Whitaker Cardiovascular Institute Papers
Permanent URI for this collection
Browse
Recent Submissions
Item Redox-Sensitivity and Site-Specificity of S- and N- Denitrosation in Proteins(Public Library of Science, 2010-12-21) Jourd'heuil, Frances L.; Lowery, Anthony M.; Melton, Elaina M.; Mnaimneh, Sanie; Bryan, Nathan S.; Fernandez, Bernadette O.; Park, Joo-Ho; Ha, Chung-Eun; Bhagavan, Nadhipuram V.; Feelisch, Martin; Jourd'heuil, DavidBACKGROUND. S-nitrosation - the formation of S-nitrosothiols (RSNOs) at cysteine residues in proteins - is a posttranslational modification involved in signal transduction and nitric oxide (NO) transport. Recent studies would also suggest the formation of N-nitrosamines (RNNOs) in proteins in vivo, although their biological significance remains obscure. In this study, we characterized a redox-based mechanism by which N-nitroso-tryptophan residues in proteins may be denitrosated. METHODOLOGY/PRINCIPAL FINDINGS. The denitrosation of N-acetyl-nitroso Trp (NANT) by glutathione (GSH) required molecular oxygen and was inhibited by superoxide dismutase (SOD). Transnitrosation to form S-nitrosoglutathione (GSNO) was observed only in the absence of oxygen or presence of SOD. Protein denitrosation by GSH was studied using a set of mutant recombinant human serum albumin (HSA). Trp-214 and Cys-37 were the only two residues nitrosated by NO under aerobic conditions. Nitroso-Trp-214 in HSA was insensitive to denitrosation by GSH or ascorbate while denitrosation at Cys-37 was evident in the presence of GSH but not ascorbate. GSH-dependent denitrosation of Trp-214 was restored in a peptide fragment of helix II containing Trp-214. Finally, incubation of cell lysates with NANT revealed a pattern of protein nitrosation distinct from that observed with GSNO. CONCLUSIONS. We propose that the denitrosation of nitrosated Trp by GSH occurs through homolytic cleavage of nitroso Trp to NO and a Trp aminyl radical, driven by the formation of superoxide derived from the oxidation of GSH to GSSG. Overall, the accessibility of Trp residues to redox-active biomolecules determines the stability of protein-associated nitroso species such that in the case of HSA, N-nitroso-Trp-214 is insensitive to denitrosation by low-molecular-weight antioxidants. Moreover, RNNOs can generate free NO and transfer their NO moiety in an oxygen-dependent fashion, albeit site-specificities appear to differ markedly from that of RSNOs.Item The Reno-Vascular A2B Adenosine Receptor Protects the Kidney from Ischemia(Public Library of Science, 2008-6-24) Grenz, Almut; Osswald, Hartmut; Eckle, Tobias; Yang, Dan; Zhang, Hua; Tran, Zung Vu; Klingel, Karin; Ravid, Katya; Eltzschig, Holger K.BACKGROUND. Acute renal failure from ischemia significantly contributes to morbidity and mortality in clinical settings, and strategies to improve renal resistance to ischemia are urgently needed. Here, we identified a novel pathway of renal protection from ischemia using ischemic preconditioning (IP). METHODS AND FINDINGS. For this purpose, we utilized a recently developed model of renal ischemia and IP via a hanging weight system that allows repeated and atraumatic occlusion of the renal artery in mice, followed by measurements of specific parameters or renal functions. Studies in gene-targeted mice for each individual adenosine receptor (AR) confirmed renal protection by IP in A1−/−, A2A−/−, or A3AR−/− mice. In contrast, protection from ischemia was abolished in A2BAR−/− mice. This protection was associated with corresponding changes in tissue inflammation and nitric oxide production. In accordance, the A2BAR-antagonist PSB1115 blocked renal protection by IP, while treatment with the selective A2BAR-agonist BAY 60–6583 dramatically improved renal function and histology following ischemia alone. Using an A2BAR-reporter model, we found exclusive expression of A2BARs within the reno-vasculature. Studies using A2BAR bone-marrow chimera conferred kidney protection selectively to renal A2BARs. CONCLUSIONS. These results identify the A2BAR as a novel therapeutic target for providing potent protection from renal ischemia. Using gene-targeted mice, Holger Eltzschig and