data width conversion logic to the design.

These are also modifications to the system.tml file. The data width conversion

logic could be implemented as a module in which case the modules.tml file has

to be updated, or implemented as ‘INTRINSICS’ in the system.tml file.

• Alternatively, the data width conversion logic can be generated. This re-

quires adding the necessary functionality to the system generation script,

‘/fpga/system builder/build.py’. This option may also require extending

the system specification with some new notation to indicate whether a given

connection requires data width conversion logic, and the data widths.

166

• Finally, the data width converter module placed between the PCIe subsystem

and the memory module should be removed from the system specification.

The different optimizations require different levels of effort and understanding of

how DISL functions. This gives the user the flexibility to choose the best option

based on their expertise and the component they wish to optimize.

6.7 Summary

In this Chapter, we discussed several qualitative metrics that can be used to evaluate

a hardware operating system generator. Next, we used a design example to evaluate

DISL against the metrics we discussed. We have concluded that DISL allows a user to

generate a system that matches the requirements of an application and port designs

across devices with relatively low effort. It also allows experienced users to modify

the components and the hOS generator itself with relative ease.

DISL has a few drawbacks and limitations such as the highly detailed text-based

system and component descriptions making the system specifications difficult to write

from scratch. But overall, the good attributes far outweigh the limitations and DISL

fares well against the hOS generator evaluation metrics we have identified.

167

Figure 6·7: Differences Between System Descriptions Targeting Two
Development Boards

168

Figure 6·8: Application Throughput versus Cache Hit Rate

Figure 6·9: Network Bandwidth versus Cache Hit Rat

169

Chapter 7

Summary and Future Work

7.1 Conclusion

In this dissertation, we highlighted the importance of component design strategy to

the hardware operating system generators. We began by refining the definitions of

terms hardware operating system and hardware operating system generator to distin-

guish our work and other closely related prior work from the more software-oriented

approaches. We established a set of ideal attributes for hOS generators and identified

that a majority of these attributes depend on the components used by the hOS gen-

erator to build hardware operating systems. Based on these insights, we presented a

set of design guidelines for hardware OS components used by system generators.

As our second contribution, we presented a PCIe subsystem design for a system

generator. Our design addresses two major limitations with existing host-FPGA

communication solutions; the lack of portability and the high maintenance overhead

of device drivers. We have demonstrated that it is possible to use Virtio drivers that

are part of standard Linux distributions as generic device drivers for FPGAs. Our

results indicate that these repurposed device drivers can perform at a comparable or

higher level than the vendor-provided device drivers for FPGAs. Based on these we

can conclude that the legacy device drivers for FPGAs can be replaced with generic

device drivers without a negative impact on performance.

Finally, we have attempted to address the open question, how to evaluate a hard-

ware operating system generator? We recommended several qualitative metrics re-

170

lated to the previously identified ideal attributes for a system generator that can be

used to identify a good system generator design. Through this discussion, we also

highlighted how most of these metrics are either directly or indirectly related to the

component design strategy. Therefore, we conclude that a good component design

strategy that translates the overall goals of system generators to the hOS components

is paramount for designing good system generators and hardware operating systems

for FPGAs.

7.2 Future Research Directions

In this section, we discuss several future research directions related to DISL and the

PCIe subsystem design presented in this dissertation.

7.2.1 Improvements to DISL

DISL is the overarching project that includes the work presented in this dissertation.

We have used DISL for all the implementations in this dissertation and we also eval-

uated DISL based on our metrics for a good hOS generator design. Based on our

insights, we present future research directions that can enhance the capabilities of

DISL.

Using Another Abstraction Layer to Generate System and Component

Descriptions

The main drawback of DISL we have identified is the complexity of the text-based

component and system descriptions. The amount of detail to be provided in the

system descriptions means that users almost always have to rely on example designs

as the starting point instead of creating system descriptions from scratch. Also, the

current system description method means the user is responsible for converting the

application requirements to system components and the connectivity among them.

171

Ideally, we would like a user to be able to specify application requirements at a more

abstract level and the system generator to map those to system configurations.

Therefore, an important future research direction is developing another abstrac-

tion layer capable of converting high-level descriptions of application requirements

to DISL configuration files. For example, the new abstraction layer should allow a

user to specify that the application requires a certain amount of memory instead of

specifying BRAM or DRAM controller instances and the connectivity between those

and the user logic.

There are several forms this abstraction layer could potentially take. A graphical

user interface (GUI) through which the user can select the capabilities required by

the application is one possibility. Another possibility is a generative AI-based tool

that can generate the system descriptions based on prompts from the user.

Automating the Component Attribute Checking and Partitioning

In this dissertation, we presented a set of design guidelines to ensure the hOS

components possess a set of ideal attributes. Future research can automate verifying if

a given component has the desired attributes before adding it to DISL. DISL uses text-

based descriptions for components, devices, and systems. The syntax for component

description can be extended to facilitate automated attribute verification when adding

a new component to DISL.

The current use model for DISL requires a user to manually partition a compo-

nent into Board and Generic partitions. This can be a time-consuming process and

also can create significant differences between components in terms of how they are

partitioned. An important future research direction is automating the component

partitioning.

172

7.2.2 Applications Enabled by the PCIe Component Design

In this section, we discuss research directions enabled by the PCIe subsystem design

presented in this dissertation.

SmartNIC-based Applications

FPGAs are used as off-the-shelf platforms to build smartNICs. The PCIe subsystem

we have presented implements a Virtio interface on the FPGA. By implementing a

Virtio network device interface, the FPGA can be presented as a regular network

device to the host OS. This allows the applications on the host to use the host

operating system’s network stack to send and receive packets to/from the FPGA

smartNIC.

FPGA smartNIC designs implemented with vendor-provided FPGA device drivers

suffer from the shortcomings of those device drivers. Because the FPGA device drivers

are usually not implemented as network devices, the smartNIC cannot utilize the

host’s network stack. The designer can (i) implement a new device driver with the

proper semantics, (ii) implement the network stack’s functionality in the FPGA after

moving the data to the FPGA, or (iii) lift the device semantics to the application

layer. All these choices are either inefficient or take extra effort to implement.

Because our PCIe design allows using Virtio drivers and helps overcome these

limitations, it enables more efficient implementations of smartNIC-based applications.

Extending the PCIe Subsystem Design with Multiple PCIe Functions

The final future research direction we discuss is extending the PCIe subsystem

to support multiple physical/virtual PCIe functions. Each PCIe function could im-

plement a different Virtio device. For instance, the same FPGA can implement a

smartNIC application and a cryptographic accelerator. The applications executing

on the host server can access these through two PCIe functions, first represented as

173

a Virtio network device and the second as a Virtio Crypto device. Figure 6·4 depicts

how the multiple PCIe functions can be assigned to different virtual machines (VM)

enabling direct communication between the applications executing inside the VMs

and the hardware kernels on the FPGA.

174

Appendix A

System Definition for the Key-value Store

Design

Listing A.1 shows the full system specification for the key-value store design.

1 [DESCRIPTION]

2 NAME = "virtio_net_device_kvs"

3

4 [REQUIREMENTS]

5 TOOLS = ["riscv -gnu -toolchain", "vivado "]

6 BOARDS = [" alinx_ax7a200t "]

7

8 [EXTERNAL_IO]

9 PORTS = [" sys_clk_p", "sys_clk_n", "sys_rst_n", "uart_tx","uart_rx", "

pci_exp_txp", "pci_exp_txn", "pci_exp_rxp", "pci_exp_rxn "]

10

11 [INSTANTIATIONS]

12 [INSTANTIATIONS.sys_reset_n_ibuf]

13 MODULE = "IBUF"

14 [INSTANTIATIONS.refclk_ibuf]

15 MODULE = "IBUFDS_GTE2"

16

17 [INSTANTIATIONS.xdma_xc7_i]

18 MODULE = "xdma_xc7"

19 [INSTANTIATIONS.pcie_controller_inst]

20 MODULE = "pcie_controller"

21 PARAMETERS.NUM_QUEUES = 2

22 PARAMETERS.SLEEP_TIMER_VAL = 100

23 [INSTANTIATIONS.debug]

24 MODULE = "uart_axi"

25 PARAMETERS.CLOCK_FREQ_MHZ = 125

26 PARAMETERS.UART_BAUD_RATE_BPS = 1000000

27 PARAMETERS.DATA_WIDTH = 32

28 [INSTANTIATIONS.bram_intf0_access_ctrl]

29 MODULE = "ss_access_controller"

30 PARAMETERS.NUM_PORTS = 5

31 PARAMETERS.PORT_IDX_BITS = 3

32 [INSTANTIATIONS.endpoint_select_inst]

33 MODULE = "endpoint_selector"

34 PARAMETERS.AXI_BUS_WIDTH = 128

35 PARAMETERS.AXI_ADDR_WIDTH = 64

175

36 [INSTANTIATIONS.dw_converter]

37 MODULE = "data_width_converter"

38 PARAMETERS.DATA_A_WIDTH = 128

39 PARAMETERS.DATA_B_WIDTH = 32

40 PARAMETERS.ADDR_WIDTH = 32

41 [INSTANTIATIONS.main_memory]

42 MODULE = "bram_axi"

43 PARAMETERS.ADDR_WIDTH = 14

44 PARAMETERS.DATA_WIDTH = 32

45 PARAMETERS.INITIALIZE = 1

46 PARAMETERS.INIT_FILE = "\"./ kvs_cpu_firmware.hex\""

47 [INSTANTIATIONS.intf_splitter2]

48 MODULE = "interface_splitter_2"

49 PARAMETERS.DATA_WIDTH = 32

50 PARAMETERS.ADDR_WIDTH = 32

51 PARAMETERS.STRB_WIDTH = 4

52 [INSTANTIATIONS.intf_concat2]

53 MODULE = "interface_concat_2"

54 PARAMETERS.DATA_WIDTH = 32

55 PARAMETERS.ADDR_WIDTH = 32

56 PARAMETERS.STRB_WIDTH = 4

57 [INSTANTIATIONS.kvs_inst]

58 MODULE = "kvs"

59 PARAMETERS.LISTEN_PORT = 44000

60 PARAMETERS.HASH_WIDTH = 16

61 PARAMETERS.KEY_WIDTH = 32

62 PARAMETERS.VALUE_WIDTH = 128

63 PARAMETERS.VALUE_SIZE = 16

64 [INSTANTIATIONS.cpu]

