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ITERATIVE NEAR-TERM FORECASTING OF THE 
 

TERRESTRIAL CARBON CYCLE AT HARVARD FOREST 
 

ALEXIS ROSE HELGESON  

ABSTRACT  

  Through a combination of fossil fuel emissions, land use change, and other 

anthropogenic activities, mankind has dramatically altered global biogeochemical cycles, 

leading to an unprecedented era of rapid environmental change. To anticipate how the 

carbon and water cycles will change in the future, and inform decisions about how to 

adapt and mitigate these changes, we need a better understanding of the inherent 

predictability of these cycles. To begin to address this challenge I designed, implemented, 

and analyzed a 35-day iterative forecasting workflow using Harvard Forest as an initial 

testbed. A key aim of this forecast is to understand the predictability of leaf area index 

(LAI), net ecosystem exchange (NEE), and latent heat flux (LE), which I assess in terms 

of how forecast uncertainty changes as a function of forecast lead time, and how the 

predictability of LAI, NEE and LE is impacted by the assimilation of MODIS LAI 

observations. I used four metrics of uncertainty (root mean square error, bias, continuous 

ranked probability score, and mean absolute error) to evaluate the forecast performance. 

Uncertainty in LAI, LE, and NEE was not positively correlated with forecast lead time. 

The inclusion of MODIS LAI observations improved predictability of NEE and LE, but 

had the greatest impact on LAI (~50% uncertainty reduction). Carbon stores (LAI as a 

proxy for leaf carbon) were more predictable than terrestrial fluxes (NEE, LE).  
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Introduction 

Our current understanding of the natural terrestrial carbon cycle broadly includes 

a large net carbon sink between the land and atmosphere and a smaller net carbon source 

due to land use and disturbance. Water acts as a driver for carbon cycling within 

ecosystems through photosynthesis, where water is lost from ecosystems as 

evapotranspiration (ET) and carbon is assimilated into leaves (Baldocchi et al., 2018; 

Beer et al., 2010). There is a large body of research estimating global carbon budgets, 

along with sources of spatial or temporal variability in the carbon and water cycles (Beer 

et al., 2010; Friedlingstein et al., 2022; Houghton, 2003). But if we want to know what 

the future of the terrestrial carbon cycle will be then we must evaluate our ability to 

predict these dynamics. While there are many studies modeling the terrestrial carbon and 

water cycles using hindcasts/re-analysis or long-term projections under different climate 

scenarios, I seek to use true forecasts, over near-term timescales that can be empirically 

validated, to understand the inherent predictability of these processes (Dokoohaki et al., 

2021; Tian et al., 2022; Zeng et al., 2008).  
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Previous studies on the theory of predictability for ecosystem states call for clear 

quantitative analyses on verifiable forecasts in order to create a systematic understanding 

of predictability (Dietze, 2017a; Luo et al., 2015). This reasoning borrows from the major 

advancements made in the realm of weather forecasting over the past 100 years 

(Smagorjnsky, 1983). Numerical weather forecasts began as daily predictions using 

yesterday’s observations to predict tomorrow’s state; with the data boom over the past 40 

years these predictions have become more accurate (Bauer et al., 2015). Satellite and 

tower measurements of conditions improved weather forecast skill using data 

assimilation (Leith, 1974; Zhang, Hailing. Pu, Zhaoxia, 2010). The weather forecast skill, 

as a function of forecast lead time, has improved at a rate of 1 day per decade; so our 

current 6-day forecast is as accurate as the 5-day forecast a decade ago (Bauer et al., 



 
 

 

3 

 

2015). In addition to providing societally-useful predictions, weather forecasts embody 

our hypotheses about how the atmosphere works, and the daily validation of these 

predictions has helped improve future weather forecasts, slowly closing the gap between 

model predictions and observations (Dietze et al., 2018). The current success and 

dependability of weather forecasts provides a model that carbon cycle scientists might 

emulate to improve our ecological forecasts and investigate the predictability of 

terrestrial carbon and water cycles. 

