Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item

    Regulation of glutamatergic AMPA receptor stability and trafficking by ubiquitination

    Thumbnail
    Date Issued
    2013
    Author(s)
    Lin, Amy Wei Pey
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/13152
    Abstract
    AMPA-type glutamate receptors (AMPARs) play a critical role in mediating the majority of fast excitatory synaptic transmission in the brain, where alterations in receptor expression, distribution and trafficking have been shown to underlie synaptic plasticity and higher brain function. However, the molecular mechanisms regulating AMPAR surface expression and turnover are still not fully understood. We report that mammalian AMPARs are subject to post-translational modification by ubiquitin, and identify Nedd4 as the E3 ligase responsible for mediating this process. AMPAR ubiquitination enhanced receptor degradation and reduced AMPAR cell-surface expression; conversely, inhibition of proteasomal activity caused AMPAR accumulation. Using site-directed mutagenesis we replaced each of four lysine residues available as putative ubiquitination sites on the AMPAR subunit GluA1 C-terminal with an arginine and identified critical residues for ubiquitination and receptor degradation. Consistent with the role of protein ubiquitination, lysine mutation reduced the efficiency of AMPAR endocytosis. We further investigated the molecular mechanisms involved in the internalization of ubiquitinated AMPARs. We find that the endocytic adaptor protein Eps15 plays a critical role in this process. siRNA-mediated suppression or overexpression of Eps15 results in changes in AMPAR surface expression. Eps15 interaction with AMPARs requires Nedd4-mediated GluA1 ubiquitination along with the ubiquitin interacting motif (UIM) of Eps15. Consistent with ubiquitination-mediated receptor internalization, knockdown of Eps15 suppresses GluA1 internalization of wild-type GluA1, but not a mutant GluA1 lacking ubiquitination sites, indicating a crucial role for Eps15 in the trafficking of ubiquitinated AMPARs. These findings reveal novel regulatory mechanisms in the control of glutamate receptor amount and distribution dynamics, which are key factors implicated in higher brain functions and neurological disorders.
    Collections
    • Boston University Theses & Dissertations [6982]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help