65 MODULE = "picorv32_axi"

66 ARCH = "rv32i"

67 ABI = "ilp32"

68 CROSS = "riscv32 -unknown -elf -"

69 CROSSCFLAGS = "-O3 -Wno -int -conversion -ffreestanding -nostdlib"

70 CROSSLDFLAGS = "-ffreestanding -nostdlib -Wl,-M"

71 LINKER_REQUIREMENTS = [" muldi3.S", "div.S", "riscv -asm.h"]

72 MEMORY = "main_memory"

73 PARAMETERS.ENABLE_INTERRUPTS = 0

74 PARAMETERS.INSTRUCTION_MEMORY_STARTING_ADDRESS = 0

75 PARAMETERS.INTERRUPT_HANDLER_STARTING_ADDRESS = 16

76 PARAMETERS.INSTRUCTION_AND_DATA_MEMORY_SIZE_BYTES = 16384

77 [INSTANTIATIONS.cpu.MAP]

78 [INSTANTIATIONS.cpu.MAP.main_memory]

79 ORIGIN = "0 x00000000"

80 LENGTH = "0 x00004000"

81 [INSTANTIATIONS.cpu.MAP.pci_cfg0]

82 ORIGIN = "0 x10000000"

83 LENGTH = "0 x10000000"

84 [INSTANTIATIONS.cpu.MAP.pci_cfg1]

85 ORIGIN = "0 x20000000"

86 LENGTH = "0 x10000000"

87 [INSTANTIATIONS.cpu.MAP.kvs_cfg]

88 ORIGIN = "0 x70000000"

176

89 LENGTH = "0 x10000000"

90 [INSTANTIATIONS.cpu.MAP.debug]

91 ORIGIN = "0 x80000000"

92 LENGTH = "0 x10000000"

93

94 [INTRINSICS]

95 [[INTRINSICS.COMBINATIONAL]]

96 CUSTOM_SIGNAL_WIDTH = 1

97 CUSTOM_SIGNAL_NAME = "CUSTOM:user_reset"

98 INPUT_SIGNAL_1 = "MODULE:xdma_xc7_i:axi_aresetn"

99 OPERATION = "^"

100 INPUT_SIGNAL_2 = "1’b1"

101 [[INTRINSICS.ASSIGNMENT]]

102 CUSTOM_SIGNAL_WIDTH = 1

103 CUSTOM_SIGNAL_NAME = "CUSTOM:user_resetn"

104 INPUT_SIGNAL = "MODULE:xdma_xc7_i:axi_aresetn"

105 SIGNAL_BITS = ""

106 [[INTRINSICS.ASSIGNMENT]]

107 CUSTOM_SIGNAL_WIDTH = 1

108 CUSTOM_SIGNAL_NAME = "CUSTOM:user_clk"

109 INPUT_SIGNAL = "MODULE:xdma_xc7_i:axi_aclk"

110 SIGNAL_BITS = ""

111 [[INTRINSICS.CONCAT4]]

112 CUSTOM_SIGNAL_WIDTH = 5

113 CUSTOM_SIGNAL_NAME = "CUSTOM:bram_intf0_rvalid"

114 SIGNAL_1 = "MODULE:kvs_inst:m_axil:rvalid"

115 SIGNAL_2 = "MODULE:pcie_controller_inst:m_axil_rvalid"

116 SIGNAL_3 = "MODULE:dw_converter:b:rvalid"

117 SIGNAL_4 = "MODULE:cpu:mem:axi_rvalid"

118 [[INTRINSICS.CONCAT4]]

119 CUSTOM_SIGNAL_WIDTH = 5

120 CUSTOM_SIGNAL_NAME = "CUSTOM:bram_intf0_arvalid"

121 SIGNAL_1 = "MODULE:kvs_inst:m_axil:arvalid"

122 SIGNAL_2 = "MODULE:pcie_controller_inst:m_axil_arvalid"

123 SIGNAL_3 = "MODULE:dw_converter:b:arvalid"

124 SIGNAL_4 = "MODULE:cpu:mem:axi_arvalid"

125 [[INTRINSICS.CONCAT4]]

126 CUSTOM_SIGNAL_WIDTH = 5

127 CUSTOM_SIGNAL_NAME = "CUSTOM:bram_intf0_arready"

128 SIGNAL_1 = "MODULE:kvs_inst:m_axil:arready"

129 SIGNAL_2 = "MODULE:pcie_controller_inst:m_axil_arready"

130 SIGNAL_3 = "MODULE:dw_converter:b:arready"

131 SIGNAL_4 = "MODULE:cpu:mem:axi_arready"

132 [[INTRINSICS.CONCAT4]]

133 CUSTOM_SIGNAL_WIDTH = 5

134 CUSTOM_SIGNAL_NAME = "CUSTOM:bram_intf0_rready"

135 SIGNAL_1 = "MODULE:kvs_inst:m_axil:rready"

136 SIGNAL_2 = "MODULE:pcie_controller_inst:m_axil_rready"

137 SIGNAL_3 = "MODULE:dw_converter:b:rready"

138 SIGNAL_4 = "MODULE:cpu:mem:axi_rready"

139 [[INTRINSICS.CONCAT4]]

140 CUSTOM_SIGNAL_WIDTH = 5

141 CUSTOM_SIGNAL_NAME = "CUSTOM:bram_intf0_awvalid"

177

142 SIGNAL_1 = "MODULE:kvs_inst:m_axil:awvalid"

143 SIGNAL_2 = "MODULE:pcie_controller_inst:m_axil_awvalid"

144 SIGNAL_3 = "MODULE:dw_converter:b:awvalid"

145 SIGNAL_4 = "MODULE:cpu:mem:axi_awvalid"

146 [[INTRINSICS.CONCAT4]]

147 CUSTOM_SIGNAL_WIDTH = 5

148 CUSTOM_SIGNAL_NAME = "CUSTOM:bram_intf0_awready"

149 SIGNAL_1 = "MODULE:kvs_inst:m_axil:awready"

150 SIGNAL_2 = "MODULE:pcie_controller_inst:m_axil_awready"

151 SIGNAL_3 = "MODULE:dw_converter:b:awready"

152 SIGNAL_4 = "MODULE:cpu:mem:axi_awready"

153 [[INTRINSICS.CONCAT4]]

154 CUSTOM_SIGNAL_WIDTH = 5

155 CUSTOM_SIGNAL_NAME = "CUSTOM:bram_intf0_bvalid"

156 SIGNAL_1 = "MODULE:kvs_inst:m_axil:bvalid"

157 SIGNAL_2 = "MODULE:pcie_controller_inst:m_axil_bvalid"

158 SIGNAL_3 = "MODULE:dw_converter:b:bvalid"

159 SIGNAL_4 = "MODULE:cpu:mem:b_valid"

160 [[INTRINSICS.CONCAT4]]

161 CUSTOM_SIGNAL_WIDTH = 5

162 CUSTOM_SIGNAL_NAME = "CUSTOM:bram_intf0_bready"

163 SIGNAL_1 = "MODULE:kvs_inst:m_axil:bready"

164 SIGNAL_2 = "MODULE:pcie_controller_inst:m_axil_bready"

165 SIGNAL_3 = "MODULE:dw_converter:b:bready"

166 SIGNAL_4 = "MODULE:cpu:mem:b_ready"

167 [[INTRINSICS.SEQUENTIAL_HOLD]]

168 CUSTOM_SIGNAL_WIDTH = "PARAMETER:cpu:ADDR_WIDTH"

169 CUSTOM_SIGNAL_NAME = "CUSTOM:cpu_axi_araddr"

170 INTERNAL_SIGNAL_NAME = "INTERNAL:CUSTOM:cpu_axi_araddr"

171 CUSTOM_SIGNAL_DEFAULT_VALUE = 0

172 CLOCK = "MODULE:cpu:clk"

173 TRIGGER = "MODULE:cpu:mem:axi_arvalid"

174 HOLD_VALUE = "MODULE:cpu:mem:axi_araddr"

175 [[INTRINSICS.SEQUENTIAL_HOLD]]

176 CUSTOM_SIGNAL_WIDTH = "PARAMETER:cpu:ADDR_WIDTH"

177 CUSTOM_SIGNAL_NAME = "CUSTOM:cpu_axi_awaddr"

178 INTERNAL_SIGNAL_NAME = "INTERNAL:CUSTOM:cpu_axi_awaddr"

179 CUSTOM_SIGNAL_DEFAULT_VALUE = 0

180 CLOCK = "MODULE:cpu:clk"

181 TRIGGER = "MODULE:cpu:mem:axi_awvalid"

182 HOLD_VALUE = "MODULE:cpu:mem:axi_awaddr"

183 [[INTRINSICS.COMBINATIONAL]]

184 CUSTOM_SIGNAL_WIDTH = "PARAMETER:cpu:ADDR_WIDTH"

185 CUSTOM_SIGNAL_NAME = "CUSTOM:main_mem_araddr"

186 INPUT_SIGNAL_1 = "MODULE:main_memory:mem:axi_araddr"

187 OPERATION = ">>"

188 INPUT_SIGNAL_2 = "2"

189 [[INTRINSICS.COMBINATIONAL]]

190 CUSTOM_SIGNAL_WIDTH = "PARAMETER:cpu:ADDR_WIDTH"

191 CUSTOM_SIGNAL_NAME = "CUSTOM:main_mem_awaddr"

192 INPUT_SIGNAL_1 = "MODULE:main_memory:mem:axi_awaddr"

193 OPERATION = ">>"

194 INPUT_SIGNAL_2 = "2"

178

195 [[INTRINSICS.COMBINATIONAL]]

196 CUSTOM_SIGNAL_WIDTH = "PARAMETER:cpu:ADDR_WIDTH"

197 CUSTOM_SIGNAL_NAME = "CUSTOM:intf_concat_a0_araddr"

198 INPUT_SIGNAL_1 = "MODULE:intf_concat2:a0:araddr"

199 OPERATION = "-"

200 INPUT_SIGNAL_2 = "SYSTEM:INSTANTIATIONS.cpu.MAP.pci_cfg0.ORIGIN"

201 [[INTRINSICS.COMBINATIONAL]]

202 CUSTOM_SIGNAL_WIDTH = "PARAMETER:cpu:ADDR_WIDTH"

203 CUSTOM_SIGNAL_NAME = "CUSTOM:intf_concat_a0_awaddr"

204 INPUT_SIGNAL_1 = "MODULE:intf_concat2:a0:awaddr"

205 OPERATION = "-"

206 INPUT_SIGNAL_2 = "SYSTEM:INSTANTIATIONS.cpu.MAP.pci_cfg0.ORIGIN"

207 [[INTRINSICS.COMBINATIONAL]]