The study of predictability goes beyond simply assessing model skill. One way to 

understand predictability is to determine the rate at which uncertainty in a prediction 

increases as a function of forecast lead time (Figure 1, growth rate) (Dietze, 2017a). The 

uncertainty growth rate is a function of the uncertainty and sensitivity in the model initial 

conditions, meteorological drivers, parameters, and other exogenous factors. The use of 

iterative near-term ecological forecasts over time should result in more consistent and 

accurate predictions of ecosystems (Dietze et al., 2018; White et al., 2019). Iterative 

forecasting refers to the process of updating predictions when new observations become 

available; thereby mimicking the real-time cycling of elements through an ecosystem 

(Dietze, 2017a). By continually confronting predictions with new observations, near-term 

iterative forecasting allows us to test hypotheses and close the gap between ecosystem 

models and observations (Dietze, 2017b). Near-term forecasts operate on the daily to 

decadal timescales that are relevant for land management decisions; examples include 

daily forecasts for tracking toxic algal blooms to decadal forecasts tracking bird 

biodiversity (Dietze, 2017b; Stumpf et al., 2009; White et al., 2019). As a prototype 
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workflow to begin investigating the predictability of carbon and water cycles, here I 

report on the development and assessment of a 35-day iterative forecast of the terrestrial 

carbon and water cycles. 

While this forecasting workflow could be used to study changes to carbon and 

water cycles across a myriad of ecosystem types and locations, for this initial proof-of-

concept the workflow is applied to one site, Harvard Forest, a temperate deciduous forest 

in the Northeastern United States. This region is well-studied, and this study site is 

particularly data rich and frequently used for model calibration and validation. Harvard 

Forest is an ideal testbed for developing an automated forecasting workflow and 

addressing some initial questions about terrestrial ecosystem predictability. Given the 

near-term focus of the forecast, and existing data availability, I focus on the predictability 

of carbon stores with short residence times (e.g., leaf carbon), as well as the net carbon 

and water fluxes as proxies for their overall cycles. In particular, I focus on Net 

Ecosystem Exchange of CO2 (NEE) and the latent energy (LE) flux between the land and 

atmosphere as these are routinely measured at many sites using eddy covariance and vary 

on diurnal, synoptic, and seasonal timescales (Pastorello et al., 2020). I focused on 

remotely-sensed leaf area index (LAI) as a proxy for the leaf carbon store to match the 

sub-seasonal timescale of the forecast. 

Our primary research question is: What is the near-term predictability of 

terrestrial pools and fluxes (NEE, LE, LAI)? Furthermore, how is the predictability of 

terrestrial pools and fluxes improved by the iterative assimilation of NEE, LE, and LAI 

observations? Our hypotheses are as follows: 
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1. Terrestrial pools and fluxes are most predictable the first week after the forecast is 

made and gets less predictable as the forecast horizon increases. Most near-term 

weather forecasts are most predictable the first week, so our predictions should 

behave similarly (Lynch, 2008; Thompson, 1957). Quantitatively, this means that 

the uncertainty (figure 1) will rapidly increase over the first week and then level 

off over the following weeks. 

2. Leaf carbon stores are more predictable than terrestrial fluxes. Leaf carbon stores 

undergo a seasonal turnover while terrestrial fluxes operate on a diurnal cycle, 

therefore if the carbon remains in the ecosystem longer (i.e., longer residence 

time) it will be easier to predict (Bonan, Gordon, 2016; Byrne et al., 2020; Hicke 

et al., 2002). Quantitatively, the forecast limit (figure 1) will occur sooner in the 

forecast for terrestrial fluxes than for leaf carbon stores. 

3. Assimilation of observations will improve prediction accuracy of terrestrial pools 

and fluxes compared to unconstrained predictions. Including observations as 

constraints will give the model a better starting point for predictions, and the 

assimilation of MODIS LAI has been shown to improve model precision and 

accuracy (Baldocchi et al., 2018; Dokoohaki et al., 2021; Tian et al., 2022; Zeng 

et al., 2008). Quantitatively, this means that the y-intercept of the unconstrained 

predictions will be greater than that of the predictions constrained with 

observations. 
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Methods 

State Data Assimilation (SDA) & Iterative Forecasting Workflow 

 

I developed the forecasting workflow within the Predictive Ecosystem Analyzer 

(PEcAn) ecological data-informatics system (Cowdery et al., 2014; D. LeBauer et al., 

2018; D. S. LeBauer et al., 2012/2013). This open-source community cyberinfrastructure 

comes equipped with functions for processing model inputs and outputs, running 

ecosystem models, and analyzing model output (Figure 2). All code used for this research 

is available in the PEcAn repository on Github (https://github.com/PecanProject/pecan, 

version 1.7.2). The PEcAn platform includes a centralized database, BETY, which 

catalogs all of the model inputs and outputs along with site specific information related to 

species composition. This community cyberinfrastructure platform reduces the amount of 
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redundant model input processing work, helps support reproducibility, and supports the 

advancement of the field as a whole as data ecological data volumes increase (Fer, 

Gardella, et al., 2021). 

