Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item

    Development of a flexible modeling environment for evaluating subcortical auditory systems

    Thumbnail
    License
    Attribution 4.0 International
    Date Issued
    2016
    Author(s)
    Voysey, Graham Elliott
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/19520
    Abstract
    Cochlear Synaptopathy (CS) is an emerging topic of hearing research that focuses on peripheral pathologies which leave pure-tone audiometric thresholds (PTA) unchanged but significantly impair threshold-independent hearing performance. Primary among the proposed mechanisms of CS is selective damage of low spontaneous rate (low SR) fibers of the auditory nerve (AN), yet no noninvasive quantitative measure of CS yet exists in humans. Recent work has established a relationship between Wave V latencies and a psychophysical measure of CS in humans, but current biophysical models do not fully account for the observed results. To begin to address the discrepancies between these experiments and biophysical models of hearing, a new comprehensive modeling tool was developed which allows parametric exploration of modeling space and direct comparison between major models of the auditory nerve and brainstem. More sophisticated models of the midbrain and brainstem were incorporated into the new modeling tool. Incorporating recent anatomical and electrophysiological results, which suggest a varying contribution of low-SR fibers for different audible frequencies, further addresses modeling efficacy.
    Rights
    Attribution 4.0 International
    Collections
    • Boston University Theses & Dissertations [6981]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help