Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item

    Folding music: modeling transformations between voice-leading spaces

    Thumbnail
    Date Issued
    2012
    Author(s)
    Reeves, Matthew Walter
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Embargoed until:
    Indefinite
    Permanent Link
    https://hdl.handle.net/2144/12596
    Abstract
    Geometric voice-leading spaces have been outlined by Clifton Callender, Ian Quinn, and Dmitri Tymoczko, who explain how quotient spaces, using traditional musical equivalences, can be used to model voice leading in music. They discuss how five musical equivalences, which they refer to as the "OPTIC" equivalences (octave, permutation, transposition, inversion, and cardinality), can be applied in any combination in order to highlight different musical properties. However, they do not address all of these combinations in an exhaustive manner. Nor have any articles been written about these spaces that were specifically directed to the music theory community, especially in terms of explaining the mathematical concepts that are the foundation of these spaces. This project fulfills this need, discussing the background mathematics required to understand how these spaces function, and addressing every possible combination of the OPTIC equivalences, using video graphics in order to fully explain and imagine these spaces, the way they transform from one to another, and the motion within each space. In addition, two new equivalence relations are presented, namely transpositional inversion and contour. The last section of the video provides a practical application of these spaces by examining Joseph Straus's concept of "fuzzy transposition" and the metrics by which he measures transpositional relatedness. Seeing how the spaces fold and interrelate provides a better understanding of the spaces themselves, how they function, and the musical equivalences that they embody.
    Description
    Thesis (M.M.)--Boston University PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you.
    Collections
    • Boston University Theses & Dissertations [6746]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help