JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • College of Arts and Sciences
    • Cognitive & Neural Systems
    • CAS/CNS Technical Reports
    • View Item
    •   OpenBU
    • College of Arts and Sciences
    • Cognitive & Neural Systems
    • CAS/CNS Technical Reports
    • View Item

    Kinematic Coordinates in Which Motor Cortical Cells Encode Movement Direction

    Thumbnail
    Download/View
    98.021.pdf (1.335Mb)
    Date Issued
    1998-06
    Author
    Ajemian, Robert
    Bullock, Daniel
    Grossberg, Stephen
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/2355
    Abstract
    During goal-directed reaching in primates, a sensorimotor transformation generates a dynamical pattern of muscle activation. Within the context of this sensorimotor transformation, a fundamental question concems the coordinate systems in which individual cells in the primary motor cortex (MI) encode movement direction. This article develops a mathematical framework that computes, as a function of the coordinate system in which an individual cell is hypothesized to operate, the spatial preferred direction (pd) of that cell as the ann configuration and hand location vary. Three coordinate systems are explicitly modeled: Cartesian spatial, shoulder-centered, and joint angle. The computed patterns of spatial pds are distinct for each of these three coordinate systems, and experimental approaches are described which can capitalize upon these differences to compare the empirical adequacy of each coordinate hypothesis. One particular experiment involving curved motion (Hocherman and Wise 1991) was analyzed from this perspective. Out of the three coordinate systems tested, the assumption of joint angle coordinates best explained the observed cellular response properties. The mathematical framework developed in this paper can also be used to design new experiments that are capable of disambiguating between a given set of specified coordinate hypotheses.
    Rights
    Copyright 1998 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.
    Collections
    • CAS/CNS Technical Reports [485]

    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Contact Us | Send Feedback | Help