 The forecast system employs a State Data Assimilation (SDA) framework to 

iteratively update the carbon and water cycle state variables as part of a forecast-analysis 

cycle (Figure 2). In the forecast step, the ensemble-based forecasting approach was used 

to make a probabilistic forecast over the next 35-days. As part of the analysis step, I 

statistically reconcile the difference between these predictions and the new observations 

that have accumulated over that period (Figure 2b). Ensemble-based SDA takes a 

Bayesian approach to the analysis step, with the forecast providing an informative prior 

constructed by fitting a known probability distribution to the ensemble predictions. The 

forecast priors are updated through a statistical Likelihood to generate posterior 

distributions of the system state variables (in this case carbon and water pools) that then 

serve as initial conditions for the next forecast. Within the statistical Likelihood the 

probability that any forecast produced the observed data is calculated based on the 

reported observation error in the data product, with any additional discrepancy between 

model and data attributed to process error. 

There are numerous ensemble-based SDA techniques available and for this 

analysis the Tobit-Wishart Ensemble Filter (TWEnF) was implemented as part of the 

PEcAn (Predictive Ecosystem Analyzer) model-data informatic system (Fer, 

Shiklomanov, et al., 2021; Raiho et al., 2020). The TWEnF has two key advantages when 

it comes to assimilating ecological data. First, the analysis allows the use of a Tobit 
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distribution, which is a zero-truncated and zero-inflated version of the Normal 

distribution, as both the forecast prior and analysis Likelihood. Here specifically I used 

the Tobit censoring in the assimilation of MODIS LAI data, while using the more 

conventional Normal prior and Likelihood to assimilate NEE and LE. The second 

advantage of the TWEnF is that it enables us to sequentially update our estimate of the 

model’s process error, rather than treating this as known a priori. A Wishart prior is used 

to allow the estimation of the full process error covariance matrix, thus quantifying (and 

propagating) both the model’s residual uncertainty in its predictions (in this case, LAI, 

NEE, and LE) and the correlations (across pools and fluxes) in these errors. See Raiho et 

al. (2020) for a full description of the framework. 

The workflow was configured to assimilate LAI, NEE, and LE at a daily time 

step. One of the powerful features of SDA is that it allows you to not only update the 

pools and fluxes you observed, but also those that were unobserved, which are 

constrained indirectly based on the covariances in the forecast (prior) between observed 

and unobserved variables. Thus, the output of the analysis step is an updated estimate of 

aboveground wood carbon, leaf carbon (LAI), soil moisture, and soil carbon. This feature 

of indirect updating allows SDA to easily handle missing data for any of the data 

constraints. Most data sources can be used for validation of model output however for 

data to be used for assimilation I need an estimate of uncertainty. These uncertainty 

estimates help the workflow evaluate the confidence in each observation. If data 

constraints are missing on a particular day, then the SDA is not run, and that day’s 

forecast uses the previous forecast as initial conditions. 
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Site & Data Description 

Harvard Forest is located in central Massachusetts (42.5° N, 72.2° W) and  is a 

secondary forest primarily composed of red oak (Quercus rubra), eastern hemlock (Tsuga 

canadensis), and red maple (A. rubrum) (Finzi et al., 2020). Harvard Forest was 

established as a research site in 1907 and in addition to being the longest running 

Ameriflux site, is also a member of the LTER, NEON, and ForestGEO networks. The 

abundance of data makes this site the ideal test case for our daily forecasting workflow.  

 The forecast workflow ran from September 2020-December 2021 using the 

NOAA GEFS (Global Ensemble Forecast System) weather forecast as meteorological 

drivers (NOAA, n.d.-c). The 35-day ensemble member forecast first became available 

September 2020. From GEFS I extracted the following meteorological drivers: air 

temperature, precipitation, short wave (solar) radiation, humidity, and wind speed. GEFS 

generates a 31-member ensemble which was resampled with replacement as drivers to the 

100 model ensemble members. 

