Show simple item record

dc.contributor.authorLough, Emily Anneen_US
dc.date.accessioned2017-08-18T18:57:59Z
dc.date.available2017-08-18T18:57:59Z
dc.date.issued2017
dc.identifier.urihttps://hdl.handle.net/2144/23573
dc.description.abstractNanoparticle (NP) drug delivery is a major focus in the research community because of its potential to use existing drugs in safer and more effective ways. Chemotherapy encapsulation in NPs shields the drug from the rest of the body while it is within the NP, with less systemic exposure leading to fewer off-target effects of the drug. However, passive loading of drugs into NPs is a suboptimal method, often leading to burst release upon administration. This work explores the impact of incorporating the drug-polymer conjugate doxorubicin-poly (lactic-co-glycolic) acid (Dox-PLGA) into a lipid-polymer hybrid nanoparticle (LPN). The primary difference in using a drug-polymer conjugate for NP drug delivery is the drug’s release kinetics. Dox-PLGA LPNs showed a more sustained and prolonged release profile over 28 days compared to LPNs with passively loaded, unconjugated doxorubicin. This sustained release translates to cytotoxicity; when systemic circulation was simulated using dialysis, Dox-PLGA LPNs retained their cytotoxicity at a higher level than the passively loaded LPNs. The in vivo implication of preserving cytotoxic potency through a slower release profile is that the majority of Dox delivered via Dox-PLGA LPNs will be kept within the LPN until it reaches the tumor. This will result in fewer systemic side effects and more effective treatments given the higher drug concentration at the tumor site. An intriguing clinical application of this drug delivery approach lies in using Dox- PLGA LPNs to cross the blood-brain barrier (BBB). The incorporation of Dox-PLGA is hypothesized to have a protective effect on the BBB as its slow release profile will prevent drug from harming the BBB. Using induced pluripotent stem cells differentiated to human brain microvascular endothelial cells that comprise the BBB, the Dox-PLGA LPNs were shown to be less destructive to the BBB than their passively loaded counterparts. Dox-PLGA LPNs showed superior cytotoxicity against plated tumor cells than the passively loaded Dox LPNs after passing through an in vitro transwell BBB model. Dox-PLGA LPNs and drug-polymer conjugates are exciting alternatives to passively loaded NPs and show strong clinical promise of a treatment that is more potent with fewer side effects and less frequent administration.en_US
dc.language.isoen_US
dc.rightsAttribution-NoDerivatives 4.0 Internationalen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subjectBiomedical engineeringen_US
dc.titleExploration of a doxorubicin-polymer conjugate in lipid-polymer hybrid nanoparticle drug deliveryen_US
dc.typeThesis/Dissertationen_US
dc.date.updated2017-07-10T01:16:11Z
etd.degree.nameDoctor of Philosophyen_US
etd.degree.leveldoctoralen_US
etd.degree.disciplineBiomedical Engineeringen_US
etd.degree.grantorBoston Universityen_US


This item appears in the following Collection(s)

Show simple item record

Attribution-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NoDerivatives 4.0 International