Show simple item record

dc.contributor.authorGlanz, Hunter S.en_US
dc.date.accessioned2016-03-22T13:23:13Z
dc.date.available2016-03-22T13:23:13Z
dc.date.issued2014
dc.identifier.urihttps://hdl.handle.net/2144/15244
dc.description.abstractImage segmentation persists as a major statistical problem, with the volume and complexity of data expanding alongside new technologies. Land cover classification, one of the most studied problems in Remote Sensing, provides an important example of image segmentation whose needs transcend the choice of a particular classification method. That is, the challenges associated with land cover classification pervade the analysis process from data pre-processing to estimation of a final land cover map. Many of the same challenges also plague the task of land cover change detection. Multispectral, multitemporal data with inherent spatial relationships have hardly received adequate treatment due to the large size of the data and the presence of missing values. In this work we propose a novel, concerted application of methods which provide a unified way to estimate model parameters, impute missing data, reduce dimensionality, classify land cover, and detect land cover changes. This comprehensive analysis adopts a Bayesian approach which incorporates prior knowledge to improve the interpretability, efficiency, and versatility of land cover classification and change detection. We explore a parsimonious, parametric model that allows for a natural application of principal components analysis to isolate important spectral characteristics while preserving temporal information. Moreover, it allows us to impute missing data and estimate parameters via expectation-maximization (EM). A significant byproduct of our framework includes a suite of training data assessment tools. To classify land cover, we employ a spanning tree approximation to a lattice Potts prior to incorporate spatial relationships in a judicious way and more efficiently access the posterior distribution of pixel labels. We then achieve exact inference of the labels via the centroid estimator. To detect land cover changes, we develop a new EM algorithm based on the same parametric model. We perform simulation studies to validate our models and methods, and conduct an extensive continental scale case study using MODIS data. The results show that we successfully classify land cover and recover the spatial patterns present in large scale data. Application of our change point method to an area in the Amazon successfully identifies the progression of deforestation through portions of the region.en_US
dc.language.isoen_US
dc.subjectStatisticsen_US
dc.titleHigh dimensional land cover inference using remotely sensed MODIS dataen_US
dc.typeThesis/Dissertationen_US
dc.date.updated2016-03-12T07:10:18Z
etd.degree.nameDoctor of Philosophyen_US
etd.degree.leveldoctoralen_US
etd.degree.disciplineMathematics & Statisticsen_US
etd.degree.grantorBoston Universityen_US


This item appears in the following Collection(s)

Show simple item record