Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • College of Arts and Sciences
    • Cognitive & Neural Systems
    • CAS/CNS Technical Reports
    • View Item
    •   OpenBU
    • College of Arts and Sciences
    • Cognitive & Neural Systems
    • CAS/CNS Technical Reports
    • View Item

    A Self-Organizing Neural System for Learning to Recognize Textured Scenes

    Thumbnail
    Date Issued
    1997-01
    Author(s)
    Grossberg, Stephen
    Williamson, James
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/2113
    Abstract
    A self-organizing ARTEX model is developed to categorize and classify textured image regions. ARTEX specializes the FACADE model of how the visual cortex sees, and the ART model of how temporal and prefrontal cortices interact with the hippocampal system to learn visual recognition categories and their names. FACADE processing generates a vector of boundary and surface properties, notably texture and brightness properties, by utilizing multi-scale filtering, competition, and diffusive filling-in. Its context-sensitive local measures of textured scenes can be used to recognize scenic properties that gradually change across space, as well a.s abrupt texture boundaries. ART incrementally learns recognition categories that classify FACADE output vectors, class names of these categories, and their probabilities. Top-down expectations within ART encode learned prototypes that pay attention to expected visual features. When novel visual information creates a poor match with the best existing category prototype, a memory search selects a new category with which classify the novel data. ARTEX is compared with psychophysical data, and is benchmarked on classification of natural textures and synthetic aperture radar images. It outperforms state-of-the-art systems that use rule-based, backpropagation, and K-nearest neighbor classifiers.
    Rights
    Copyright 1992 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.
    Collections
    • CAS/CNS Technical Reports [485]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help