208 CUSTOM_SIGNAL_WIDTH = "PARAMETER:cpu:ADDR_WIDTH"

209 CUSTOM_SIGNAL_NAME = "CUSTOM:intf_concat_a1_araddr"

210 INPUT_SIGNAL_1 = "MODULE:intf_concat2:a1:araddr"

211 OPERATION = "-"

212 INPUT_SIGNAL_2 = "SYSTEM:INSTANTIATIONS.cpu.MAP.pci_cfg1.ORIGIN"

213 [[INTRINSICS.COMBINATIONAL]]

214 CUSTOM_SIGNAL_WIDTH = "PARAMETER:cpu:ADDR_WIDTH"

215 CUSTOM_SIGNAL_NAME = "CUSTOM:intf_concat_a1_awaddr"

216 INPUT_SIGNAL_1 = "MODULE:intf_concat2:a1:awaddr"

217 OPERATION = "-"

218 INPUT_SIGNAL_2 = "SYSTEM:INSTANTIATIONS.cpu.MAP.pci_cfg1.ORIGIN"

219 [[INTRINSICS.COMBINATIONAL]]

220 CUSTOM_SIGNAL_WIDTH = "PARAMETER:cpu:ADDR_WIDTH"

221 CUSTOM_SIGNAL_NAME = "CUSTOM:debug_araddr"

222 INPUT_SIGNAL_1 = "MODULE:debug:a:axi_araddr"

223 OPERATION = "-"

224 INPUT_SIGNAL_2 = "SYSTEM:INSTANTIATIONS.cpu.MAP.debug.ORIGIN"

225 [[INTRINSICS.COMBINATIONAL]]

226 CUSTOM_SIGNAL_WIDTH = "PARAMETER:cpu:ADDR_WIDTH"

227 CUSTOM_SIGNAL_NAME = "CUSTOM:debug_awaddr"

228 INPUT_SIGNAL_1 = "MODULE:debug:a:axi_awaddr"

229 OPERATION = "-"

230 INPUT_SIGNAL_2 = "SYSTEM:INSTANTIATIONS.cpu.MAP.debug.ORIGIN"

231 [[INTRINSICS.COMBINATIONAL]]

232 CUSTOM_SIGNAL_WIDTH = "PARAMETER:cpu:ADDR_WIDTH"

233 CUSTOM_SIGNAL_NAME = "CUSTOM:kvs_araddr"

234 INPUT_SIGNAL_1 = "MODULE:kvs_inst:s_axil:araddr"

235 OPERATION = "-"

236 INPUT_SIGNAL_2 = "SYSTEM:INSTANTIATIONS.cpu.MAP.kvs_cfg.ORIGIN"

237 [[INTRINSICS.COMBINATIONAL]]

238 CUSTOM_SIGNAL_WIDTH = "PARAMETER:cpu:ADDR_WIDTH"

239 CUSTOM_SIGNAL_NAME = "CUSTOM:kvs_awaddr"

240 INPUT_SIGNAL_1 = "MODULE:kvs_inst:s_axil:awaddr"

241 OPERATION = "-"

242 INPUT_SIGNAL_2 = "SYSTEM:INSTANTIATIONS.cpu.MAP.kvs_cfg.ORIGIN"

243

244 [INTERCONNECT]

245 STATIC = [

246 ["BOARD:sys_clk_p", "MODULE:refclk_ibuf:I"],

247 ["BOARD:sys_clk_n", "MODULE:refclk_ibuf:IB"],

179

248 ["BOARD:uart_rx", "MODULE:debug:urx"],

249 ["BOARD:uart_tx", "MODULE:debug:utx"],

250 [" MODULE:refclk_ibuf:O", "MODULE:xdma_xc7_i:sys_clk"],

251 ["BOARD:sys_rst_n", "MODULE:sys_reset_n_ibuf:I"],

252 [" MODULE:sys_reset_n_ibuf:O", "MODULE:xdma_xc7_i:sys_rst_n "],

253 [" MODULE:xdma_xc7_i:pci_exp_txp", "BOARD:pci_exp_txp "],

254 [" MODULE:xdma_xc7_i:pci_exp_txn", "BOARD:pci_exp_txn "],

255 ["BOARD:pci_exp_rxp", "MODULE:xdma_xc7_i:pci_exp_rxp "],

256 ["BOARD:pci_exp_rxn", "MODULE:xdma_xc7_i:pci_exp_rxn "],

257 [" CUSTOM:user_clk", "MODULE:cpu:clk"],

258 [" CUSTOM:user_clk", "MODULE:debug:clk"],

259 [" CUSTOM:user_clk", "MODULE:pcie_controller_inst:clk"],

260 [" CUSTOM:user_reset", "MODULE:pcie_controller_inst:reset"],

261 [" CUSTOM:user_reset", "MODULE:debug:rst"],

262 [" CUSTOM:user_resetn", "MODULE:cpu:resetn"],

263 [" MODULE:xdma_xc7_i:m_axil", "MODULE:pcie_controller_inst:s_axil"],

264 [" MODULE:pcie_controller_inst:c2h_dsc_byp", "MODULE:xdma_xc7_i:c2h_dsc_byp

"],

265 [" MODULE:pcie_controller_inst:h2c_dsc_byp", "MODULE:xdma_xc7_i:h2c_dsc_byp

"],

266 [" CUSTOM:bram_intf0_rvalid", "MODULE:bram_intf0_access_ctrl:rvalid"],

267 [" CUSTOM:bram_intf0_rready", "MODULE:bram_intf0_access_ctrl:rready"],

268 [" CUSTOM:bram_intf0_arvalid", "MODULE:bram_intf0_access_ctrl:arvalid"],

269 [" CUSTOM:bram_intf0_arready", "MODULE:bram_intf0_access_ctrl:arready"],

270 [" CUSTOM:bram_intf0_awvalid", "MODULE:bram_intf0_access_ctrl:awvalid"],

271 [" CUSTOM:bram_intf0_awready", "MODULE:bram_intf0_access_ctrl:awready"],

272 [" CUSTOM:bram_intf0_bvalid", "MODULE:bram_intf0_access_ctrl:bvalid"],

273 [" CUSTOM:bram_intf0_bready", "MODULE:bram_intf0_access_ctrl:bready"],

274 [" MODULE:xdma_xc7_i:m_axi", "MODULE:endpoint_select_inst:pci_axi"],

275 [" MODULE:pcie_controller_inst:dma_engine_config_axil", "MODULE:xdma_xc7_i:

s_axil"],

276 [" MODULE:xdma_xc7_i:c2h_sts_0", "MODULE:pcie_controller_inst:c2h_sts_0"],

277 [" MODULE:xdma_xc7_i:h2c_sts_0", "MODULE:pcie_controller_inst:h2c_sts_0"],

278 [" MODULE:pcie_controller_inst:usr_irq_req", "MODULE:xdma_xc7_i:usr_irq_req

"],

279 [" MODULE:xdma_xc7_i:usr_irq_ack", "MODULE:pcie_controller_inst:usr_irq_ack

"],

280 # endpoint_selector

281 [" MODULE:pcie_controller_inst:endpoint_ctrl", "MODULE:endpoint_select_inst:

endpoint_ctrl "],

282 [" MODULE:endpoint_select_inst:vc_axi", "MODULE:pcie_controller_inst:s_axi"],

283 [" MODULE:endpoint_select_inst:ss", "MODULE:dw_converter:a"],

284 [" MODULE:endpoint_select_inst:ss:wvalid", "MODULE:pcie_controller_inst:

s_axi_wvalid_to_mem "],

285 [" MODULE:endpoint_select_inst:ss:wstrb", "MODULE:pcie_controller_inst:

s_axi_wstrb_to_mem "],

286 [" MODULE:dw_converter:a:rvalid", "MODULE:pcie_controller_inst:

s_axi_rvalid_from_mem "],

287 [" MODULE:dw_converter:a:wready", "MODULE:pcie_controller_inst:

s_axi_wready_from_mem "],

288 [" MODULE:endpoint_select_inst:ss:rready", "MODULE:pcie_controller_inst:

s_axi_rready_to_mem "],

289 [" MODULE:endpoint_select_inst:ss:bready", "MODULE:pcie_controller_inst:

180

s_axi_bready_to_mem "],

290 [" MODULE:dw_converter:a:bvalid", "MODULE:pcie_controller_inst:

s_axi_bvalid_from_mem "],

291 # data_width_converter

292 [" CUSTOM:user_clk", "MODULE:dw_converter:clk"],

293 [" CUSTOM:user_reset", "MODULE:dw_converter:rst"],

294 # pcie_controller to interface splitter

295 [" MODULE:pcie_controller_inst:m_axil_araddr", "MODULE:intf_splitter2:

a_araddr"],

296 [" MODULE:pcie_controller_inst:m_axil_arvalid", "MODULE:intf_splitter2:

a_arvalid"],

297 [" MODULE:pcie_controller_inst:m_axil_arready", "MODULE:intf_splitter2:

a_arready"],

298 [" MODULE:pcie_controller_inst:m_axil_awaddr", "MODULE:intf_splitter2:

a_awaddr"],

299 [" MODULE:pcie_controller_inst:m_axil_awvalid", "MODULE:intf_splitter2:

a_awvalid"],

300 [" MODULE:pcie_controller_inst:m_axil_awready", "MODULE:intf_splitter2:

a_awready"],

301 [" MODULE:pcie_controller_inst:m_axil_wdata", "MODULE:intf_splitter2:a_wdata

"],

302 [" MODULE:pcie_controller_inst:m_axil_wvalid", "MODULE:intf_splitter2:

a_wvalid"],

303 [" MODULE:pcie_controller_inst:m_axil_wready", "MODULE:intf_splitter2:

a_wready"],

304 [" MODULE:pcie_controller_inst:m_axil_wstrb", "MODULE:intf_splitter2:a_wstrb

"],

305 [" MODULE:pcie_controller_inst:m_axil_rdata", "MODULE:intf_splitter2:a_rdata

"],

306 [" MODULE:pcie_controller_inst:m_axil_rvalid", "MODULE:intf_splitter2:

a_rvalid"],

307 [" MODULE:pcie_controller_inst:m_axil_rready", "MODULE:intf_splitter2:

a_rready"],

308 [" MODULE:pcie_controller_inst:m_axil_rresp", "MODULE:intf_splitter2:a_rresp

"],

309 [" MODULE:pcie_controller_inst:m_axil_bvalid", "MODULE:intf_splitter2:

