Show simple item record

dc.contributor.authorZhou, Dingjiangen_US
dc.date.accessioned2017-03-16T19:03:17Z
dc.date.available2017-03-16T19:03:17Z
dc.date.issued2017
dc.identifier.urihttps://hdl.handle.net/2144/20846
dc.description.abstractThis thesis considers the problem of controlling a group of micro aerial vehicles for agile maneuvering cooperatively, or distributively. We first introduce the background and motivation for micro aerial vehicles, especially for the popular multi-rotor aerial vehicle platform. Then, we discuss the dynamics of quadrotor helicopters. A quadrotor is a specific kind of multi-rotor aerial vehicle with a special property called differential flatness, which simplifies the algorithm of trajectory planning, such that, instead of planning a trajectory in a 12-dimensional state space and 4-dimensional input space, we only need to plan the trajectory in 4-dimensional, so called, flat output space, while the 12-dimensional state and 4-dimensional input can be recovered from a mapping called endogenous transformation. We propose a series of approaches to achieve agile maneuvering of a dynamic quadrotor formation, from controlling a single quadrotor in an artificial vector field, to controlling a group of quadrotors in a Virtual Rigid Body (VRB) framework, to balancing the effect between the human control and autonomy for collision avoidance, and to fast on-line distributed collision avoidance with Buffered Voronoi Cells (BVC). In the vector field method, we generate velocity, acceleration, jerk and snap fields, depending on the tasks, or the positions of obstacles, such that a single quadrotor can easily find its required state and input from the endogenous transformation in order to track the artificial vector field. Next, with a Virtual Rigid Body framework, we let a group of quadrotors follow a single control command while also keeping a required formation, or even reconfigure from one formation to another. The Virtual Rigid Body framework decouples the trajectory planning problem into two sub-problems. Then we consider the problem of collision avoidance of the quadrotor formation when it is meanwhile tele-operated by a single human operator. The autonomy with collision avoidance algorithm, based on the vector field methods for a single quadrotor, is an assistive portion of the quadrotor formation controller, such that the human operator can focus on his/her high-level tasks, leaving the low-level collision avoidance task be handled automatically. We also consider the full autonomy problem of quadrotor formations when reconfiguring from one formation to another by developing a fast, on-line distributed collision avoidance algorithm using Buffered Voronoi Cells (BVCs). Our BVC based collision avoidance algorithm only requires sensed relative position, rather than relative position and velocity, while the computational complexity is comparable to other methods like velocity obstacles. At last, we introduce our experimental quadrotor platform which is built from PixHawk flight controller and Odroid-XU4 single-board computer. The hardware and software architecture of this multiple-quadrotor platform is described in detail so that our platform can easily be adopted and extended with different purposes. Our conclusion remark and discussion of future work are also given in this thesisen_US
dc.language.isoen_US
dc.subjectRoboticsen_US
dc.titleA control architecture and human interface for agile, reconfigurable micro aerial vehicle formationsen_US
dc.typeThesis/Dissertationen_US
dc.date.updated2017-03-10T05:06:40Z
etd.degree.nameDoctor of Philosophyen_US
etd.degree.leveldoctoralen_US
etd.degree.disciplineMechanical Engineeringen_US
etd.degree.grantorBoston Universityen_US


This item appears in the following Collection(s)

Show simple item record