Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • College of Arts and Sciences
    • Cognitive & Neural Systems
    • CAS/CNS Technical Reports
    • View Item
    •   OpenBU
    • College of Arts and Sciences
    • Cognitive & Neural Systems
    • CAS/CNS Technical Reports
    • View Item

    Boundary Contour System and Feature Contour System

    Thumbnail
    Date Issued
    1995-05
    Author(s)
    Grossberg, Stephen
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/2192
    Abstract
    When humans gaze upon a scene, our brains rapidly combine several different types of locally ambiguous visual information to generate a globally consistent and unambiguous representation of Form-And-Color-And-DEpth, or FACADE. This state of affairs raises the question: What new computational principles and mechanisms are needed to understand how multiple sources of visual information cooperate automatically to generate a percept of 3-dimensional form? This chapter reviews some modeling work aimed at developing such a general-purpose vision architecture. This architecture clarifies how scenic data about boundaries, textures, shading, depth, multiple spatial scales, and motion can be cooperatively synthesized in real-time into a coherent representation of 3-dimensional form. It embodies a new vision theory that attempts to clarify the functional organzation of the visual brain from the lateral geniculate nucleus (LGN) to the extrastriate cortical regions V4 and MT. Moreover, the same processes which are useful towards explaining how the visual cortex processes retinal signals are equally valuable for processing noisy multidimensional data from artificial sensors, such as synthetic aperture radar, laser radar, multispectral infrared, magnetic resonance, and high-altitude photographs. These processes generate 3-D boundary and surface representations of a scene.
    Rights
    Copyright 1995 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.
    Collections
    • CAS/CNS Technical Reports [485]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help