Initial condition estimation 

Estimated initial conditions for the SIPNET carbon pools used NEON plot survey 

data collected in 2019. I leveraged the annual biomass plot surveys to initialize the wood 

and leaf carbon pools using allometric function of diameter at breast height (DBH) to 

predict total biomass and leaf biomass (NEON | Herbaceous Clip Harvest, n.d.; NEON | 

Plant Presence and Percent Cover, n.d.; NEON | Vegetation Structure, n.d.). The initial 

condition ensemble members were created by statistically resampling the NEON 

vegetation survey data. I separated out the collected data into plots (woody vegetation) 
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and subplots (herbaceous vegetation) based on the NEON designations and then 

resampled within those groups. The soil carbon initial condition ensemble members were 

generated with soil bulk density and soil C measurements collected from the initial 2012 

NEON megapits, but due to the low replication in this data I was not able to create 

ensemble members (NEON | Soil Physical and Chemical Properties, Megapit, n.d.). 

Posterior parameter distributions for SIPNET’s temperate deciduous plant 

functional type (PFT) come from Fer et al. (2018, 2021), who used an emulated 

Hierarchical Bayesian approach to calibrate the model against eddy-covariance data from 

12 temperate deciduous Ameriflux sites (Fer et al. 2018, 2021). Parameter vectors for 

individual ensemble members were sampled from the joint posterior distribution, which 

accounts for parameter covariances. 

Observations 

For LAI observations, I relied on the Moderate Resolution Imaging Spectrometer 

(MODIS) MOD15A2H 8-day, 500m composite product. The algorithm chooses the best 

pixel over the 8-day period and reports a quality control value along with observation 

error (Myneni,  Ranga et al., 2015). I accessed the MODIS data via the MODISTools R 

package (Hufkens & Labs, 2023). 

For NEE and LE I assimilated eddy-covariance tower observations taken from the 

Harvard Forest Environmental Monitoring Station (EMS) tower (cite). The U* filtering 

and gap-filling were performed using the OneFlux data product (Pastorello et al., 2020). 

Because the assimilation is only performed once a day, 30-minute measurements were 

aggregated to daily averages along with an estimate of observation error. 
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SIPNET model 

The Simplified Photosynthesis and Evapotranspiration model (SIPNET) is a 

process-based carbon and water flux ecosystem model designed for comparison to eddy-

flux data (Braswell et al., 2005; Zobitz et al., 2008). The model has been successfully 

calibrated and validated against eddy covariance NEE and LE observations across a range 

of temperate deciduous and conifer forest sites (Dokoohaki et al., 2021; Fer et al., 2018; 

Fer, Shiklomanov, et al., 2021; Moore et al., 2008). More recently the SIPNET model 

was used in the development of a continental-scale carbon cycle reanalysis product across 

the continuous U.S. constrained by MODIS LAI and a LANDSAT-based aboveground 

biomass product (Dokoohaki et al., 2021).  

SIPNET contains three primary carbon stores or pools: wood carbon (woodC), 

leaf carbon (leafC), and soil carbon (soilC); and models the flow to carbon among these 

three pools and between the land and the atmosphere (Braswell et al., 2005). Gross 

primary productivity (GPP) is modeled using a light use efficiency approach, with 

additional environmental constraints from air temperature, soil moisture, and VPD 

(Braswell et al., 2005). Heterotrophic respiration is modeled as a function of soil carbon 

content and soil moisture (Braswell et al., 2005). Autotrophic respiration (Ra) is the sum 

of foliar maintenance respiration and wood maintenance respiration, each of which is 

proportional to pool size (Braswell et al., 2005).  SIPNET assumes leaf and wood 

allocation are constant fractions of Net Primary Productivity (NPP = GPP - Ra) and that 

leaf and wood turnover rates are constant over time (Braswell et al., 2005). SIPNET’s 

leaf phenology is based on prescribed phenological transition dates; over the course of 
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one timestep all leaves in the model will appear and disappear. LAI is calculated as 

LAI = leafC/SLA, Eq.1 

where SLA is the specific leaf area.  

SIPNET also contains water pools for soil moisture, litter moisture, and snow 

(Sacks et al., 2006). Evapotranspiration is calculated as 

ET = Ei + Ep + Es +T, Eq.2 

where Ei is canopy interception, Ep is sublimation, Es is soil evaporation, and T is 

transpiration. Interception is modeled as a constant fraction of precipitation and is 

immediately evaporated during that time step. Evaporation is modeled as a function of 

vapor pressure deficit (VPD) and soil VPD, with canopy and soil resistance modeled as 

functions of wind speed and soil moisture, respectively. Sublimation is modeled using 

vapor pressure and available snow. Transpiration is split into two scenarios: water 

saturated and water stressed; in the water saturated case transpiration is equal to potential 

transpiration calculated as GPP/WUE while in the water stressed case transpiration is 

calculated using a soil water availability parameter applied to potential transpiration 

(Aber & Federer, 1992). To convert evapotranspiration into latent heat flux (LE) I 

multiplied the output by the latent heat of vaporization of water. 

