Show simple item record

dc.contributor.authorSataline, Christopher J.en_US
dc.date.accessioned2015-08-04T16:03:10Z
dc.date.available2015-08-04T16:03:10Z
dc.date.issued2013
dc.date.submitted2013
dc.identifier.other
dc.identifier.urihttps://hdl.handle.net/2144/12213
dc.descriptionThesis (M.S.)--Boston Universityen_US
dc.description.abstractCoherent population trapping (CPT) effects can be realized with frequency mod- ulated lasers and compact vapor cells of alkali metals such as Rubidium-87. Using these optical resonances, one can readily measure the hyperfine separation of this three-level atom. In the presence of a magnetic field, the Zeeman effect causes magnetic sublevels of these hyperfine ground states to split; the frequency of such splitting can be measured in an ensemble of Rubidium atoms with the magnetometer we have constructed. While other groups have constructed magnetometers based on these effects, none to our knowledge have investigated the capability to measure magnetic fields remotely. Most atomic-optical magnetometers,colocate the transmit and receive optical system with the vapor cell itself or require fiber optics at the location of the cell; our free-space technique with a reflective geometry lends itself to measurement at distances greater than could be achieved with those methods. We have developed a laboratory FM laser spectrometer that interrogates CPT resonances to measure magnetic fields with the vapor cell not necessarily co-located with the spectrometer. Its intrinsic linewidth (in the presence of transit-time broadening) is less than 30 kilohertz, which allows measurements on the order of 2 microtesla. We present results concerning the accuracy of the magnetometer at about one meter of standoff distance, and describe considerations for measurements at longer distances.en_US
dc.language.isoen_US
dc.publisherBoston Universityen_US
dc.titleRemotely-sensed atomic magnetometryen_US
dc.typeThesis/Dissertationen_US
etd.degree.nameMaster of Scienceen_US
etd.degree.levelmastersen_US
etd.degree.disciplineElectrical Engineeringen_US
etd.degree.grantorBoston Universityen_US


This item appears in the following Collection(s)

Show simple item record