a_bvalid"],

310 [" MODULE:pcie_controller_inst:m_axil_bready", "MODULE:intf_splitter2:

a_bready"],

311 [" MODULE:pcie_controller_inst:m_axil_bresp", "MODULE:intf_splitter2:a_bresp

"],

312 [" MODULE:intf_concat2:b_awvalid", "MODULE:pcie_controller_inst:

cfg_intf_axil_awvalid "],

313 [" MODULE:intf_concat2:b_awready", "MODULE:pcie_controller_inst:

cfg_intf_axil_awready "],

314 [" MODULE:intf_concat2:b_awaddr", "MODULE:pcie_controller_inst:

cfg_intf_axil_awaddr "],

315 [" MODULE:intf_concat2:b_wvalid", "MODULE:pcie_controller_inst:

cfg_intf_axil_wvalid "],

316 [" MODULE:intf_concat2:b_wready", "MODULE:pcie_controller_inst:

cfg_intf_axil_wready "],

317 [" MODULE:intf_concat2:b_wdata", "MODULE:pcie_controller_inst:

cfg_intf_axil_wdata "],

181

318 [" MODULE:intf_concat2:b_wstrb", "MODULE:pcie_controller_inst:

cfg_intf_axil_wstrb "],

319 [" MODULE:intf_concat2:b_bvalid", "MODULE:pcie_controller_inst:

cfg_intf_axil_bvalid "],

320 [" MODULE:intf_concat2:b_bready", "MODULE:pcie_controller_inst:

cfg_intf_axil_bready "],

321 [" MODULE:intf_concat2:b_bresp", "MODULE:pcie_controller_inst:

cfg_intf_axil_bresp "],

322 [" MODULE:intf_concat2:b_arvalid", "MODULE:pcie_controller_inst:

cfg_intf_axil_arvalid "],

323 [" MODULE:intf_concat2:b_arready", "MODULE:pcie_controller_inst:

cfg_intf_axil_arready "],

324 [" MODULE:intf_concat2:b_araddr", "MODULE:pcie_controller_inst:

cfg_intf_axil_araddr "],

325 [" MODULE:intf_concat2:b_rvalid", "MODULE:pcie_controller_inst:

cfg_intf_axil_rvalid "],

326 [" MODULE:intf_concat2:b_rready", "MODULE:pcie_controller_inst:

cfg_intf_axil_rready "],

327 [" MODULE:intf_concat2:b_rdata", "MODULE:pcie_controller_inst:

cfg_intf_axil_rdata "],

328 [" MODULE:intf_concat2:b_rresp", "MODULE:pcie_controller_inst:

cfg_intf_axil_rresp "],

329 [" CUSTOM:user_clk", "MODULE:bram_intf0_access_ctrl:clk"],

330 [" CUSTOM:user_reset", "MODULE:bram_intf0_access_ctrl:reset"],

331 [" CUSTOM:user_clk", "MODULE:main_memory:clk"],

332 [" CUSTOM:user_reset", "MODULE:main_memory:rst"],

333 # Key value store

334 [" CUSTOM:user_clk", "MODULE:kvs_inst:clk"],

335 [" CUSTOM:user_reset", "MODULE:kvs_inst:rst"]

336]

337

338 OVERRIDES = [# replace port signal assignments at the end with the overrides

339 [" MODULE:refclk_ibuf:CEB","0"],

340 [" MODULE:xdma_xc7_i:m_axi_bid", "0"],

341 [" MODULE:xdma_xc7_i:m_axi_rid", "0"],

342 [" MODULE:xdma_xc7_i:s_axil_awprot", "0"],

343 [" MODULE:xdma_xc7_i:s_axil_arprot", "0"],

344 [" MODULE:dw_converter:b:rresp", "0"],

345 [" MODULE:pcie_controller_inst:interrupt_usr_ack", "0"],

346 [" MODULE:main_memory:mem:axi_araddr", "CUSTOM:main_mem_araddr "],

347 [" MODULE:main_memory:mem:axi_awaddr", "CUSTOM:main_mem_awaddr "],

348 [" MODULE:intf_concat2:a0:araddr", "CUSTOM:intf_concat_a0_araddr "],

349 [" MODULE:intf_concat2:a0:awaddr", "CUSTOM:intf_concat_a0_awaddr "],

350 [" MODULE:intf_concat2:a1:araddr", "CUSTOM:intf_concat_a1_araddr "],

351 [" MODULE:intf_concat2:a1:awaddr", "CUSTOM:intf_concat_a1_awaddr "],

352 [" MODULE:debug:a:axi_araddr", "CUSTOM:debug_araddr "],

353 [" MODULE:debug:a:axi_awaddr", "CUSTOM:debug_awaddr "],

354 [" MODULE:kvs_inst:s_axil:araddr", "CUSTOM:kvs_araddr "],

355 [" MODULE:kvs_inst:s_axil:awaddr", "CUSTOM:kvs_awaddr "],

356 [" MODULE:intf_splitter2:b0:rresp", "0"],

357 [" MODULE:intf_splitter2:b1:rresp", "0"]

358]

359

182

360 [INTERCONNECT.DYNAMIC ." MODULE:cpu:mem"]

361 GROUP_SELECT = ""

362 HANDSHAKES = [" WRITE_ADDRESS", "WRITE_DATA", "READ_ADDRESS", "READ_DATA", "

WRITE_RESPONSE "]

363 [[INTERCONNECT.DYNAMIC ." MODULE:cpu:mem". GROUPS]]

364 INTERCONNECT_TYPE = "ONE_TO_MANY"

365 ADDRESS_MAP = [

366 "SYSTEM:INSTANTIATIONS.cpu.MAP.main_memory MODULE:main_memory:mem",

367 "SYSTEM:INSTANTIATIONS.cpu.MAP.pci_cfg0 MODULE:intf_concat2:a0",

368 "SYSTEM:INSTANTIATIONS.cpu.MAP.pci_cfg1 MODULE:intf_concat2:a1",

369 "SYSTEM:INSTANTIATIONS.cpu.MAP.kvs_cfg MODULE:kvs_inst:s_axil",

370 "SYSTEM:INSTANTIATIONS.cpu.MAP.debug MODULE:debug:a"

371]

372 HANDSHAKE_MAP = [

373 "WRITE_ADDRESS MODULE:cpu:mem:axi_awaddr",

374 "READ_ADDRESS MODULE:cpu:mem:axi_araddr",

375 "WRITE_DATA CUSTOM:cpu_axi_awaddr",

376 "WRITE_RESPONSE CUSTOM:cpu_axi_awaddr",

377 "READ_DATA CUSTOM:cpu_axi_araddr"

378]

379

380 [INTERCONNECT.DYNAMIC ." MODULE:debug:a"]

381 GROUP_SELECT = ""

382 HANDSHAKES = [" WRITE_ADDRESS", "WRITE_DATA", "READ_ADDRESS", "READ_DATA", "

WRITE_RESPONSE "]

383 [[INTERCONNECT.DYNAMIC ." MODULE:debug:a". GROUPS]]

384 INTERCONNECT_TYPE = "ONE_TO_ONE"

385 INTERFACE = "MODULE:cpu:mem"

386

387 [INTERCONNECT.DYNAMIC ." MODULE:kvs_inst:s_axil "]

388 GROUP_SELECT = ""

389 HANDSHAKES = [" WRITE_ADDRESS", "WRITE_DATA", "READ_ADDRESS", "READ_DATA", "

WRITE_RESPONSE "]

390 [[INTERCONNECT.DYNAMIC ." MODULE:kvs_inst:s_axil ". GROUPS]]

391 INTERCONNECT_TYPE = "ONE_TO_ONE"

392 INTERFACE = "MODULE:cpu:mem"

393

394 [INTERCONNECT.DYNAMIC ." MODULE:kvs_inst:m_axil "]

395 GROUP_SELECT = ""

396 HANDSHAKES = [" WRITE_ADDRESS", "WRITE_DATA", "READ_ADDRESS", "READ_DATA", "

WRITE_RESPONSE "]

397 [[INTERCONNECT.DYNAMIC ." MODULE:kvs_inst:m_axil ". GROUPS]]

398 INTERCONNECT_TYPE = "ONE_TO_ONE"

399 INTERFACE = "MODULE:main_memory:mem"

400

401 [INTERCONNECT.DYNAMIC ." MODULE:main_memory:mem"]

402 GROUP_SELECT = "MODULE:bram_intf0_access_ctrl:group_select"

403 HANDSHAKES = [" WRITE_ADDRESS", "WRITE_DATA", "READ_ADDRESS", "READ_DATA", "

WRITE_RESPONSE "]

404 [[INTERCONNECT.DYNAMIC ." MODULE:main_memory:mem". GROUPS]]

405 SELECT_VALUE = 0

406 INTERCONNECT_TYPE = "ONE_TO_ONE"

407 INTERFACE = "MODULE:cpu:mem"

183

408 [[INTERCONNECT.DYNAMIC ." MODULE:main_memory:mem". GROUPS]]

409 SELECT_VALUE = 1

410 INTERCONNECT_TYPE = "ONE_TO_ONE"

411 INTERFACE = "MODULE:dw_converter:b"

412 [[INTERCONNECT.DYNAMIC ." MODULE:main_memory:mem". GROUPS]]

413 SELECT_VALUE = 2

414 INTERCONNECT_TYPE = "ONE_TO_ONE"

415 INTERFACE = "MODULE:intf_splitter2:b0"

416 [[INTERCONNECT.DYNAMIC ." MODULE:main_memory:mem". GROUPS]]

417 SELECT_VALUE = 3

418 INTERCONNECT_TYPE = "ONE_TO_ONE"

419 INTERFACE = "MODULE:intf_splitter2:b1"

420 [[INTERCONNECT.DYNAMIC ." MODULE:main_memory:mem". GROUPS]]

421 SELECT_VALUE = 4

422 INTERCONNECT_TYPE = "ONE_TO_ONE"

423 INTERFACE = "MODULE:kvs_inst:m_axil"

424

425 [INTERCONNECT.DYNAMIC ." MODULE:dw_converter:b"]

426 GROUP_SELECT = "MODULE:bram_intf0_access_ctrl:group_select"

427 HANDSHAKES = [" WRITE_ADDRESS", "WRITE_DATA", "READ_ADDRESS", "READ_DATA", "

WRITE_RESPONSE "]

428 [[INTERCONNECT.DYNAMIC ." MODULE:dw_converter:b". GROUPS]]