colleagues identify the A2B adenosine receptor as a novel therapeutic target for providing protection from renal ischemia.Item ω-3 Polyunsaturated Fatty Acids Prevent Pressure Overload-Induced Ventricular Dilation and Decrease in Mitochondrial Enzymes Despite no Change in Adiponectin(BioMed Central, 2010-9-6) O'Shea, Karen M.; Chess, David J.; Khairallah, Ramzi J.; Hecker, Peter A.; Lei, Biao; Walsh, Kenneth; Des Rosiers, Christine; Stanley, William C.BACKGROUND Pathological left ventricular (LV) hypertrophy frequently progresses to dilated heart failure with suppressed mitochondrial oxidative capacity. Dietary marine ω-3 polyunsaturated fatty acids (ω-3 PUFA) up-regulate adiponectin and prevent LV dilation in rats subjected to pressure overload. This study 1) assessed the effects of ω-3 PUFA on LV dilation and down-regulation of mitochondrial enzymes in response to pressure overload; and 2) evaluated the role of adiponectin in mediating the effects of ω-3 PUFA in heart. METHODS Wild type (WT) and adiponectin-/- mice underwent transverse aortic constriction (TAC) and were fed standard chow ± ω-3 PUFA for 6 weeks. At 6 weeks, echocardiography was performed to assess LV function, mice were terminated, and mitochondrial enzyme activities were evaluated. RESULTS TAC induced similar pathological LV hypertrophy compared to sham mice in both strains on both diets. In WT mice TAC increased LV systolic and diastolic volumes and reduced mitochondrial enzyme activities, which were attenuated by ω-3 PUFA without increasing adiponectin. In contrast, adiponectin-/- mice displayed no increase in LV end diastolic and systolic volumes or decrease in mitochondrial enzymes with TAC, and did not respond to ω-3 PUFA. CONCLUSION These findings suggest ω-3 PUFA attenuates cardiac pathology in response to pressure overload independent of an elevation in adiponectin.Item Role of Esrrg in the Fibrate-Mediated Regulation of Lipid Metabolism Genes in Human ApoA-I Transgenic Mice(Nature Publishing Group, 2009-12-01) Sanoudou, D.; Duka, A.; Drosatos, K.; Hayes, K. C.; Zannis, V. I.We have used a new ApoA-I transgenic mouse model to identify by global gene expression profiling, candidate genes that affect lipid and lipoprotein metabolism in response to fenofibrate treatment. Multilevel bioinformatical analysis and stringent selection criteria (2-fold change, 0% false discovery rate) identified 267 significantly changed genes involved in several molecular pathways. The fenofibrate-treated group did not have significantly altered levels of hepatic human APOA-I mRNA and plasma ApoA-I compared with the control group. However, the treatment increased cholesterol levels to 1.95-fold mainly due to the increase in high-density lipoprotein (HDL) cholesterol. The observed changes in HDL are associated with the upregulation of genes involved in phospholipid biosynthesis and lipid hydrolysis, as well as phospholipid transfer protein. Significant upregulation was observed in genes involved in fatty acid transport and β-oxidation, but not in those of fatty acid and cholesterol biosynthesis, Krebs cycle and gluconeogenesis. Fenofibrate changed significantly the expression of seven transcription factors. The estrogen receptor-related gamma gene was upregulated 2.36-fold and had a significant positive correlation with genes of lipid and lipoprotein metabolism and mitochondrial functions, indicating an important role of this orphan receptor in mediating the fenofibrate-induced activation of a specific subset of its target genes.Item Interpreting Metabolomic Profiles using Unbiased Pathway Models(Public Library of Science, 2010-2-26) Deo, Rahul C.; Hunter, Luke; Lewis, Gregory D.; Pare, Guillaume; Vasan, Ramachandran S.; Chasman, Daniel I.; Wang, Thomas J.; Gerszten, Robert E.; Roth, Frederick P.Human disease is heterogeneous, with similar disease phenotypes resulting from distinct combinations of genetic and environmental factors. Small-molecule profiling can address disease heterogeneity by evaluating the underlying biologic state of individuals through non-invasive interrogation of plasma metabolite levels. We analyzed metabolite profiles from an oral glucose