Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item

    Privacy-preserving queries on encrypted databases

    Thumbnail
    License
    Attribution 4.0 International
    Date Issued
    2016
    Author(s)
    Meng, Xianrui
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/19739
    Abstract
    In today's Internet, with the advent of cloud computing, there is a natural desire for enterprises, organizations, and end users to outsource increasingly large amounts of data to a cloud provider. Therefore, ensuring security and privacy is becoming a significant challenge for cloud computing, especially for users with sensitive and valuable data. Recently, many efficient and scalable query processing methods over encrypted data have been proposed. Despite that, numerous challenges remain to be addressed due to the high complexity of many important queries on encrypted large-scale datasets. This thesis studies the problem of privacy-preserving database query processing on structured data (e.g., relational and graph databases). In particular, this thesis proposes several practical and provable secure structured encryption schemes that allow the data owner to encrypt data without losing the ability to query and retrieve it efficiently for authorized clients. This thesis includes two parts. The first part investigates graph encryption schemes. This thesis proposes a graph encryption scheme for approximate shortest distance queries. Such scheme allows the client to query the shortest distance between two nodes in an encrypted graph securely and efficiently. Moreover, this thesis also explores how the techniques can be applied to other graph queries. The second part of this thesis proposes secure top-k query processing schemes on encrypted relational databases. Furthermore, the thesis develops a scheme for the top-k join queries over multiple encrypted relations. Finally, this thesis demonstrates the practicality of the proposed encryption schemes by prototyping the encryption systems to perform queries on real-world encrypted datasets.
    Rights
    Attribution 4.0 International
    Collections
    • Boston University Theses & Dissertations [6758]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help