 Uncertainties in the SIPNET forecasts are propagated using an ensemble-based 

approach that varies the model parameters, meteorological drivers, and initial conditions 

(Dietze, 2017a). Similar model experiments use 20 or fewer ensemble members, but 

some have concluded that this might be too few to properly represent the uncertainty 
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(Cranko Page et al., 2022; Dokoohaki et al., 2021; Zeng et al., 2008). For this analysis I 

chose to increase the ensemble size to 100; further descriptions of how each input 

ensemble is generated can be found in the data section. 

Analysis 

 Using the described forecasting workflow, I ran two experiments: unconstrained 

runs and MODIS LAI constrained runs. I used the output of all experiments to evaluate 

my hypotheses focused on predictability and compare the output across experiments to 

evaluate our hypotheses on data assimilation.  

My primary research question “What is the near-term predictability of terrestrial 

pools and fluxes?” relies on a well-understood definition of predictability. Predictability 

is the change in uncertainty over time or space; in this case we are measuring the 

uncertainty over a 35-day period. For this analysis I used four methods for estimating 

uncertainty: root mean squared error (RMSE), mean absolute error (MAE), bias, and 

continuous ranked probability score (CRPS). RMSE is calculated as: 

   𝑅𝑀𝑆𝐸	 = 	'!
"
∑ (𝑥#	 −	𝑦#)"
#%!

&  Eq.3 

MAE is calculated as: 

   𝑀𝐴𝐸	 = 	 !
"
∑ |𝑥# 	− 	𝑦#|"
#%!  Eq.4 

Bias is calculated as: 

𝑏𝑖𝑎𝑠	 = 	∑ 𝑥#	 −	𝑦#"
#%!  Eq.5 

CRPS is calculated as: 
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𝐶𝑅𝑃𝑆(𝐶𝐷𝐹, 𝑦) 	= 	∑ 𝑢#|𝑥# − 𝑦| −	
!
&
∑ 𝑢#𝑢':𝑥# −	𝑥':"
#,'%!

"
#%!   Eq.6 

Where in the above equations n is the number of predictions, x is the prediction, and y is 

the observation. The u variables are nonnegative and sum to 1 and are used to weight the 

equation, in this case I used the crps_sample function from the scoringRules package 

which defaults to equally weight the equations (i.e., u = 1/n) (Jordan et al., 2020).The 

RMSE, MAE, and Bias calculations compare the daily average of our predictions (NEE, 

LE & LAI) to the daily average of the observations, while the CRPS calculation 

leverages information across ensemble members to compare a prediction distribution to 

an observation. RMSE helps to understand how much spread exists in the errors, so a 

lower RMSE value indicates less error spread among predictions. The bias score should 

provide information on systematic model error (i.e. underestimating or overestimating 

predictions). Typically, RMSE and bias are viewed together to indicate what the error 

spread is and in what direction (positive or negative) the error trend.  

𝑅𝑀𝑆𝐸 = √𝑏𝑖𝑎𝑠& + 𝑣𝑎𝑟  Eq. 8 

RMSE can be decomposed into bias and variance (Eq. 8). Bias and variance are inversely 

connected, so the total RMSE can be parsed out between bias and variance. CRPS 

compares an observation to the cumulative distribution function (CDF) of the predictions. 

If the workflow ran without ensemble members, then the CRPS and MAE would be the 

same value, so the comparison of these two metrics gives insight to the impact of 

ensemble spread on prediction error. To compare across datasets to evaluate our second 

hypothesis I calculated a normalized RMSE (NRMSE) by dividing RMSE by the mean 
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observation (NEE, LE, LAI).  

I am not assuming that the relationship between the uncertainty metrics and lead 

time is linear, so I am employing generalized additive models (GAMs) to parse out the 

underlying trends using the R mgcv package (Wood, 2022) called from R (R Core Team, 

2023; Version 4.2.1). The GAMs method used restricted maximum likelihood (REML) 

with the default number of knots (n=10). I calculated the GAMs for each of the 

uncertainty metrics (RMSE, bias, CRPS, MAE) versus forecast lead time. 

