Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item

    Ultrafast thermoreflectance microscopy

    Thumbnail
    Date Issued
    2013
    Author(s)
    Li, Jing
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/11118
    Abstract
    As electronic and photonic devices shrink to the nanoscale, heat dissipation becomes the bottleneck for performance. As a result, understanding and controlling nanoscale thermal transport in thin films and across interfaces is a critical issue requiring new experimental tools. In this thesis, the development of an ultrafast thermoreflectance microscope for high resolution thermal property imaging is described. It can function as a time domain thermoreflectance (TDTR) or frequency domain thermoreflectance (FDTR) system. Design and implementation of the optical system will be introduced in detail. A thermal model derived from heat transfer theory is used to analyze the experimental data and obtain quantitative property maps for bulk and thin-film samples. The system is used to obtain temperature dependent thermal properties of single crystal diamond and thin film VO2, as well as thermal property maps of several thin film samples.
    Description
    Thesis (Ph.D.)--Boston University
    Collections
    • Boston University Theses & Dissertations [6905]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help