Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item

    The detection threshold for odor plume tracking in the smooth dogfish, Mustelus canis.

    Thumbnail
    Date Issued
    2014
    Author(s)
    Jennings, Ashley Robina
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/15238
    Abstract
    The survival of Elasmobranch fishes (sharks, skates and rays) depends critically on their ability to sense odor cues. The outstanding question of detection thresholds to food odors in the shark is investigated in this study. The tracking behavior of Mustelus canis (the smooth dogfish) was analyzed using a binary choice flume designed specifically for testing odor preferences of aquatic animals. To determine threshold, odor was serially diluted until no tracking responses were observed. Sharks spent significantly more time in the odor side of the flume, regardless of their individual side bias, until the "squid juice" was diluted several orders of magnitude. For the whole flume the two greatest dilutions (10-4-10-5 at the odor source) did not cause significant choice and for the upstream flume half, all but the greatest dilution (10-5 at the odor source) caused significant odor side preference. To interpret these results fully we need to consider the structure of odor plumes and the function of the sharks' olfactory responses. Nonetheless, assuming that M. canis represent sharks in general, these findings demonstrate that their extraordinary sensitivity to food attractants may indicate aspects still unknown about life history of elasmobranch fishes including the ranges that benthic elasmobranchs are capable of traveling to feed.
    Collections
    • Boston University Theses & Dissertations [6758]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help