I calculated the predictive interval (PI) for an example forecast using the 95th 

quantiles across ensemble members of the daily mean for each variable (NEE, LE, and 

LAI). To illustrate the impact of assimilation on the forecasts, I visualized the June 2, 

2021 forecast since this forecast includes a MODIS LAI observation available for 

assimilation. All intermediate model output and analyses are stored on the Boston 

University Department of Earth and Environment shared computing cluster with finalized 

forecast output on GitHub (https://github.com/helge22a/SIPNET-SDALAI-Thesis).  
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Results 

 

 Every day from September 29, 2020 to December 31, 2021 a 35-day forecast ran 

with 100 ensemble members. Over the 2021 growing season MODIS LAI observations 

were assimilated that passed qc check. The forecast made on June 2, 2021 ran with model 

states updated with a MODIS LAI observation of 5.9. There is a clear and immediate 

reduction in LAI comparing the unconstrained forecast to the MODIS LAI constrained 

forecast (Figure 3). The PI interval shrinks for LAI when an observation is included for 

assimilation (Figure 3). There does not appear to be a large shift in predictions of LE 

when a MODIS LAI observation is assimilated (Figure 3). The predictions of LE increase 

over the first 3 days of the forecast and then reach a plateau (Figure 3). Similarly, there is 

a decrease in NEE over the first 3 days of the forecast (Figure 3). There is a slight 
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decrease in NEE when a MODIS LAI observation is assimilated (Figure 3).  

 

Some predictions were most accurate within the first week and others were less 

accurate. For LAI the lowest RMSE score occurs at a lead time of 20 days for 

unconstrained predictions and at a lead time of 24 days for MODIS LAI constrained 

predictions (Figure 4a). Similar trends in the Bias and MAE scores were observed. The 

lowest value was around a lead time of 20 days for unconstrained predictions and around 

a lead time of 24 days for MODIS LAI constrained predictions of LAI (Figure 4b,d). The 

CRPS trend across lead time for unconstrained predictions of LAI appears almost as a 
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straight line with no clear minimum, while the CRPS trend for MODIS LAI constrained 

predictions of LAI also shows a minimum value around a lead time of 24 days similar to 

the trends observed in the RMSE, Bias, and MAE scores (Figure 4b).  

 

The RMSE, CRPS, and MAE trends across lead time for predictions of LE 

followed a parabola shape while the Bias score follows a more sigmoidal shape (Figure 

5). The lowest RMSE and MAE scores occurred at a lead time of 5 days for 

unconstrained predictions of LE and at a lead time of 25 days for MODIS LAI 

constrained predictions of LE (Figure 5a,d). The CRPS minimum for both experiments 

occurred around a lead time of 5 days (Figure 5c). The bias began at a lead time of 0 days 
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as a negative value and then reached the zero line at day 5 and remained positive for the 

remainder of the forecast period (Figure 5b). The CRPS and bias results provided support 

for the first hypothesis; that the lowest uncertainty value should occur within the first 7 

days of the prediction.  

 

The greatest disagreement between uncertainty metrics was for NEE. The lowest 

RMSE score occurs at a lead time of 0 days for unconstrained predictions of NEE and at 

a lead time of 35 days for MODIS LAI constrained predictions of NEE (Figure 6a). The 

lowest Bias score occurred at a lead time of 35 days across both experiments (Figure 6b). 

The CRPS trend appeared to follow a straight line across lead time for both experiments 



 
 

 

20 

 

(Figure 6c). While the MAE trend for unconstrained predictions of NEE followed a 

similar pattern to the CRPS trend, the MAE for MODIS LAI constrained predictions of 

NEE showed a negative linear trend across lead time (Figure 6d).  

I observed clear support for the second hypothesis, that leaf carbon stores were 

more predictable than terrestrial fluxes. Comparing the predictability across all three 

variables I observed that LAI was the most predictable with a NRMSE of ~1.4% for 

unconstrained predictions (Figure 7). LE is the second most predictable with a NRMSE 

of ~2% for unconstrained predictions (Figure 7). NEE is by far the least predictable with 

a NRMSE of ~18% for unconstrained predictions (Figure 7).  
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The third hypothesis was supported as the assimilation of observations decreased 

uncertainty over lead time. When MODIS LAI observations were assimilated, the RMSE 

decreased by ~50% compared to unconstrained predictions of LAI (Figure 4a). A similar 

trend was observed in the bias and MAE scores comparing MODIS LAI constrained 

predictions of LAI to unconstrained predictions of LAI (Figure 4b,d). The CRPS trend 

for MODIS LAI constrained predictions passed the unconstrained predictions around a 

lead time of 14 days (Figure 4c). However, this trend is short lived and only lasts 

approximately 3 days before the MODIS LAI constrained predictions of LAI dropped 

below the unconstrained predictions of LAI (Figure 4c).  

