Show simple item record

dc.contributor.authorBaloch, Aijaz A.en_US
dc.contributor.authorGrossberg, Stephenen_US
dc.date.accessioned2011-11-14T19:07:10Z
dc.date.available2011-11-14T19:07:10Z
dc.date.issued1996-07
dc.identifier.urihttps://hdl.handle.net/2144/2319
dc.description.abstractThe percepts known variously as the line motion illusion, motion induction, and transformational apparent motion have attracted a great deal of experimental interest, since they sensitively probe interactions between preattentive and attentive vision processes. The present article develops a neural model that qualitatively explains essentially all the data reported thus far, and quantitatively simulates key illustrative percepts. The model suggests how these data arise from neural mechanisms of preattentive boundary and surface formation, long-range apparent motion, formmotion interactions, and spatial attention. The boundary and surface formation processes model aspects of the interblob Vl-> interstripe V2-> V4 and blob Vl-> thin stripe V2-> V4 cortical processing streams, respectively. The long-range apparent motion process models aspects of the Vl -> MT -> MST processing stream. An interstream V2 -> MT form-motion interaction is proposed to allow the motion processing stream to track transient properties of emergent boundaries and filled-in surface colors. It does so by generating motion waves using the long-range apparent motion process. This interstream interaction controls the formation of form-motion percepts, which are herein called formotion percepts. Other transients directly cause motion waves within the motion processing stream. All the data are attributed to properties of such motion waves. It is also suggested how bottom-up motion mechanisms can engage top-down attention as part of the motion capture process that solves the aperture problem. This interaction is proposed to occur between areas MT and MST. The model hereby explains how attention can be engaged even in percepts whose explanation can be derived from preattentive mechanisms.en_US
dc.description.sponsorshipOffice of Naval Research (N00014-95-1-0409, N00014-95-1-0409, N00014-95-1-0657)en_US
dc.language.isoen_US
dc.publisherBoston University Center for Adaptive Systems and Department of Cognitive and Neural Systemsen_US
dc.relation.ispartofseriesBUCAS/CNS Technical Reports; BUCAS/CNS-TR-1996-020
dc.rightsCopyright 1996 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.en_US
dc.titleA Neural Model of High-Level Motion Processing: Line Motion and Formotion Dynamicsen_US
dc.typeTechnical Reporten_US
dc.rights.holderBoston University Trusteesen_US


This item appears in the following Collection(s)

Show simple item record