Show simple item record

dc.contributor.authorRaphael, Jonathan S.T.en_US
dc.date.accessioned2017-04-13T01:55:55Z
dc.date.issued2012
dc.date.submitted2012
dc.identifier.urihttps://hdl.handle.net/2144/21243
dc.descriptionThesis (M.Sc.Eng.) PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you.en_US
dc.description.abstractLegged robots offer significant advantages over their wheeled and treaded counterparts, enabling access to huge sectors of otherwise non-navigable terrain. To develop these walkers many engineers have looked to nature for inspiration, but the field of bipedal research has been focused almost exclusively on human locomotion. Other than Homo sapiens, the only regularly bipedal walkers are members of Theropoda, a clade that includes modern day birds as well as all the carnivorous dinosaurs. Whereas birds evolved extensively for flying, their ancestors, e.g. Velociraptor and Tyrannosaurus Rex, were much more specialized for dynamic terrestrial motion. We submit that there is good reason to look to theropod body geometry for an efficient alternative walking model. In this thesis, a novel model was developed in order to examine the mechanics of such specialized bipedal motion. Instead of a traditional anthropomorphic model maintaining a vertically balanced torso, this research synthesized a dinomorphic model that consists of a horizontal spine with counterbalanced torso and tail masses pivoting around the hip joint. The system model developed herein was an extension of the simple rimless wheel representation and aimed to capture critical events in the cycle of bipedal motion while avoiding chaotic regimes. Mathematical models and computer simulations were designed iteratively and in parallel. Once the system dynamics and the energy losses from inelastic impact were derived, then all the equations were nondimensionalized. Theoretical bounds on efficiency were found, and an attempt was made to experimentally quantify the effects of each geometric system parameter. A region of improved performance was identified, indicating non-negligible benefits to tailed morphologies over tail-less ones. It is suggested that further research might adapt and apply this model to the more complex bipedal compass gait. Ideally these findings will enable and encourage the design of legged robots with a horizontal load-bearing frame, demonstrating advantage over anthropomorphic walkers.en_US
dc.language.isoen_US
dc.publisherBoston Universityen_US
dc.subjectMechanical engineeringen_US
dc.subjectRoboticsen_US
dc.subjectBipedal robotsen_US
dc.subjectDinomorphic bipedal modelsen_US
dc.titlePassive control of bipedal robots via tail morphologyen_US
dc.typeThesis/Dissertationen_US
dc.description.embargo2031-01-01
etd.degree.nameMasters of Science in Engineeringen_US
etd.degree.levelmastersen_US
etd.degree.disciplineMechanical Engineeringen_US
etd.degree.grantorBoston Universityen_US


This item appears in the following Collection(s)

Show simple item record