tolerance test (OGTT) in 50 individuals, 25 with normal (NGT) and 25 with impaired glucose tolerance (IGT). Our focus was to elucidate underlying biologic processes. Although we initially found little overlap between changed metabolites and preconceived definitions of metabolic pathways, the use of unbiased network approaches identified significant concerted changes. Specifically, we derived a metabolic network with edges drawn between reactant and product nodes in individual reactions and between all substrates of individual enzymes and transporters. We searched for "active modules"—regions of the metabolic network enriched for changes in metabolite levels. Active modules identified relationships among changed metabolites and highlighted the importance of specific solute carriers in metabolite profiles. Furthermore, hierarchical clustering and principal component analysis demonstrated that changed metabolites in OGTT naturally grouped according to the activities of the System A and L amino acid transporters, the osmolyte carrier SLC6A12, and the mitochondrial aspartate-glutamate transporter SLC25A13. Comparison between NGT and IGT groups supported blunted glucose- and/or insulin-stimulated activities in the IGT group. Using unbiased pathway models, we offer evidence supporting the important role of solute carriers in the physiologic response to glucose challenge and conclude that carrier activities are reflected in individual metabolite profiles of perturbation experiments. Given the involvement of transporters in human disease, metabolite profiling may contribute to improved disease classification via the interrogation of specific transporter activities. Author Summary Human disease is complex, arising from the interaction of many genetic and environmental factors. Efforts to personalize treatment have been thwarted by "phenotypic heterogeneity", the apparent similarity of disease states with diverse underlying causes. One approach to resolve this heterogeneity is to redefine diseases on the basis of abnormal physiologic activities, which should allow grouping patients into categories with similar treatment response and prognosis. Physiologic activities can be identified and assessed through quantitative measurements of biomolecules—proteins, mRNAs, metabolites—in individual patient samples. The field of metabolomics involves the analysis of a broad array of metabolite levels from clinical fluid samples such as blood or urine and can be used to evaluate disease states. Because metabolic profiles are complex, we have taken an integrative network-based approach to understand them in terms of abnormal activities of enzymes and small molecule transporters. We have focused on the oral glucose tolerance test, used to diagnose diabetes, and have found that multiple transporters play an important role in the normal response to ingesting sugar. Many of these transporter activities are abnormal in individuals with impaired glucose tolerance and differing activities among them may reflect the diverse underlying causes and variable clinical courses of such patients.Item Metabolic Profiling of the Human Response to a Glucose Challenge Reveals Distinct Axes of Insulin Sensitivity(Nature Publishing Group, 2008-08-05) Shaham, Oded; Wei, Ru; Wang, Thomas J.; Ricciardi, Catherine; Lewis, Gregory D.; Vasan, Ramachandran S.; Carr, Steven A.; Thadhani, Ravi; Gerszten, Robert E.; Mootha, Vamsi K.Glucose ingestion after an overnight fast triggers an insulin-dependent, homeostatic program that is altered in diabetes. The full spectrum of biochemical changes associated with this transition is currently unknown. We have developed a mass spectrometry-based strategy to simultaneously measure 191 metabolites following glucose ingestion. In two groups of healthy individuals (n=22 and 25), 18 plasma metabolites changed reproducibly, including bile acids, urea cycle intermediates, and purine degradation products, none of which were previously linked to glucose homeostasis. The metabolite dynamics also revealed insulin's known actions along four key axes—proteolysis, lipolysis, ketogenesis, and glycolysis—reflecting a switch from catabolism to anabolism. In