429 SELECT_VALUE = 1

430 INTERCONNECT_TYPE = "ONE_TO_ONE"

431 INTERFACE = "MODULE:main_memory:mem"

432

433 [INTERCONNECT.DYNAMIC ." MODULE:intf_splitter2:b0"]

434 GROUP_SELECT = ""

435 HANDSHAKES = [" WRITE_ADDRESS", "WRITE_DATA", "READ_ADDRESS", "READ_DATA", "

WRITE_RESPONSE "]

436 [[INTERCONNECT.DYNAMIC ." MODULE:intf_splitter2:b0". GROUPS]]

437 INTERCONNECT_TYPE = "ONE_TO_ONE"

438 INTERFACE = "MODULE:main_memory:mem"

439

440 [INTERCONNECT.DYNAMIC ." MODULE:intf_splitter2:b1"]

441 GROUP_SELECT = ""

442 HANDSHAKES = [" WRITE_ADDRESS", "WRITE_DATA", "READ_ADDRESS", "READ_DATA", "

WRITE_RESPONSE "]

443 [[INTERCONNECT.DYNAMIC ." MODULE:intf_splitter2:b1". GROUPS]]

444 INTERCONNECT_TYPE = "ONE_TO_ONE"

445 INTERFACE = "MODULE:main_memory:mem"

446

447 [INTERCONNECT.DYNAMIC ." MODULE:intf_concat2:a0"]

448 GROUP_SELECT = ""

449 HANDSHAKES = [" WRITE_ADDRESS", "WRITE_DATA", "READ_ADDRESS", "READ_DATA", "

WRITE_RESPONSE "]

450 [[INTERCONNECT.DYNAMIC ." MODULE:intf_concat2:a0". GROUPS]]

451 INTERCONNECT_TYPE = "ONE_TO_ONE"

452 INTERFACE = "MODULE:cpu:mem"

453

454 [INTERCONNECT.DYNAMIC ." MODULE:intf_concat2:a1"]

455 GROUP_SELECT = ""

456 HANDSHAKES = [" WRITE_ADDRESS", "WRITE_DATA", "READ_ADDRESS", "READ_DATA", "

184

WRITE_RESPONSE "]

457 [[INTERCONNECT.DYNAMIC ." MODULE:intf_concat2:a1". GROUPS]]

458 INTERCONNECT_TYPE = "ONE_TO_ONE"

459 INTERFACE = "MODULE:cpu:mem"

Listing A.1: system.tml file Describing the Key-Value Store Design

References

Abts, D., Kimmell, G., Ling, A., Kim, J., Boyd, M., Bitar, A., Parmar, S., Ahmed,
I., DiCecco, R., Han, D., et al. (2022). A software-defined tensor streaming
multiprocessor for large-scale machine learning. In Proceedings of the 49th Annual
International Symposium on Computer Architecture, pages 567–580.

Agne, A., Happe, M., Keller, A., Lübbers, E., Plattner, B., Platzner, M., and Plessl,
C. (2013). ReconOS: An operating system approach for reconfigurable computing.
IEEE Micro, 34(1):60–71.

Alibaba (2024). ApsaraDB for Memcache. https://www.alibabacloud.com/

product/apsaradb-for-memcache. Last accessed on August 28, 2024.

Alibaba Cloud (2018). Deep Dive into Alibaba Cloud F3 FPGA as a Service In-
stances.

https://alibaba-cloud.medium.com/deep-dive-into-alibaba-cloud-f3-

fpga-as-a-service-instances-74b9aeac98ed. Last accessed on August 28,
2024.

Amazon (2024). Amazon ElastiCache. https://aws.amazon.com/elasticache/.
Last accessed on August 28, 2024.

Amazon Web Services (2024). Amazon EC2 F1 Instances. https://aws.amazon.

com/ec2/instance-types/f1/. Last accessed on August 28, 2024.

AMD (2024a). AMD AI Engine Technology. https://www.xilinx.com/products/

technology/ai-engine.html. Last accessed on July 27, 2024.

AMD (2024b). AMD Ryzen AI Processors. https://www.amd.com/en/products/

processors/business-systems/ryzen-ai.html. Last accessed on July 27, 2024.

AMD (2024c). AMD XDNA Architecture. https://www.amd.com/en/

technologies/xdna.html. Last accessed on July 27, 2024.

Anderson, E., Agron, J., Peck, W., Stevens, J., Baijot, F., Komp, E., Sass, R.,
and Andrews, D. (2006). Enabling a uniform programming model across the
software/hardware boundary. In 2006 14th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 89–98. IEEE.

185

https://www.alibabacloud.com/product/apsaradb-for-memcache
https://www.alibabacloud.com/product/apsaradb-for-memcache
https://alibaba-cloud.medium.com/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances-74b9aeac98ed
https://alibaba-cloud.medium.com/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances-74b9aeac98ed
https://aws.amazon.com/elasticache/
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://www.xilinx.com/products/technology/ai-engine.html
https://www.xilinx.com/products/technology/ai-engine.html
https://www.amd.com/en/products/processors/business-systems/ryzen-ai.html
https://www.amd.com/en/products/processors/business-systems/ryzen-ai.html
https://www.amd.com/en/technologies/xdna.html
https://www.amd.com/en/technologies/xdna.html

186

Anderson, E., Peck, W., Stevens, J., Agron, J., Baijot, F., Warn, S., and Andrews, D.
(2007). Supporting high level language semantics within hardware resident threads.
In 2007 International Conference on Field Programmable Logic and Applications,
pages 98–103. IEEE.

ARM (2023). AMBA AXI Protocol Specification. https://developer.arm.com/

documentation/ihi0022/latest/. Last accessed on August 11, 2024.

ARM (2024). big.LITTLE: Balancing Power Efficiency and Performance. https:

//www.arm.com/technologies/big-little. Last accessed on July 27, 2024.

Atikoglu, B., Xu, Y., Frachtenberg, E., Jiang, S., and Paleczny, M. (2012). Work-
load analysis of a large-scale key-value store. ACM SIGMETRICS Performance
Evaluation Review, 40(1):53–64. doi: https://doi.org/10.1145/2318857.2254766.

Bandara, S., Cherry, N., and Herbordt, M. (2024a). Fully Transparent Client-Side
Caching for Key-Value Store Applications Using FPGAs. In IEEE High Perfor-
mance Extreme Computing Conference.

Bandara, S., Ducimo, A., Wu, C., and Herbordt, M. (2024b). Long-Range MD
Electrostatics Force Computation on FPGAs. IEEE Transactions on Parallel and
Distributed Systems, 35(10):1690–1707. doi: 10.1109/TPDS.2024.3434347.

Bandara, S., Sanaullah, A., Tahir, Z., Drepper, U., and Herbordt, M. (2022).
Enabling VirtIO Driver Support on FPGAs. In 8th International Work-
shop on Heterogeneous High Performance Reconfigurable Computing. doi:
10.1109/H2RC56700.2022.00006.

Bandara, S., Sanaullah, A., Tahir, Z., Drepper, U., and Herbordt, M. (2024c).
Performance Evaluation of VirtIO Device Drivers for Host-FPGA PCIe Com-
munication. In 31st Reconfigurable Architectures Workshop (RAW). doi:
10.1109/IPDPSW63119.2024.00043.

Bittware (2024). CVP-13 FPGA Cryptocurrency Mining Board. https://www.

bittware.com/cvp-13/. Last accessed on August 28, 2024.

Blott, M., Karras, K., Liu, L., Vissers, K., Bär, J., and István, Z. (2013). Achieving
10gbps line-rate key-value stores with {FPGAs}. In 5th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud 13).

Bobda, C., Mandebi, J., Chow, P., Ewais, M., Tarafdar, N., Vega, J., Eguro, K., Koch,
D., Handagala, S., Leeser, M., Herbordt, M., Shahzad, H., Hofstee, P., Ringlein, B.,
Szefer, J., Sanaullah, A., and Tessier, R. (2022). The Future of FPGA Acceleration
in Datacenters and the Cloud. ACM Transactions on Reconfigurable Technology
and Systems, 15(3):1–42. doi: 10.1145/3506713.

https://developer.arm.com/documentation/ihi0022/latest/
https://developer.arm.com/documentation/ihi0022/latest/
https://www.arm.com/technologies/big-little
https://www.arm.com/technologies/big-little
https://www.bittware.com/cvp-13/
https://www.bittware.com/cvp-13/

187

Burstein, I. (2021). Nvidia Data Center Processing Unit (DPU) Architecture. In
2021 IEEE Hot Chips 33 Symposium (HCS), pages 1–20.

Caulfield, A., Chung, E., Putnam, A., Angepat, H., Fowers, J., Haselman, M., Heil,
S., Humphrey, M., Kaur, P., Kim, J.-Y., Lo, D., Massengill, T., Ovtcharov, K.,
Papamichael, M., Woods, L., Lanka, S., Chiou, D., and Burger, D. (2016). A cloud-
scale acceleration architecture. In 49th IEEE/ACM Int. Symp. Microarchitecture,
pages 1–13.

Chalamalasetti, S. R., Lim, K., Wright, M., AuYoung, A., Ranganathan, P., and
Margala, M. (2013). An FPGA Memcached Appliance. In Proceedings of the
ACM/SIGDA international symposium on Field programmable gate arrays, pages
245–254.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M.,
Chandra, T., Fikes, A., and Gruber, R. E. (2008). Bigtable: A distributed storage
system for structured data. ACM Transactions on Computer Systems (TOCS),
26(2):1–26.

Chiu, M. (2011). Accelerating Molecular Dynamics Simulations with High Perfor-
mance Reconfigurable Systems. PhD thesis, Department of Electrical and Com-
puter Engineering, Boston University.

Choi, J., Lian, R., Li, Z., Canis, A., and Anderson, J. (2018). Accelerating Mem-
cached on AWS Cloud FPGAs. In Proceedings of the 9th International Symposium
on Highly-Efficient Accelerators and Reconfigurable Technologies, pages 1–8.

Coyote (2024). Coyote OS for FPGAs. https://github.com/fpgasystems/

Coyote. Last accessed on August 11, 2024.

Dastidar, J., Riddoch, D., Moore, J., Pope, S., and Wesselkamper, J. (2023). The
AMD 400-G adaptive SmartNIC system on chip: a technology preview. IEEE
Micro, 43(3):40–49.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., and Vogels, W. (2007). Dynamo: Ama-
zon’s highly available key-value store. ACM SIGOPS operating systems review,
41(6):205–220.

