Hearing Research Center Papers

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 2 of 2
  • Item
    Cortical Gamma Rhythms Modulate NMDAR-Mediated Spike Timing Dependent Plasticity in a Biophysical Model
    (Public Library of Science, 2009-12-11) Lee, Shane; Sen, Kamal; Kopell, Nancy
    Spike timing dependent plasticity (STDP) has been observed experimentally in vitro and is a widely studied neural algorithm for synaptic modification. While the functional role of STDP has been investigated extensively, the effect of rhythms on the precise timing of STDP has not been characterized as well. We use a simplified biophysical model of a cortical network that generates pyramidal interneuronal gamma rhythms (PING). Plasticity via STDP is investigated at the excitatory pyramidal cell synapse from a gamma frequency (30–90 Hz) input independent of the network gamma rhythm. The input may represent a corticocortical or an information-specific thalamocortical connection. This synapse is mediated by N-methyl-D-aspartate receptor mediated (NMDAR) currents. For distinct network and input frequencies, the model shows robust frequency regimes of potentiation and depression, providing a mechanism by which responses to certain inputs can potentiate while responses to other inputs depress. For potentiating regimes, the model suggests an optimal amount and duration of plasticity that can occur, which depends on the time course for the decay of the postsynaptic NMDAR current. Prolonging the duration of the input beyond this optimal time results in depression. Inserting pauses in the input can increase the total potentiation. The optimal pause length corresponds to the decay time of the NMDAR current. Thus, STDP in this model provides a mechanism for potentiation and depression depending on input frequency and suggests that the slow NMDAR current decay helps to regulate the optimal amplitude and duration of the plasticity. The optimal pause length is comparable to the time scale of the negative phase of a modulatory theta rhythm, which may pause gamma rhythm spiking. Our pause results may suggest a novel role for this theta rhythm in plasticity. Finally, we discuss our results in the context of auditory thalamocortical plasticity. Author Summary Rhythms are well studied phenomena in many animal species. Brain rhythms in the gamma frequency range (30–90 Hz) are thought to play a role in attention and memory. In this paper, we are interested in how cortical gamma rhythms interact with information specific inputs that also have a significant gamma frequency component. The results from our computational model show that plasticity associated with learning depends on the specific frequencies of the input and cortical gamma rhythms. The results show a mechanism by which both increases and decreases in the strength of the input connection can occur, depending on the specific frequency of the input. A current mediated by NMDA receptors may be responsible for the temporal course of the plasticity seen in these brain regions. We discuss the implications of our results for conditioning paradigms applied to auditory learning.
  • Item
    A Modeling Study of Notch Noise Responses of Type III Units in the Gerbil Dorsal Cochlear Nucleus
    (Kluwer Academic Publishers-Plenum Publishers, 2006-10-11) Zheng, Xiaohan; Voigt, Herbert F.
    A computational model of the neural circuitry of the gerbil dorsal cochlear nucleus (DCN), based on the MacGregor's neuromime model, was used to simulate type III unit (P-cell) responses to notch noise stimuli. The DCN patch model is based on a previous computational model of the cat DCN [Hancock, K. E., and H. F. Voigt. Ann. Biomed. Eng. 27:73–87, 1999]. According to the experimental study of Parsons et al. [Ann. Biomed. Eng. 29:887–896, 2001], the responses of gerbil DCN type III units to notch noise stimuli are similar to those of cat DCN type IV units, which are thought to be spectral notch detectors. This suggests that type III units in the gerbil DCN may serve as spectral notch detectors. In this modeling study, a simplified notch noise response plot—spike discharge rate vs. notch cutoff frequency plot—was used to compare model responses to the experimental results. Parameter estimation and sensitivity analysis of three connection parameters within the DCN patch have been studied and shows the model is robust, providing reasonable fits to the experimental data from 14 of 15 type III units examined [work supported by a grant from NIDCD, Boston University's Biomedical Engineering department and Hearing Research Center].