There was a lag in the improvement of uncertainty for LE. The RMSE and MAE 

of the MODIS LAI constrained predictions of LE dropped below the unconstrained 

predictions of LE after two weeks (Figure 5a, d). Furthermore, the Bias score showed no 

clear distinction between the two experiments (Figure 5b). Contradicting the RMSE and 

MAE trends, the CRPS for MODIS LAI constrained predictions of LE increased by 

~1.3% compared to unconstrained predictions of LE (Figure 5c).  

The uncertainty metrics disagree on the magnitude of improvement for 

predictions of NEE across lead time. There was a decrease in RMSE of ~10% of MODIS 

LAI constrained predictions compared to unconstrained predictions (Figure 6a). Similar 

to LE, the Bias metric did not distinguish between the two experiments and the CRPS 

increased for MODIS LAI constrained predictions of LE compared to unconstrained 

predictions of LE (Figure 6b, c). There was a decrease in MAE after the first two weeks 

when for the MODIS LAI constrained predictions of LE compared to the unconstrained 
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predictions of LE (Figure 6d).  

Discussion 

I set out with two goals, to create a prototype iterative near-term forecasting 

workflow of the carbon and water cycles, and to use this forecast to better understand the 

inherent predictability of carbon and water stores and fluxes. Unlike many other 

forecasts, the terrestrial carbon and water cycle forecast was not necessarily more 

accurate closer to the forecast date. While the uncertainty of LAI, NEE, and LE was 

expected to be positively correlated with forecast lead time, there was variability in the 

result depending on the uncertainty metric used. Some variables showed a negative linear 

relationship with lead time and others showed a non-linear relationship between 

uncertainty and forecast lead time. Both LE and NEE predictions varied the most during 

the first three days of the forecast, so the initial high uncertainty values could be the 

result of model transience. This was the first study to use a weather forecast as the 

meteorological driver and include MODIS LAI for assimilation in an investigation on the 

inherent predictability of LAI, NEE, and LE, therefore there were no direct result 

comparisons to make in the analysis of uncertainty over forecast lead time. 

There was a lag in the improvement of LE uncertainty when I assimilated MODIS 

LAI observations. While both experiments reported negative Bias values within the first 

5 days; these results are for separate but related reasons: 1) decrease in transpiration, and 

2) mis-calibrated model parameters. LE represents the exchange of water between the 

land and atmosphere, and one of the major components driving this exchange is the 

amount of leaves present. I observed that the assimilation of MODIS LAI observations 
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improved prediction accuracy of LAI by ~50%. So when I used the assimilation, day 1 

LAI was a realistic representation of the amount of leaves present and therefore available 

for transpiration. In general, when I assimilated LAI observations the day 1 LAI 

decreased compared to unconstrained predictions, therefore the model transpiration 

decreased leading to an overall decline in LE.  

Unlike for LE, the four uncertainty metrics cannot agree on the shape of NEE 

uncertainty over forecast lead time. The NRMSE result supports the conclusion that LE is 

more predictable than NEE, but these fluxes do follow similar trends. Similar to the lag in 

LE, there was a two-week lag in improvement of NEE predictability after assimilating 

MODIS LAI observations. NEE is the exchange of carbon between the land and 

atmosphere, and LAI sets the leaf carbon pool size in our workflow. Unlike LE, where a 

decrease in LAI leads to an underestimation of LE, the NEE bias results suggest that a 

decrease in LAI leads to an overestimation of NEE. Two out of the four uncertainty 

metrics support that the assimilation of MODIS LAI decreases NEE uncertainty over lead 

time. These results suggest a need to re-parameterize some of the carbon cycle 

parameters.  

A re-analysis study using MODIS LAI for assimilation reported a reduction in 

uncertainty in NEE after assimilation, but this study relied on the post-hoc ensemble 

adjustment for NEE (Dokoohaki et al., 2021). Other studies evaluating the impact of LAI 

observations on NEE occurred over a longer time period and the associated analyses 

focused on aggregated weekly NEE (Dokoohaki et al., 2021). Similar model experiments 

investigating the impact of assimilating LAI observations on the “predictability” of latent 
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heat flux did not see an improvement in predictions of LE until 60 days, which falls 

outside the range of our 35 day forecast (Tian et al., 2022). This study also reports 

comparable uncertainty ranges for their “predictions'' of LE to our RMSE values (Tian et 

al., 2022).  

