Cortical Dynamics of Boundary Segmentation and Reset: Persistence, Afterimages, and Residual Traces
Permanent Link
https://hdl.handle.net/2144/2179Abstract
Using a neural network model of boundary segmentation and reset, Francis, Grossberg, and Mingolla (1994) linked the percept of persistence to the duration of a boundary segmentation after stimulus offset. In particular, the model simulated the decrease of persistence duration with an increase in stimulus duration and luminance. Thc present article reveals further evidence for the neural mechanisms used by the theory. Simulations show that the model reset signals generate orientational afterimages, such as the MacKay effect, when the reset signals can be grouped by a subsequent boundary segmentation that generates illusory contours through them. Simulations also show that the same mechanisms explain properties of residual traces, which increase in duration with stimulus duration and luminance. The model hereby discloses previously unsuspected mechanistic links between data about persistence and afterimages, and helps to clarify the sometimes controversial issues surrounding distinctions between persistence, residual traces, and afterimages.
Rights
Copyright 1995 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.Collections