Dennard, R. H., Gaensslen, F. H., Yu, H.-N., Rideout, V. L., Bassous, E., and
LeBlanc, A. R. (1974). Design of ion-implanted MOSFET’s with very small phys-
ical dimensions. IEEE Journal of solid-state circuits, 9(5):256–268.

Dragojević, A., Narayanan, D., Castro, M., and Hodson, O. (2014). {FaRM}: Fast
remote memory. In 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14), pages 401–414.

https://github.com/fpgasystems/Coyote
https://github.com/fpgasystems/Coyote

188

Fan, B., Andersen, D. G., and Kaminsky, M. (2013). {MemC3}: Compact and con-
current {MemCache} with dumber caching and smarter hashing. In 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 13), pages
371–384.

Firestone, D., Putnam, A., Mundkur, S., Chiou, D., Dabagh, A., Andrewartha, M.,
Angepat, H., Bhanu, V., Caulfield, A., Chung, E., et al. (2018). Azure Accelerated
Networking: SmartNICs in the Public Cloud. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18), pages 51–66.

Fleming, K. and Adler, M. (2016). The LEAP FPGA operating system. FPGAs for
software programmers, pages 245–258.

Fukuda, E. S., Inoue, H., Takenaka, T., Kim, D., Sadahisa, T., Asai, T., and Mo-
tomura, M. (2014). Caching memcached at reconfigurable network interface. In
2014 24th International Conference on Field Programmable Logic and Applications
(FPL), pages 1–6. IEEE.

Geng, T., Wang, T., Wu, C., Li, Y., Yang, C., Wu, W., Li, A., and Herbordt, M.
(2021). O3BNN-R: An Out-Of-Order Architecture for High-Performance and Reg-
ularized BNN Inference. IEEE Transactions on Parallel and Distributed Systems,
32(1):199–213. doi: 10.1109/TPDS.2020.3013637.

Ghigoff, Y., Sopena, J., Lazri, K., Blin, A., and Muller, G. (2021). {BMC}: Accel-
erating memcached using safe in-kernel caching and pre-stack processing. In 18th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
21), pages 487–501.

Gokhale, M., Frigo, J., Ahrens, C., Tripp, J., and Minnich, R. (2004). Monte Carlo
radiative heat transfer simulation. In IEEE Conference on Field Programmable
Logic and Applications, pages 95–104.

Gokhale, M. and Graham, P. (2005). Reconfigurable Computing: Accelerating Com-
putation with Field Programmable Gate Arrays. Springer.

Google Cloud (2024a). Google Cloud Memorystore. https://cloud.google.com/

memorystore. Last accessed on August 28, 2024.

Google Cloud (2024b). Tensor Processing Units (TPUs). https://cloud.google.

com/tpu. Last accessed on July 27, 2024.

Guo, A., Geng, T., Zhang, Y., Haghi, P., Wu, C., Tan, C., Lin, Y., Li, A., and
Herbordt, M. (2022a). A Framework for Neural Network Inference on FPGA-
Centric SmartNICs. In International Conference on Field-Programmable Logic
and Applications. DOI: 10.1109/FPL57034.2022.00071.

https://cloud.google.com/memorystore
https://cloud.google.com/memorystore
https://cloud.google.com/tpu
https://cloud.google.com/tpu

189

Guo, A., Geng, T., Zhang, Y., Haghi, P., Wu, C., Tan, C., Lin, Y., Li, A., and
Herbordt, M. (2022b). FCsN: A FPGA-Centric SmartNIC Framework for Neural
Networks. In 30th IEEE International Symposium on Field-Programmable Custom
Computing Machines. DOI: 10.1109/FCCM53951.2022.9786193.

Guo, A., Hao, Y., Wu, C., Haghi, P., Pan, Z., Si, M., Tao, D., Li, A., Herbordt, M.,
and Geng, T. (2023). Software-hardware co-design of heterogeneous smartnic sys-
tem for recommendation models inference and training. In ICS 2023: International
Conference on Supercomputing. DOI = 10.1145/3577193.3593724.

Haghi, P., Geng, T., Guo, A., Wang, T., and Herbordt, M. (2020). Reconfigurable
Compute-in-the-Network FPGA Assistant for High-Level Collective Support with
Distributed Matrix Multiply Case Study. In IEEE Conference on Field Pro-
grammable Technology.

Haghi, P., Guo, A., Xiong, Q., Yang, C., Geng, T., Broaddus, J., Marshall, R.,
Schafer, D., Skjellum, A., and Herbordt, M. (2022). Reconfigurable switches for
high performance and flexible mpi collectives. Concurrency and Computation:
Practice and Experience, 34(2). doi: 10.1002/cpe.6769.

Haghi, P., Krska, W., Tan, C., Geng, T., Chen, P., Greenwood, C., Guo, A., Hines, T.,
Wu, C., Li, A., Skjellum, A., and Herbordt, M. (2023). Flash: Fpga-accelerated
smart switches with gcn case study. In 37th ACM International Conference on
Supercomputing (ICS). DOI = 10.1145/3577193.3593739.

Haghi, P., Tan, C., Guo, A., Wu, C., Liu, D., Li, A., Skjellum, A., Geng, T., and
Herbordt, M. (2024). Smartfuse: Reconfigurable smart switches to accelerate
fused collectives in hpc applications. In 38th ACM International Conference on
Supercomputing (ICS). DOI: 10.1145/3650200.3656616.

Hauck, S. and DeHon, A. (2008). Reconfigurable Computing: The Theory and Prac-
tice of FPGA-Based Computing. Morgan Kaufmann.

Heinz, C., Hofmann, J., Korinth, J., Sommer, L., Weber, L., and Koch, A. (2021).
The TaPaSCo Open-Source Toolflow: for the Automated Composition of Task-
Based Parallel Reconfigurable Computing Systems. Journal of Signal Processing
Systems, 93:545–563.

Hennessy, J. L. and Patterson, D. A. (2019). A new golden age for computer archi-
tecture innovations like domain-specific hardware, enhanced security, open instruc-
tion sets, and agile chip development will lead the way. https://cacm.acm.org/

research/a-new-golden-age-for-computer-architecture/.

Intel (2011). Tick/Tock Predictability Continues.

https://download.intel.com/newsroom/kits/idf/2011_fall/pdfs/Kirk_

Skaugen_DCSG_MegaBriefing.pdf#page=21. Last accessed on July 27, 2024.

https://cacm.acm.org/research/a-new-golden-age-for-computer-architecture/
https://cacm.acm.org/research/a-new-golden-age-for-computer-architecture/
https://download.intel.com/newsroom/kits/idf/2011_fall/pdfs/Kirk_Skaugen_DCSG_MegaBriefing.pdf#page=21
https://download.intel.com/newsroom/kits/idf/2011_fall/pdfs/Kirk_Skaugen_DCSG_MegaBriefing.pdf#page=21

190

Intel (2017). Open Programmable Acceleration Engin. https://opae.github.io/

latest/index.html. Last accessed on August 28, 2024.

Intel (2023a). P-Tile Avalon Streaming Intel FPGA IP for PCI Express User Guide.
https://www.intel.com/content/www/us/en/docs/programmable/683059/23-

4-9-1-0/about-the-p-tile-fpga-ips-for-pci-express.html. Last accessed
on August 28, 2024.

Intel (2023b). What Is Performance Hybrid Architecture? https://www.intel.

com/content/www/us/en/support/articles/000091896/processors.html.
Last accessed on July 27, 2024.

István, Z., Alonso, G., and Singla, A. (2018). Providing multi-tenant services with
fpgas: Case study on a key-value store. In 2018 28th International Conference on
Field Programmable Logic and Applications (FPL), pages 119–1195. IEEE.

Jose, J., Subramoni, H., Luo, M., Zhang, M., Huang, J., Wasi-ur Rahman, M., Islam,
N. S., Ouyang, X., Wang, H., Sur, S., et al. (2011). Memcached design on high
performance rdma capable interconnects. In 2011 International Conference on
Parallel Processing, pages 743–752. IEEE.

Koeher, S., Curreri, J., and George, A. (2008). Performance analysis challenges and
framework for high performance reconfigurable computing. Parallel Computing,
34(4-5):217–230.

Korinth, J., de la Chevallerie, D., and Koch, A. (2015). An Open-Source Tool Flow
for the Composition of Reconfigurable Hardware Thread Pool Architectures. In
2015 IEEE 23rd Annual International Symposium on Field-Programmable Custom
Computing Machines, pages 195–198. IEEE.

Korolija, D., Roscoe, T., and Alonso, G. (2020). Do OS abstractions make sense on
FPGAs? In Proceedings of the 14th USENIX Conference on Operating Systems
Design and Implementation, pages 991–1010.

Krishnan, V., Serres, O., and Blocksome, M. (2021). Configurable Network Protocol
Accelerator (COPA). 41(1).

Lant, J., Navaridas, J., Lujan, M., and Goodacre, J. (2020). Toward FPGA-Based
HPC: Advancing Interconnect Technology. IEEE Micro, 40(1):25–34.

Lavasani, M., Angepat, H., and Chiou, D. (2013). An FPGA-based In-line Acceler-
ator for Memcached. IEEE Computer architecture letters, 13(2):57–60.

Li, A., Geng, T., Wang, T., Herbordt, M., Song, S., and Barker, K. (2019). BSTC: A
Novel Binarized-Soft-Tensor-Core Design for Accelerating Bit-Based Approximated
Neural Nets. In International Conference for High Performance Computing, Net-
working, Storage and Analysis (SC). doi: 10.1145/ 3295500.3356169.

https://opae.github.io/latest/index.html
https://opae.github.io/latest/index.html
https://www.intel.com/content/www/us/en/docs/programmable/683059/23-4-9-1-0/about-the-p-tile-fpga-ips-for-pci-express.html
https://www.intel.com/content/www/us/en/docs/programmable/683059/23-4-9-1-0/about-the-p-tile-fpga-ips-for-pci-express.html
https://www.intel.com/content/www/us/en/support/articles/000091896/processors.html
https://www.intel.com/content/www/us/en/support/articles/000091896/processors.html

191

Liang, W., Yin, W., Kang, P., and Wang, L. (2016). Memory Efficient and High
Performance Key-value Store on FPGA Using Cuckoo Hashing. In 2016 26th
International Conference on Field Programmable Logic and Applications (FPL),
pages 1–4. IEEE.

Lim, H., Han, D., Andersen, D. G., and Kaminsky, M. (2014). {MICA}: A holistic
approach to fast {In-Memory}{Key-Value} storage. In 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 14), pages 429–444.