pre-diabetics (n=25), we observed a blunted response in all four axes that correlated with insulin resistance. Multivariate analysis revealed that declines in glycerol and leucine/isoleucine (markers of lipolysis and proteolysis, respectively) jointly provide the strongest predictor of insulin sensitivity. This observation indicates that some humans are selectively resistant to insulin's suppression of proteolysis, whereas others, to insulin's suppression of lipolysis. Our findings lay the groundwork for using metabolic profiling to define an individual's 'insulin response profile', which could have value in predicting diabetes, its complications, and in guiding therapy.Item Myogenic Akt Signaling Upregulates the Utrophin-Glycoprotein Complex and Promotes Sarcolemma Stability in Muscular Dystrophy(Oxford University Press, 2008-11-04) Peter, Angela K.; Ko, Christopher Y.; Kim, Michelle H.; Hsu, Nigel; Ouchi, Noriyuki; Rhie, Suhn; Izumiya, Yasuhiro; Zeng, Ling; Walsh, Kenneth; Crosbie, Rachelle H.Duchenne muscular dystrophy is caused by dystrophin mutations that lead to structural instability of the sarcolemma membrane, myofiber degeneration/regeneration and progressive muscle wasting. Here we show that myogenic Akt signaling in mouse models of dystrophy promotes increased expression of utrophin, which replaces the function of dystrophin thereby preventing sarcolemma damage and muscle wasting. In contrast to previous suggestions that increased Akt in dystrophy was a secondary consequence of pathology, our findings demonstrate a pivotal role for this signaling pathway such that modulation of Akt can significantly affect disease outcome by amplification of existing, physiological compensatory mechanisms.Item The Framingham Heart Study 100K SNP Genome-Wide Association Study Resource: Overview of 17 Phenotype Working Group Reports(BioMed Central, 2007-9-19) Cupples, L. Adrienne; Arruda, Heather T.; Benjamin, Emelia J.; D'Agostino, Ralph B.; Demissie, Serkalem; DeStefano, Anita L.; Dupuis, Josée; Falls, Kathleen M.; Fox, Caroline S.; Gottlieb, Daniel J.; Govindaraju, Diddahally R.; Guo, Chao-Yu; Heard-Costa, Nancy L.; Hwang, Shih-Jen; Kathiresan, Sekar; Kiel, Douglas P.; Laramie, Jason M.; Larson, Martin G.; Levy, Daniel; Liu, Chun-Yu; Lunetta, Kathryn L.; Mailman, Matthew D.; Manning, Alisa K.; Meigs, James B.; Murabito, Joanne M.; Newton-Cheh, Christopher; O'Connor, George T.; O'Donnell, Christopher J.; Pandey, Mona; Seshadri, Sudha; Vasan, Ramachandran S.; Wang, Zhen Y.; Wilk, Jemma B.; Wolf, Philip A.; Yang, Qiong; Atwood, Larry D.BACKGROUND: The Framingham Heart Study (FHS), founded in 1948 to examine the epidemiology of cardiovascular disease, is among the most comprehensively characterized multi-generational studies in the world. Many collected phenotypes have substantial genetic contributors; yet most genetic determinants remain to be identified. Using single nucleotide polymorphisms (SNPs) from a 100K genome-wide scan, we examine the associations of common polymorphisms with phenotypic variation in this community-based cohort and provide a full-disclosure, web-based resource of results for future replication studies. METHODS: Adult participants (n = 1345) of the largest 310 pedigrees in the FHS, many biologically related, were genotyped with the 100K Affymetrix GeneChip. These genotypes were used to assess their contribution to 987 phenotypes collected in FHS over 56 years of follow up, including: cardiovascular risk factors and biomarkers; subclinical and clinical cardiovascular disease; cancer and longevity traits; and traits in pulmonary, sleep, neurology, renal, and bone domains. We conducted genome-wide variance components linkage and population-based and family-based association tests. RESULTS: The participants were white of European descent and from the FHS Original and Offspring Cohorts (examination 1 Offspring mean age 32 ± 9 years, 54% women). This overview summarizes the methods, selected findings and limitations of the results presented in the accompanying series of 17 manuscripts. The presented association results are based on 70,897 autosomal SNPs meeting the following criteria: minor allele frequency ≥ 10%, genotype call rate ≥ 80%, Hardy-Weinberg equilibrium p-value ≥ 0.001, and satisfying Mendelian consistency. Linkage analyses are based on 11,200 SNPs and short-tandem repeats. Results of phenotype-genotype linkages and associations for all autosomal SNPs are posted on the NCBI dbGaP website at. CONCLUSION: We have created a full-disclosure resource of results, posted on the dbGaP website, from a genome-wide association study in the FHS. Because we used three analytical approaches to examine the association and linkage of 987 phenotypes with thousands of SNPs, our results must be considered hypothesis-generating and need to be replicated. Results from the FHS 100K project with NCBI web posting provides a resource for investigators to identify high priority findings for replication.Item Plasma Leptin Levels and Incidence of Heart Failure, Cardiovascular Disease, and Total Mortality in Elderly Individuals(American Diabetes Association, 2008-12-29) Lieb, Wolfgang; Sullivan, Lisa M.; Harris, Tamara B.; Roubenoff, Ronenn; Benjamin, Emelia J.; Levy, Daniel; Fox, Caroline S.; Wang, Thomas J.; Wilson, Peter W.; Kannel, William B.; Vasan, Ramachandran S.OBJECTIVE: Obesity predisposes individuals to congestive heart failure (CHF) and cardiovascular disease (CVD). Leptin regulates energy homeostasis, is elevated in obesity, and influences ventricular and vascular remodeling. We tested the hypothesis that leptin levels are associated with greater risk of CHF, CVD, and mortality in elderly individuals. RESEARCH DESIGN AND METHODS: We evaluated 818 elderly (mean age 79 years, 62% women) Framingham Study participants attending a routine examination at which plasma leptin was assayed. RESULTS: Leptin levels were higher in women and strongly correlated with BMI (P < 0.0001). On follow-up (mean 8.0 years), 129 (of 775 free of CHF) participants developed CHF, 187 (of 532 free of CVD) experienced a first CVD event, and 391 individuals died. In multivariable Cox regression models adjusting for established risk factors, log-leptin was positively associated with incidence of CHF and CVD (hazard ratio [HR] per SD increment 1.26 [95% CI 1.03–1.55] and 1.28 [1.09–1.50], respectively). Additional adjustment for BMI nullified the association with CHF (0.97 [0.75–1.24]) but only modestly attenuated the relation to CVD incidence (1.23 [1.00–1.51], P = 0.052). We observed a nonlinear, U-shaped relation between log-leptin and mortality (P = 0.005 for quadratic term) with greater risk of death evident at both low and high leptin levels. CONCLUSIONS: In our moderate-sized community-based elderly sample, higher circulating leptin levels were associated with a greater risk of CHF and CVD, but leptin did not provide incremental prognostic information beyond BMI. Additional investigations are warranted to elucidate the U-shaped relation of leptin to mortality.Item Activation of Adenosine A2B Receptors Enhances Ciliary Beat Frequency in Mouse Lateral Ventricle Ependymal Cells(BioMed Central, 2009-11-18) Genzen, Jonathan R.; Yang, Dan; Ravid, Katya; Bordey, AngeliqueBACKGROUND: Ependymal cells form a protective monolayer between the brain parenchyma and cerebrospinal fluid (CSF). They possess motile cilia important for directing the flow of CSF through the ventricular system. While ciliary beat frequency in airway epithelia has been extensively studied, fewer reports have looked at the mechanisms involved in regulating ciliary beat frequency in ependyma. Prior studies have demonstrated that ependymal cells express at least one purinergic receptor (P2X7). An understanding of the full range of purinergic receptors expressed by ependymal cells, however, is not yet complete. The objective of this study was to identify purinergic receptors which may be involved in regulating ciliary beat frequency in lateral ventricle ependymal cells. METHODS: High-speed video analysis of ciliary movement in the presence and absence of purinergic agents was performed using differential interference contrast microscopy in slices of mouse brain (total number of animals = 67). Receptor identification by this pharmacological approach was corroborated by immunocytochemistry, calcium