Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item

    Protein interactions across and between eukaryotic kingdoms: networks, inference strategies, integration of functional data and evolutionary dynamics

    Thumbnail
    Date Issued
    2013
    Author(s)
    Pevzner, Samuel J
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/11023
    Abstract
    How cellular elements coordinate their function is a fundamental question in biology. A crucial step towards understanding cellular systems is the mapping of physical interactions between protein, DNA, RNA and other macromolecules or metabolites. Genome-scale technologies have yielded protein-protein interaction networks for several eukaryotic species and have provided insight into biological processes and evolution, but many of the currently available networks are biased. Towards a true human protein-protein interaction network, we examined literature-based aggregations of lowthroughput experiments, high-throughput experimental networks validated using different strategies, and predicted interaction networks to infer how the underlying interactome may differ from current maps. Using systematically mapped interactome networks, which appear to be the least biased, we explored the functional organization of Arabidopsis thaliana and characterize the asymmetric divergence of duplicated paralogous proteins through their interaction profiles. To further dissect the relationship between interactions and function enforced by evolution, we investigated a first-of-its-kind systematic crossspecies human-yeast hybrid interactome network. Although the cross-species network is topologically similar to conventional intra-species networks, we found signatures of dynamic changes in interaction propensities due to countervailing evolutionary forces. Collectively, these analyses of human, plant and yeast interactome networks bridge separate experiments to characterize bias, function and evolution across eukaryotic kingdoms.
    Description
    Thesis (Ph.D.)--Boston University
    Collections
    • Boston University Theses & Dissertations [6985]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help