Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item

    A cost-benefit analysis of a pellet boiler with electrostatic precipitator versus conventional biomass technology: A case study of an institutional boiler in Syracuse, New York

    Thumbnail
    Date Issued
    2017
    Publisher Version
    10.1016/j.envres.2017.03.052
    Author(s)
    Levy, Jonathan I.
    Biton, Leiran
    Hopke, Phillip K.
    Zhang, Max
    Rector, Lisa
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/21086
    Citation (published version)
    Levy, J. I., Biton, L., Hopke, P. K., Zhang, K. M., and Rector, L. A cost-benefit analysis of a pellet boiler with electrostatic precipitator versus conventional biomass technology: A case study of an institutional boiler in Syracuse, New York. Environmental Research, 156, 312–319, 2017
    Abstract
    BACKGROUND: Biomass facilities have received increasing attention as a strategy to increase the use of renewable fuels and decrease greenhouse gas emissions from the electric generation and heating sectors, but these facilities can potentially increase local air pollution and associated health effects. Comparing the economic costs and public health benefits of alternative biomass fuel, heating technology, and pollution control technology options provides decision-makers with the necessary information to make optimal choices in a given location. METHODS: For a case study of a combined heat and power biomass facility in Syracuse, New York, we used stack testing to estimate emissions of fine particulate matter (PM2.5) for both the deployed technology (staged combustion pellet boiler with an electrostatic precipitator) and a conventional alternative (wood chip stoker boiler with a multicyclone). We used the atmospheric dispersion model AERMOD to calculate the contribution of either fuel-technology configuration to ambient primary PM2.5 in a 10 km x 10 km region surrounding the facility, and we quantified the incremental contribution to population mortality and morbidity. We assigned economic values to health outcomes and compared the health benefits of the lower-emitting technology with the incremental costs. RESULTS: In total, the incremental annualized cost of the lower-emitting pellet boiler was $190,000 greater, driven by a greater cost of the pellet fuel and pollution control technology, offset in part by reduced fuel storage costs. PM2.5 emissions were a factor of 23 lower with the pellet boiler with electrostatic precipitator, with corresponding differences in contributions to ambient primary PM2.5 concentrations. The monetary value of the public health benefits of selecting the pellet-fired boiler technology with electrostatic precipitator was $1.7 million annually, greatly exceeding the differential costs even when accounting for uncertainties. Our analyses also showed complex spatial patterns of health benefits given non-uniform age distributions and air pollution levels. CONCLUSIONS: The incremental investment in a lower-emitting staged combustion pellet boiler with an electrostatic precipitator was well justified by the population health improvements over the conventional wood chip technology with a multicyclone, even given the focus on only primary PM2.5 within a small spatial domain. Our analytical framework could be generalized to other settings to inform optimal strategies for proposed new facilities or populations.
    Collections
    • BU Open Access Articles [3730]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help