Show simple item record

dc.contributor.authorFitzgibbon, Elizabeth Lauraen_US
dc.date.accessioned2016-03-08T18:30:59Z
dc.date.available2016-03-08T18:30:59Z
dc.date.issued2014
dc.identifier.urihttps://hdl.handle.net/2144/15111
dc.description.abstractFor the family of complex rational maps F_λ(z)=z^n+λ/z^d, where λ is a complex parameter and n, d ≥ 2 are integers, many small copies of the well-known Mandelbrot set are visible in the parameter plane. An infinite number of these are located around the boundary of the connectedness locus and are accessible by parameter rays from the Cantor set locus. Maps taken from main cardioid of these accessbile Mandelbrot sets have attracting periodic cycles. A method for constructing models of the Julia sets corresponding to such maps is described. These models are then used to explore the existence of dynamical conjugacies between maps taken from distinct accessible Mandelbrot sets in the upper halfplane.en_US
dc.language.isoen_US
dc.subjectMathematicsen_US
dc.subjectComplex dynamicsen_US
dc.titleRational maps: the structure of Julia sets from accessible Mandelbrot setsen_US
dc.typeThesis/Dissertationen_US
dc.date.updated2016-01-22T18:58:50Z
etd.degree.nameDoctor of Philosophyen_US
etd.degree.leveldoctoralen_US
etd.degree.disciplineMathematics & Statisticsen_US
etd.degree.grantorBoston Universityen_US


This item appears in the following Collection(s)

Show simple item record