Liu, Y., Ma, J., Zhang, Z., Li, L., Qi, Z., and Guan, H. (2021). MEGATRON:
Software-Managed Device TLB for Shared-Memory FPGA Virtualization. In 2021
58th ACM/IEEE Design Automation Conference (DAC), pages 1213–1218. IEEE.

Lübbers, E. and Platzner, M. (2009). ReconOS: Multithreaded Programming for
Reconfigurable Computers. ACM Transactions on Embedded Computing Systems
(TECS), 9(1):1–33.

Ma, J., Zuo, G., Loughlin, K., Cheng, X., Liu, Y., Eneyew, A. M., Qi, Z., and
Kasikci, B. (2020). A Hypervisor for Shared-Memory FPGA Platforms. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 827–844.

Mbongue, J. M., Hategekimana, F., Kwadjo, D. T., and Bobda, C. (2018). FPGA
Virtualization in Cloud-based Infrastructures over Virtio. In 2018 IEEE 36th
International Conference on Computer Design (ICCD), pages 242–245. doi:
10.1109/ICCD.2018.00044.

Mbongue, J. M., Kwadjo, D. T., Shuping, A., and Bobda, C. (2021). De-
ploying multi-tenant FPGAs within Linux-based cloud infrastructure. ACM
Transactions on Reconfigurable Technology and Systems (TRETS), 15(2):1–31.
https://doi.org/10.1145/3474058.

Memcached (2017). Binaryprotocolrevamped. https://github.com/memcached/

memcached/wiki/BinaryProtocolRevamped. Last accessed on August 28, 2024.

Memcached (2024). Memcached - A Distributed Memory Object Caching System.
https://memcached.org/. Last accessed on August 28, 2024.

Microsoft (2024a). Azure Cache for Redis. https://azure.microsoft.com/en-

ca/services/cache. Last accessed on August 28, 2024.

Microsoft (2024b). Project Catapult. https://www.microsoft.com/en-us/

research/project/project-catapult/. Last accessed on August 28, 2024.

Moore, G. E. (1965). Cramming more components onto integrated circuits. Electron-
ics, 38(8). Available at: http://cva.stanford.edu/classes/cs99s/papers/

moore-crammingmorecomponents.pdf.

https://github.com/memcached/memcached/wiki/BinaryProtocolRevamped
https://github.com/memcached/memcached/wiki/BinaryProtocolRevamped
https://memcached.org/
https://azure.microsoft.com/en-ca/services/cache
https://azure.microsoft.com/en-ca/services/cache
https://www.microsoft.com/en-us/research/project/project-catapult/
https://www.microsoft.com/en-us/research/project/project-catapult/
http://cva.stanford.edu/classes/cs99s/papers/moore-crammingmorecomponents.pdf
http://cva.stanford.edu/classes/cs99s/papers/moore-crammingmorecomponents.pdf

192

Munafo, R., Shahzad, H., Sanaullah, A., Arora, S., Drepper, U., and Herbordt, M.
(2023). Improved Models for Policy-Agent Learning of Compiler Directives in HLS.
In IEEE High Performance Extreme Computing Conference. doi: 10.1109/H-
PEC58863.2023.10363530.

Nimbix (2024). Cloud FPGA Accelerators: Turbocharge Your Workflows for Efficient
Processing. https://www.nimbix.net/fpga-compute/. Last accessed on August
28, 2024.

Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee, H., Li, H. C., McElroy,
R., Paleczny, M., Peek, D., Saab, P., et al. (2013). Scaling memcache at facebook.
In 10th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 13), pages 385–398.

Nvidia (2024). NVIDIA Tensor Cores. https://www.nvidia.com/en-us/data-

center/tensor-cores/. Last accessed on July 27, 2024.

Oliver, N., Sharma, R. R., Chang, S., Chitlur, B., Garcia, E., Grecco, J., Grier,
A., Ijih, N., Liu, Y., Marolia, P., et al. (2011). A Reconfigurable Computing
System Based on a Cache-Coherent Fabric. In 2011 International Conference on
Reconfigurable Computing and FPGAs, pages 80–85. IEEE.

Ousterhout, J., Gopalan, A., Gupta, A., Kejriwal, A., Lee, C., Montazeri, B., Ongaro,
D., Park, S. J., Qin, H., Rosenblum, M., et al. (2015). The ramcloud storage
system. ACM Transactions on Computer Systems (TOCS), 33(3):1–55.

Patel, R., Haghi, P., Jain, S., Kot, A., Krishnan, V., Varia, M., and Herbordt, M.
(2022). COPA Use Case: Distributed Secure Joint Computation. In 30th IEEE
International Symposium on Field-Programmable Custom Computing Machines.
doi: 10.1109/FCCM53951.2022.9786156.

Patel, R., Wolfe, P.-F., Munafo, R., Varia, M., and Herbordt, M. (2020). Arithmetic
and Boolean Secret Sharing MPC on FPGAs in the Data Center. In IEEE High
Performance Extreme Computing Conference. doi: TBD.

Peck, W., Anderson, E., Agron, J., Stevens, J., Baijot, F., and Andrews, D. (2006).
Hthreads: A Computational Model for Reconfigurable Devices. In 2006 Interna-
tional conference on field programmable logic and applications, pages 1–4. IEEE.

Prabhakar, R., Jairath, S., and Shin, J. L. (2022). SambaNova SN10 RDU: A 7nm
dataflow architecture to accelerate software 2.0. In 2022 IEEE International Solid-
State Circuits Conference (ISSCC), volume 65, pages 350–352. IEEE.

Preston-Werner, Tom and Gedam, Pradyun et al. (2023). TOML:Tom’s Obvious,
Minimal Language. https://github.com/toml-lang/toml.

https://www.nimbix.net/fpga-compute/
https://www.nvidia.com/en-us/data-center/tensor-cores/
https://www.nvidia.com/en-us/data-center/tensor-cores/
https://github.com/toml-lang/toml

193

Putnam, A., Caulfield, A. M., Chung, E. S., Chiou, D., Constantinides, K., Demme,
J., Esmaeilzadeh, H., Fowers, J., Gopal, G. P., Gray, J., et al. (2016). A Reconfig-
urable Fabric for Accelerating Large-Scale Datacenter Services. Communications
of the ACM, 59(11):114–122.

Pérez Mart́ın, E. (2020). Virtio devices and drivers overview: Who
is who. https://www.redhat.com/en/blog/virtio-devices-and-drivers-

overview-headjack-and-phone.

Red Hat (2024). Red Hat CoDes Lab - DISL. https://github.com/rh-codes-

lab/DISL/tree/main.

Red Hat Customer Portal (2024). Red Hat Enterprise Linux Release Dates. https:

//access.redhat.com/articles/3078. Last accessed on August 28, 2024.

Redis (2024). Redis - The Real-time Data Platform. https://redis.io/. Last
accessed on August 28, 2024.

PCI SIG Org. (2010). PCI Express Base Specification Revision 3.0. https://

pcisig.com/specifications.

Richmond, D., Prost-Boucle, A., and O’Brien, J. (2022). RIFFA. https://github.
com/KastnerRG/riffa. Last accessed on August 28, 2024.

Rodŕıguez, A., Valverde, J., Portilla, J., Otero, A., Riesgo, T., and De la Torre,
E. (2018). FPGA-Based High-Performance Embedded Systems for Adaptive
Edge Computing in Cyber-Physical Systems: The ARTICo3 Famework. Sensors,
18(6):1877.

RSPwFPGAs (2020). Virtio-FPGA-Bridge: Virtio front-end and back-end
bridge, implemented with FPGA. https://github.com/RSPwFPGAs/virtio-

fpga-bridge. Last accessed on August 28, 2024.

Sajjadinasab, R., Arora, S., Drepper, U., Sanaullah, A., and Herbordt, M. (2024a).
A Graph-Based Algorithm for Optimizing GCC Compiler Flag Settings. In IEEE
High Performance extreme Computing Conference (HPEC). doi: TBD.

Sajjadinasab, R., Rastaghi, H., Shahzad, H., Arora, S., Drepper, U., and Herbordt,
M. (2024b). Further Optimizations and Analysis of Smith-Waterman with Vector
Extensions. In 23rd IEEE International Workshop on High Performance Compu-
tational Biology (HiCOMB). doi: TBD.

Sakakibara, Y., Nakamura, K., and Matsutani, H. (2017). An fpga nic based hard-
ware caching for blockchain. In Proceedings of the 8th International Symposium
on Highly Efficient Accelerators and Reconfigurable Technologies, pages 1–6.

https://www.redhat.com/en/blog/virtio-devices-and-drivers-overview-headjack-and-phone
https://www.redhat.com/en/blog/virtio-devices-and-drivers-overview-headjack-and-phone
https://github.com/rh-codes-lab/DISL/tree/main
https://github.com/rh-codes-lab/DISL/tree/main
https://access.redhat.com/articles/3078
https://access.redhat.com/articles/3078
https://redis.io/
https://pcisig.com/specifications
https://pcisig.com/specifications
https://github.com/KastnerRG/riffa
https://github.com/KastnerRG/riffa
https://github.com/RSPwFPGAs/virtio-fpga-bridge
https://github.com/RSPwFPGAs/virtio-fpga-bridge

194

Sanka, A. I., Chowdhury, M. H., and Cheung, R. C. (2021). Efficient high-
performance fpga-redis hybrid nosql caching system for blockchain scalability.
Computer Communications, 169:81–91.

Shahzad, H., Sanaullah, A., , Arora, S., Drepper, U., and Herbordt, M. (2024a). Neu-
ral Network based GCC Cost Model for Accelerating Compiler Tuning Workloads.
In IEEE High Performance Extreme Computing Conference.

Shahzad, H., Sanaullah, A., Arora, S., Drepper, U., and Herbordt, M. (2024b). Au-
toAnnotate: Reinforcement Learning based Code Annotation for High Level Syn-
thesis. In 25th International Symposium on Quality Electronic Design. DOI:
10.1109/ISQED60706.2024.10528738.

Shahzad, H., Sanaullah, A., Arora, S., Munafo, R., Yao, X., Drepper, U., and Her-
bordt, M. (2022). Reinforcement Learning Strategies for Compiler Optimization
in High Level Synthesis. In The Eighth Workshop on the LLVM Compiler Infras-
tructure in HPC. DOI: 10.1109/LLVM-HPC56686.2022.00007.

Shahzad, H., Sanaullah, A., and Herbordt, M. (2021). Survey and Future Trends
for FPGA Cloud Architectures. In IEEE High Performance Extreme Computing
Conference. DOI: 10.1109/HPEC49654.2021.9622807.

