Show simple item record

dc.contributor.authorBates, Oliver Richard Johnen_US
dc.date.accessioned2016-04-14T17:29:18Z
dc.date.available2016-04-14T17:29:18Z
dc.date.issued2015
dc.identifier.urihttps://hdl.handle.net/2144/15708
dc.description.abstractThere is a compelling body of evidence implicating continuous propagation (reentry) sustained by multiple meandering wavelets in the pathology of advanced human atrial fibrillation (AF). This forms the basis for many current therapies such as the Cox MAZE procedure and its derivatives, which aim to create non-conducting lesions in order to "transect" these circuits before they form. Nevertheless, our ability to successfully treat persistent and permanent AF using catheter ablation remains inadequate due to current limitations of clinical mapping technology as well as an incomplete understanding of how to place lesions in order to maximize circuit transection and, more importantly, minimize AF burden. Here, we used a hybrid cellular automaton model to study the dynamics of chaotic, multi-wavelet reentry (MWR) in excitable tissue. First, we used reentry as an exemplar to investigate a hysteretic disease mechanism in a multistable nonlinear system. We found that certain interactions with the environment can cause persistent changes to system behavior without altering its structure or properties, thus leading to a disconnect between clinical symptoms and the underlying state of disease. Second, we developed a novel analytical method to characterize the spatiotemporal dynamics of MWR. We identified a heterogeneous spatial distribution of reentrant pathways that correlated with the spatial distribution of cell activation frequencies. Third, we investigated the impact of topological and geometrical substrate alterations on the dynamics of MWR. We demonstrated a multi-phasic relationship between obstacle size and the fate of individual episodes. Notably, for a narrow range of sizes, obstacles appeared to play an active role in rapidly converting MWR to stable structural reentry. Our studies indicate that reentrant-pathway distributions are non-uniform in heterogeneous media (such as the atrial myocardium) and suggest a clinically measurable correlate for identifying regions of high circuit density, supporting the feasibility of patient-specific targeted ablation. Moreover, we have elucidated the key mechanisms of interaction between focal obstacles and MWR, which has implications for the use of spot ablation to treat AF as some recent studies have suggested.en_US
dc.language.isoen_US
dc.subjectBiomedical engineeringen_US
dc.titleStudies on the dynamics of chaotic multi-wavelet reentrant propagation using a hybrid cellular automaton model of excitable tissueen_US
dc.typeThesis/Dissertationen_US
dc.date.updated2016-04-08T20:09:49Z
etd.degree.nameDoctor of Philosophyen_US
etd.degree.leveldoctoralen_US
etd.degree.disciplineBiomedical Engineeringen_US
etd.degree.grantorBoston Universityen_US


This item appears in the following Collection(s)

Show simple item record