Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item

    Examining the potential of anti-A(beta) antibodies as Alzheimer's therapeutics

    Thumbnail
    License
    Attribution-NonCommercial-NoDerivatives 4.0 International
    Date Issued
    2016
    Author(s)
    Pham, Sean
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/14595
    Abstract
    Alzheimer’s disease results from an accumulation of aggregated amyloid beta peptide into oligomeric forms. Soluble oligomers are neurotoxic species, which are believed to be the pathophysiological cause of Alzheimer’s neurodegeneration. Amyloid β species (Aβ) are formed via normal physiological cleavage of amyloid precursor protein by β and γ secretases. Cleaved isoforms aggregate further to form oligomeric configurations of Αβ peptide. To target toxic soluble Aβ oligomers, monoclonal antibodies have been synthesized. Experimental analysis demonstrates the ability of these antibodies to recognize synthetic and endogenous oligomers. In transgenic mice designed to overexpress oligomeric isoforms of Aβ, the antibodies were able to reduce the cerebral amyloid load with proceeding improvements in cognitive abilities. However, large-scale clinical trials corroborated results indicating diminished amyloid load, but failed to produce observable improvements in clinical outcome in patients with Alzheimer’s disease. Simply put, the removal of amyloidogenic species was insufficient in alleviating the associated neurodegeneration and elicited no improvement in cognitive ability, suggesting that Aβ might not be the responsible pathogen in Alzheimer’s. The successes of antibodies in in vitro and transgenic mice studies suggest the potential of antibodies in the treatment of Alzheimer’s, but the inability of these drugs to produce marked improvements in clinical trials questions the role of amyloid in the pathophysiology of the disease.
    Rights
    Attribution-NonCommercial-NoDerivatives 4.0 International
    Collections
    • Boston University Theses & Dissertations [6897]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help