Sheng, J., Humphries, B., Zhang, H., and Herbordt, M. (2015). FPGA-Centric
Clusters. In Boston Area Computer Architecture Workshop.

Sheng, J., Xiong, Q., Yang, C., and Herbordt, M. (2017). Collective Communication
on FPGA Clusters with Static Scheduling. ACM SIGARCH Computer Architec-
ture News, 44(4). doi: 10.1145/ 3039902.3039904.

Sheng, J., Yang, C., and Herbordt, M. (2018). High Performance Dynamic Com-
munication on Reconfigurable Clusters. In 28th International Conference on Field
Programmable Logic and Applications. doi: 10.1109/ FPL.2018.00044.

Silicom (2021). Silicom C5010X data center NIC. https://www.silicom-usa.com/
wp-content/uploads/2021/12/C5010X-Data-Center-FPGA-IPU-NIC.pdf. Last
accessed on August 28, 2024.

So, H. K.-H. (2007). BORPH: An operating system for FPGA-based reconfigurable
computers. Technical Report, EECS Dept, University of California, Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-92.pdf.

So, H. K.-H. and Brodersen, R. (2008). A Unified Hardware/Software Runtime
Environment for FPGA-Based Reconfigurable Computers Using BORPH. ACM
Transactions on Embedded Computing Systems (TECS), 7(2):1–28.

https://www.silicom-usa.com/wp-content/uploads/2021/12/C5010X-Data-Center-FPGA-IPU-NIC.pdf
https://www.silicom-usa.com/wp-content/uploads/2021/12/C5010X-Data-Center-FPGA-IPU-NIC.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-92.pdf

195

So, H. K.-H. and Brodersen, R. W. (2006). Improving usability of FPGA-based
reconfigurable computers through operating system support. In 2006 International
Conference on Field Programmable Logic and Applications, pages 1–6. IEEE.

Sukhwani, B. and Herbordt, M. (2008). Acceleration of a Production Rigid Molecule
Docking Code. In 2008 International Conference on Field Programmable Logic
and Applications, pages 341–346. doi: 10.1109/ FPL.2008.4629955.

Sukhwani, B. and Herbordt, M. (2010). FPGA Acceleration of Rigid Molecule Dock-
ing Codes. IET Computers and Digital Techniques, 4(3):184–195. doi: 10.1049/
iet-cdt.2009.0013.

Sundar, N., Burres, B., Li, Y., Minturn, D., Johnson, B., and Jain, N. (2023). An
In-depth Look at the Intel IPU E2000. In 2023 IEEE International Solid-State
Circuits Conference (ISSCC), pages 162–164. IEEE.

Tahir, Z., Sanaullah, A., Bandara, S., Drepper, U., and Herbordt, M. (2024a).
Multi-core Multi-rule VeBPF Firewall for Secure FPGA IoT Device De-
ployments. In 31st Reconfigurable Architectures Workshop (RAW). doi:
10.1109/IPDPSW63119.2024.00053.

Tahir, Z., Sanaullah, A., Bandara, S., Drepper, U., and Herbordt, M. (2024b). Multi-
core Multi-rule VeBPF Firewall for Secure FPGA IoT Device Deployments. In
IEEE High Performance Extreme Computing Conference.

Tang, W., Lu, Y., Xiao, N., Liu, F., and Chen, Z. (2017). Accelerating redis with
rdma over infiniband. In Data Mining and Big Data: Second International Confer-
ence, DMBD 2017, Fukuoka, Japan, July 27–August 1, 2017, Proceedings 2, pages
472–483. Springer.

The Linux Kernel Archives (2024). Active Kernel Releases. https://www.kernel.

org/category/releases.html. Last accessed on August 28, 2024.

Tsirkin, M. S. and Huck, C. (2022). Virtual I/O device (VIRTIO) version
1.2. https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/virtio-v1.

2-csd01.html.

Vaishnav, A., Pham, K. D., Powell, J., and Koch, D. (2020). FOS: A modular FPGA
operating system for dynamic workloads. ACM Transactions on Reconfigurable
Technology and Systems (TRETS), 13(4):1–28.

VanCourt, T., Gu, Y., and Herbordt, M. (2004). FPGA acceleration of rigid molecule
interactions. In 12th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, pages 300–301. doi: 10.1109/ FCCM.2004.33.

https://www.kernel.org/category/releases.html
https://www.kernel.org/category/releases.html
https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/virtio-v1.2-csd01.html
https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/virtio-v1.2-csd01.html

196

VanCourt, T. and Herbordt, M. (2006). Rigid molecule docking: FPGA reconfigura-
tion for alternative force laws. Journal on Applied Signal Processing, v2006:1–10.
doi: 10.1155/ ASP/2006/97950.

Vogel, P., Marongiu, A., and Benini, L. (2018). Exploring Shared Virtual Mem-
ory for FPGA Accelerators with a Configurable IOMMU. IEEE Transactions on
Computers, 68(4):510–525.

Wenzel, J. and Hochberger, C. (2016). RapidSoC: Short Turnaround Creation of
FPGA Based SoCs. In Proceedings of the 27th international symposium on rapid
system prototyping: shortening the path from specification to prototype, pages 86–
92.

Wikipedia (2024a). Dennard Scaling. https://en.wikipedia.org/wiki/Dennard_

scaling. Last accessed on July 27, 2024.

Wikipedia (2024b). Moore’s law. https://en.wikipedia.org/wiki/Moore’s_law.
Last accessed on July 27, 2024.

Wikipedia (2024c). Tick-tock model. https://en.wikipedia.org/wiki/Tick-

tock_model. Last accessed on July 27, 2024.

Wolfe, P.-F., Patel, R., Munafo, R., Varia, M., and Herbordt, M. (2020). Secret
Sharing MPC on FPGAs in the Datacenter. In IEEE Conference on Field Pro-
grammable Logic and Applications.

Wu, C., Bandara, S., Geng, T., Guo, A., Haghi, P., Sherman, W., Sachdeva, V.,
and Herbordt, M. (2022). Optimized Mappings for Symmetric Range-Limited
Molecular Force Calculations on FPGAs. In International Conference on Field-
Programmable Logic and Applications. DOI: 10.1109/FPL57034.2022.00026.

Wu, C., Geng, T., Bandara, S., Yang, C., Sachdeva, V., Sherman, W., and Her-
bordt, M. (2021). Upgrade of FPGA Range-Limited Molecular Dynamics to
Handle Hundreds of Processors. In 2021 IEEE 29th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM). doi:
10.1109/FCCM51124.2021.00024.

Wu, C., Geng, T., Guo, A., Bandara, S., Haghi, P., Liu, C., Li, A., and Herbordt, M.
(2023). FASDA: An FPGA-Aided, Scalable and Distributed Accelerator for Range-
Limited Molecular Dynamics. In International Conference for High Performance
Computing, Networking, Storage and Analysis. DOI: 10.1145/3581784.3607100.

Wu, C., Yang, C., Bandara, S., Geng, T., Haghi, P., Li, A., and Herbordt, M. (2024).
FPGA-Accelerated Range-Limited Molecular Dynamics. IEEE Transactions on
Computers, 73(6):1544–1558. doi: 10.1109/TC.2024.3375613.

https://en.wikipedia.org/wiki/Dennard_scaling
https://en.wikipedia.org/wiki/Dennard_scaling
https://en.wikipedia.org/wiki/Moore's_law
https://en.wikipedia.org/wiki/Tick-tock_model
https://en.wikipedia.org/wiki/Tick-tock_model

197

Xilinx (2020). 7 Series FPGAs Integrated Block for PCI Express v3.3. https:

//docs.xilinx.com/v/u/en-US/pg054-7series-pcie.

Xilinx (2022a). Artix-7 FPGA family. https://www.xilinx.com/products/

silicon-devices/fpga/artix-7.html.

Xilinx (2022b). DMA/Bridge Subsystem for PCI Express v4.1. https://docs.

xilinx.com/r/en-US/pg195-pcie-dma.

Xilinx (2023). AMD OpenNIC Shell. https://github.com/Xilinx/open-nic-

shell. Last accessed on July 28, 2024.

Xilinx (2024). Xilinx DMA IP Reference drivers. https://github.com/Xilinx/

dma_ip_drivers. Last accessed on August 28, 2024.

Xilinx Inc. (2022). Xilinx Run Time for FPGA. https://github.com/Xilinx/XRT.

XILLYBUS (2022). Xillybus IP core product brief. https://xillybus.com/

downloads/xillybus_product_brief.pdf. Last accessed on August 28, 2024.

Xiong, Q., Yang, C., Patel, R., Geng, T., Skjellum, A., and Herbordt, M. (2019).
GhostSZ: A Transparent FPGA-Accelerated Lossy Compression Framework. In
2019 IEEE 27th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 258–266. doi: 10.1109/FCCM.2019.00042.

Xu, Y., Frachtenberg, E., Jiang, S., and Paleczny, M. (2013). Characterizing face-
book’s memcached workload. IEEE Internet Computing, 18(2):41–49.

Zhang, J., Xiong, Y., Xu, N., Shu, R., Li, B., Cheng, P., Chen, G., and Moscibroda, T.
(2017). The Feniks FPGA operating system for cloud computing. In Proceedings
of the 8th Asia-Pacific Workshop on Systems, pages 1–7.

Zink, M., Irwin, D., Cecchet, E., Saplakoglu, H., Krieger, O., Herbordt, M., Daitz-
man, M., Desnoyers, P., Leeser, M., and Handagala, S. (2021). The Open
Cloud Testbed (OCT): A Platform for Research into new Cloud Technologies.
In IEEE International Conference on Cloud Networking (IEEE CloudNet). doi:
10.1109/CloudNet53349.2021.9657109.

https://docs.xilinx.com/v/u/en-US/pg054-7series-pcie
https://docs.xilinx.com/v/u/en-US/pg054-7series-pcie
https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html
https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html
https://docs.xilinx.com/r/en-US/pg195-pcie-dma
https://docs.xilinx.com/r/en-US/pg195-pcie-dma
https://github.com/Xilinx/open-nic-shell
https://github.com/Xilinx/open-nic-shell
https://github.com/Xilinx/dma_ip_drivers
https://github.com/Xilinx/dma_ip_drivers
https://github.com/Xilinx/XRT
https://xillybus.com/downloads/xillybus_product_brief.pdf
https://xillybus.com/downloads/xillybus_product_brief.pdf

198

CURRICULUM VITAE

199

200

201

202

