Show simple item record

dc.contributor.authorYao, Raphaelen_US
dc.date.accessioned2015-08-07T03:43:29Z
dc.date.available2015-08-07T03:43:29Z
dc.date.issued2013
dc.date.submitted2013
dc.identifier.other(ALMA)contemp
dc.identifier.urihttps://hdl.handle.net/2144/12896
dc.descriptionThesis (Ph.D.)--Boston University PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you.en_US
dc.description.abstractThe construction of tissue-engineered blood vessels (TEBV) is a promising solution for treating cardiovascular diseases. In order to attain the proper organization and mechanical properties found in native vessels, vascular smooth muscle cells (VSMC) areusedasacrucialcomponentofTEBVs. With the growing interest in stem cells, research has shown that marrow stromal cells (MSC) are a potential cell source for VSMCs due to their easier and less invasive isolation procedure, fast proliferation rates, and most importantly, the ability to differentiate into VSMCs. While current studies have provided evidence that mechanical stimulation can induce MSC alignment and differentiation into VSMCs, a definitive set of conditions must be determined in order to successfully control the differentiation. The goal of this dissertation is to further define the effects of mechanical stimuli on the differentiation of MSCs. To do so, we created a uniaxial cell stretcher capable of delivering tunable mechanical conditions to cells seeded on a substrate. With this device, we applied a range of controlled stretch frequencies to MSCs and evaluated the final cell type for each condition using quantitative RT-PCR and immunocytochemistry. We found that at 10% strain, a 1 Hz frequency induced differentiation into the VSMC lineage as well as a highly aligned organization while a 0.1 Hz frequency induced osteogenesis. Using these results, we proceeded to investigate the potential of MSC transdifferentiation through mechanical stimulation by applying the two distinct lineage-inducing conditions sequentially and evaluating the final cell type. We found that while mechanical stimulation was capable of inducing MSC transdifferentiation, it could only proceed in the direction toward the VSMC phenotype under the applied conditions. Our findings revealed the potential use ofmechanical stimulation as a tool for not only controlling but also maintaining MSC differentiation. We expect the methods and specific mechanical conditioning developed in this project to become a useful and novel approach to TEBV construction.en_US
dc.language.isoen_US
dc.publisherBoston Universityen_US
dc.titleThe effects of mechanical stimulation on controlling and maintaining marrow stromal cell differentiation into vascular smooth muscle cellsen_US
dc.typeThesis/Dissertationen_US
etd.degree.nameDoctor of Philosophyen_US
etd.degree.leveldoctoralen_US
etd.degree.disciplineBiomedical Engineeringen_US
etd.degree.grantorBoston Universityen_US


This item appears in the following Collection(s)

Show simple item record