Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item

    The role of neuroinflammation in stress & methamphetamine-induced damage

    Thumbnail
    Date Issued
    2012
    Author(s)
    Northrop, Nicole Alia Fazo
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Embargoed until:
    Indefinite
    Permanent Link
    https://hdl.handle.net/2144/12543
    Abstract
    Methamphetamine (Meth) is a widely abused psychostimulant that causes damage to monoamine nerve terminals, marked by long-term depletions of dopamine (DA) and serotonin (5-HT), but the exact mechanisms by which this damage occurs remain unclear. Drug abuse and stress are highly co-morbid in society and therefore, stress should be considered a co-factor in mediating the deleterious effects of Meth. In fact, recent studies illustrate that stress enhances Meth-induced toxicity to monoamine nerve terminals. As both chronic stress and Meth produce a pro-inflammatory state, the current studies examined the role of neuroinflammation in mediating the effects of chronic stress and/or Meth in rats. Exposure to 10 days of chronic unpredictable stress (CUS) increased proinflammatory transcripts and protein expression of the inflammatory mediator, cyclooxygenase (COX)-2. COX activity, in turn, mediated the stress and Meth-induced increases in the proinflammatory enzyme, matrix metalloproteinase-9 (MMP-9). COX and MMP-9, however, were not responsible for the depletions of 5-HT in the hippocampus observed after the serial exposure to CUS and Meth. In contrast, COX activity mediated the enhancement of Meth-induced striatal monoaminergic damage produced by CUS. In addition to damaging monoaminergic terminals, COX activity could mediate blood-brain barrier (BBB) disruption. Thus the effects of stress and Meth on the BBB were examined. Twenty-four hours after the administration of Meth, only rats pre-exposed to CUS showed evidence of BBB disruption reflected by decreases in occludin and claudin-5 and increases in truncation of β-dystroglycan, FITC-dextran extravasation, and brain edema. Except for FITC-dextran extravasation, these effects were blocked by the inhibition of COX. All changes other than β-dystroglycan and edema persisted 7 days later, were paralleled by increases in the inflammatory biomarker, glial fibrillary acidic protein, and were blocked by COX inhibition during and after Meth treatment. These results indicate that stress and Meth synergize to produce a persistent inflammatory state that damages striatal monoaminergic nerve terminals and creates a long-lasting structural and functional BBB disruption. Furthermore, these results suggest that stress can render non-toxic insults toxic through neuroinflammatory mechanisms and implicate the use of anti-inflammatory drugs in combating the neurotoxic effects of chronic stress and drug abuse.
    Description
    Thesis (Ph.D.)--Boston University PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you.
    Collections
    • Boston University Theses & Dissertations [6752]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help