The forecasting workflow updates all model states at the beginning of each new 

forecast using the previous day's model output; if a MODIS LAI observation is available 

then the data is assimilated and used to inform the next day’s model states. Fluxes are not 

model states, so the fluxes themselves are never directly informed by a MODIS LAI 

observation. Instead, the MODIS LAI assimilation impacts subsequent NEE predictions 

via the updated leaf, wood, and soil carbon stores and LE via the updated LAI and soil 

moisture, with wood C, soil C, and soil moisture updated indirectly through the 

covariation of LAI with these model states. This workflow does not use assimilation to 

update any model parameters; so while the MODIS LAI observation nudges the model 

states towards reality it is likely that parameter errors could be causing the calculation of 

the fluxes to be off. Specifically, the model parameters related to autotrophic respiration 

are likely causing total ecosystem respiration to be too high. This causes the growing 

season NEE to be positive (i.e., more carbon respired than stored) rather than negative. 

Carbon cycle calibration studies rely on updating model parameters as opposed to 

model states; one such study used in situ flux measurements and satellite FAPAR to 

update carbon fixation, respiration, and phenology parameters did see an improvement in 

model-data agreement (Bacour et al., 2015). Another study assimilating LAI and soil 

moisture data to inform model parameters observed the greatest improvement in flux 
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predictions after assimilating both data streams (Albergel et al., 2010). More recent 

studies also found an improvement in GPP prediction with the assimilation of soil 

moisture data (Xing et al., 2023). These results are in line with experimental studies that 

track the variation in GPP by latitude and attribute the variation to differences in soil 

moisture (Baldocchi et al., 2018). 

This research set out to test the prototype forecasting and data assimilation 

workflow using one site and one data constraint, but if we want to understand the 

inherent predictability of the terrestrial carbon and water cycles we need to include more 

sites and more data constraints in future experiments. Increasing the number of sites 

allows us to analyze the spatial variability of predictability, while increasing the number 

of data constraints allows us to decrease the uncertainty associated with the predictions. 

Future model experiments should include additional near-term data streams as part of the 

data assimilation, such as soil moisture, eddy-co flux measurements, and soil respiration. 

This research also relied on a single mesic forest ecosystem. By running the forecast 

workflow across a range of ecoregions we would be able to determine if terrestrial carbon 

and water cycle predictability varies by region; for example, are mesic ecosystems easier 

to predict than arid ecosystems? In addition to exploring the spatial variability of 

predictability, future experiments should explore the temporal variability of predictability 

by running the workflow with longer forecast time series. The results do not show a 

change in predictability of LAI at the 35-day time scale, but a seasonal forecast may 

show greater temporal variation in predictability. A longer forecast time series would also 

be better suited to analyzing the predictability of slower changing carbon stores (wood, 



 
 

 

26 

 

soil). Suitable meteorological forecasts to use as inputs include the Climate Forecast 

System (CFS) (NOAA, n.d.-b) with a 9-month forecast horizon or the North American 

Multi-Model Ensemble forecast with a 3-month forecast horizon (NOAA, n.d.-a).  

Conclusions 

 If we understand how terrestrial carbon and water cycle predictability varies 

spatially and temporally, then we can better inform global land models and data 

collection efforts. We can focus resources on regions with higher predictive uncertainty 

to try and reduce the uncertainty through data collection efforts. This initial research 

concluded that uncertainty in LAI, LE, and NEE was not positively correlated with 

forecast lead time, the assimilation of MODIS LAI observations improved predictability 

of LAI, LE, and NEE, and LAI was more predictable than LE or NEE at a temperate 

deciduous forest in Northeastern U.S. This single-site experiment using the prototype 

forecasting workflow contained unrealistic NEE predictions caused by model 

miscalibration, which illustrates a challenge with scaling up forecasts to more broad 

regional scales where such ground validation data is not available for every site being 

forecast. Identifying the errors at this scale makes it easier to fix and then scale-up the 

experiment once the errors are fixed. Over time the use of iterative forecasting workflows 

will improve our ability to make predictions about the future state of ecosystems, but it is 

important to be realistic about current forecast skill and the time and energy required for 

iterative forecast refinement. 
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