imaging experiments, and the use of two separate lines of knockout mice. RESULTS: Ciliary beat frequency was enhanced by application of a commonly used P2X7 agonist. Subsequent experiments, however, demonstrated that this enhancement was observed in both P2X7+/+ and P2X7-/- mice and was reduced by pre-incubation with an ecto-5'-nucleotidase inhibitor. This suggested that enhancement was primarily due to a metabolic breakdown product acting on another purinergic receptor subtype. Further studies revealed that ciliary beat frequency enhancement was also induced by adenosine receptor agonists, and pharmacological studies revealed that ciliary beat frequency enhancement was primarily due to A2B receptor activation. A2B expression by ependymal cells was subsequently confirmed using A2B-/-/β-galactosidase reporter gene knock-in mice. CONCLUSION: This study demonstrates that A2B receptor activation enhances ciliary beat frequency in lateral ventricle ependymal cells. Ependymal cell ciliary beat frequency regulation may play an important role in cerebral fluid balance and cerebrospinal fluid dynamics.Item Genome-Wide Association of Echocardiographic Dimensions, Brachial Artery Endothelial Function and Treadmill Exercise Responses in the Framingham Heart Study(BioMed Central, 2007-9-19) Vasan, Ramachandran S.; Larson, Martin G.; Aragam, Jayashri; Wang, Thomas J.; Mitchell, Gary F.; Kathiresan, Sekar; Newton-Cheh, Christopher; Vita, Joseph A.; Keyes, Michelle J.; O'Donnell, Christopher J.; Levy, Daniel; Benjamin, Emelia J.BACKGROUND: Echocardiographic left ventricular (LV) measurements, exercise responses to standardized treadmill test (ETT) and brachial artery (BA) vascular function are heritable traits that are associated with cardiovascular disease risk. We conducted a genome-wide association study (GWAS) in the community-based Framingham Heart Study. METHODS: We estimated multivariable-adjusted residuals for quantitative echocardiography, ETT and BA function traits. Echocardiography residuals were averaged across 4 examinations and included LV mass, diastolic and systolic dimensions, wall thickness, fractional shortening, left atrial and aortic root size. ETT measures (single exam) included systolic blood pressure and heart rate responses during exercise stage 2, and at 3 minutes post-exercise. BA measures (single exam) included vessel diameter, flow-mediated dilation (FMD), and baseline and hyperemic flow responses. Generalized estimating equations (GEE), family-based association tests (FBAT) and variance-components linkage were used to relate multivariable-adjusted trait residuals to 70,987 SNPs (Human 100K GeneChip, Affymetrix) restricted to autosomal SNPs with minor allele frequency ≥0.10, genotype call rate ≥0.80, and Hardy-Weinberg equilibrium p ≥ 0.001. RESULTS: We summarize results from 17 traits in up to 1238 related middle-aged to elderly men and women. Results of all association and linkage analyses are web-posted at . We confirmed modest-to-strong heritabilities (estimates 0.30–0.52) for several Echo, ETT and BA function traits. Overall, p < 10-5 in either GEE or FBAT models were observed for 21 SNPs (nine for echocardiography, eleven for ETT and one for BA function). The top SNPs associated were (GEE results): LV diastolic dimension, rs1379659 (SLIT2, p = 1.17*10-7); LV systolic dimension, rs10504543 (KCNB2, p = 5.18*10-6); LV mass, rs10498091 (p = 5.68*10-6); Left atrial size, rs1935881 (FAM5C, p = 6.56*10-6); exercise heart rate, rs6847149 (NOLA1, p = 2.74*10-6); exercise systolic blood pressure, rs2553268 (WRN, p = 6.3*10-6); BA baseline flow, rs3814219 (OBFC1, 9.48*10-7), and FMD, rs4148686 (CFTR, p = 1.13*10-5). Several SNPs are reasonable biological candidates, with some being related to multiple traits suggesting pleiotropy. The peak LOD score was for LV mass (4.38; chromosome 5); the 1.5 LOD support interval included NRG2. CONCLUSION: In hypothesis-generating GWAS of echocardiography, ETT and BA vascular function in a moderate-sized community-based sample, we identified several SNPs that are candidates for replication attempts and we provide a web-based GWAS resource for the research community.