Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item

    Radical mediated heterocycle functionalization: methodology development and natural product synthesis

    Thumbnail
    Date Issued
    2013
    Author(s)
    Furst, Laura
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/13121
    Abstract
    Substituted heterocycles are common building-blocks for biologically relevant molecules and represent challenging synthetic targets. Due to limited methods available for their preparation and derivatization, direct C-H functionalization protocols offer considerable advantages. Radical chemistry has shown great potential in this regard; however traditional approaches are unattractive due to poor selectivity and harsh reaction conditions. Visible light photoredox catalysis, on the other hand, is a mild alternative for alkyl radical generation and has proven its utility in organic synthesis. The work encompassed in this thesis details the efforts towards the development of practical photoredox-based functionalizations of heterocycles. Specific focus is placed upon overcoming obstacles pertaining to H-atom abstraction, back electron transfer, and redox strength of photocatalysts to achieve efficient C-Br bond reductions, amine oxidations, and C-C bond formations. In pursuit of these objectives, a C2-selective malonation of indoles and other electron-rich heteroarenes was accomplished in high yields using photocatalyst Ru(bpy)3Cl2, p-CH3OC6H4NPh, and blue LEDs as the light source. Use of a triarylamine over a trialkylamine suppressed H-atom abstraction and promoted C-C bond formation. Subsequent exploitation of the reductive quenching cycle of Ru(bpy)3Cl2 and use of Cl3CBr as an alternative oxidant led to an oxidative nucleophilic trapping of tetrahydroisoquinolines to provide a diverse set of analogues. Finally, photoredox catalysis was utilized for the creation of C-C bonds in the context of complex molecule synthesis. A variety of bromopyrroloindolines and indoles were coupled to furnish C3-C3' and C3-C2' bisindole alkaloids, which was successfully applied to the total synthesis of gliocladin C and related analogues. Moreover, fine-tuning of the redox cycle with photocatalyst Ir(ppy)2(dtbbpy)PF6 and LiB(cat)2 as the reductive quencher enabled the coupling less-reactive substrates and suppression of back electron transfer.
    Collections
    • Boston University Theses & Dissertations [6982]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help