Show simple item record

dc.contributor.authorBerry, Justin Daviden_US
dc.date.accessioned2016-06-24T18:26:13Z
dc.date.available2016-06-24T18:26:13Z
dc.date.issued2016
dc.identifier.urihttps://hdl.handle.net/2144/16720
dc.description.abstractVision requires the photoreceptors in the eye to rapidly respond to changes in light intensity. These processes are accomplished within rod photoreceptors by the visual pigment rhodopsin that initiates a downstream signaling cascade called phototransduction. Rhodopsin is composed of an apoprotein opsin that is covalently bonded with light sensitive 11-cis retinal. Rhodopsin is activated when 11-cis retinal is photoisomerized into all-trans retinal. This isomerization initiates the phototransduction cascade that culminates in a change in current at the plasma membrane. Rhodopsin, once activated ("bleached"), can no longer absorb photons to activate phototransduction, and must be regenerated through the visual cycle. To enable the photoreceptors to respond to rapid changes in light intensities, phototransduction must terminate in a timely manner. Deactivation involves phosphorylation of activated rhodopsin by rhodopsin kinase, and then binding of visual arrestin. Exposing rods to daylight bleaches a large proportion of rhodopsin molecules. This exposure leads to desensitization of the photoreceptors and phosphorylation of bleached rhodopsin. Full recovery of receptor sensitivity is achieved when rhodopsin is recycled and regenerated through a series of steps to its ground state. The last step in this process is the dephosphorylation of rhodopsin. This dissertation focuses on how rhodopsin dephosphorylation affects rod sensitivity. I exploited a novel observation; mouse retinae when isolated from the retinal pigment epithelium (and eye cup), display blunted rhodopsin dephosphorylation. Isoelectric focusing followed by Western blot analysis of retinal homogenate from bleached isolated retinae showed little dephosphorylation of rhodopsin for up to four hours in darkness, even under conditions when rhodopsin was completely regenerated. Microspectrophotometric measurements of rhodopsin spectra show that regenerated phospho-rhodopsin has the same molecular photosensitivity as unphosphorylated rhodopsin and that flash responses measured by trans-retinal electroretinogram or single cell suction electrode recording displayed dark-adapted kinetics. Single quantal responses displayed normal dark-adapted kinetics, but rods were only half as sensitive as those containing exclusively unphosphorylated rhodopsin. I propose a revised model in which light-exposed retinae contain a mixed population of phosphorylated and unphosphorylated rhodopsin. Moreover, complete dark-adaptation can only occur when all rhodopsin has been dephosphorylated, a process that requires more than three hours in complete darkness.en_US
dc.language.isoen_US
dc.rightsAttribution 4.0 Internationalen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectPhysiologyen_US
dc.subjectGPCRen_US
dc.subjectDark adaptationen_US
dc.subjectPhototransductionen_US
dc.subjectRetinaen_US
dc.subjectRhodopsinen_US
dc.titleEffects of rhodopsin phosphorylation on dark adaptation and the recovery of sensitivityen_US
dc.typeThesis/Dissertationen_US
dc.date.updated2016-06-15T22:36:16Z
etd.degree.nameDoctor of Philosophyen_US
etd.degree.leveldoctoralen_US
etd.degree.disciplinePhysiologyen_US
etd.degree.grantorBoston Universityen_US


This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International